Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

# LiDAR Surveys and Flood Mapping of Pansipit River





University of the Philippines Training Center for Applied Geodesy and Photogrammetry Mapua Institute of Technology Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



© University of the Philippines Diliman and Mapua Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E. C. Paringit and F. A. Uy (eds.) (2017), LiDAR Surveys and Flood Mapping of Pansipit River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-254pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Dr. Francis Aldrine A. Uy

Project Leader, Phil-LiDAR 1 Program MAPUA Institute of Technology City of Manila, Philippines 1002 E-mail: faauy@mapua.edu.ph

#### Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-060-0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

# **TABLE OF CONTENTS**

| LIST OF TABLES                                                                                 | v    |
|------------------------------------------------------------------------------------------------|------|
| LIST OF FIGURES                                                                                | vii  |
| LIST OF ACRONYMS AND ABBREVIATIONS                                                             | х    |
| CHAPTER 1: OVERVIEW OF THE PROGRAM AND PANSIPIT RIVER                                          | 1    |
| 1.1 Background of the Phil-LIDAR 1 Program                                                     | 1    |
| 1.2 Overview of the Pansipit River Basin                                                       | 2    |
| CHAPTER 2: LIDAR DATA ACQUISITION OF THE PANSIPIT FLOODPLAIN                                   | 3    |
| 2 1 Flight Plans                                                                               | 3    |
| 2.2 Ground Base Stations                                                                       | 5    |
| 2.3 Elight Missions                                                                            | 10   |
| 2.5 Fight Wissions                                                                             | 11   |
|                                                                                                | 11   |
| 2.1 LiDAR DATA PROCESSING FOR PANSIFIT FLOODFLAIN                                              | . 14 |
| 3.1 LIDAR Data Processing for Pansipit Flooupiain                                              | 14   |
| 3.1.1 Overview of the LIDAR Date Pre-Processing                                                | 14   |
| 3.2 Iransmittal of Acquired LIDAR Data                                                         | . 15 |
| 3.3 Trajectory Computation                                                                     | . 15 |
| 3.4 LiDAR Point Cloud Computation                                                              | . 18 |
| 3.5 LiDAR Data Quality Checking                                                                | . 18 |
| 3.6 LiDAR Point Cloud Classification and Rasterization                                         | 23   |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification                                   | 25   |
| 3.8 DEM Editing and Hydro-Correction                                                           | 26   |
| 3.9 Mosaicking of Blocks                                                                       | 28   |
| 3.10 Calibration and Validation of Mosaicked LiDAR DEM                                         | 31   |
| 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model                      | 34   |
| 3.12 Feature Extraction                                                                        | . 35 |
| 3 12 1 Quality Checking of Digitized Features' Boundary                                        | 36   |
| 3 12 7 Height Extraction                                                                       | 36   |
| 3 12 3 Feature Attribution                                                                     | 36   |
| 2 12 4 Einal Quality Chacking of Extracted Eastures                                            | . 50 |
| CHADTED 4: LIDAD VALIDATION CLIDVEY AND MEASUREMENTS OF THE DANSIDIT DIVED DASIN               |      |
| CHAPTER 4. LIDAR VALIDATION SURVET AND IVIEASUREIVIENTS OF THE PAINSIPHT RIVER DASIN           | 39   |
| 4.1 Summary of Activities                                                                      | 39   |
| 4.2 Control Survey                                                                             | 39   |
| 4.3 Baseline Processing                                                                        | 44   |
| 4.4 Network Adjustment                                                                         | . 45 |
| 4.5 Cross-section and Bridge As-Built survey and Water Level Marking                           | 49   |
| 4.6 Validation Points Acquisition Survey                                                       | . 51 |
| 4.7 River Bathymetric Survey                                                                   | . 53 |
| CHAPTER 5: Results and Discussion FMC                                                          | . 57 |
| 5.1 Data Used for Hydrologic Modeling                                                          | 57   |
| 5.1.1 Hydrometry and Rating Curves                                                             | 57   |
| 5.1.2 Precipitation                                                                            | 57   |
| 5.1.3 Rating Curves and River Outflow                                                          | 58   |
| 5.2 RIDF Station                                                                               | 60   |
| 5.3 HMS Model                                                                                  | . 62 |
| 5.4 Cross-section Data                                                                         | 65   |
| 5 5 Elo 2D Model                                                                               | 67   |
| 5.6 Results of HMS Calibration                                                                 | 68   |
| 5.0 Results of TIMS Calibration                                                                | . 08 |
| 5.7 Calculated buttlow flyerographs and discharge values for different faillian return periods |      |
| 5.7.1 Hydrograph using the Rainian Runon Woder                                                 | 70   |
| 5.8 River Analysis (RAS) Model Simulation                                                      | / 1  |
| 5.9 Flow Depth and Flood Hazard                                                                | 72   |
| 5.10 Inventory of Areas Exposed to Flooding                                                    | /9   |
| 5.11 Flood Validation                                                                          | 122  |
| REFERENCES                                                                                     | 125  |
| ANNEXES                                                                                        | 126  |
| Annex 1. Technical Specifications of the LIDAR Sensors used in the Pansipit Floodplain Survey  | 126  |
| Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey                     | 128  |
| Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey                | 131  |
| Annex 4. The LIDAR Survey Team Composition                                                     | 136  |

| Annex 5. Data Transfer Sheet for Pansipit Floodplain                           | 137 |
|--------------------------------------------------------------------------------|-----|
| Annex 6. Flight logs for the flight missions                                   | 142 |
| Annex 7. Flight status reports                                                 | 152 |
| Annex 8. Summary Mission Report                                                | 163 |
| Annex 9 Pansipit Model Basin Parameters                                        | 223 |
| Annex 10. Pansipit Model Reach Parameters                                      | 226 |
| Annex 11. Pansipit Field Validation Points                                     | 228 |
| Annex 12. Educational Institutions Affected by Flooding in Pansipit Floodplain |     |
| Annex 13. Health Institutions Affected in Pansipit Floodplain                  |     |

# **LIST OF TABLES**

| Table 1. Flight planning parameters for Gemini LiDAR System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Flight planning parameters for Pegasus LiDAR System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                            |
| Table 3. Details of the recovered NAMRIA horizontal control point BTG-51 used as base station for the LiDAR Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                            |
| Table 4. Details of the recovered NAMRIA horizontal control point BTG-45 used as base station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                              |
| Table 5. Details of the recovered NAMRIA horizontal control point BTG-30 used as base station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /                                                                                                                                                                                            |
| for the LIDAR acquisition<br>Table 6. Details of the established NAMRIA horizontal control point BTG-30A used as base station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /                                                                                                                                                                                            |
| for the LiDAR Acquisition with re-processed coordinates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                            |
| Table 7. Details of the recovered NAMRIA horizontal control point BTG-A used as base station<br>for the LiDAR Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                            |
| Table 8. Details of the recovered NAMRIA horizontal control point TGT-1 used as base station<br>for the LiDAR Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 8                                                                                                                                                                                          |
| Table 9. Details of the established ground control point BTG-45A used as base station for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |
| the LiDAR Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                            |
| Table 10. Ground control points used during LiDAR data acquisition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 10                                                                                                                                                                                         |
| Table 11. Flight Missions for LiDAR Data Acquisition in Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 10                                                                                                                                                                                         |
| Table 12. Actual Parameters used during LiDAR Data Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 11                                                                                                                                                                                         |
| Table 13. List of Municipalities/Cities Surveyed during Pansipit Floodplain LiDAR survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 12                                                                                                                                                                                         |
| Table 14. Self-Calibration Results values for Pansipit flights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 18                                                                                                                                                                                         |
| Table 15. List of LiDAR blocks for Pansipit floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 19                                                                                                                                                                                         |
| Table 16. Pansipit classification results in TerraScan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 23                                                                                                                                                                                         |
| Table 17. LiDAR blocks with its corresponding area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 27                                                                                                                                                                                         |
| Table 18. Shift Values of each LiDAR Block of Pansipit floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 29                                                                                                                                                                                         |
| Table 19 Calibration Statistical Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 33                                                                                                                                                                                         |
| Table 20. Validation Statistical Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 34                                                                                                                                                                                         |
| Table 21. Quality Checking Ratings for Pansipit Building Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 36                                                                                                                                                                                         |
| Table 22. Building Features Extracted for Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 37                                                                                                                                                                                         |
| Table 23 Total Length of Extracted Roads for Pansinit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27                                                                                                                                                                                           |
| Table 25. Total cellgtil of extracted hoads for ranspit ribbupiant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                              |
| Table 24. Number of Extracted Water Bodies for Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 37                                                                                                                                                                                         |
| Table 24. Number of Extracted Water Bodies for Pansipit Floodplain<br>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 37                                                                                                                                                                                         |
| Table 24. Number of Extracted Water Bodies for Pansipit Floodplain<br>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA<br>and UP-TCAGP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 37<br>. 37<br>. 40                                                                                                                                                                         |
| Table 24. Number of Extracted Water Bodies for Pansipit Floodplain<br>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA<br>and UP-TCAGP)<br>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 37<br>. 37<br>. 40<br>. 44                                                                                                                                                                 |
| Table 24. Number of Extracted Water Bodies for Pansipit Floodplain<br>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA<br>and UP-TCAGP)<br>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey<br>Table 27. Control Point Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 37<br>. 37<br>. 40<br>. 44<br>. 45                                                                                                                                                         |
| <ul> <li>Table 23. Noter Length of Extracted Water Bodies for Pansipit Hoodplain</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 37<br>. 37<br>. 40<br>. 44<br>. 45<br>. 46                                                                                                                                                 |
| <ul> <li>Table 23. Noter Ectracted Water Bodies for Pansipit Hoodplain</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 37<br>. 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48                                                                                                                                         |
| <ul> <li>Table 23. Total Length of Extracted Water Bodies for Pansipit Hoodplain</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 37<br>. 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48                                                                                                                                 |
| <ul> <li>Table 23. Total Length of Extracted Water Bodies for Pansipit Hoodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 37<br>. 37<br>. 40<br>. 44<br>. 45<br>. 45<br>. 46<br>. 48<br>. 48<br>. 48                                                                                                                 |
| <ul> <li>Table 23. Total Length of Extracted Water Bodies for Pansipit Hoodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 37<br>. 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69                                                                                                                 |
| <ul> <li>Table 23. Total Length of Extracted Water Bodies for Pansipit Hoodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 37<br>. 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69                                                                                                 |
| <ul> <li>Table 23. Note Constructed Notes for Pansipit Record Processing Report For Pansipit Floodplain</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 37<br>. 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 71                                                                                         |
| <ul> <li>Table 23. Note Constructed Notes for Pansipit Record Processing Processing Processing Processing Report for Pansipit River Basin Static Survey (Source: NAMRIA and UP-TCAGP)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 71<br>. 72                                                                                         |
| <ul> <li>Table 23. Note Constructed Notes for Pansipit Floodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Bainfall Beturn Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 71<br>. 72<br>. 79                                                                                 |
| <ul> <li>Table 23. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 71<br>. 72<br>. 79<br>. 80                                                                         |
| <ul> <li>Table 23. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 38. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 71<br>. 72<br>. 79<br>. 80                                                                                                 |
| <ul> <li>Table 22. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81                                                                                 |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 38. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81                                                                         |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81<br>. 84                                                                 |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 37. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 30. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81<br>. 84<br>. 86<br>. 86                                                                 |
| <ul> <li>Table 25. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP).</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 34. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 34. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 44. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 43. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period.</li> </ul>                                                                                                                                                                                                                                                  | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81<br>. 84<br>. 86<br>. 86<br>. 88                                                         |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 41. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 71<br>. 72<br>. 80<br>. 81<br>. 84<br>. 88<br>. 88<br>. 88<br>. 88                                 |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 41. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in Taal. Batangas during a 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 69<br>. 71<br>. 80<br>. 80<br>. 80<br>. 81<br>. 88<br>. 88<br>. 88<br>. 88<br>. 88<br>. 90                         |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Hotophain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81<br>. 88<br>. 88<br>. 88<br>. 88<br>. 88<br>. 90                         |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA.</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 41. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 42. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 43. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 44. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 45. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 45. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period.</li> <li>Table 45. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period.</li> </ul>                                                                                                                                                                                                                                                | . 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 69<br>. 69<br>. 80<br>. 80<br>. 80<br>. 81<br>. 84<br>. 88<br>. 88<br>. 88<br>. 90<br>. 90                         |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Grid Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HCCHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 40. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 46. Affected areas in Taal, Batangas during a 5-Year Rainfall Retu</li></ul>                                                                                                                                                                                                                            | . 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81<br>. 84<br>. 88<br>. 88<br>. 88<br>. 90<br>. 91                         |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 40. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 41. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <l< td=""><td>. 37<br/>. 40<br/>. 44<br/>. 45<br/>. 46<br/>. 48<br/>. 46<br/>. 48<br/>. 46<br/>. 69<br/>. 69<br/>. 71<br/>. 72<br/>. 80<br/>. 80<br/>. 81<br/>. 88<br/>. 88<br/>. 88<br/>. 88<br/>. 90<br/>. 91<br/>. 91</td></l<></ul> | . 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 46<br>. 48<br>. 46<br>. 69<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81<br>. 88<br>. 88<br>. 88<br>. 88<br>. 90<br>. 91<br>. 91         |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 33. Summary of the Efficiency Test of Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit floodplain</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 41. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 42. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in Santa Sitangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in Taal, Batangas during a 5</li></ul>                                                                                                                                                                                                                            | . 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 46<br>. 48<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81<br>. 88<br>. 88<br>. 88<br>. 90<br>. 91<br>. 94 |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP)</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit Hoodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 41. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 48. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 49. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 49. Affe</li></ul>                                                                                                                                                                                                                            | . 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 48<br>. 60<br>. 69<br>. 71<br>. 72<br>. 80<br>. 80<br>. 81<br>. 88<br>. 88<br>. 88<br>. 90<br>. 91<br>. 94<br>. 94                         |
| <ul> <li>Table 24. Number of Extracted Water Bodies for Pansipit Floodplain</li> <li>Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP-TCAGP).</li> <li>Table 26. Baseline Processing Report for Pansipit River Basin Static Survey</li> <li>Table 27. Control Point Constraints</li> <li>Table 28. Adjusted Grid Coordinates</li> <li>Table 29. Adjusted Geodetic Coordinates</li> <li>Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)</li> <li>Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA</li> <li>Table 32. Range of Calibrated Values for Pansipit HMS Model</li> <li>Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF</li> <li>Table 35. Municipalities affected in Pansipit floodplain</li> <li>Table 36. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 39. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 30. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 41. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 42. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 43. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in San Nicolas, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 44. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 46. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 46. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Period</li> <li>Table 45. Affected areas in Taal, Batangas during a 5-Year Rainfall Return Peri</li></ul>                                                                                                                                                                                                                            | . 37<br>. 40<br>. 44<br>. 45<br>. 46<br>. 48<br>. 60<br>. 69<br>. 71<br>. 80<br>. 80<br>. 80<br>. 81<br>. 88<br>. 88<br>. 90<br>. 91<br>. 94<br>. 95<br>. 95                                 |

| Table 53. Affected areas in Santa Teresita, Batangas during a 25-Year Rainfall Return Period  |     |
|-----------------------------------------------------------------------------------------------|-----|
| Table 54. Affected areas in Agoncillo, Batangas during a 25-Year Rainfall Return Period       | 100 |
| Table 55. Affected areas in Agoncillo, Batangas during a 25-Year Rainfall Return Period       | 100 |
| Table 56. Affected areas in San Nicolas, Batangas during a 25-Year Rainfall Return Period     | 102 |
| Table 57. Affected areas in San Nicolas, Batangas during a 25-Year Rainfall Return Period     | 102 |
| Table 58. Affected areas in Taal, Batangas during a 25-Year Rainfall Return Period            | 104 |
| Table 59. Affected areas in Taal, Batangas during a 25-Year Rainfall Return Period            | 104 |
| Table 60. Affected areas in Taal, Batangas during a 25-Year Rainfall Return Period            | 105 |
| Table 61. Affected areas in Taal, Batangas during a 25-Year Rainfall Return Period            | 105 |
| Table 62. Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period         | 108 |
| Table 63. Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period         | 108 |
| Table 64. Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period         | 109 |
| Table 65. Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period         | 109 |
| Table 66. Affected areas in Santa Teresita, Batangas during a 100-Year Rainfall Return Period | 112 |
| Table 67. Affected areas in Agoncillo, Batangas during a 100-Year Rainfall Return Period      | 114 |
| Table 68. Affected areas in Agoncillo, Batangas during a 100-Year Rainfall Return Period      | 114 |
| Table 69. Areas affected by flooding in San Nicolas, Batangas for a 100-Year Return Period    |     |
| rainfall event                                                                                | 116 |
| Table 70. Affected areas in San Nicolas, Batangas during a 100-Year Rainfall Return Period    | 116 |
| Table 71. Affected areas in Taal, Batangas during a 100-Year Rainfall Return Period           | 118 |
| Table 72. Affected areas in Taal, Batangas during a 100-Year Rainfall Return Period           | 118 |
| Table 73. Affected areas in Taal, Batangas during a 100-Year Rainfall Return Period           | 119 |
| Table 74. Affected areas in Taal, Batangas during a 100-Year Rainfall Return Period           | 119 |
| Table 75. Areas covered by each warning level with respect to the rainfall scenarios          | 122 |
| Table 76. Actual Flood Depth vs Simulated Flood Depth in Pansipit                             | 124 |
| Table 77. Summary of Accuracy Assessment in Pansipit                                          | 124 |

# LIST OF FIGURES

| Figure 1. Overview of Pansipit River Basin (in brown)                                                                                                                                | 2        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 2. Flight plans and base stations used for Pansipit floodplain                                                                                                                | 4        |
| Figure 3. GPS set-up over BTG-51 inside the vicinity of Mabini Shrine in Brgy, Talaga, Tanuan City,<br>Batangas (a) NAMRIA reference point BTG-51 (b) as recovered by the field team | 5        |
| Figure 4, GPS set-up over BTG-45 inside Santiago De Guzman Elementary School of Brgy, Malibu,                                                                                        | _        |
| Tuy, Batangas Province (a) and NAMRIA reference point BTG-45 (b) as recovered by                                                                                                     |          |
| the field team.                                                                                                                                                                      | 7        |
| Figure 5. Actual LiDAR survey coverage for Pansipit floodplain                                                                                                                       | . 13     |
| Figure 6.Schematic Diagram for Data Pre-Processing Component                                                                                                                         | . 15     |
| Figure 7. Smoothed Performance Metric Parameters of Pansipit Flight 3687G                                                                                                            | . 16     |
| Figure 8. Solution Status Parameters of Pansipit Flight 3687G                                                                                                                        | 17       |
| Figure 9. The best estimated trajectory of the LiDAR missions conducted over the Pansipit                                                                                            | /        |
| floodplain                                                                                                                                                                           | 18       |
| Figure 10. Boundary of the processed LiDAR data over Pansipit Floodplain                                                                                                             | . 19     |
| Figure 11. Image of data overlap for Pansipit floodplain                                                                                                                             | . 20     |
| Figure 12. Density map of merged LiDAR data for Pansipit floodplain                                                                                                                  | . 21     |
| Figure 13. Elevation difference map between flight lines for Pansipit floodplain                                                                                                     | . 22     |
| Figure 14. Quality checking for a Pansipit flight 3687G using the Profile Tool of OT Modeler                                                                                         | .23      |
| Figure 15. Tiles for Pansinit floodplain (a) and classification results (b) in TerraScan                                                                                             | 24       |
| Figure 16 Point cloud before (a) and after (b) classification                                                                                                                        | 24       |
| Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary                                                                                     | ~ ~ ·    |
| DTM (d) in some portion of Pansinit floodnlain                                                                                                                                       | 25       |
| Figure 18 Pansinit floodplain with available orthonhotographs                                                                                                                        | 26       |
| Figure 19. Sample orthonhotograph tiles for Pansinit floodplain                                                                                                                      | 26       |
| Figure 20. Portions in the DTM of Pansinit floodplain – a bridge before (a) and after (b) manual                                                                                     | 20       |
| editing: a naddy field before (c) and after (d) data retrieval: and a building before                                                                                                |          |
| (e) and after (f) manual editing                                                                                                                                                     | 28       |
| Figure 21 Man of Processed LiDAR Data for Pansinit Flood Plain                                                                                                                       | 30       |
| Figure 22. Map of Pansinit Flood Plain with validation survey points in green                                                                                                        | 30       |
| Figure 23. Correlation plot between calibration survey points and LiDAR data                                                                                                         | 22       |
| Figure 24. Correlation plot between validation survey points and LiDAR data                                                                                                          | 2/       |
| Figure 25. Map of Pansinit Flood Plain with bathymetric survey points shown in blue                                                                                                  | 25       |
| Figure 26. Blocks (in blue) of Pansinit building features that were subjected to OC                                                                                                  | 36       |
| Figure 27. Extracted features for Pansinit floodnlain                                                                                                                                | 38       |
| Figure 28, GNISS network of Pansinit River field survey                                                                                                                              | 10       |
| Figure 20 GNSS receiver Trimble® SDS Q85, set up at RG-207 at Palico Bridge, Bray Luptal                                                                                             | 40       |
| Nasughu Batangas                                                                                                                                                                     | /11      |
| Figure 30 GNSS receiver Trimble® SDS 985 set-up at RTG-7 in Dela Day Lighthouse in Brow                                                                                              | 71       |
| Dela Paz Batangas City Batangas                                                                                                                                                      | /11      |
| Figure 31 GNSS receiver Trimble® SPS 882 set-up at LIP-ASN at San Nicholas Bridge Broy                                                                                               |          |
| Pohlacion San Nicholas Batangas                                                                                                                                                      | 42       |
| Figure 32 GNSS hase receiver Trimble® SPS 852 set-up at LIP-RTN at Bantilan Bridge Broy                                                                                              | 72       |
| Manggalang Banitilan Sariaya Quezon                                                                                                                                                  | 12       |
| Figure 33 GNSS hase receiver Trimble® SPS 852 set-up at LID-CLG1 in Calumnang Bridge Bray                                                                                            | - 72     |
| Cumintang Ibaba Batangas City Batangas                                                                                                                                               | 13       |
| Figure 34 GNSS base receiver Trimble® SPS 882 set-up at LIP-LOBO in Lobo Bridge Bray                                                                                                 | 43       |
| Lagadlarin Loho Batangas                                                                                                                                                             | 13       |
| Eigure 25 GNSS receiver Trimble® SDS 882 set up at UD-1WV1 at Lawaye Bridge Bray Calificality                                                                                        | 45       |
| Mahalanov San Juan Batangas                                                                                                                                                          | лл       |
| Figure 26 Cross Section survey at San Nicolas Bridge in Bray Deblacion San Nicolas Batangas                                                                                          | 44       |
| Figure 30. Closs Section Survey at Sall Nicolas Druge III Digy. Publicion, Sall Nicolas, Balangas                                                                                    | .49      |
| Figure 37. Sall Nicolas Dridge cross-section diagram                                                                                                                                 | 50       |
| Figure 20. Water Lovel Marking at San Nicolas Pridge (a) Dainting of MSL indicator on one of the                                                                                     | . 50     |
| rigure 59. Water Level Marking at Sair Micolas Druge (a) Painting of MisL indicator on one of the                                                                                    | E 1      |
| Figure 40 Validation points acquisition survey setup: A Trimble® SDS 992 is attached on top of a                                                                                     | . 21     |
| rigure 40. Validation points acquisition survey setup. A minute " SPS 882 is attached on top of a                                                                                    | гa       |
| VEHICLE                                                                                                                                                                              | 52       |
| Figure 41. Fallslyll livel Sulvey Valladiuli IIIap                                                                                                                                   | 55       |
| Figure 42. Datinymetric survey setup (d) Dase station at OP-ASN USING INITIDIE" SPS 895, (D)                                                                                         | 4        |
| INAVIGATING TAAL LAKE DETOTE REACTING PAINSIPIL KIVER, (C) SURVEYING WITH THE HEIP OF INSTALLED                                                                                      | ג<br>ר י |
| ri-Target Stry Surger Beam Echo Sounder and a mounted Trimble" Stry 882 GNSS receiver                                                                                                | . 54     |
| Figure 45. Edulymetric points gathered along Pansipit Kiver                                                                                                                          | . 35     |
| Figure 44. NIVELUEU FIUTILE UI Fatisipil KIVEL                                                                                                                                       | 20       |
| Tigure 45. The location map of rain gauges used for the calibration of the Patisipit net-nWS MODEL                                                                                   | . Jö     |

| Figure 46.                                                                                                                                                                                                                                                             | Cross-Section Plot of San Nicolas Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 47.                                                                                                                                                                                                                                                             | Rating Curve at San Nicolas Bridge San Juan, Batangas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59                                                                                                                                                                          |
| Figure 48.                                                                                                                                                                                                                                                             | Rainfall and outflow data at Pansipit used for modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                                                                                                                                          |
| Figure 49.                                                                                                                                                                                                                                                             | Location of Ambulong RIDF relative to Pansipit River Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61                                                                                                                                                                          |
| Figure 50.                                                                                                                                                                                                                                                             | Synthetic storm generated for a 24-hr period rainfall for various return periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61                                                                                                                                                                          |
| Figure 51.                                                                                                                                                                                                                                                             | Soil Map of Pansipit River Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62                                                                                                                                                                          |
| Figure 52.                                                                                                                                                                                                                                                             | Land Cover Map of Pansipit River Basin (source: NAMRIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63                                                                                                                                                                          |
| Figure 53.                                                                                                                                                                                                                                                             | Stream delineation map of Pansipit river basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64                                                                                                                                                                          |
| Figure 54.                                                                                                                                                                                                                                                             | The Pansipit River Basin Model Domain generated by HEC-HMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65                                                                                                                                                                          |
| Figure 55.                                                                                                                                                                                                                                                             | River cross-section of Pansipit River generated through Arcmap HEC GeoRAS tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66                                                                                                                                                                          |
| Figure 56.                                                                                                                                                                                                                                                             | Screenshot of subcatchment with the computational area to be modeled in FLO-2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>c-</b>                                                                                                                                                                   |
| Figure F7                                                                                                                                                                                                                                                              | GDS Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/                                                                                                                                                                          |
| Figure 57.                                                                                                                                                                                                                                                             | Concreted 100-year rain return flow donth man from ELO 2D Mapper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | / ۵                                                                                                                                                                         |
| Figure 50.                                                                                                                                                                                                                                                             | Outflow Hydrograph of Pagsinit produced by the HEC-HMS model compared with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00                                                                                                                                                                          |
| rigule 55.                                                                                                                                                                                                                                                             | observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                                                                                                                                                                          |
| Figure 60                                                                                                                                                                                                                                                              | Outflow hydrograph at Pansinit Station generated using Ambulong RIDE simulated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00                                                                                                                                                                          |
| inguie oo.                                                                                                                                                                                                                                                             | HEC-HMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                          |
| Figure 61.                                                                                                                                                                                                                                                             | Sample output of Pansipit RAS Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                                                                                                                                                                          |
| Figure 62.                                                                                                                                                                                                                                                             | 100-year Flood Hazard Map for Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                                                                          |
| Figure 63.                                                                                                                                                                                                                                                             | 100-year Flow Depth Map for Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74                                                                                                                                                                          |
| Figure 64.                                                                                                                                                                                                                                                             | 25-year Flood Hazard Map for Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                          |
| Figure 65.                                                                                                                                                                                                                                                             | 25-year Flow Depth Map for Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76                                                                                                                                                                          |
| Figure 66.                                                                                                                                                                                                                                                             | 5-year Flood Hazard Map for Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77                                                                                                                                                                          |
| Figure 67.                                                                                                                                                                                                                                                             | 5-year Flow Depth Map for Pansipit Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78                                                                                                                                                                          |
| Figure 68.                                                                                                                                                                                                                                                             | Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                          |
| Figure 69.                                                                                                                                                                                                                                                             | Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                          |
| Figure 70.                                                                                                                                                                                                                                                             | Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83                                                                                                                                                                          |
| Figure /1.                                                                                                                                                                                                                                                             | Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83                                                                                                                                                                          |
| Figure 72.                                                                                                                                                                                                                                                             | Areas affected by flooding in Santa Teresita, Batangas for a 5-year Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05                                                                                                                                                                          |
| Eiguro 72                                                                                                                                                                                                                                                              | rainiali event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85                                                                                                                                                                          |
| rigule 75.                                                                                                                                                                                                                                                             | Aleas affected by hooding in Agoncino, balangas for a 5-fear Return Period failian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97                                                                                                                                                                          |
| Figure 74                                                                                                                                                                                                                                                              | Areas affected by flooding in Agoncillo Batangas for a 5-Year Beturn Period rainfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07                                                                                                                                                                          |
| inguic / 4.                                                                                                                                                                                                                                                            | event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87                                                                                                                                                                          |
| Figure 75.                                                                                                                                                                                                                                                             | Areas affected by flooding in San Nicolas. Batangas for a 5-Year Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                        | rainfall event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89                                                                                                                                                                          |
| Figure 76.                                                                                                                                                                                                                                                             | Areas affected by flooding in San Nicolas, Batangas for a 5-Year Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                      | rainfall event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89                                                                                                                                                                          |
| Figure 77.                                                                                                                                                                                                                                                             | Areas affected by flooding in Taal. Batangas for a 5-Year Return Period rainfall event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~ ~                                                                                                                                                                         |
| Figure 78.                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92                                                                                                                                                                          |
| -                                                                                                                                                                                                                                                                      | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92<br>92                                                                                                                                                                    |
| Figure 79.                                                                                                                                                                                                                                                             | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92<br>92<br>93                                                                                                                                                              |
| Figure 79.<br>Figure 80.                                                                                                                                                                                                                                               | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92<br>92<br>93<br>93                                                                                                                                                        |
| Figure 79.<br>Figure 80.<br>Figure 81.                                                                                                                                                                                                                                 | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92<br>92<br>93<br>93<br>93                                                                                                                                                  |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.                                                                                                                                                                                                                   | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92<br>92<br>93<br>93<br>96<br>96                                                                                                                                            |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.                                                                                                                                                                                                     | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92<br>92<br>93<br>93<br>96<br>96<br>97                                                                                                                                      |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.                                                                                                                                                                                       | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97                                                                                                                                |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.                                                                                                                                                                         | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97                                                                                                                                |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.                                                                                                                                                                         | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97                                                                                                                          |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.                                                                                                                                                           | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97                                                                                                                          |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.                                                                                                                                                           | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97<br>99                                                                                                                    |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.                                                                                                                                             | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97<br>99<br>. 101                                                                                                           |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 88.                                                                                                                               | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92<br>92<br>93<br>93<br>96<br>97<br>97<br>97<br>99<br>. 101                                                                                                                 |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 88.                                                                                                                               | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92<br>92<br>93<br>93<br>96<br>97<br>97<br>97<br>99<br>. 101<br>. 101<br>. 103                                                                                               |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 88.<br>Figure 89.                                                                                                                 | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97<br>97<br>99<br>. 101<br>. 101<br>. 103                                                                                   |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 88.<br>Figure 89.                                                                                                                 | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97<br>97<br>99<br>. 101<br>. 101<br>. 103<br>. 103                                                                          |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 88.<br>Figure 89.<br>Figure 90.                                                                                                   | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.                                                                                                                                                                                                                                                                                | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97<br>97<br>99<br>. 101<br>. 101<br>. 103<br>. 103<br>. 106                                                                 |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 88.<br>Figure 89.<br>Figure 90.<br>Figure 91.                                                                                     | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flo | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>101<br>. 101<br>. 103<br>. 103<br>. 106<br>. 106                                                    |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 88.<br>Figure 89.<br>Figure 90.<br>Figure 91.<br>Figure 92.                                                                       | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period<br>Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event                                                                                                                                                                                                                                                                   | 92<br>92<br>93<br>93<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>101<br>. 101<br>. 103<br>. 103<br>. 106<br>. 106<br>. 107                                                 |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 87.<br>Figure 88.<br>Figure 89.<br>Figure 90.<br>Figure 91.<br>Figure 92.<br>Figure 93.                                           | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92<br>92<br>93<br>93<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>101<br>. 101<br>. 103<br>. 103<br>. 106<br>. 107<br>. 107                                                 |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 87.<br>Figure 88.<br>Figure 89.<br>Figure 90.<br>Figure 91.<br>Figure 92.<br>Figure 93.<br>Figure 94.                             | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92<br>92<br>93<br>93<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>101<br>. 101<br>. 103<br>. 103<br>. 106<br>. 106<br>. 107<br>. 107                                        |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 82.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 87.<br>Figure 88.<br>Figure 89.<br>Figure 90.<br>Figure 91.<br>Figure 92.<br>Figure 93.<br>Figure 94.<br>Figure 95.               | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92<br>92<br>93<br>93<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>101<br>. 101<br>. 103<br>. 103<br>. 106<br>. 106<br>. 107<br>. 107<br>. 110                               |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 87.<br>Figure 88.<br>Figure 89.<br>Figure 90.<br>Figure 91.<br>Figure 92.<br>Figure 93.<br>Figure 94.<br>Figure 95.<br>Figure 96.               | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 100-Ye    | 92<br>92<br>93<br>93<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>101<br>. 101<br>. 103<br>. 103<br>. 106<br>. 107<br>. 107<br>. 107<br>. 110                         |
| Figure 79.<br>Figure 80.<br>Figure 81.<br>Figure 83.<br>Figure 84.<br>Figure 85.<br>Figure 86.<br>Figure 87.<br>Figure 87.<br>Figure 88.<br>Figure 89.<br>Figure 90.<br>Figure 91.<br>Figure 91.<br>Figure 93.<br>Figure 93.<br>Figure 95.<br>Figure 95.<br>Figure 97. | Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.<br>Affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period<br>rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.<br>Areas affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.<br>Affected areas in Lemery, Batangas during a 100-Yea | 92<br>92<br>93<br>93<br>96<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>101<br>. 101<br>. 103<br>. 103<br>. 106<br>. 107<br>. 107<br>. 107<br>. 110<br>. 111<br>. 111 |

| rainfall event                                                                                 | 113 |
|------------------------------------------------------------------------------------------------|-----|
| Figure 99. Affected areas in Agoncillo, Batangas during a 100-Year Rainfall Return Period      | 115 |
| Figure 100. Affected areas in Agoncillo, Batangas during a 100-Year Rainfall Return Period     | 115 |
| Figure 101. Areas affected by flooding in San Nicolas, Batangas for a 100-Year Return Period   |     |
| rainfall event                                                                                 | 117 |
| Figure 102. Areas affected by flooding in San Nicolas, Batangas for a 100-Year Return Period   |     |
| rainfall event                                                                                 | 117 |
| Figure 103. Areas affected by flooding in Taal, Batangas for a 100-Year Return Period rainfall |     |
| event                                                                                          | 120 |
| Figure 104. Areas affected by flooding in Taal, Batangas for a 100-Year Return Period rainfall |     |
| event                                                                                          | 120 |
| Figure 105. Areas affected by flooding in Taal, Batangas for a 100-Year Return Period rainfall |     |
| event                                                                                          | 121 |
| Figure 106. Areas affected by flooding in Taal, Batangas for a 100-Year Return Period rainfall |     |
| event                                                                                          | 121 |
| Figure 107. Validation points for 5-year Flood Depth Map of Pansipit Floodplain                | 123 |
| Figure 108. Flood map depth vs actual flood depth                                              | 123 |
|                                                                                                |     |

# LIST OF ACRONYMS AND ABBREVIATIONS

| AAC     | Asian Aerospace Corporation                                          |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------|--|--|--|--|--|--|
| Ab      | abutment                                                             |  |  |  |  |  |  |
| ALTM    | Airborne LiDAR Terrain Mapper                                        |  |  |  |  |  |  |
| ARG     | automatic rain gauge                                                 |  |  |  |  |  |  |
| ATQ     | Antique                                                              |  |  |  |  |  |  |
| AWLS    | Automated Water Level Sensor                                         |  |  |  |  |  |  |
| BA      | Bridge Approach                                                      |  |  |  |  |  |  |
| BM      | benchmark                                                            |  |  |  |  |  |  |
| CAD     | Computer-Aided Design                                                |  |  |  |  |  |  |
| CN      | Curve Number                                                         |  |  |  |  |  |  |
| CSRS    | Chief Science Research Specialist                                    |  |  |  |  |  |  |
| DAC     | Data Acquisition Component                                           |  |  |  |  |  |  |
| DEM     | Digital Elevation Model                                              |  |  |  |  |  |  |
| DENR    | Department of Environment and<br>Natural Resources                   |  |  |  |  |  |  |
| DOST    | Department of Science and<br>Technology                              |  |  |  |  |  |  |
| DPPC    | Data Pre-Processing Component                                        |  |  |  |  |  |  |
| DREAM   | Disaster Risk and Exposure<br>Assessment for Mitigation<br>[Program] |  |  |  |  |  |  |
| DRRM    | Disaster Risk Reduction and<br>Management                            |  |  |  |  |  |  |
| DSM     | Digital Surface Model                                                |  |  |  |  |  |  |
| DTM     | Digital Terrain Model                                                |  |  |  |  |  |  |
| DVBC    | Data Validation and Bathymetry<br>Component                          |  |  |  |  |  |  |
| FMC     | Flood Modeling Component                                             |  |  |  |  |  |  |
| FOV     | Field of View                                                        |  |  |  |  |  |  |
| GiA     | Grants-in-Aid                                                        |  |  |  |  |  |  |
| GCP     | Ground Control Point                                                 |  |  |  |  |  |  |
| GNSS    | Global Navigation Satellite System                                   |  |  |  |  |  |  |
| GPS     | Global Positioning System                                            |  |  |  |  |  |  |
| HEC-HMS | Hydrologic Engineering Center -<br>Hydrologic Modeling System        |  |  |  |  |  |  |
| HEC-RAS | Hydrologic Engineering Center -<br>River Analysis System             |  |  |  |  |  |  |
| HC      | High Chord                                                           |  |  |  |  |  |  |
| IDW     | Inverse Distance Weighted<br>[interpolation method]                  |  |  |  |  |  |  |
| IMU     | Inertial Measurement Unit                                            |  |  |  |  |  |  |
| kts     | knots                                                                |  |  |  |  |  |  |
| LAS     | LiDAR Data Exchange File format                                      |  |  |  |  |  |  |
| LC      | Low Chord                                                            |  |  |  |  |  |  |
| LGU     | local government unit                                                |  |  |  |  |  |  |
| Lidar   | Light Detection and Ranging                                          |  |  |  |  |  |  |
| LMS     | LiDAR Mapping Suite                                                  |  |  |  |  |  |  |

| m AGL    | meters Above Ground Level                                                                    |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| MIT      | Mapua Institute of Technology                                                                |  |  |  |  |  |  |
| MMS      | Mobile Mapping Suite                                                                         |  |  |  |  |  |  |
| MSL      | mean sea level                                                                               |  |  |  |  |  |  |
| NAMRIA   | National Mapping and Resource<br>Information Authority                                       |  |  |  |  |  |  |
| NSTC     | Northern Subtropical Convergence                                                             |  |  |  |  |  |  |
| PAF      | Philippine Air Force                                                                         |  |  |  |  |  |  |
| PAGASA   | Philippine Atmospheric<br>Geophysical and Astronomical<br>Services Administration            |  |  |  |  |  |  |
| PDOP     | Positional Dilution of Precision                                                             |  |  |  |  |  |  |
| РРК      | Post-Processed Kinematic<br>[technique]                                                      |  |  |  |  |  |  |
| PRF      | Pulse Repetition Frequency                                                                   |  |  |  |  |  |  |
| PTM      | Philippine Transverse Mercator                                                               |  |  |  |  |  |  |
| QC       | Quality Check                                                                                |  |  |  |  |  |  |
| QT       | Quick Terrain [Modeler]                                                                      |  |  |  |  |  |  |
| RA       | Research Associate                                                                           |  |  |  |  |  |  |
| RIDF     | Rainfall-Intensity-Duration-<br>Frequency                                                    |  |  |  |  |  |  |
| RMSE     | Root Mean Square Error                                                                       |  |  |  |  |  |  |
| SAR      | Synthetic Aperture Radar                                                                     |  |  |  |  |  |  |
| SCS      | Soil Conservation Service                                                                    |  |  |  |  |  |  |
| SRTM     | Shuttle Radar Topography Mission                                                             |  |  |  |  |  |  |
| SRS      | Science Research Specialist                                                                  |  |  |  |  |  |  |
| SSG      | Special Service Group                                                                        |  |  |  |  |  |  |
| ТВС      | Thermal Barrier Coatings                                                                     |  |  |  |  |  |  |
| UPC      | University of the Philippines Cebu                                                           |  |  |  |  |  |  |
| UP-TCAGP | University of the Philippines<br>– Training Center for Applied<br>Geodesy and Photogrammetry |  |  |  |  |  |  |
| UTM      | Universal Transverse Mercator                                                                |  |  |  |  |  |  |
| WGS      | World Geodetic System                                                                        |  |  |  |  |  |  |

## CHAPTER 1: OVERVIEW OF THE PROGRAM AND PANSIPIT RIVER

Enrico C. Paringit, Dr. Eng., Dr. Francis Aldrine A. Uy, and Engr. Fibor Tan

#### 1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS" (Paringit, et. Al. 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the Mapua Institute of Technology (MIT). MIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 26 river basins in the Southern Tagalog Region. The university is located in Intramuros in Manila.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



#### 1.2 Overview of the Pansipit River Basin

Figure 1. Overview of Pansipit River Basin (in brown)

The Pansipit River Basin is one of the major river networks in the Province of Batangas. This network of tributaries discharge to the Taal Lake and drains through the Pansipit River along the municipalities of San Nicolas, Agoncillo, and Taal to the Philippine Sea. The Taal Lake in this watershed was once part of the ocean hundreds of years ago. A series of eruptions from the Taal volcano covered the area, isolating it from the ocean and creating the lake that is now one of the country's most popular destinations. The river basin helps immensely in the agricultural industry of the municipalities and nearby cities around it and also offers an abundant source of aquatic resources from the lake and a supply of water for the people, their rice fields, and crops.

The river basin is a frequent pathway of severe typhoons and, because of this, flooding is a perennial problem in the nearby municipalities and surrounding municipalities. It is especially hazardous for the downstream area of the river in the municipalities of Lemery and Taal. In 2014, Typhoon Glenda flooded the downstream area, destroying a lot of crops and properties, and left the city littered with debris.

In order to prevent or at least minimize the effects of the flooding for the people and crops in the river basin, a combination of several technologies have been employed to produce a flood hazard map. The first is Light Detection and Ranging (LiDAR), which primarily contains elevation values. From these, one can infer the presence of waterbodies (such as rivers, streams, ponds, and lakes) and structures (such as roads, bridges, and buildings). Next, important data such as discharge and rainfall events gathered through fieldworks are used as input to hydrologic model to generate hydrographs. The generated outputs, along with LiDAR data, werealso used as inputs for the river hydraulic model. The final output for these processes was the flood hazard maps of the floodplain, one that the local government units (LGUs) can benefit from.

## CHAPTER 2: LIDAR DATA ACQUISITION OF THE PANSIPIT FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Pauline Joanne G. Arceo, and Engr. Gef F. Soriano

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### **2.1 Flight Plans**

Plans were made to acquire LiDAR data within the delineated priority area for Pansipit floodplain in Batangas. These missions were planned for 12 lines that run for at most three (3) hours including take-off, landing and turning time. The flight planning parameters for Gemini and Pegasus LiDAR systems are found in Table 1 and Table 2, respectively. Figure 2 shows the flight plan for Pansipit floodplain.

| Block<br>Name | Flying<br>Height (m<br>AGL) | Overlap<br>(%) | Field<br>of<br>View<br>(0) | Pulse<br>Repetition<br>Frequency<br>(PRF) (kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed (kts) | Average<br>Turn Time<br>(Minutes) |
|---------------|-----------------------------|----------------|----------------------------|-------------------------------------------------|---------------------------|------------------------|-----------------------------------|
| BLK18SB       | 1000                        | 30             | 40                         | 100                                             | 20                        | 130                    | 5                                 |
| BLK18SC       | 1000                        | 30             | 40                         | 100                                             | 20                        | 130                    | 5                                 |
| BLK18SD       | 750                         | 30             | 50                         | 166                                             | 40                        | 130                    | 5                                 |
| BLK18SF       | 1000                        | 30             | 40                         | 100                                             | 50                        | 130                    | 5                                 |
| BLK18SG       | 1000                        | 30             | 40                         | 100                                             | 20                        | 130                    | 5                                 |
| BLK18SJ       | 750                         | 40             | 40                         | 167                                             | 50                        | 130                    | 5                                 |
| BLK18SK       | 750                         | 30             | 50                         | 166                                             | 40                        | 130                    | 5                                 |
| BLK18SM       | 850                         | 30             | 40                         | 125                                             | 50                        | 130                    | 5                                 |

#### Table 1. Flight planning parameters for Gemini LiDAR System

| Table 2 | Flight | nlanning | narameters | for | Pegasus |         | System |
|---------|--------|----------|------------|-----|---------|---------|--------|
|         | Ingin  | plaining | parameters | 101 | regasus | LIDAN . | ystem  |

| Block Name | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | Field<br>of<br>View<br>(θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed (kts) | Average<br>Turn Time<br>(Minutes) |
|------------|-----------------------------|----------------|----------------------------|-------------------------------------------------|---------------------------|------------------------|-----------------------------------|
| BLK18X     | 1000                        | 30             | 50                         | 200                                             | 30                        | 130                    | 5                                 |
| BLK18OS    | 1000                        | 30             | 50                         | 200                                             | 30                        | 130                    | 5                                 |



Figure 2. Flight plans and base stations used for Pansipit floodplain

#### 2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA ground control points: BTG-51, BTG-30, and BTG-45, which are of second (2nd) order accuracy. The project team also established four (4) ground control points: BTG-30A, BTG-45A, BTG-A and TGT-1. The certifications for the NAMRIA base stations are found in Annex 2 while the baseline processing reports for the established ground control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (FEBRUARY 22, 2014, SEPTEMBER 3, 2016, and DECEMBER 29, 2015 – JANUARY 8, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and TRIMBLE SPS 882. Flight plans and location of base stations used during the aerial LiDAR acquisition in Pansipit floodplain are shown in Figure 2.

Figure 3 and Figure 4 show the recovered NAMRIA reference point within the area. In addition, Table 3 to Table 9 show the details about the following NAMRIA reference point and established points, while Table 10 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.



(a)

Figure 3. GPS set-up over BTG-51 inside the vicinity of Mabini Shrine in Brgy, Talaga, Tanuan City, Batangas (a) NAMRIA reference point BTG-51 (b) as recovered by the field team

| LIDAN Acquisition                                                 |                    |                         |  |  |
|-------------------------------------------------------------------|--------------------|-------------------------|--|--|
| Station Name                                                      | BTG-51             |                         |  |  |
| Order of Accuracy                                                 | 2 <sup>nd</sup>    |                         |  |  |
| Relative Error (horizontal positioning)                           | 1:50,000           |                         |  |  |
| Geographic Coordinates                                            | Latitude           | 14° 06' 8.57112" North  |  |  |
| Philippine Reference of 1992 Datum (PRS                           | Longitude          | 121° 05' 52.31002 "East |  |  |
| 92)                                                               | Ellipsoidal Height | 152.36900 meters        |  |  |
| Grid Coordinates                                                  | Fasting            | 510567 544 meters       |  |  |
| Philippine Transverse Mercator Zone 5 (PTM Zone 3 PRS 92)         | Northing           | 1559501.067 meters      |  |  |
| Geographic Coordinates                                            | Latitude           | 14° 06′ 3.27790″ North  |  |  |
| World Geodetic System 1984 Datum (WGS                             | Longitude          | 121° 05' 57.24592" East |  |  |
| 84)                                                               | Ellipsoidal Height | 197.55100 meters        |  |  |
| Grid Coordinates                                                  | Easting            | 1559783.81 meters       |  |  |
| Universal Transverse Mercator Zone 51<br>North (UTM 51N PRS 1992) | Northing           | 294641.94 meters        |  |  |

Table 3. Details of the recovered NAMRIA horizontal control point BTG-51 used as base station for the LiDAR Acquisition



Figure 4. GPS set-up over BTG-45 inside Santiago De Guzman Elementary School of Brgy. Malibu, Tuy, Batangas Province (a) and NAMRIA reference point BTG-45 (b) as recovered by the field team.

| Table 4. Details of the recovered NAMRIA horizontal control point BTG-45 used as base station for the |
|-------------------------------------------------------------------------------------------------------|
| LiDAR Acquisition                                                                                     |

| Station Name                                                   | BTG-45             |                         |  |  |
|----------------------------------------------------------------|--------------------|-------------------------|--|--|
| Order of Accuracy                                              | 2 <sup>nd</sup>    | 2 <sup>nd</sup>         |  |  |
| Relative Error (horizontal positioning)                        | 1:50,000           | 1:50,000                |  |  |
| Geographic Coordinates                                         | Latitude           | 13° 59' 52.18294" North |  |  |
| Philippine Reference of 1992 Datum                             | Longitude          | 120° 42' 18.96476" East |  |  |
| (PRS 92)                                                       | Ellipsoidal Height | 48.43000 meters         |  |  |
| Grid Coordinates                                               | Easting            | 468159.677 meters       |  |  |
| Philippine Transverse Mercator Zone 3<br>(PTM Zone 3 PRS 92)   | Northing           | 1547952.281 meters      |  |  |
| Geographic Coordinates                                         | Latitude           | 13° 59' 46.88216" North |  |  |
| World Geodetic System 1984 Datum                               | Longitude          | 120° 42' 23.91169" East |  |  |
| (WGS 84)                                                       | Ellipsoidal Height | 92.94300 meters         |  |  |
| Grid Coordinates                                               | Easting            | 252125.62 meters        |  |  |
| Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992) | Northing           | 1548591.80 meters       |  |  |

Table 5. Details of the recovered NAMRIA horizontal control point BTG-30 used as base station for the LiDAR acquisition

| Station Name                            | 2                         |                    |                         |           | BTG-30          |                         |
|-----------------------------------------|---------------------------|--------------------|-------------------------|-----------|-----------------|-------------------------|
| Order of Accu                           | uracy                     |                    |                         |           | 2 <sup>nd</sup> |                         |
| Relative Error (horizontal positioning) |                           |                    | 1 in 50,000             |           |                 |                         |
| Geographic                              |                           |                    | Соо                     | rdinates. | Latitude        | 13° 45' 23.09640" North |
| Philippine                              | e Reference of 1992 Datum | Longitude          | 121° 03' 43.87175" East |           |                 |                         |
| (PRS 92)                                |                           | Ellipsoidal Height | 21.056 meters           |           |                 |                         |

| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 506735.366 meters<br>1521220.652 meters                            |
|----------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 13° 45'17.88182" North<br>121° 03' 48.83762" East<br>53.872 meters |
| Grid Coordinates,<br>Universal Transverse Mercator Zone 51 North<br>(UTM 51N PRS 1992) | Easting<br>Northing                         | 290477.094 meters<br>1521536.181 meters                            |

Table 6. Details of the established NAMRIA horizontal control point BTG-30A used as base station for the LiDAR Acquisition with re-processed coordinates.

| Station Name                                                      | BTG-30A            |                         |
|-------------------------------------------------------------------|--------------------|-------------------------|
| Order of Accuracy                                                 | 2 <sup>nd</sup>    |                         |
| Relative Error (horizontal positioning)                           | 1:50,000           |                         |
| Geographic Coordinates                                            | Latitude           | 13° 45′ 22.92484″ North |
| Philippine Reference of 1992 Datum                                | Longitude          | 121° 3' 43.84397" East  |
| (PRS 92)                                                          | Ellipsoidal Height | 7.896 meters            |
| Grid Coordinates                                                  | Easting            | 290476.321 meters       |
| Universal Transverse Mercator Zone 51 North<br>(UTM 51N PRS 1992) | Northing           | 1521531.468 meters      |
| Geographic Coordinates                                            | Latitude           | 13° 45′ 17.72826″ North |
| World Geodetic System 1984 Datum                                  | Longitude          | 121° 3' 48.80985" East  |
| (WGS 84)                                                          | Ellipsoidal Height | 53.950 meters           |

# Table 7. Details of the recovered NAMRIA horizontal control point BTG-A used as base station for the LiDAR Acquisition

| Station Name                                                   | BTG-A                             |
|----------------------------------------------------------------|-----------------------------------|
| Order of Accuracy                                              | 2 <sup>nd</sup>                   |
| Relative Error (horizontal positioning)                        | 1:50,000                          |
| Geographic Coordinates                                         | Latitude 13° 57′ 27.65020″ North  |
| Philippine Reference of 1992 Datum                             | Longitude 121° 7′ 18.59698 " East |
| (PRS 92)                                                       | Ellipsoidal Height 373.826 meters |
| Grid Coordinates                                               | Easting 297103.192 meters         |
| Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992) | Northing 1543753.102 meters       |
| Geographic Coordinates                                         | Latitude 13° 57′ 22.39320″ North  |
| World Geodetic System 1984 Datum                               | Longitude 121° 7' 23.54499" East  |
| (WGS 84)                                                       | Ellipsoidal Height 419.466 meters |

Table 8. Details of the recovered NAMRIA horizontal control point TGT-1 used as base station for the LiDAR Acquisition

| Station Name                                              | TGT-1              |                          |  |
|-----------------------------------------------------------|--------------------|--------------------------|--|
| Order of Accuracy                                         | 2 <sup>nd</sup>    |                          |  |
| Relative Error (horizontal positioning)                   | 1:50,000           |                          |  |
| Geographic Coordinates                                    | Latitude           | 14° 07' 00.06528" North  |  |
| Philippine Reference of 1992 Datum (PRS                   | Longitude          | 120° 57' 38.31871 " East |  |
| 92)                                                       | Ellipsoidal Height | 613.37000 meters         |  |
| Grid Coordinates                                          | Easting            | 279835.821 meters        |  |
| Philippine Transverse Mercator Zone 5 (PTM Zone 3 PRS 92) | Northing           | 1561490.819 meters       |  |

| Geographic Coordinates                | Latitude           | 14° 06' 54.75787" North |
|---------------------------------------|--------------------|-------------------------|
| World Geodetic System 1984 Datum (WGS | Longitude          | 120° 57' 43.25375" East |
| 84)                                   | Ellipsoidal Height | 93.60200 meters         |

Table 9. Details of the established ground control point BTG-45A used as base station for the LiDAR Acquisition

| Station Name                                                 | BTG-45A            |                          |
|--------------------------------------------------------------|--------------------|--------------------------|
| Order of Accuracy                                            | 2 <sup>nd</sup>    |                          |
| Relative Error (horizontal positioning)                      | 1:50,000           |                          |
| Geographic Coordinates                                       | Latitude           | 13° 59' 51.95603" North  |
| Philippine Reference of 1992 Datum                           | Longitude          | 120° 42' 18.98286 " East |
| (PRS 92)                                                     | Ellipsoidal Height | 49.08900 meters          |
| Grid Coordinates                                             | Easting            | 252126.100 meters        |
| Philippine Transverse Mercator Zone 3<br>(PTM Zone 3 PRS 92) | Northing           | 1548584.818 meters       |
| Geographic Coordinates                                       | Latitude           | 13° 59′ 46.65526″ North  |
| World Geodetic System 1984 Datum (WGS                        | Longitude          | 120° 42' 23.92980" East  |
| 84)                                                          | Ellipsoidal Height | 93.60200 meters          |

| Date Surveyed     | Flight Number | Mission Name  | Ground Control Points |  |  |
|-------------------|---------------|---------------|-----------------------|--|--|
| February 22, 2014 | 1139P         | 1BLK18X53A    | BTG-45, BTG-45A       |  |  |
| September 5, 2016 | 3373P         | 1BLK18OS246A  | BTG-30, BTG-30a       |  |  |
| December 29, 2015 | 3671G         | 2BLK18SBC363B | BTG-51, BTG-A         |  |  |
| December 30, 2015 | 3673G         | 2BLK18S364A   | BTG-51, BTG-A         |  |  |
| January 6, 2016   | 3677G         | 2BLK18SK006A  | BTG-51, BTG-A         |  |  |
| January 6, 2016   | 3679G         | 2BLK18SD006B  | BTG-51, BTG-A         |  |  |
| January 8, 2016   | 3685G         | 2BLK18SGS008A | BTG-51, BTG-A         |  |  |
| January 8, 2016   | 3687G         | 2BLK18SGS008B | BTG-51, BTG-A         |  |  |
| January 9, 2016   | 3691G         | 2BLK18V3009B  | BTG-51, BTG-A         |  |  |
| January 16, 2016  | 3693G         | 2BLK18SCB106A | BTG-51, TGT-1         |  |  |

Table 10. Ground control points used during LiDAR data acquisition.

#### 2.3 Flight Missions

Ten (10) missions were conducted to complete the LiDAR Data Acquisition in Pansipit Floodplain, for a total of twenty seven hours and thirty three minutes (27+33) of flying time for RP-C9022 and RP-C9122. All missions were acquired using the Pegasus and Gemini LiDAR systems. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 12 presents the actual parameters used during the LiDAR data acquisition.

| Date                 | Flight | Flight             | Surveyed   | Area<br>Surveyed                  | Area Area Flyi<br>Surveyed Surveyed No. of Hou  |                    | ing<br>urs |     |
|----------------------|--------|--------------------|------------|-----------------------------------|-------------------------------------------------|--------------------|------------|-----|
| Surveyed             | Number | Plan Area<br>(km²) | Area (km²) | within the<br>Floodplain<br>(km²) | Outside the<br>Floodplain<br>(km <sup>2</sup> ) | Images<br>(Frames) | Ŧ          | Min |
| February<br>22, 2014 | 1139P  | 169.68             | 269.50     | 42.01                             | 227.49                                          | 472                | 3          | 56  |
| September<br>5, 2016 | 3373P  | 107.08             | 162.36     | 61.40                             | 100.96                                          | NA                 | 3          | 28  |
| December<br>29, 2015 | 3671G  | 52.75              | 68.65      | -                                 | 68.65                                           | NA                 | 1          | 58  |
| December<br>30, 2015 | 3673G  | 354.42             | 363.82     | 2.78                              | 361.04                                          | NA                 | 3          | 29  |
| January 6,<br>2016   | 3677G  | 145.18             | 160.74     | -                                 | 160.74                                          | NA                 | 2          | 17  |
| January 6,<br>2016   | 3679G  | 21.88              | 27.25      | -                                 | 27.25                                           | NA                 | 2          | 17  |
| January 8,<br>2016   | 3685G  | 152.31             | 197.06     | 3.53                              | 193.54                                          | NA                 | 3          | 41  |
| January 8,<br>2016   | 3687G  | 189.94             | 127.71     | 3.61                              | 124.10                                          | NA                 | 2          | 59  |
| January 9,<br>2016   | 3691G  | 83.76              | 56.32      | 6.51                              | 49.81                                           | NA                 | 2          | 23  |
| January 16,<br>2016  | 3693G  | 52.75              | 49.11      | -                                 | 49.11                                           | NA                 | 1          | 5   |
| тотя                 | AL .   | 1329.75            | 1482.52    | 119.84                            | 1362.69                                         | 472                | 27         | 33  |

Table 11. Flight Missions for LiDAR Data Acquisition in Pansipit Floodplain

| Flight<br>Number | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | FOV<br>(θ) | PRF<br>(khz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|------------------|-----------------------------|----------------|------------|--------------|---------------------------|---------------------------|-----------------------------------|
| 1139P            | 1200                        | 30             | 50         | 200          | 30                        | 130                       | 5                                 |
| 3373P            | 1000                        | 30             | 50         | 200          | 30                        | 130                       | 5                                 |
| 3671G            | 1000                        | 30             | 40         | 100          | 20                        | 130                       | 5                                 |
| 3673G            | 1000                        | 30             | 40         | 100          | 20                        | 130                       | 5                                 |
| 3677G            | 750                         | 30             | 50         | 166          | 40                        | 130                       | 5                                 |
| 3679G            | 750                         | 40             | 40         | 167          | 50                        | 130                       | 5                                 |
| 3685G            | 1000                        | 30             | 40         | 100          | 50                        | 130                       | 5                                 |
| 3687G            | 1000                        | 40             | 40         | 100          | 50                        | 130                       | 5                                 |
| 3691G            | 850                         | 30             | 40         | 125          | 50                        | 130                       | 5                                 |
| 3693G            | 850                         | 30             | 40         | 125          | 50                        | 130                       | 5                                 |

Table 12. Actual Parameters used during LiDAR Data Acquisition

#### 2.4 Survey Coverage

Pansipit Floodplainis located in the province of Batangas. The municipalities of Agoncillo, Mataas Na Kahoy, San Nicolas, Taal, Santa Teresita, Balete, Lemery, Alitagtag, and Laurel was fully covered during the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 13. The actual coverage of the LiDAR acquisition for Pansipit Floodplain is presented in Figure 5.

| Province | Municipality/City           | Area of Municipality/<br>City<br>(km <sup>2</sup> ) | Total Area<br>Surveyed<br>(km <sup>2</sup> ) | Percentage of Area<br>Surveyed |
|----------|-----------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------|
|          | Agoncillo                   | 39.54                                               | 39.54                                        | 100%                           |
|          | Mataas Na Kahoy             | 17.59                                               | 17.59                                        | 100%                           |
|          | San Nicolas                 | 18.15                                               | 18.15                                        | 100%                           |
|          | Taal                        | 29.37                                               | 29.37                                        | 100%                           |
|          | Santa Teresita              | 12.67                                               | 12.66                                        | 100%                           |
|          | Balete                      | 22.02                                               | 21.80                                        | 99%                            |
|          | Lemery                      | 82.32                                               | 71.26                                        | 87%                            |
|          | Alitagtag                   | 27.03                                               | 22.29                                        | 82%                            |
|          | Laurel                      | 69.53                                               | 56.47                                        | 81%                            |
|          | Calaca                      | 117.85                                              | 92.04                                        | 78%                            |
|          | Cuenca                      | 27.91                                               | 21.65                                        | 78%                            |
| Detensor | San Luis                    | 42.04                                               | 27.94                                        | 66%                            |
| Batangas | Tanauan City                | 111.77                                              | 70.98                                        | 64%                            |
|          | Talisay                     | 49.78                                               | 28.26                                        | 57%                            |
|          | Malvar                      | 35.93                                               | 19.28                                        | 54%                            |
|          | Taal lake                   | 241.24                                              | 117.49                                       | 49%                            |
|          | Balayan                     | 94.45                                               | 42.30                                        | 45%                            |
|          | Tuy                         | 92.55                                               | 37.29                                        | 40%                            |
|          | Lipa City                   | 202.79                                              | 55.96                                        | 28%                            |
|          | San Jose                    | 60.70                                               | 15.54                                        | 26%                            |
|          | Lian                        | 91.27                                               | 16.49                                        | 18%                            |
|          | Santo Tomas                 | 92.08                                               | 10.11                                        | 11%                            |
|          | Nasugbu                     | 266.83                                              | 20.94                                        | 8%                             |
|          | Bauan                       | 51.31                                               | 3.40                                         | 7%                             |
|          | Maragondon                  | 147.39                                              | 51.64                                        | 35%                            |
|          | Magallanes                  | 69.07                                               | 18.65                                        | 27%                            |
| Cavite   | General Emilio<br>Aguinaldo | 39.39                                               | 10.44                                        | 26%                            |
|          | Naic                        | 76.11                                               | 16.55                                        | 22%                            |
|          | Tagaytay City               | 61.41                                               | 8.57                                         | 14%                            |
|          | Indang                      | 88.65                                               | 3.60                                         | 4%                             |
|          | Silang                      | 154.00                                              | 2.60                                         | 2%                             |
| 1.0.0    | Calamba City                | 130.68                                              | 26.57                                        | 20%                            |
| Laguna   | Cabuyao                     | 45.70                                               | 1.22                                         | 3%                             |
|          | Total                       | 2709.12                                             | 1008.64                                      | 37.23%                         |

Table 13. List of Municipalities/Cities Surveyed during Pansipit Floodplain LiDAR survey



Figure 5. Actual LiDAR survey coverage for Pansipit floodplain

### CHAPTER 3: LIDAR DATA PROCESSING FOR PANSIPIT FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Engr. Melissa F. Fernandez , Engr. Ma. Ailyn L. Olanda, Engr. Sheila-Maye F. Santillan, Engr. Velina Angela S. Bemida , Engr. Ezzo Marc C. Hibionada, and Ziarre Anne P. Mariposa

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 3.1 LiDAR Data Processing for Pansipit Floodplain

#### 3.1.1 Overview of the LiDAR Date Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 6.



Figure 6.Schematic Diagram for Data Pre-Processing Component

#### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Pansipit floodplain can be found in Annex 5. Missions flown during the first survey conducted on September 2015used the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) Pegasus system while missions acquired during the second survey on December 2015 were flown using the Gemini system over CALABARZON. The Data Acquisition Component (DAC) transferred a total of 171.22 Gigabytes of Range data, 1.58 Gigabytes of POS data, 150.66 Megabytes of GPS base station data, and 29.3 Gigabytes of raw image data to the data server on September 3, 2015 for the first survey and December 29, 2015 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Pansipit was fully transferred on January 20, 2016, as indicated on the Data Transfer Sheets for Pansipit floodplain.

#### 3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 3687G, one of the Pansipit flights, which is the North, East, and Down position RMSE values are shown in Figure 7. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell onJanuary 8, 2016 00:00AM. The y-axis is the RMSE value for that particular position.



Figure 7. Smoothed Performance Metrics of Pansipit Flight 3687G

The time of flight was from 452000 seconds to 461000 seconds, which corresponds to afternoon of January 8, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 7 shows that the North position RMSE peaks at 1.30 centimeters, the East position RMSE peaks at 1.60 centimeters, and the Down position RMSE peaks at 3.40 centimeters, which are within the prescribed accuracies described in the methodology.



Figure 8. Solution Status Parameters of Pansipit Flight 3687G

The Solution Statusparameters of flight 3687G, one of the Pansipitflights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 8. The graphs indicate that the number of satellites during the acquisition did go down to 6. Most of the time, the number of satellites tracked was between 6 and 7.2.The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Pansipit flights is shown in Figure 9.



Figure 9. The best estimated trajectory of the LiDAR missions conducted over the Pansipit floodplain

#### 3.4 LiDAR Point Cloud Computation

The produced LAS data contains 127flight lines, with each flight line containing one channel, since the Gemini system contain one channel only and two channels since the Pegasus system contain two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Pansipit floodplain are given in Table 14.

| Parameter                                                | Acceptable Value | Computed Value |  |
|----------------------------------------------------------|------------------|----------------|--|
| Boresight Correction stdev                               | (<0.001degrees)  | 0.000888       |  |
| IMU Attitude Correction Roll and Pitch Corrections stdev | (<0.001degrees)  | 0.000938       |  |
| GPS Position Z-correction stdev                          | (<0.01meters)    | 0.0097         |  |

Table 14. Self-Calibration Results values for Pansipit flights

Optimum accuracy was obtained for all Pansipit flights, based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for the individual blocks are available in Annex 8: Mission Summary Reports.

#### 3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 10. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.



Figure 10. Boundary of the processed LiDAR data on top of a SAR Elevation Data over Pansipit Floodplain.

The total area covered by the Pansipit missions is 902.17 sq.km that is comprised of ten (10) flight acquisitions grouped and merged into twelve (12) blocks as shown in Table 15.

| LiDAR Blocks                 | Flight<br>Numbers | Area (sq. km) |
|------------------------------|-------------------|---------------|
| CALABARZON_Blk18O_supplement | 3373P             | 157.66        |
| Batangas_Blk18SL             | 3673G             | 96.40         |
| Batangas_Blk18SL_additional  | 3691G             | 12.00         |
| Batangas_Blk18SGa            | 3687G             | 99.64         |
| Batangas_Blk18SGb            | 3685G             | 93.64         |
| Batangas_Blk18SG_additional  | 3679G             | 30.99         |
| Batangas_Blk18SJ             | 3679G             | 25.04         |
| Batangas_Blk18SC             | 3671G             | 65.98         |
| Batangas_Blk18SC_supplement  | 3693G             | 41.10         |
| Batangas_Blk18SD             | 3677G             | 86.28         |
| Batangas_Blk18SK_supplement  | 3691G             | 15.37         |
| Batangas_Blk18X              | 1139P             | 178.07        |
| TOTAL                        |                   | 902.17 sq.km  |

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 11. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines. While for the Pegasus system which employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 2 and a value of 2 (blue) for areas where there is limited overlap and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.



Figure 11. Image of data overlap for Pansipit floodplain

The overlap statistics per block for the Pansipit floodplain can be found in Annex 8.One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 26.74% and 48.55% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 12. It was determined that all LiDAR data for Pansipit floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.33 points per square meter.



Figure 12. Density map of merged LiDAR data for Pansipit floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 13. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.



Figure 13. Elevation difference map between flight lines for Pansipit floodplain

A screen capture of the processed LAS data from a Pansipit flight 3687G loaded in QT Modeler is shown in Figure 14. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. reprocessing was done for this LiDAR dataset.



Figure 14. Quality checking for a Pansipit flight 3687G using the Profile Tool of QT Modeler

#### 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |  |
|-------------------|------------------------|--|
| Ground            | 482,346,947            |  |
| Low Vegetation    | 1,113,469,615          |  |
| Medium Vegetation | 1,276,470,444          |  |
| High Vegetation   | 1,536,245,191          |  |
| Building          | 64,144,017             |  |

Table 16. Pansipit classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Pansipit floodplain is shown in Figure 15. A total of 1,380 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 779.19 meters and 30.39 meters respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 15. Tiles for Pansipit floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 16. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.



Figure 16. Point cloud before (a) and after (b) classification

The production of last return (V\_ASCII) and the secondary (T\_ASCII) DTM, first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are shown in Figure 17. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.


Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Pansipit floodplain

## 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 222 1km by 1km tiles area covered by Pansipit floodplain is shown in Figure 18. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Pansipit floodplain survey attained a total of 173.132 km2 in orthophotogaph coverage, comprised of 324images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 19.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 18. Pansipit floodplain with available orthophotographs



Figure 19. Sample orthophotograph tiles for Pansipit floodplain

## 3.8 DEM Editing and Hydro-Correction

Twelve (12) mission blocks were processed for Pansipit flood plain. These blocks are composed of CALABARZON and Batangas blocks with a total area of 902.17 square kilometers. Table 17 shows the name

Table 17. LiDAR blocks with its corresponding area **LiDAR Blocks** Area (sq.km) CALABARZON Blk180 supplement 157.66 Batangas\_Blk18SL 96.40 Batangas Blk18SL additional 12.00 99.64 Batangas\_Blk18SGa 93.64 Batangas\_Blk18SGb Batangas Blk18SG additional 30.99 Batangas Blk18SJ 25.04 Batangas\_Blk18SC 65.98 Batangas\_Blk18SC\_supplement 41.10 86.28 Batangas\_Blk18SD 15.37 Batangas\_Blk18SK\_supplement Batangas\_Blk18X 178.07 TOTAL 902.17 sq.km

#### and corresponding area of each block in square kilometers.

Portions of DTM before and after manual editing are shown in Figure 20. The bridge (Figure 20a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 20b) in order to hydrologically correct the river. The hilly area (Figure 20c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 20d) to allow the correct flow of water. Another example is a building that is still present in the DTM after classification (Figure 20e) and has to be removed through manual editing (Figure 20f).



Figure 20. Portions in the DTM of Pansipit floodplain – a bridge before (a) and after (b) manual editing; a hilly area before (c) and after (d) data retrieval; and a building before (e) and after (f) manual editing.

## 3.9 Mosaicking of Blocks

Batangas\_Blk18Z was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 18 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Pansipit floodplain is shown in Figure 21. It can be seen that the entire Pansipit floodplain is 99.935% covered by LiDAR data.

| Mission Blocks               | Shi   | ft Values (met | ers) |
|------------------------------|-------|----------------|------|
|                              | x     | у              | z    |
| CALABARZON_Blk18O_supplement | 0     | 0              | -2.4 |
| Batangas_Blk18SL             | 0.00  | 0.00           | 0.00 |
| Batangas_Blk18SL_additional  | 0.00  | 0.00           | 0.00 |
| Batangas_Blk18SGa            | 0.00  | 0.00           | 0.00 |
| Batangas_Blk18SGb            | -0.65 | -3.95          | 0.00 |
| Batangas_Blk18SG_additional  | 0.00  | 0.00           | 0.00 |
| Batangas_Blk18SJ             | 0.33  | 3.04           | 0.00 |
| Batangas_Blk18SC             | 0.00  | 0.00           | 0.00 |
| Batangas_Blk18SC_supplement  | 0.00  | 0.00           | 0.00 |
| Batangas_Blk18SD             | 0.00  | 0.00           | 0.00 |
| Batangas_Blk18SK_supplement  | 0.00  | 0.00           | 0.00 |
| Batangas_Blk18X              | 0.00  | 0.00           | 0.00 |

Table 18. Shift Values of each LiDAR Block of Pansipit floodplain



Figure 21. Map of Processed LiDAR Data for Pansipit Flood Plain.

## 3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Pansipit to collect points with which the LiDAR dataset is validated is shown in Figure 22. A total of 24,251 survey points were gathered for all the flood plains within the provinces of CALABARZON wherein the Pansipit floodplain is located. Random selection of 80% of the survey points, resulting to 19,401 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 23. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 2.97 meters with a standard deviation of 0.20 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 2.97 meters, to the mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between the LiDAR data.



Figure 22. Map of Pansipit Flood Plain with validation survey points in green



Figure 23. Correlation plot between calibration survey points and LiDAR data

| <b>Calibration Statistical Measures</b> | Value (meters) |
|-----------------------------------------|----------------|
| Height Difference                       | 2.97           |
| Standard Deviation                      | 0.20           |
| Average                                 | -2.97          |
| Minimum                                 | -3.48          |
| Maximum                                 | -2.40          |

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 330 points, were used for the validation of calibrated Pansipit DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 24. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.11 meters with a standard deviation of 0.11 meters, as shown in Table 19.



Figure 24. Correlation plot between validation survey points and LiDAR data

| Validation Statistical Measures | Value (meters) |  |  |  |  |  |
|---------------------------------|----------------|--|--|--|--|--|
| RMSE                            | 0.11           |  |  |  |  |  |
| Standard Deviation              | 0.11           |  |  |  |  |  |
| Average                         | 0.02           |  |  |  |  |  |
| Minimum                         | -0.42          |  |  |  |  |  |
| Maximum                         | 0.51           |  |  |  |  |  |
|                                 |                |  |  |  |  |  |

## 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Pansipit with 5,505 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.07 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Pansipit integrated with the processed LiDAR DEM is shown in Figure 25.



Figure 25. Map of Pansipit Flood Plain with bathymetric survey points shown in blue

# 3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

### 3.12.1 Quality Checking of Digitized Features' Boundary

Pansipit floodplain, including its 200 m buffer, has a total area of 87.35sq km. For this area, a total of 5.0 sq km, corresponding to a total of 3,295 building features, are considered for QC. Figure 26 shows the QC blocks for Pansipit floodplain.





Quality checking of Pansipit building features resulted in the ratings shown in Table 21.

| FLOODPLAIN COMPLETENESS CORRECTNESS QUALITY REMARKS |       |     |       |        |  |  |
|-----------------------------------------------------|-------|-----|-------|--------|--|--|
| Pansipit                                            | 99.60 | 100 | 98.75 | PASSED |  |  |

### Table 21. Quality Checking Ratings for Pansipit Building Features

#### **3.12.2 Height Extraction**

Height extraction was done for 37,024 building features in Pansipit floodplain. Of these building features, none was filtered out after height extraction, resulting to 34,483 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 12.70 m.

#### 3.12.3 Feature Attribution

The attributes were obtained by field data gathering. GPS devices were used to determine the coordinates of important features. These points are uploaded and overlaid in ArcMap and are then integrated with the shapefiles.

Table 22 summarizes the number of building features per type. On the other hand, Table 23 shows the total length of each road type, while Table 24 shows the number of water features extracted per type.

| Facility Type                           | No. of Features |
|-----------------------------------------|-----------------|
| Residential                             | 33,784          |
| School                                  | 312             |
| Market                                  | 97              |
| Agricultural/Agro-Industrial Facilities | 4               |
| Medical Institutions                    | 32              |
| Barangay Hall                           | 55              |
| Military Institution                    | 0               |
| Sports Center/Gymnasium/Covered Court   | 17              |
| Telecommunication Facilities            | 3               |
| Transport Terminal                      | 3               |
| Warehouse                               | 1               |
| Power Plant/Substation                  | 0               |
| NGO/CSO Offices                         | 2               |
| Police Station                          | 4               |
| Water Supply/Sewerage                   | 8               |
| Religious Institutions                  | 68              |
| Bank                                    | 21              |
| Factory                                 | 0               |
| Gas Station                             | 27              |
| Fire Station                            | 1               |
| Other Government Offices                | 17              |
| Other Commercial Establishments         | 27              |
| Total                                   | 34,483          |

Table 22. Building Features Extracted for Pansipit Floodplain

Table 23. Total Length of Extracted Roads for Pansipit Floodplain

| Road Network Length (km) |                                                                           |       |       |      |      |        |
|--------------------------|---------------------------------------------------------------------------|-------|-------|------|------|--------|
| Floodplain               | loodplain Barangay City/Municipal Provincial Nat<br>Road Road Road Road R |       |       |      |      | Total  |
| Pansipit                 | 267.08                                                                    | 54.34 | 37.37 | 0.00 | 0.00 | 358.79 |

#### Table 24. Number of Extracted Water Bodies for Pansipit Floodplain

|            |                    | N               | Vater Body | Туре |          |       |
|------------|--------------------|-----------------|------------|------|----------|-------|
| Floodplain | Rivers/<br>Streams | Lakes/<br>Ponds | Sea        | Dam  | Fish Pen | Total |
| Pansipit   | 27                 | 1               | 1          | 0    | 0        | 29    |

A total of 44 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

# 3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.



Figure 27 shows the Digital Surface Model (DSM) of Pansipit floodplain overlaid with its ground features.

Figure 27. Extracted features for Pansipit floodplain

# CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE PANSIPIT RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

## 4.1 Summary of Activities

The project team conducted three (3) field surveys in Pansipit River. The first one was conducted from May 14 to 22, 2014 with the following scope of work: reconnaissance; control survey for the establishment of a control point; and bridge cross-section. The second one was conducted from August 26 to 30, 2014 with the following scope of work: ground validation data acquisition of about 34 km; and bathymetric survey from Brgy. Poblacion, San Niclolas, Batangas to the mouth of the river in Brgy. Butong, Taal, Batangas with an estimated length of 25.03 km using an OHMEX<sup>™</sup> Single Beam Echo Sounder and GNSS PPK survey technique. The last one was on September 5, 2014 with the following scope of work: water level marking at one of the piers of San Nicolas Bridge.

## 4.2 Control Survey

The GNSS network for this survey is composed of six (6) loops established on May 14 – 22, 2014 occupying the following reference points: BG-207, a first order BM in Brgy. Sabang, Municipality of Tuy; and BTG-7, a first order GCP located in Brgy. Dela Paz, Batangas City.

Five (5) control points were established at the approach of bridges namely UP-BTN at Bantilan Bridge in Brgy. UP-LOBO at Lobo Bridge in Brgy. Lagadlarin, Municipality of Lobo; UP-ASN at San Nicholas Bridge in Brgy. Poblacion, Municipality of San Nicholas, UP-CLG at Calumpang Bridge in Brgy. Kumintang Ibaba, Batangas City and UP-LWY at Lawaye Bridge in Brgy. Calitcalit, Municipality of San Juan.

The summary of reference and control points and its location is summarized in Table 25 while the GNSS network established is illustrated in Figure 28.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 28. GNSS network of Pansipit River field survey

| Table 25. List of Reference and Control Points used in Pansipit River Survey (Source: NAMRIA and UP |
|-----------------------------------------------------------------------------------------------------|
| TCAGP)                                                                                              |

| Control     | Order of              |                 | Geographic Coord | inates (WGS               |                           |                     |
|-------------|-----------------------|-----------------|------------------|---------------------------|---------------------------|---------------------|
| Point       | Accuracy              | Latitude        | Longitude        | Ellipsoidal<br>Height (m) | MSL<br>Eleva-<br>tion (m) | Date<br>Established |
| BG207       | 1 <sup>st</sup> Order | -               | -                | 65.606                    | 22.502                    | 2008                |
| BTG-7       | 1 <sup>st</sup> Order | 13°37′19.49611″ | 121°04'56.32756" | 66.192                    | -                         | 1992                |
| UP-ASN      | UP<br>Established     | -               | -                | -                         | -                         | 5-22-2014           |
| UP-BTN      | UP<br>Established     | -               | -                | -                         | -                         | 5-21-2014           |
| UP-<br>CLG1 | UP<br>Established     | -               | -                | -                         | -                         | 5-21-2014           |
| UP-<br>LOBO | UP<br>Established     | -               | -                | -                         | -                         | 5-21-2014           |
| UP-<br>LWY1 | UP<br>Established     |                 |                  |                           |                           | 5-22-2014           |

The GNSS set up on reference and established control points in Batangas are shown in Figure 29 to 35.



Figure 29.GNSS receiver, Trimble<sup>®</sup> SPS 985, set-up at BG-207 at Palico Bridge, Brgy. Luntal, Nasugbu, Batangas



Figure 30.GNSS receiver, Trimble<sup>®</sup> SPS 985, set-up at BTG-7 in Dela Paz Lighthouse in Brgy. Dela Paz, Batangas City, Batangas

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 31.GNSS receiver, Trimble<sup>®</sup> SPS 882, set-up at UP-ASN at San Nicholas Bridge, Brgy. Poblacion, San Nicholas, Batangas



Figure 32.GNSS base receiver, Trimble<sup>®</sup> SPS 852, set-up at UP-BTN at Bantilan Bridge, Brgy. Manggalang Banitilan, Sariaya, Quezon



Figure 33.GNSS base receiver, Trimble<sup>®</sup> SPS 852, set-up at UP-CLG1 in Calumpang Bridge, Brgy. Cumintang Ibaba, Batangas City, Batangas



Figure 34.GNSS base receiver, Trimble<sup>®</sup> SPS 882, set-up at UP-LOBO, in Lobo Bridge, Brgy. Lagadlarin, Lobo, Batangas



Figure 35.GNSS receiver, Trimble<sup>®</sup> SPS 882, set-up at UP-LWY1 at Lawaye Bridge, Brgy. Calitcalit-Mabalanoy, San Juan, Batangas

# 4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Pansipit River Basin is summarized in Table 26 generated by TBC software.

| Observation              | Date of<br>Observation | Solution<br>Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist. | ∆Height<br>(Meter) |
|--------------------------|------------------------|------------------|---------------------|---------------------|-----------------|--------------------|--------------------|
|                          |                        |                  |                     |                     |                 | (Meter)            |                    |
| UPCLG<br>BTG7 (B11)      | 5-22-2014              | Fixed            | 0.003               | 0.013               | 356°25′22″      | 15777.353          | -8.962             |
| BTG7<br>UPLOBO (B14)     | 5-22-2014              | Fixed            | 0.008               | 0.037               | 80°16′20″       | 14501.810          | -9.895             |
| UPCLG<br>UPBTN (B8)      | 5-21-2014              | Fixed            | 0.004               | 0.018               | 78°44'11″       | 39325.812          | -1.938             |
| UPCLG<br>UPBTN (B10)     | 5-22-2014              | Fixed            | 0.023               | 0.082               | 78°44'11″       | 39325.931          | -1.993             |
| UPCLG<br>UPBTN (B9)      | 5-21-2014              | Fixed            | 0.018               | 0.032               | 78°44'11"       | 39326.011          | -1.988             |
| UPCLG<br>BMBG207<br>(B7) | 5-21-2014              | Fixed            | 0.008               | 0.021               | 307°20′38″      | 51500.583          | 8.348              |
| UPCLG<br>UPLWY (B15)     | 5-22-2014              | Fixed            | 0.004               | 0.015               | 79°31′48″       | 35577.341          | 6.690              |
| UPCLG<br>UPASN (B6)      | 5-21-2014              | Fixed            | 0.005               | 0.020               | 322°34'54"      | 22553.641          | -5.613             |
| UPCLG<br>UPLOBO (B12)    | 5-22-2014              | Fixed            | 0.006               | 0.026               | 131°01′52″      | 20253.372          | -0.954             |
| UPBTN<br>BMBG207<br>(B2) | 5-21-2014              | Fixed            | 0.066               | 0.086               | 286°35′24″      | 82928.558          | 10.191             |

Table 26. Baseline Processing Report for Pansipit River Basin Static Survey

| BTG7<br>UPBTN (B5)     | 5-21-2014 | Fixed | 0.004 | 0.018 | 58°03'54"  | 44287.329 | -10.884 |
|------------------------|-----------|-------|-------|-------|------------|-----------|---------|
| BTG7<br>UPBTN (B3)     | 5-21-2014 | Fixed | 0.017 | 0.070 | 58°03'54"  | 44287.367 | -10.925 |
| BTG7<br>UPBTN (B4)     | 5-21-2014 | Fixed | 0.011 | 0.024 | 58°03'54"  | 44287.360 | -10.823 |
| UPBTN<br>UPLOBO (B13)  | 5-22-2014 | Fixed | 0.011 | 0.045 | 228°04'35" | 31344.157 | 0.983   |
| BMBG207<br>UPLWY (B17) | 5-22-2014 | Fixed | 0.015 | 0.033 | 107°58'47" | 79868.067 | -1.689  |
| BMBG207<br>UPASN (B1)  | 5-21-2014 | Fixed | 0.005 | 0.022 | 115°58'50" | 30324.834 | -14.030 |
| UPLWY<br>UPASN (B16)   | 5-22-2014 | Fixed | 0.011 | 0.021 | 283°18′29″ | 50016.834 | -12.285 |

As shown in Table 26, a total of seventeen (17) baselines were processed with reference elevation of point BG-207 and coordinates of BTG-7 held fixed. All of them passed the required accuracy.

### 4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and  $z_e < 10 \ cm$ 

Where:

xe is the Easting Error, yeis the Northing Error, and zeis the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 27 to 30 for the complete details.

The seven (7) control points, BG-207, BTG-7, UP-ASN, UP-BTN, UP-CLG, UP-LOBO and UP-LWY were occupied and observed simultaneously to form a GNSS loop. Coordinates of point BTG-7 and elevation value of BG-207 were held fixed during the processing of the control points as presented in Table 27. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

| Point ID                | Туре   | East σ<br>(Meter) | North σ<br>(Meter) | Height σ<br>(Meter) | Elevation σ<br>(Meter) |  |
|-------------------------|--------|-------------------|--------------------|---------------------|------------------------|--|
| BG-207                  | Grid   |                   |                    |                     | Fixed                  |  |
| BTG-7                   | Global | Fixed             | Fixed              |                     |                        |  |
| Fixed = 0.000001(Meter) |        |                   |                    |                     |                        |  |

| Table | 27       | Control | Point  | Constraints |
|-------|----------|---------|--------|-------------|
| Table | <u> </u> | CONTROL | 1 Unit | Constraints |

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 28. The fixed control point BG-207 and BTG-7, has no values for standard elevation and coordinates error, respectively.

| Point ID | Easting<br>(Meter) | Easting<br>Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
|----------|--------------------|-----------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| MBG207   | 250979.768         | 0.014                       | 1554083.399         | 0.009                        | 22.502               | ?                             | е          |
| BTG7     | 292538.897         | ?                           | 1506749.028         | ?                            | 20.801               | 0.072                         | LL         |
| UPASN    | 278117.299         | 0.013                       | 1540530.569         | 0.008                        | 7.619                | 0.060                         |            |
| UPBTN    | 330309.700         | 0.008                       | 1529876.941         | 0.006                        | 9.361                | 0.075                         |            |
| UPCLG    | 291679.224         | 0.007                       | 1522505.093         | 0.005                        | 12.287               | 0.058                         |            |
| UPLOBO   | 306852.492         | 0.014                       | 1509086.720         | 0.008                        | 10.498               | 0.094                         |            |
| UPLWY    | 326716.786         | 0.013                       | 1528689.759         | 0.008                        | 18.019               | 0.064                         |            |

Table 28. Adjusted Grid Coordinates

The network is fixed at reference points BG-207 and BTG-7 for elevation and coordinate values, respectively. With the mentioned equation , for horizontal; and for the vertical; the computation for the accuracy for the controls are as follows:

#### BG-207

|        | horizontal accuracy | $= v((1.4)^2 + (0.9)^2)$ $= v(1.96 + 0.81)$ |
|--------|---------------------|---------------------------------------------|
|        |                     | = 1.66 cm < 20 cm                           |
|        | vertical accuracy   | = Fixed                                     |
| BTG-7  |                     |                                             |
| bio /  | horizontal accuracy | = Fixed                                     |
|        | vertical accuracy   | = 7.2 cm                                    |
|        |                     |                                             |
| UP-ASN |                     |                                             |
|        | horizontal accuracy | $= \sqrt{((1.3)^2 + (0.8)^2)^2}$            |
|        |                     | = V(1.69 + 0.64)                            |
|        | vertical accuracy   | = 1.53  cm < 20  cm                         |
|        | vertical accuracy   | - 0.0 cm                                    |
| UP-BTN |                     |                                             |
|        | horizontal accuracy | $= \sqrt{((0.8)^2 + (0.6)^2)^2}$            |
|        |                     | = v(0.64 + 0.36)                            |
|        |                     | = 1.0 cm < 20 cm                            |
|        | vertical accuracy   | = 7.5 cm                                    |
|        |                     |                                             |
| UP-CLG | horizontal accuracy | $= \sqrt{((0,7)^2 + (0,5)^2)}$              |
|        | nonzontal accuracy  | $= \sqrt{(0.49 + 0.25)}$                    |
|        |                     | = 0.86 cm < 20 cm                           |
|        | vertical accuracy   | = 5.8 cm                                    |
|        |                     |                                             |
| UP-LOB |                     |                                             |
|        | horizontal accuracy | $= \sqrt{((1.4)^2 + (0.8)^2)^2}$            |
|        |                     | = v(1.96 + 0.64)                            |
|        |                     | = 1.48 cm < 20 cm                           |

vertical accuracy = 9.4 cm

UP-LWY

| horizontal accuracy | $= \sqrt{((1.3)^2 + (0.8)^2)^2}$ |
|---------------------|----------------------------------|
|                     | = v(1.69 + 0.64)                 |
|                     | = 1.52 cm < 20 cm                |
| vertical accuracy   | = 6.4 cm                         |

Following the given formula, the horizontal and vertical accuracy result of the seven occupied control points are within the required precision of the program.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

| Point ID | Latitude         | Longitude         | Ellipsoidal<br>Height | Height Error<br>(Meter) | Constraint |
|----------|------------------|-------------------|-----------------------|-------------------------|------------|
| BMBG207  | N14°02'47.32674" | E120°41'38.93608" | 65.606                | ?                       | е          |
| BTG7     | N13°37'19.49611" | E121°04'56.32756" | 66.192                | 0.072                   | LL         |
| UPASN    | N13°55'34.60792" | E120°56′47.03882″ | 51.610                | 0.060                   |            |
| UPBTN    | N13°50'00.87917" | E121°25′47.84870″ | 55.321                | 0.075                   |            |
| UPCLG    | N13°45′51.87502″ | E121°04'23.55781" | 57.236                | 0.058                   |            |
| UPLOBO   | N13°38'39.10157" | E121°12′51.89916″ | 56.291                | 0.094                   |            |
| UPLWY    | N13°49′21.47536″ | E121°23'48.47095" | 63.917                | 0.064                   |            |

| Table 29. Adj | usted Geodetic | Coordinates |
|---------------|----------------|-------------|
|---------------|----------------|-------------|

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 29. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 30.

|                           |                                           | Geographic      | Coordinates (WGS | 34)                        | UT              | M ZONE 51      | N                               |
|---------------------------|-------------------------------------------|-----------------|------------------|----------------------------|-----------------|----------------|---------------------------------|
| Control Order of Accuracy |                                           | Latitude        | Longitude        | Ellipsoid<br>Height<br>(m) | Northing<br>(m) | Easting<br>(m) | Eleva-<br>tion in<br>MSL<br>(m) |
| BG207                     | 1 <sup>st</sup> Order                     | 14°02'47.32674" | 120°41'38.93608" | 65.606                     | 1554083         | 250979.8       | 22.502                          |
| BTG-7                     | G-7 1 <sup>st</sup> Order 13°37'19.49611" |                 | 121°04'56.32756" | 66.192                     | 1506749         | 292538.9       | 20.801                          |
| UP-ASN                    | ASN UP<br>Established 13°55'34.60792"     |                 | 120°56′47.03882″ | 51.61                      | 1540531         | 278117.3       | 7.619                           |
| UP-BTN                    | UP-BTN UP<br>Established 13°50'00.87917"  |                 | 121°25′47.84870″ | 55.321                     | 1529877         | 330309.7       | 9.361                           |
| UP-<br>CLG1               | UP<br>Established                         | 13°45'51.87502" | 121°04'23.55781" | 57.236                     | 1522505         | 291679.2       | 12.287                          |
| U P -<br>LOBO             | UP<br>Established                         | 13°38'39.10157" | 121°12′51.89916″ | 56.291                     | 1509087         | 306852.5       | 10.498                          |
| UP-<br>LWY1               | UP<br>Established                         | 13°49'21.47536" | 121°23'48.47095" | 63.917                     | 1528690         | 326716.8       | 18.019                          |

Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)

# 4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were performed on May 22, 2014 at the downstream side of San Nicolas Bridge in Brgy. Poblacion, Municipality of San Nicolas, Batangas with the aid of interns from the UP Diliman Department of Geodetic Engineering. The survey was conducted with the application of PPK technique using a survey grade GPS, Trimble<sup>®</sup> SPS 882, as shown in Figure 36.



Figure 36. Cross Section survey at San Nicolas Bridge in Brgy. Poblacion, San Nicolas, Batangas

A total of 16 points were gathered along San Nicolas Bridge with a length of 154.93 m as exhibited in Figure 37. The control point UP-ASN was used as the GNSS base station all throughout the survey. The location map and cross-section diagram form are shown in Figures 37 and 38, respectively.



Figure 37. San Nicolas bridge cross-section location map



Water surface elevation marking was done on September 5, 2014, three (3) months after the cross-section survey. One of the piers was marked with MSL values using yellow paint, as seen in Figure 39, to serve as reference for depth gauge deployment and flow data gathering activities of Mapúa Institute of Technology PHIL-LiDAR 1.



Figure 39. Water Level Marking at San Nicolas Bridge (a) Painting of MSL indicator on one of the piers of San Nicolas Bridge (b) Finished water level markings

## 4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on August 28, 2014 using Trimble<sup>®</sup> SPS 882 attached on the top of a vehicle, utilizing continuous Topographic Method in a PPK Survey Technique, as shown in Figure 40. The height of instrument was measured and noted a 1.53 m distance from the ground up to the bottom of the notch. Points were gathered along major concrete roads with the aid of a vehicle which moved at a speed of 20 to 40 kph, cutting across the flight strips of the DAC with the aid of available topographic maps and Google Earth<sup>™</sup> images.



Figure 40. Validation points acquisition survey setup: A Trimble® SPS 882 is attached on top of a vehicle

The distance surveyed is approximately 41 km from the Municipality of San Nicolas to Lemery and from the Municipality of Balayan to Batangas City. UP-ASN was used as a base station during the conduct of the ground validation survey. The map in shows the extent of the ground validation survey which acquired 3,577 ground validation points with an approximate length of 41 km using the base station UP-ASN.



Figure 41. Pansipit river survey validation map

# 4.7 River Bathymetric Survey

The bathymetric survey was conducted on August 28, 2014 using Trimble<sup>®</sup> SPS 882 GNSS receiver utilizing continuous topo mode in PPK survey technique and a Hi-Target<sup>™</sup> Single Beam Echo Sounder mounted on a rubber boat as shown in Figure 42.A GPS receiver, Trimble<sup>®</sup> SPS 985, was setup at UP-ASN which served as the base station all throughout the suvrey. The survey began in Taal Lake, in Brgy. Pansipit with coordinates 13°55′50.36165″120°56′57.69819″ moved toward the entrance of the river in Brgy. Poblacion, San Nicolas, Batangas, and reached up to the mouth of the river in Brgy. Butong, Lemery, Batangas with coordinate 13°52′24.27677″120°54′52.45541.



Figure 42. Bathymetric survey setup (a) Base station at UP-ASN using Trimble<sup>®</sup> SPS 895 , (b) Navigating Taal Lake before reaching Pansipit River, (c) Surveying with the help of installed Hi-Target<sup>™</sup> Single Beam Echo Sounder and a mounted Trimble<sup>®</sup> SPS 882 GNSS receiver

A total of 6,807 bathymetry points were gathered starting from the upstream in Brgy. Poblacion, San Nicolas down to Brgy. Butong in Lemeryas shown Figure 43. A CAD drawing was also produced to illustrate the riverbed profile of Pansipit river. As shown in Figure 44, there isan elevation drop of 11.8 m in MSL was observed within the approximate distance of 9 km. The highest elevation observed was 4.306 m in MSL located in Brgy. Calangay, Municipality of San Nicolas, while the lowest elevation observed was -4.219 m below MSL located in Brgy. Poblacion 5, Municipality of Taal.



Figure 43.Bathymetric points gathered along Pansipit River



**Pansipit Riverbed Profile** 



# **CHAPTER 5: FLOOD MODELING AND MAPPING**

#### Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, and Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

## 5.1 Data Used for Hydrologic Modeling

#### 5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the river basin was monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Pansipit River Basin were monitored, collected, and analyzed.

#### 5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This rain gauge is the Balete ARG (14° 1'4.30"N, 121° 7'43.97"E), located in Balete, Batangas (Figure 45). The precipitation data collection started from September 27, 2016 at 00:00 AM to September 27, 2016 at 23:45AM with a 15-minute recording interval.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 45. The location map of rain gauges used for the calibration of the Pansipit HEC-HMS Model

For Balete Rain Gauge, total rain for the event is 13.8 mm. Peak rain of 5.4 mm was recorded on 27 September 2016. The lag time between the peak rainfall and discharge is 5 hours, as seen in Figure 7.

#### 5.1.3 Rating Curves and River Outflow

A rating curve was developed at San Nicolas Bridge, San Juan, Batangas (13°55'34.83"N, 120°56'46.67"E). It gives the relationship between the observed water levels from the San Nicolas Bridge using depth gage, and outflow of the watershed using flow meter at this location. It is expressed in the form of the following equation:

Q=anh where,

Q : Discharge (m3/s),

: Gauge height (reading from deployed depth gage at Bridge of Promise), and;

a and n: Constants.

h

For San Nicolas Bridge, the rating curve is expressed as Q = 0.00047e4.22799h as shown in Figure 3.



Figure 46. Cross-Section Plot of San Nicolas Bridge



Figure 47. Rating Curve at San Nicolas Bridge San Juan, Batangas

This rating curve equation was used to compute the river outflow at San Nicolas Bridge for the calibration of the HEC-HMS model shown in Figure 48. Peak discharge is 14.50 m3/s at 4:00, September 28, 2016.



Figure 48. Rainfall and outflow data at Pansipit used for modeling.

## **5.2 RIDF Station**

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Ambulong Gauge. This station chosen based on its proximity to the Pansipit watershed. The extreme values for this watershed were computed based on a 54-year record.

| COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |         |       |       |       |       |        |        |
|--------------------------------------------------|---------|---------|---------|-------|-------|-------|-------|--------|--------|
| T (yrs)                                          | 10 mins | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |
| 2                                                | 22.7    | 35.5    | 36.3    | 50.2  | 68.2  | 80.1  | 104.1 | 125.7  | 150.8  |
| 5                                                | 27.9    | 45.5    | 53.8    | 74.2  | 103.4 | 122.5 | 159.7 | 192.9  | 226.7  |
| 10                                               | 34.2    | 52.1    | 65.4    | 90.1  | 126.7 | 150.6 | 196.5 | 237.3  | 276.9  |
| 15                                               | 37.8    | 57.4    | 71.9    | 99    | 139.8 | 166.4 | 217.3 | 262.4  | 305.3  |
| 20                                               | 40.3    | 61      | 76.5    | 105.3 | 149   | 177.5 | 231.9 | 280    | 325.1  |
| 25                                               | 42.2    | 63.9    | 80      | 110.1 | 156.1 | 186   | 243.1 | 293.5  | 340.4  |
| 50                                               | 48.1    | 72.6    | 90.9    | 125   | 178   | 212.3 | 277.6 | 335.2  | 387.5  |
| 100                                              | 54      | 81.2    | 101.6   | 139.8 | 199.7 | 238.4 | 311.8 | 376.6  | 434.3  |

| Table 31. RIDF values for | Ambulong Rain Gaug | e computed by PAGASA |
|---------------------------|--------------------|----------------------|
|---------------------------|--------------------|----------------------|


Figure 49. Location of Ambulong RIDF relative to Pansipit River Basin



Figure 50. Synthetic storm generated for a 24-hr period rainfall for various return periods

# 5.3 HMS Model

The soil shapefile (dated pre-2004) was taken from the Bureau of Soils and Water Management under the Department of Agriculture. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Pansipit River Basin are shown in Figures 51 and 52, respectively.



Figure 51. Soil Map of Pansipit River Basin



Figure 52. Land Cover Map of Pansipit River Basin (source: NAMRIA)

For Pansipit, the soil classes identified werehydrosols, loam, clay loam, sand, sandy loam, and mountain soil. The land cover types identified were brushland, built-up areas, cultivated areas, grassland, inland water, open areas and open canopy forest.

[insert Slope Map]



Figure 53. Stream delineation map of Pansipit river basin

The Pansipit basin model consists of 67 sub basins, 33 reaches, and 25 junctions. The main outlet is at the southwesternmost tip of the watershed. This basin model is illustrated in Figure 54. The basins were identified based on soil and land cover characteristic of the area. Precipitation was taken from an installed Rain Gauge near and inside the river basin. Finally, it was calibrated using the data from actual discharge flow gathered in the San Nicolas Bridge.



Figure 54. The Pansipit River Basin Model Domain generated by HEC-HMS

## 5.4 Cross-section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.



Figure 55. River cross-section of Pansipit River generated through Arcmap HEC GeoRAS tool

# 5.5 Flo 2D Model



Figure 56. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro



Figure 57. Generated 100-year rain return hazard map from FLO-2D Mapper



Figure 58. Generated 100-year rain return flow depth map from FLO-2D Mapper

# 5.6 Results of HMS Calibration

After calibrating the Pansipit HEC-HMS river basin model, its accuracy was measured against the observed values (see Annex 8. Pansipit Model Basin Parameters). Figure 59 shows the comparison between the two discharge data.



Figure 59. Outflow Hydrograph of Pansipit produced by the HEC-HMS model compared with observed outflow

| Hydrologic<br>Element | Calculation<br>Type | Method                | Parameter                  | Range of<br>Calibrated<br>Values |
|-----------------------|---------------------|-----------------------|----------------------------|----------------------------------|
|                       | Loss                | SCS Curve number      | Initial Abstraction (mm)   | 0.77 – 23.46                     |
| Durin                 | LOSS                | SCS Curve number      | Curve Number               | 17.56 – 60.25                    |
|                       | Transform           | Clark Unit Undragraph | Time of Concentration (hr) | 0.14 – 27.67                     |
| BdSIII                | Iransiorm           | Clark Unit Hydrograph | Storage Coefficient (hr)   | 0.16 – 45.16                     |
|                       | Deceflow            | Dessesion             | <b>Recession Constant</b>  | 0.12 – 1.00                      |
|                       | Basenow             | Recession             | Ratio to Peak              |                                  |
| Reach                 | Routing             | Muskingum-Cunge       | Manning's Coefficient      | 0.00020 –<br>0.0034              |

#### Table 32. Range of Calibrated Values for Pansipit

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.77mm to 23.46mm means that there is minimal to moderate amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. For Pansipit, the soil classes identified were hydrosols, loam, clay loam, sand, sandy loam, and mountain soil. The land cover types identified were brushland, built-up areas, cultivated areas, grassland, inland water, open areas and open canopy forest.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.14 hours to 45.16 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.12 - 1.00 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.22 - 0.58 indicates a moderately receding limb of the outflow hydrograph.

| RMSE           | 0.7  |
|----------------|------|
| r <sup>2</sup> | 0.48 |
| NSE            | 0.85 |
| PBIAS          | 0.30 |
| RSR            | 0.39 |

### Table 33. Summary of the Efficiency Test of Pansipit HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 0.7 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.48.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.85.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 0.30.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains avalue of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.39.

# 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

## 5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 60) shows the Pansipit outflow using the Ambulong Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.



Figure 60. Outflow hydrograph at Pansipit Station generated using Ambulong RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Pansipit River discharge using the Ambulong Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 34.

| RIDF<br>Period | Total Precipitation<br>(mm) | Peak rainfall<br>(mm) | Peak outflow<br>(m ³/s) | Time to Peak         |
|----------------|-----------------------------|-----------------------|-------------------------|----------------------|
| 5-Year         | 209.4                       | 28.3                  | 1015.7                  | 16 hours, 50 minutes |
| 10-Year        | 276.9                       | 34.2                  | 1505.5                  | 16 hours, 50 minutes |
| 25-Year        | 340.4                       | 42.2                  | 2152                    | 16 hours, 40 minutes |
| 50-Year        | 387.5                       | 48.1                  | 2648.8                  | 16 hours, 40 minutes |
| 100-Year       | 434.3                       | 54                    | 3166.8                  | 16 hours, 40 minutes |

Table 34. Peak values of the Pansipit HECHMS Model outflow using the Ambulong RIDF

# 5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the Flood Acquisition and Validation Component (MIT-FAVC) base flow was calibrated. The sample generated map of Pansipit River using the calibrated HMS base flow is shown in Figure 61.



Figure 61. Sample output of Pansipit RAS Model

# 5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 62 to Figure 67 shows the 5-, 25-, and 100-year rain return scenarios of the Pansipit floodplain.

| Municipality   | Total Area | Area<br>Flooded | % Flooded |
|----------------|------------|-----------------|-----------|
| Lemery         | 72.15      | 37.85           | 52.46%    |
| Santa Teresita | 15.37      | 3.59            | 23.37%    |
| Agoncillo      | 48.8       | 19.2            | 40.82%    |
| San Nicolas    | 21.34      | 8.19            | 38.36%    |
| Taal           | 27.07      | 25.058          | 92.57%    |

| Table 35. Mur | nicipalities affecte | ed in Pansip | it floodplain |
|---------------|----------------------|--------------|---------------|
|---------------|----------------------|--------------|---------------|



Figure 62. 100-year Flood Hazard Map for Pansipit Floodplain



Figure 63. 100-year Flow Depth Map for Pansipit Floodplain



Figure 64. 25-year Flood Hazard Map for Pansipit Floodplain



Figure 65. 25-year Flow Depth Map for Pansipit Floodplain



Figure 66. 5-year Flood Hazard Map for Pansipit Floodplain



Figure 67. 5-year Flow Depth Map for Pansipit Floodplain

# 5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Pansipit River Basin, grouped accordingly by municipality. For the said basin, four (4) municipalities consisting of 140 barangays are expected to experience flooding when subjected to a 5-year rainfall return period (see Annex 11 and 12 for the list of educational and health institutions affected by flooding in the Pansipit floodplain).

area will experience flood levels of 0.21 to 0.50 meters while 0.69%, 0.21%, 0.88%, and 0.66% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to For the 5-year return period, 48.90% of the municipality of Lemery with an area of 72.15 sq. km. will experience flood levels of less than 0.20 meters. 1.16% of the 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|              | District I                                              | 0.14                                                                                                                                                                                          | 0                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Dayapan                                                 | 1.46                                                                                                                                                                                          | 0.0016                                                                                                                                                                                                                     | 0.0033                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0098                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | Cahilan<br>II                                           | 1.2                                                                                                                                                                                           | 0                                                                                                                                                                                                                          | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| sq. km.)     | Cahilan I                                               | 0.95                                                                                                                                                                                          | 0.0012                                                                                                                                                                                                                     | 0.0038                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0094                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lemery (in   | Bukal                                                   | 0.17                                                                                                                                                                                          | 0.079                                                                                                                                                                                                                      | 0.12                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0023                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| rangays in I | Balanga                                                 | 1.34                                                                                                                                                                                          | 0                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| affected ba  | Bagong<br>Sikat                                         | 0.25                                                                                                                                                                                          | 0                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Area of      | Bagong<br>Pook                                          | 1.13                                                                                                                                                                                          | 0.0014                                                                                                                                                                                                                     | 0.0019                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Ayao-<br>Iyao                                           | 2.2                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                       | 0.013                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | Aruma-<br>han                                           | 0.12                                                                                                                                                                                          | 0                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | Anak-<br>Dagat                                          | 0.11                                                                                                                                                                                          | 0                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ed Area      | by flood<br>(in m.)                                     | 1                                                                                                                                                                                             | 2                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Affecte      | (sq. km.)<br>depth                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                            | Affected                                                                                                                                                                                                                                                                                                                                                                                                | sa. km.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | Affected Area Affected barangays in Lemery (in sq. km.) | Affected AreaArea of affected barangays in Lemery (in sq. km.)(sq. km.) by floodAnak-Aruma-Ayao-BagongBagongBagongBalanga(sq. km.)DagathanIyaoPookSikatBalangaBukalCahilan IDayapanDistrict I | Affected AreaAffected AreaAffected AreaArea of affected barangays in Lemery (in sq. km.)(sq. km.) by floodAnak-Aruma-Ayao-BagongBagongBagongBalangaBukalCahilan IDayapanDistrict I10.110.122.21.130.251.340.170.951.460.14 | Affected Area of Affected Barangays in Lemery (in sq. km.)     Affected Area of Affected Barangays in Lemery (in sq. km.)     (sq. km.) by flood   Anak-<br>Dagat   Aruma-<br>Iyao   Agoong   Bagong   Bagong   Balanga   Bukal   Cahilan I   Dayapan   District I     1   0.11   0.12   2.2   1.13   0.25   1.34   0.17   0.95   1.46   0.14     2   0   0   0.05   0.0014   0   0   0.012   0.016   0 | Affected Area   Area of affected barangays in Lemery (in sq. km.)     (sq. km.) by flood<br>depth (in m.)   Anak-<br>Dagat   Aruma-<br>Iyao   Agood<br>Bagong   Bagong<br>Sikat   Bagong<br>Bagong   Bagong   Bukal   Cahilan I   Dayapan   District I     1   0.11   0.12   2.2   1.13   0.25   1.34   0.17   0.95   1.46   0.14     2   0   0   0.05   0.0014   0   0   0.079   0.0012   0   0.46   0     Affected   3   0   0   0.013   0.0019   0   0.012   0.0016   0   0 | Affected Area   Area of affected barangays in Lemery (in sq. km.)     Sq. km.) by flood<br>depth (in m.)   Anak-<br>Dagat   Aruma-<br>Iyao   Bagong   Bagong   Bukal   Cahilan   Cahilan   Dayapan   District     1   0.11   0.12   2.2   1.13   0.25   1.34   0.17   0.95   1.24   0.14     2   0   0   0   0.014   0   0   0   0.012   1.46   0.14     Affected   3   0   0   0.013   0.014   0   0   0.012   0.014   0     Affected   3   0   0   0.013   0.0014   0   0   0.012   0.0016   0     Affected   3   0   0   0.013   0.0012   0   0.0016   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 | Affected Area   Area of affected barangays in terms (in sq. km.)     (sq. km.) by flood   Anak-<br>bagat   Ayao-<br>han   Bagong   Bagong   Balanga   Bukal   Cahilan   Dayapan   District I     (apth (in m.)   Dagat   Nam-<br>han   Ayao-<br>lyao   Bagong   Bagong   Balanga   Bukal   Cahilan   Diyapan   District I     1   0.11   0.12   2.2   1.13   0.25   1.34   0.17   0.95   1.24   0.14   0.14     2   0   0   0.0   0.0014   0   0   0.0012   0.0016   0   0   0.146   0.14   0.14   0.14   0.146   0.14   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 <t< td=""></t<> |

| ш.                                               |
|--------------------------------------------------|
|                                                  |
|                                                  |
|                                                  |
| 5                                                |
| ~                                                |
| -                                                |
| =                                                |
| מי                                               |
| 7                                                |
| .=                                               |
| g                                                |
| £                                                |
| <u>_</u>                                         |
| σ                                                |
| ູຍ                                               |
| ~                                                |
| Ó                                                |
| ج                                                |
| 10                                               |
| p                                                |
|                                                  |
| Ξ.                                               |
|                                                  |
| σ                                                |
|                                                  |
| 8                                                |
| br                                               |
| $\widetilde{}$                                   |
| =                                                |
| - m                                              |
| ta                                               |
| ata                                              |
| Bata                                             |
| v, Bata                                          |
| ry, Bata                                         |
| erv, Bata                                        |
| nerv, Bata                                       |
| mery, Bata                                       |
| emery, Bata                                      |
| Lemery, Bata                                     |
| n Lemery, Bata                                   |
| in Lemery, Bata                                  |
| is in Lemery, Bata                               |
| eas in Lemery, Bata                              |
| reas in Lemery, Bata                             |
| areas in Lemery, Bata                            |
| l areas in Lemery, Bata                          |
| ed areas in Lemery, Bata                         |
| ted areas in Lemery, Bata                        |
| cted areas in Lemery, Bata                       |
| ected areas in Lemery, Bata                      |
| ffected areas in Lemery, Bata                    |
| Affected areas in Lemery, Bata                   |
| . Affected areas in Lemery, Bata                 |
| <ol><li>Affected areas in Lemery, Bata</li></ol> |
| 36. Affected areas in Lemery, Bata               |
| 36. Affected areas in Lemery, Bata               |
| le 36. Affected areas in Lemery, Bata            |
| ble 36. Affected areas in Lemery, Bata           |
| able 36. Affected areas in Lemery, Bata          |
| Table 36. Affected areas in Lemery, Bata         |

|             | Maligaya                             | 0.053 | 0       | 0        | 0        | 0       | 0     |
|-------------|--------------------------------------|-------|---------|----------|----------|---------|-------|
|             | Maigsing<br>Dahilig                  | 0.46  | 0.0003  | 0.0004   | 0.0011   | 0.0043  | 0.016 |
|             | Mahaya-<br>hay                       | 0.61  | 0       | 0        | 0        | 0       | 0     |
| in sq. km.) | Mahabang<br>Dahilig                  | 0.92  | 0.0045  | 0.0053   | 0.0072   | 0.014   | 0.035 |
| n Lemery (  | Magui-<br>han                        | 0.13  | 0       | 0        | 0        | 0       | 0     |
| barangays i | Lucky                                | 0.11  | 0       | 0        | 0        | 0       | 0     |
| of affected | Gulod                                | 1.56  | 0.0011  | 0.0019   | 0.0059   | 0.016   | 0.062 |
| Area o      | Dita                                 | 3.38  | 0.00066 | 0.00063  | 0.0019   | 0.004   | 0.004 |
|             | District<br>IV                       | 0.082 | 0       | 0        | 0        | 0.00084 | 0     |
|             | District<br>III                      | 0.22  | 0       | 0        | 0        | 0       | 0     |
|             | District II                          | 0.058 | 0       | 0        | 0        | 0.0079  | 0     |
| d Area      | by flood<br>(in m.)                  | 1     | 2       | 3        | 4        | 5       | 9     |
| Affecte     | Affected<br>(sq. km.) b<br>depth (ii |       |         | Affected | sa. km.) | -       |       |

| Period        |
|---------------|
| l Return      |
| ar Rainfall   |
| uring a 5-Ye  |
| Batangas d    |
| in Lemery,    |
| ected areas   |
| Table 37. Aff |

Table 38. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period

|                                      |              | Sambal<br>Ibaba     | 0.14  | 0      | 0        | 0           | 0.0011 | 0      |
|--------------------------------------|--------------|---------------------|-------|--------|----------|-------------|--------|--------|
|                                      |              | Rizal               | 0.026 | 0      | 0        | 0           | 0      | 0      |
|                                      |              | Payapa<br>Ilaya     | 0.25  | 0.0007 | 0.0003   | 0.0001      | 0      | 0      |
|                                      | q. km.)      | Payapa<br>Ibaba     | 1.62  | 0.019  | 0.0087   | 0.0095      | 0.013  | 0.018  |
|                                      | emery (in so | Palanas             | 0.59  | 0      | 0        | 0           | 0.17   | 0      |
| пів а р-теа                          | angays in Le | Nonong<br>Casto     | 0.75  | 0.25   | 0.15     | 0.0052      | 0      | 0      |
| erreu areas in tennery, parangas uur | fected bar   | Matin-<br>gain II   | 1.5   | 0.0047 | 0.0036   | 0.0056      | 0.019  | 0.026  |
|                                      | Area of af   | Matin-<br>gain l    | 1.4   | 0.093  | 0.058    | 0.019       | 0.01   | 0.013  |
|                                      |              | Mataas Na<br>Bayan  | 0.94  | 0.13   | 0.062    | 0.022       | 0.071  | 0.15   |
| INE 20. AII                          |              | Masalisi            | 0.36  | 0.0033 | 0.0032   | 0.005       | 0.0075 | 0.0065 |
| 10                                   |              | Malinis             | 2.1   | 0.13   | 0.04     | 0           | 0.0057 | 0      |
|                                      | ed Area      | by flood<br>(in m.) | 1     | 2      | 3        | 4           | 5      | 9      |
|                                      | Affecte      | (sq. km.)<br>depth  |       |        | Affected | l (sq. km.) |        |        |
|                                      |              |                     |       |        |          |             |        |        |

|                                                           |             | Wawa<br>Ilaya                | 0.056  | 0       | 0        | 0                 | 0.00077 | 0        |
|-----------------------------------------------------------|-------------|------------------------------|--------|---------|----------|-------------------|---------|----------|
|                                                           |             | Wawa<br>Ibaba                | 0.0075 | 0       | 0        | 0                 | 0.00047 | 0        |
| eriod                                                     |             | Tubuan                       | 0.92   | 0       | 0        | 0                 | 0       | 0        |
| l Return Pe                                               | in sq. km.) | Tubigan                      | 0.94   | 0.044   | 0.0055   | 0.00062           | 0.0009  | 0        |
| -Year Rainfa                                              | n Lemery (  | Talaga                       | 0.27   | 0.0006  | 0.0017   | 0.0011            | 0.0037  | 0.015    |
| Table 39. Affected areas in Lemery, Batangas during a 5-Y | barangays i | Sinisian<br>East             | 0.039  | 0.00012 | 0.000074 | 0                 | 0.00025 | 0.000005 |
|                                                           | of affectec | San-<br>galang               | 0.27   | 0       | 0        | 0                 | 0.013   | 0        |
|                                                           | Area        | San Isidro<br>Itaas          | 4.06   | 0.014   | 0.0096   | 0.017             | 0.041   | 0.024    |
|                                                           |             | San Isidro<br>Ibaba          | 2.09   | 0.0051  | 0.0062   | 0.0098            | 0.028   | 0.053    |
|                                                           |             | Sambal<br>Ilaya              | 0.3    | 0       | 0        | 0                 | 0.076   | 0        |
|                                                           | d Area      | d Area<br>by flood<br>in m.) | 1      | 2       | 3        | 4                 | 5       | 9        |
| Affected                                                  |             | (sq. km.)<br>depth           |        |         | Affected | area<br>(sa. km.) | -       |          |

| Period     |  |
|------------|--|
| Return     |  |
| Rainfall   |  |
| 5-Year F   |  |
| during a 5 |  |
| , Batangas |  |
| in Lemery  |  |
| lareas     |  |
| Affecteo   |  |
| ole 39.    |  |



Figure 68. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period



Figure 69. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period



Figure 70. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period



Figure 71. Affected areas in Lemery, Batangas during a 5-Year Rainfall Return Period

For the 5-year return period, 23.41% of the municipality of Santa Teresita with an area of 15.37 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00%, 0.00%, 0.00%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|    |              | Tambo<br>Ilaya      | 0.42  | 0 | 0        | 0        | 0 | 0 |
|----|--------------|---------------------|-------|---|----------|----------|---|---|
|    |              | Tambo<br>Ibaba      | 0.13  | 0 | 0        | 0        | 0 | 0 |
|    |              | Sinipian            | 0.64  | 0 | 0        | 0        | 0 | 0 |
|    | (in sq. km.) | Saimsim             | 0.93  | 0 | 0        | 0        | 0 | 0 |
|    | ita Teresita | Pobla-<br>cion III  | 0.003 | 0 | 0        | 0        | 0 | 0 |
| 0  | gays in San  | Pobla-<br>cion II   | 0.053 | 0 | 0        | 0        | 0 | 0 |
| -O | cted baran   | Pobla-<br>cion l    | 0.001 | 0 | 0        | 0        | 0 | 0 |
|    | Area of affe | Calum-<br>ala       | 0.4   | 0 | 0        | 0        | 0 | 0 |
|    | H            | Burol               | 0.74  | 0 | 0        | 0        | 0 | 0 |
|    |              | Bihis               | 0.031 | 0 | 0        | 0        | 0 | 0 |
|    |              | Antipolo            | 0.25  | 0 | 0        | 0        | 0 | 0 |
|    | d Area       | by flood<br>(in m.) | 1     | 2 | 3        | 4        | 5 | 9 |
|    | Affecte      | (sq. km.)<br>depth  |       |   | Affected | sa. km.) | - |   |

Table 40. Affected areas in Santa Teresita, Batangas during a 5-Year Rainfall Return Period



Figure 72. Areas affected by flooding in Santa Teresita, Batangas for a 5-Year Return Period rainfall event

For the 5-year return period, 40.43% of the municipality of Agoncillo with an area of 48.8 sq. km. will experience flood levels of less than 0.20 meters. 0.08% of the area will experience flood levels of 0.21 to 0.50 meters while 0.07%, 0.09%, 0.09%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|              |              | Pamiga              | 0.47 | 0       | 0        | 0                 | 0      | 0      |
|--------------|--------------|---------------------|------|---------|----------|-------------------|--------|--------|
| INU          |              | Mabini              | 1.28 | 0.00063 | 0.0017   | 0.0066            | 0.0075 | 0      |
| ו הפועווו רפ | ı sq. km.)   | Guitna              | 0.25 | 0       | 0        | 0                 | 0      | 0      |
|              | goncillo (ir | Coral Na<br>Munti   | 1.75 | 0.00086 | 0.0013   | 0.0043            | 0.0057 | 0.0002 |
| runing a D-T | angays in A  | Barigon             | 2.28 | 0       | 0        | 0                 | 0      | 0      |
| Dataligas L  | ffected bar  | Bangin              | 1.37 | 0       | 0        | 0                 | 0      | 0      |
|              | Area of a    | Balan-<br>gon       | 1.26 | 0.0013  | 0.0023   | 0.0074            | 0.0076 | 0      |
| eu aleas II  |              | Bagong<br>Sikat     | 0.98 | 0.0087  | 0.013    | 0.012             | 0.011  | 0.0017 |
| e 4 T. Alleu |              | Adia                | 1.04 | 0       | 0        | 0                 | 0      | 0      |
| IdDI         | ed Area      | by flood<br>(in m.) | 1    | 2       | 3        | 4                 | 5      | 9      |
|              | Affecte      | (sq. km.)<br>depth  |      |         | Affected | area<br>(sa. km.) |        |        |

Table 41. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period

Table 42. Affected areas in Agoncillo, Batangas during a 5-Year Rainfall Return Period

|               |                | Subic<br>Ilaya      | 0.84 | 0       | 0        | 0         | 0       | 0      |
|---------------|----------------|---------------------|------|---------|----------|-----------|---------|--------|
|               |                | Subic<br>Ibaba      | 1.4  | 0.00044 | 0.00059  | 0.00079   | 0       | 0      |
|               | tm.)           | Santo<br>Tomas      | 0.43 | 0       | 0        | 0         | 0       | 0      |
|               | illo (in sq. k | Santa<br>Cruz       | 0.86 | 0       | 0        | 0         | 0       | 0      |
|               | 's in Agonci   | San Te-<br>odoro    | 0.2  | 0       | 0        | 0         | 0       | 0      |
| 1941 000 0091 | d barangay     | San<br>Jacinto      | 2.08 | 0.0017  | 0.0033   | 0.0066    | 0.013   | 0.0018 |
| וכוווס, סמוסו | a of affecte   | Pook                | 1.82 | 0       | 0        | 0         | 0       | 0      |
|               | Are            | Pobla-<br>cion      | 0.58 | 0       | 0        | 0         | 0       | 0      |
| ביירינים מו   |                | Pansipit            | 0.4  | 0       | 0        | 0         | 0.00066 | 0      |
|               |                | Panhu-<br>lan       | 0.44 | 0.025   | 0.0097   | 0.0047    | 0.0002  | 0      |
|               | d Area         | by flood<br>(in m.) | 1    | 2       | 3        | 4         | 5       | 9      |
|               | Affecte        | (sq. km.)<br>depth  |      |         | Affected | (sa. km.) | -       |        |



Figure 73. Areas affected by flooding in Agoncillo, Batangas for a 5-Year Return Period rainfall event



Figure 74. Areas affected by flooding in Agoncillo, Batangas for a 5-Year Return Period rainfall event

For the 5-year return period, 38.00% of the municipality of San Nicolas with an area of 21.34 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood depths of 0.51 to 1 meters, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|              |                               | Munlaw-<br>in                 | 0.72 | 0 | 0        | 0         | 0     | 0 |
|--------------|-------------------------------|-------------------------------|------|---|----------|-----------|-------|---|
|              |                               | Maabud<br>South               | 0.4  | 0 | 0        | 0         | 0     | 0 |
| turn Period  | km.)                          | Maabud<br>North               | 0.62 | 0 | 0        | 0         | 0     | 0 |
| Rainfall Ret | olas (in sq.                  | Hipit                         | 0.35 | 0 | 0        | 0         | 0     | 0 |
| ig a 5-Year  | in San Nic                    | Calangay                      | 0.55 | 0 | 0        | 0         | 0.021 | 0 |
| angas durin  | barangays                     | Bangin                        | 0.44 | 0 | 0        | 0         | 0.016 | 0 |
| icolas, Bata | of affectec                   | Bancoro                       | 0.66 | 0 | 0        | 0         | 0     | 0 |
| as in San N  | Area<br>Ba-<br>luk-Ba-<br>luk |                               | 0.23 | 0 | 0        | 0         | 0     | 0 |
| ffected are  |                               | Balete                        | 0.45 | 0 | 0        | 0         | 0     | 0 |
| Table 43. A  |                               | Abelo                         | 0.5  | 0 | 0        | 0         | 0     | 0 |
|              |                               | u Area<br>by flood<br>(in m.) | 1    | 2 | 3        | 4         | 5     | 9 |
|              | Afforto                       | allecte<br>(sq. km.)<br>depth |      |   | Affected | (sa. km.) | -     |   |

| able 44. A         | ffected are         | as in San N | icolas, Bata   | angas durin   | ıg a 5-Year     | Rainfall Ret  | curn Period |
|--------------------|---------------------|-------------|----------------|---------------|-----------------|---------------|-------------|
| Affecte            | d Area              | Area        | of affected    | l barangays   | s in San Nic    | olas (in sq.  | km.)        |
| (sq. km.)<br>depth | by flood<br>(in m.) | Pansipit    | Pobla-<br>cion | Santo<br>Niño | Sinturi-<br>san | Tagud-<br>tod | Talang      |
|                    | 1                   | 0.24        | 0.73           | 0.31          | 1.21            | 0.26          | 0.44        |
|                    | 2                   | 0           | 0              | 0             | 0               | 0             | 0           |
| Affected           | 3                   | 0           | 0              | 0             | 0               | 0             | 0           |
| Area<br>(sa. km.)  | 4                   | 0           | 0              | 0             | 0               | 0             | 0           |
|                    | 5                   | 0.026       | 0.03           | 0             | 0               | 0             | 0           |
|                    | 9                   | 0           | 0              | 0             | 0               | 0             | 0           |



Figure 75. Areas affected by flooding in San Nicolas, Batangas for a 5-Year Return Period rainfall event.



Figure 76. Areas affected by flooding in San Nicolas, Batangas for a 5-Year Return Period rainfall event.

For the 5-year return period, 91.72% of the municipality of Taal with an area of 27.07 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00%, 0.00%, 0.78%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|               |               | Caysasay            | 0.21 | 0 | 0        | 0         | 0     | 0 |
|---------------|---------------|---------------------|------|---|----------|-----------|-------|---|
| a             |               | Cawit               | 1.81 | 0 | 0        | 0         | 0.037 | 0 |
| eturn Peric   | ą. km.)       | Cara-<br>suche      | 0.86 | 0 | 0        | 0         | 0     | 0 |
| r kaintali k  | n Taal (in so | Butong              | 0.85 | 0 | 0        | 0         | 0.021 | 0 |
| ing a -yea    | oarangays ii  | Buli                | 0.56 | 0 | 0        | 0         | 0     | 0 |
| itangas dur   | f affected k  | Bolbok              | 0.82 | 0 | 0        | 0         | 0     | 0 |
| s In Taal, Ba | Area o        | Bihis               | 1.2  | 0 | 0        | 0         | 0     | 0 |
| ected areas   |               | Balisong            | 0.88 | 0 | 0        | 0         | 0     | 0 |
| аріе 45. Ап   |               | Арасау              | 1.63 | 0 | 0        | 0         | 0.023 | 0 |
|               | d Area        | by flood<br>(in m.) | 1    | 2 | 3        | 4         | 5     | 9 |
|               | Affecte       | (sq. km.)<br>depth  |      |   | Affected | (sg. km.) | -     |   |

| p        |
|----------|
| Peric    |
| turn     |
| l Ret    |
| infal    |
| ar Ra    |
| 5-Ye     |
| ing a    |
| s dur    |
| nga      |
| Bata     |
| Taal,    |
| s in     |
| area     |
| cted     |
| . Affe   |
| able 45. |
| Н        |

È 2 = ç ć ι ò ŀ 2 4

|                              | Latag                                                 | 0.56                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Laguile                                               | 2.51                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| . km.)                       | Ipil                                                  | 0.36                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| in Taal (in sq               | Imamawo                                               | 0.59                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| barangays                    | Iba                                                   | 0.91                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of affected                  | Halang                                                | 1.53                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Area (                       | Gahol                                                 | 0.53                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | Cultihan                                              | 1.11                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | Cubam-<br>ba                                          | 1.57                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| d Area<br>by flood<br>in m.) |                                                       | 1                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Affecte                      | (sq. km.)<br>depth                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Affected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (sa. km.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | Affected Area Affected barangays in Taal (in sq. km.) | Affected Area<br>(sq. km.) by floodAffected Area of affected barangays in Taal (in sq. km.)(sq. km.) by floodCubam-<br>baCultihanGaholHalangIbaImamawoIpilLaguileLatag | Affected Area   Affected Area   Affected Area   Affected Area   Area of affected Area   Area | Affected Area   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood   Cubam-   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood   Cubam-   Bahol   Halang   Iba   Ipal   Laguile   Laguile     1   1.57   1.11   0.53   1.53   0.91   0.59   0.36   2.51   0.56     2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 </td <td>Affected Area   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood<br/>depth (in m.)   Cubam-<br/>ba   Cultihan   Gahol   Halang   Iba   Imamawo   Ipil   Laguile   Latag     1   1.57   1.11   0.53   1.53   0.91   0.59   0.36   2.51   0.56     2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0</td> <td>Affected Area   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood<br/>depth (in m.)   Cubam-<br/>ba   Cubam-<br/>ba   Area of affected barangays in Taal (in sq. km.)     1   1.57   1.11   0.53   1.53   0.91   0.36   2.51   0.56     2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0<td>Affected Area   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood<br/>depth (in m.)   Cubam-<br/>ba   Cultihan   Gahol   Halang   Iba   Ipil   Laguile   Latagi     1   1.57   1.11   0.53   1.53   0.91   0.59   0.36   2.51   0.56     2   0.0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0<!--</td--></td></td> | Affected Area   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood<br>depth (in m.)   Cubam-<br>ba   Cultihan   Gahol   Halang   Iba   Imamawo   Ipil   Laguile   Latag     1   1.57   1.11   0.53   1.53   0.91   0.59   0.36   2.51   0.56     2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 | Affected Area   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood<br>depth (in m.)   Cubam-<br>ba   Cubam-<br>ba   Area of affected barangays in Taal (in sq. km.)     1   1.57   1.11   0.53   1.53   0.91   0.36   2.51   0.56     2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 <td>Affected Area   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood<br/>depth (in m.)   Cubam-<br/>ba   Cultihan   Gahol   Halang   Iba   Ipil   Laguile   Latagi     1   1.57   1.11   0.53   1.53   0.91   0.59   0.36   2.51   0.56     2   0.0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0<!--</td--></td> | Affected Area   Area of affected barangays in Taal (in sq. km.)     (sq. km.) by flood<br>depth (in m.)   Cubam-<br>ba   Cultihan   Gahol   Halang   Iba   Ipil   Laguile   Latagi     1   1.57   1.11   0.53   1.53   0.91   0.59   0.36   2.51   0.56     2   0.0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 </td |

| Ma-<br>Ma-<br>habang<br>Lodlod<br>1.17<br>0 |     |
|---------------------------------------------|-----|
|                                             | 1.1 |
|                                             | 0   |
|                                             |     |
|                                             | 0   |
|                                             | 0   |
|                                             | 0   |
|                                             | 0   |

a 5-Vaar Rainfall Return Derind 2 7 cted leer 2 Table 17 Affacted a

Table 48. Affected areas in Taal. Batangas during a 5-Year Rainfall Return Period

|                  |               | Tulo                | 1.05  | 0 | 0        | 0                 | 0      | 0 |
|------------------|---------------|---------------------|-------|---|----------|-------------------|--------|---|
|                  |               | Tierra<br>Alta      | 0.22  | 0 | 0        | 0                 | 0      | 0 |
|                  |               | Tatlong<br>Maria    | 0.13  | 0 | 0        | 0                 | 0.0058 | 0 |
| n                |               | Seiran              | 0.67  | 0 | 0        | 0                 | 0.0053 | 0 |
|                  | ł. km.)       | Pook                | 0.75  | 0 | 0        | 0                 | 0      | 0 |
|                  | r Taal (in so | Pobla-<br>cion 9    | 0.094 | 0 | 0        | 0                 | 0      | 0 |
| וווצ מ ש-וכמ     | arangays ii   | Pobla-<br>cion 8    | 0.15  | 0 | 0        | 0                 | 0      | 0 |
| tarigas uur      | f affected k  | Pobla-<br>cion 7    | 0.046 | 0 | 0        | 0                 | 0      | 0 |
| סט, ווו וממו, שמ | Area o        | Pobla-<br>cion 6    | 0.024 | 0 | 0        | 0                 | 0      | 0 |
| ברובת מו במי     |               | Pobla-<br>cion 5    | 0.088 | 0 | 0        | 0                 | 0.019  | 0 |
| 101C 40. All     |               | Pobla-<br>cion 4    | 0.1   | 0 | 0        | 0                 | 0.0036 | 0 |
|                  |               | Pobla-<br>cion 3    | 0.12  | 0 | 0        | 0                 | 0      | 0 |
|                  |               | Pobla-<br>cion 2    | 0.032 | 0 | 0        | 0                 | 0      | 0 |
|                  | d Area        | by flood<br>(in m.) | 1     | 2 | 3        | 4                 | 5      | 9 |
|                  | Affecte       | (sq. km.)<br>depth  |       |   | Affected | area<br>(sg. km.) |        |   |



Figure 77. Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event



Figure 78. Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event



Figure 79. Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event



Figure 80. Areas affected by flooding in Taal, Batangas for a 5-Year Return Period rainfall event

For the 25-year return period, 48.47% of the municipality of Lemery with an area of 72.15 sq. km. will experience flood levels of less than 0.20 meters. 1.29% of the area will experience flood levels of 0.21 to 0.50 meters while 0.93%, 0.23%, 0.89%, and 0.67% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 49. Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period

|             | District I                                          | 0.14 | 0        | 0         | 0      | 0.00059 | 0      |
|-------------|-----------------------------------------------------|------|----------|-----------|--------|---------|--------|
|             | Dayapan                                             | 1.46 | 0.001    | 0.0041    | 0.0092 | 0.027   | 0.052  |
|             | Cahilan<br>II                                       | 1.2  | 0.0002   | 0.0008    | 0.0025 | 0.0077  | 0      |
| sq. km.)    | Cahilan I                                           | 0.95 | 0.00091  | 0.0038    | 0.0087 | 0.019   | 0.002  |
| Lemery (in  | Bukal                                               | 0.17 | 0.072    | 0.13      | 0.0033 | 0       | 0      |
| rangays in  | Balanga                                             | 1.34 | 0        | 0         | 0      | 0       | 0      |
| affected ba | Bagong<br>Sikat                                     | 0.25 | 0        | 0         | 0      | 0.037   | 0      |
| Area of     | Bagong<br>Pook                                      | 1.12 | 0.0023   | 0.0023    | 0.0023 | 0.0049  | 0.0037 |
|             | Ayao-<br>Iyao                                       | 2.18 | 0.071    | 0.014     | 0.016  | 0.03    | 0      |
|             | Aruma-<br>han                                       | 0.12 | 0        | 0         | 0      | 0       | 0      |
|             | Anak-<br>Dagat                                      | 0.11 | 0        | 0         | 0      | 0       | 0      |
| d Area      | by flood<br>(in m.)                                 | 1    | 2        | 3         | 4      | 5       | 9      |
| Affecte     | Affected J<br>(sq. km.) by<br>depth (in<br>Affected |      | Affected | (sa. km.) |        |         |        |

| riod   |
|--------|
| n Pe   |
| Retur  |
| -      |
| nfal   |
| r Rai  |
| -Year  |
| a 25   |
| br     |
| lring  |
| ď      |
| gas    |
| atar   |
| B,     |
| 2      |
| em     |
| ت<br>د |
| s i    |
| rea    |
| a      |
| teo    |
| е<br>С |
| Afi    |
|        |
| ы      |
|        |
| ھ      |
| able   |

|             | m                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Maligaya                                                | 0.053                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | Maigsing<br>Dahilig                                     | 0.46                                                                                                                                                                                                                                                                      | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0004                                                                                                                                                                                                                                                                                                                                | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Mahaya-<br>hay                                          | 0.61                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| sq. km.)    | Ma-<br>habang<br>Dahilig                                | 0.92                                                                                                                                                                                                                                                                      | 0.0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0055                                                                                                                                                                                                                                                                                                                                | 0.0075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lemery (in  | Magui-<br>han                                           | 0.13                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| irangays in | Lucky                                                   | 0.11                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| affected ba | Gulod                                                   | 1.56                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0018                                                                                                                                                                                                                                                                                                                                | 0.0058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area of     | Dita                                                    | 3.38                                                                                                                                                                                                                                                                      | 0.00068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00073                                                                                                                                                                                                                                                                                                                               | 0.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | District<br>IV                                          | 0.082                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | District<br>III                                         | 0.22                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | District II                                             | 0.058                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ed Area     | by flood<br>(in m.)                                     | 1                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Affecte     | (sq. km.)<br>depth                                      | Affected                                                                                                                                                                                                                                                                  | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-IIIN .pc)                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Affected Area Affected barangays in Lemery (in sq. km.) | Affected Area Affected Area Area of affected barangays in Lemery (in sq. km.)   (sq. km.) by flood District II District I District I District I District I District I Mahaya- Mahaya- Mahaya- Maliga   depth (in m.) III IV III IV Mahaya- Mahaya- Mahaya- Mahaya- Maliga | Affected Area<br>(sq. km.) by flood<br>depth (in m.)District IIDistrict IDistrict IDistrict IDistrict IMahaya-<br>NMahaya-<br>NaligaMahaya-<br>NaMahaya-<br>Nahaya-<br>Nahaya-<br>Nahaya-Mahaya-<br>Nahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br>NaligaMahaya-<br> | Affected AreaAffected AreaArea of affected barangays in Lemery (in sq. km.)(sq. km.) by flood<br>depth (in m.)District IIDistrictDistrictDistrictNahaya-Mahaya-(sq. km.) by flood<br>depth (in m.)IIIIVDistrictMahaya-Mahaya-Mahaya-MaigsingAffected10.0580.220.0823.381.560.110.130.920.610.460.05Affected20000.000680.0020000.00030 | Affected Area     Affected Area   Affected Area   Affected Area   Affected Area     (sq. km.) by flood   District II   District   District | Affected Area     Affected Area     (sq. km.) by flood   District II   District District   District District   District II   Nalaya-   Mahaya-   Mahaya-     depth (in m.)   District II   District II   District   District   District   District   District   Mahaya-   Mahaya-   Malaya-   M | Affected Area Affected Arangays in Lemery (in sq. km.)     Affected Farmagys in Lemery (in sq. km.)     (sq. km.) by flood<br>depth (in m.)   District II   District   Distrit   District   District |

|                                 | Sambal<br>Ibaba                                      | 0.14  | 0                             | 0      | 0      | 0.0011 | 0      |
|---------------------------------|------------------------------------------------------|-------|-------------------------------|--------|--------|--------|--------|
|                                 | Rizal                                                | 0.026 | 0                             | 0      | 0      | 0      | 0      |
|                                 | Payapa<br>Ilaya                                      | 0.25  | 0.0023                        | 0.0002 | 0.0004 | 0.0002 | 0      |
| sq. km.)                        | Payapa<br>Ibaba                                      | 1.6   | 0.029                         | 0.012  | 0.012  | 0.014  | 0.018  |
| Lemery (in                      | Palanas                                              | 0.59  | 0                             | 0      | 0      | 0.17   | 0      |
| Area of affected barangays in L | Nonong<br>Casto                                      | 0.73  | 0.23                          | 0.19   | 0.0065 | 0      | 0      |
|                                 | Matin-<br>gain II                                    | 1.49  | 0.0081                        | 0.0037 | 0.0059 | 0.019  | 0.027  |
|                                 | Matin-<br>gain I                                     | 1.39  | 0.095                         | 0.065  | 0.02   | 0.01   | 0.013  |
|                                 | Mata-<br>as Na<br>Bayan                              | 0.85  | 0.15                          | 0.12   | 0.027  | 0.073  | 0.15   |
|                                 | Masalisi                                             | 0.36  | 0.0062                        | 0.0036 | 0.0051 | 0.0074 | 0.0065 |
|                                 | Malinis                                              | 2.01  | 0.17                          | 0.089  | 0.0014 | 0.0057 | 0      |
|                                 | Affected Area<br>(sq. km.) by flood<br>depth (in m.) |       | 2                             | 3      | 4      | 5      | 9      |
| v cc                            |                                                      |       | Affected<br>Area<br>(sq. km.) |        |        |        |        |

| Period            |
|-------------------|
| Return            |
| Rainfall          |
| 25-Year           |
| during a          |
| <b>Batangas</b> ( |
| Lemery, F         |
| areas in          |
| Affected          |
| Table 51.         |

Table 52. Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period

|                                    |                 | Ilaya                  | llaya<br>5 0.056 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5 0.056<br>0 0<br>7 0.00077          |                                              |
|------------------------------------|-----------------|------------------------|------------------|---------------------------------------|----------------|--------------------------------------|--------------------------------------|----------------------------------------------|
|                                    | Wawa<br>Ibaba   |                        | 0.0075           | 0.0075                                | 0.0075         | 0.0075                               | 0.0075<br>0<br>0<br>0<br>0<br>0.0004 |                                              |
|                                    | u.)             | Tubuan                 |                  | 0.92                                  | 0.92           | 0.92<br>0<br>0                       | 0.92<br>0<br>0<br>0<br>0             | 0.92<br>0<br>0<br>0<br>0<br>0                |
|                                    | ry (in sq. kr   | Tubigan                |                  | 0.93                                  | 0.93<br>0.058  | 0.93<br>0.058<br>0.0062              | 0.93<br>0.058<br>0.0062<br>0.00062   | 0.93<br>0.058<br>0.0062<br>0.00062<br>0.0009 |
| ea of affected barangays in Lemery | /s in Lemer     | Talaga                 |                  | 0.27                                  | 0.27<br>0.0014 | 0.27<br>0.0014<br>0.0019             | 0.27<br>0.0014<br>0.0019<br>0.0011   | 0.27<br>0.0014<br>0.0019<br>0.0011<br>0.0037 |
|                                    | ted barangay    | Sinisian<br>East       |                  | 0.039                                 | 0.039<br>0     | 0.039<br>0<br>0.00012                | 0.039<br>0<br>0.00012<br>0.000074    | 0.039<br>0<br>0.00012<br>0.000074<br>0.00023 |
|                                    | rea of affec    | San-<br>galang         |                  | 0.27                                  | 0.27<br>0      | 0.27<br>0<br>0                       | 0.27<br>0<br>0<br>0                  | 0.27<br>0<br>0<br>0<br>0<br>0                |
|                                    | A               | San<br>Isidro<br>Itaas |                  | 4.04                                  | 4.04<br>0.021  | 4.04<br>0.021<br>0.012               | 4.04<br>0.021<br>0.012<br>0.019      | 4.04<br>0.021<br>0.012<br>0.019<br>0.041     |
|                                    |                 | San<br>Isidro<br>Ibaba |                  | 2.08                                  | 2.08<br>0.0047 | 2.08<br>0.0047<br>0.0072             | 2.08<br>0.0047<br>0.0072<br>0.01     | 2.08<br>0.0047<br>0.0072<br>0.01<br>0.029    |
|                                    | Sambal<br>Ilaya |                        | 0.3              | 0.3<br>0                              | 0.3<br>0<br>0  | 0.3<br>0<br>0<br>0                   | 0.3<br>0<br>0<br>0<br>0<br>0.076     |                                              |
| d Area<br>by flood<br>in m.)       |                 |                        | 1                | 1<br>2                                | 3 2            | 1<br>3<br>4                          | 1<br>2<br>3<br>4<br>5                |                                              |
| Affecte<br>(sq. km.)<br>depth (    |                 |                        |                  |                                       | Affected       | Affected<br>Area<br>(sɑ. km.)        | Affected<br>Area<br>(sq. km.)        |                                              |



Figure 81. Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.



Figure 82. Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.


Figure 83. Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.



Figure 84. Affected areas in Lemery, Batangas during a 25-Year Rainfall Return Period.

For the 25-year return period, 23.41% of the municipality of Santa Teresita with an area of 15.37 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|              |              | Tambo<br>Ilaya       | 0.42  | 0 | 0        | 0         | 0 | 0 |
|--------------|--------------|----------------------|-------|---|----------|-----------|---|---|
|              |              | Tambo<br>Ibaba       | 0.13  | 0 | 0        | 0         | 0 | 0 |
| Period.      |              | Sinipian             | 0.64  | 0 | 0        | 0         | 0 | 0 |
| fall Return  | (in sq. km.) | Saimsim              | 0.93  | 0 | 0        | 0         | 0 | 0 |
| 5-Year Rain  | ta Teresita  | Pobla-<br>cion III   | 0.003 | 0 | 0        | 0         | 0 | 0 |
| during a 2   | gays in San  | Pobla-<br>cion II    | 0.053 | 0 | 0        | 0         | 0 | 0 |
| a, Batangas  | cted baran   | Pobla-<br>cion l     | 0.001 | 0 | 0        | 0         | 0 | 0 |
| nta Teresita | Area of affe | Calum-<br>ala        | 0.4   | 0 | 0        | 0         | 0 | 0 |
| areas in Sa  | H            | Burol                | 0.74  | 0 | 0        | 0         | 0 | 0 |
| 3. Affected  |              | Bihis                | 0.031 | 0 | 0        | 0         | 0 | 0 |
| Table 53     |              | Antipolo             | 0.25  | 0 | 0        | 0         | 0 | 0 |
|              | d Area       | by flood<br>(in m.)  | 1     | 2 | 3        | 4         | 5 | 9 |
|              | Affecte      | (sq. km.)<br>depth ( |       |   | Affected | (sq. km.) |   |   |



Figure 85. Areas affected by flooding in Santa Teresita, Batangas for a 25-Year Return Period rainfall event

For the 25-year return period, 40.39% of the municipality of Agoncillo with an area of 48.8 sq. km. will experience flood levels of less than 0.20 meters. 0.11% of the area will experience flood levels of 0.51 to 1.00 meters. 0.11% of the area will experience flood depths of 0.51 to 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|                 |              | Pamiga              | 0.47 | 0       | 0        | 0                 | 0      | 0      |
|-----------------|--------------|---------------------|------|---------|----------|-------------------|--------|--------|
|                 |              | Mabini              | 1.28 | 0.00073 | 0.0014   | 0.0065            | 0.008  | 0      |
| וו ואכנעו וו רמ | ı sq. km.)   | Guitna              | 0.25 | 0       | 0        | 0                 | 0      | 0      |
|                 | goncillo (ir | Coral Na<br>Munti   | 1.75 | 0.00093 | 0.0016   | 0.0039            | 0.0062 | 0.0002 |
| uiiig a 2.7-    | angays in A  | Barigon             | 2.28 | 0       | 0        | 0                 | 0      | 0      |
| ה טוצמא ח       | ffected ban  | Bangin              | 1.37 | 0       | 0        | 0                 | 0      | 0      |
| Aguininu,       | Area of a    | Balan-<br>gon       | 1.26 | 0.0021  | 0.0018   | 0.0071            | 0.0087 | 0      |
|                 |              | Bagong<br>Sikat     | 0.97 | 0.0079  | 0.014    | 0.014             | 0.011  | 0.0019 |
| 74. AIICCU      |              | Adia                | 1.04 | 0       | 0        | 0                 | 0      | 0      |
| ומחום           | d Area       | by flood<br>(in m.) | 1    | 2       | 3        | 4                 | 5      | 6      |
|                 | Affecte      | (sq. km.)<br>depth  |      |         | Affected | area<br>(sa. km.) | -      |        |

Table 54. Affected areas in Agoncillo, Batangas during a 25-Year Rainfall Return Period

Table 55. Affected areas in Agoncillo. Batangas during a 25-Year Rainfall Return Period

|                                         | /s in Agoncillo (in sq. km.) | San Te- Santa Santo Subic Subic<br>odoro Cruz Tomas Ibaba Ilaya | 0.2 0.86 0.43 1.4 0.84 | 0 0 0.00044 0 | 0 0 0 0.00049 0 | 0 0.0000 0 0 0 |         |      |
|-----------------------------------------|------------------------------|-----------------------------------------------------------------|------------------------|---------------|-----------------|----------------|---------|------|
|                                         | ected bara                   | < Sa<br>Jacin                                                   | 2.0                    | 0.00          | 0.00            | 0.00           | 0.0     | 0.00 |
| n ( )                                   | ea of affe                   | Pook                                                            | 1.82                   | 0             | 0               | 0              | 0       | 0    |
|                                         | Are                          | Pobla-<br>cion                                                  | 0.58                   | 0             | 0               | 0              | 0       | 0    |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                              | Pansipit                                                        | 0.4                    | 0             | 0               | 0              | 0.00066 | 0    |
|                                         |                              | Panhu-<br>lan                                                   | 0.43                   | 0.039         | 0.013           | 0.0062         | 0.0002  | 0    |
|                                         | d Area                       | by flood<br>(in m.)                                             | 1                      | 2             | 3               | 4              | 5       | 9    |
|                                         | Affecte                      | (sq. km.)<br>depth                                              |                        |               | Affected        | (sa. km.)      | -       |      |



Figure 86. Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period rainfall event.



Figure 87. Areas affected by flooding in Agoncillo, Batangas for a 25-Year Return Period rainfall event.

For the 25-year return period, 38.00% of the municipality of San Nicolas with an area of 21.34 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood depths of 0.21 to 1 meter, 1.01 to 2 meters, area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|              |              | Munlaw-<br>in                 | 0.72 | 0 | 0        | 0         | 0     | 0 |
|--------------|--------------|-------------------------------|------|---|----------|-----------|-------|---|
|              |              | Maabud<br>South               | 0.4  | 0 | 0        | 0         | 0     | 0 |
| turn Period  | km.)         | Maabud<br>North               | 0.62 | 0 | 0        | 0         | 0     | 0 |
| Rainfall Rei | olas (in sq. | Hipit                         | 0.35 | 0 | 0        | 0         | 0     | 0 |
| g a 25-Year  | in San Nic   | Calangay                      | 0.55 | 0 | 0        | 0         | 0.021 | 0 |
| ngas during  | l barangays  | Bangin                        | 0.44 | 0 | 0        | 0         | 0.016 | 0 |
| colas, Bata  | of affectec  | Bancoro                       | 0.66 | 0 | 0        | 0         | 0     | 0 |
| as in San Ni | Area         | Ba-<br>luk-Ba-<br>luk         | 0.23 | 0 | 0        | 0         | 0     | 0 |
| fected area  |              | Balete                        | 0.45 | 0 | 0        | 0         | 0     | 0 |
| able 56. Af  |              | Abelo                         | 0.5  | 0 | 0        | 0         | 0     | 0 |
| L            |              | by flood<br>(in m.)           | 1    | 2 | 3        | 4         | 5     | 9 |
|              | A ff o of o  | Allecte<br>(sq. km.)<br>depth |      |   | Affected | (sa. km.) |       |   |

| Affect | ed area  | as in San Nic | colas, Batai   | ngas during   | g a 25-Year     | Rainfall Ret  | turn Period |
|--------|----------|---------------|----------------|---------------|-----------------|---------------|-------------|
| e,     | ŋ        | Area          | of affected    | l barangays   | in San Nic      | olas (in sq.  | km.)        |
| Ë ć    | pod<br>( | Pansipit      | Pobla-<br>cion | Santo<br>Niño | Sinturi-<br>san | Tagud-<br>tod | Talang      |
|        | 1        | 0.24          | 0.73           | 0.31          | 1.21            | 0.26          | 0.44        |
|        | 2        | 0             | 0              | 0             | 0               | 0             | 0           |
|        | 3        | 0             | 0              | 0             | 0               | 0             | 0           |
|        | 4        | 0             | 0              | 0             | 0               | 0             | 0           |
|        | 5        | 0.026         | 0.03           | 0             | 0               | 0             | 0           |
|        | 9        | 0             | 0              | 0             | 0               | 0             | 0           |



Figure 88. Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period rainfall event.



Figure 89. Areas affected by flooding in San Nicolas, Batangas for a 25-Year Return Period rainfall event.

For the 25-year return period, 91.72% of the municipality of Taal with an area of 27.07 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00%, 0.00%, 0.78%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 58. Affected areas in Taal, Batangas during a 25-Year Rainfall Return Period

|               | Caysasay            | 0.21 | 0 | 0        | 0         | 0     | 0 |
|---------------|---------------------|------|---|----------|-----------|-------|---|
|               | Cawit               | 1.81 | 0 | 0        | 0         | 0.037 | 0 |
| sq. km.)      | Carasuche           | 0.86 | 0 | 0        | 0         | 0     | 0 |
| s in Taal (in | Butong              | 0.85 | 0 | 0        | 0         | 0.021 | 0 |
| d barangay.   | Buli                | 0.56 | 0 | 0        | 0         | 0     | 0 |
| of affected   | Bolbok              | 0.82 | 0 | 0        | 0         | 0     | 0 |
| Area          | Bihis               | 1.2  | 0 | 0        | 0         | 0     | 0 |
|               | Balisong            | 0.88 | 0 | 0        | 0         | 0     | 0 |
|               | Apacay              | 1.63 | 0 | 0        | 0         | 0.023 | 0 |
| d Area        | by flood<br>(in m.) | 1    | 2 | 3        | 4         | 5     | 9 |
| Affecte       | (sq. km.)<br>depth  |      |   | Affected | (sq. km.) | -     |   |

| ро           |
|--------------|
| Peri         |
| turn         |
| ll Rei       |
| infal        |
| ır Ra        |
| 5-Yea        |
| a 25         |
| uring        |
| as dı        |
| tang         |
| l, Bai       |
| Taal         |
| as in        |
| are          |
| cted         |
| Affe         |
| 59.          |
| <b>Table</b> |
| _            |

| Affected AreaAffected AreaAffected AreaArea of affected barangays in Taal (in sq. km.)(sq. km.) by flood<br>depth (in m.)CubambaCultihanGaholHalangIbaImamawoIpilLaguileLatag11.571.110.531.530.910.590.362.510.5620000000000Affected<br>3300000000Affected<br>(sq. km.)30000000006000000000000600000000000060000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                     |      |   |          |          |       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------------|------|---|----------|----------|-------|---|
| Affected AreaAffected AreaAffected AreaArea of affected barangays in Taal (in sq. km.)(sq. km.) by flood<br>depth (in m.)CubambaCultihanGaholHalangIbaImamawoIpilLaguile111.571.110.531.530.910.590.362.5120000000000Affected<br>a300000000Affected<br>(sq. km.)50000000006000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                | Latag               | 0.56 | 0 | 0        | 0        | 0     | 0 |
| Affected AreaAffected AreaAffected AreaArea of affected barangays in Taal (in sq. km.)(sq. km.) by flood<br>depth (in m.)CubambaCultihanGaholHalangIbaImamawoIpil111.571.110.531.530.910.590.362000000000Affected<br>a<br>(sq. km.)3000000060000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                | Laguile             | 2.51 | 0 | 0        | 0        | 0.097 | 0 |
| Affected AreaAffected AreaAffected AreaArea of affected barangays in Taal (in sq.(sq. km.) by flood<br>depth (in m.)CubambaCultihanGaholHalangIba<111.571.110.531.530.910.59200000000Affected<br>33000000Affected<br>(sq. km.)4000000600000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | km.)           | Ipil                | 0.36 | 0 | 0        | 0        | 0     | 0 |
| Affected AreaAffected AreaAffected AreaArea of affected barangays in<br>(sq. km.)(sq. km.)by flood<br>depth (in m.)CubambaCultihanGaholHalangIba11.571.110.531.530.91Affected<br>a300000Affected<br>a (sq. km.)30000060000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | ו Taal (in sq. | Imamawo             | 0.59 | 0 | 0        | 0        | 0     | 0 |
| Affected AreaAffected AreaArea of affected b(sq. km.) by flood<br>depth (in m.)CubambaCultihanGaholHalang111.571.110.531.53Affected<br>a20000Affected<br>a30000Affected<br>b30000Affected<br>b30000Affected<br>b30000Affected<br>b30000Affected<br>b30000Affected<br>b30000Affected<br>b30000Affected<br>b30000Affected<br>b30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 a zu 1ca    | arangays ir    | Iba                 | 0.91 | 0 | 0        | 0        | 0     | 0 |
| Affected Area<br>(sq. km.) by flood<br>depth (in m.)         Area of<br>Cubamba         Area of<br>Cultihan         Area of<br>Gahol           Affected<br>Affected<br>Sq. km.)         1         1.57         1.11         0.53           Affected<br>Sq. km.)         2         0         0         0         0           Affected<br>Sq. km.)         3         0         0         0         0         0           6         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | angas uun      | affected b     | Halang              | 1.53 | 0 | 0        | 0        | 0     | 0 |
| Affected Area       Affected Area     Cubamba       (sq. km.) by flood     Cubamba       depth (in m.)     1       Affected     1       Affected     3       Affected     3       Affected     3       (sq. km.)     5       6     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ווו וממו, שמנ  | Area of        | Gahol               | 0.53 | 0 | 0        | 0        | 0     | 0 |
| Affected Area<br>(sq. km.) by flood<br>depth (in m.)<br>The second cubamba<br>depth (in m.)<br>The second cubamba<br>The secon | cred al cap    |                | Cultihan            | 1.11 | 0 | 0        | 0        | 0     | 0 |
| Affected Area<br>(sq. km.) by flood<br>depth (in m.)<br>1<br>1<br>2<br>Affected<br>3<br>Area<br>(sq. km.)<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ומחוב יהר בוחם |                | Cubamba             | 1.57 | 0 | 0        | 0        | 0     | 0 |
| Affecte<br>(sq. km.)<br>depth<br>depth<br>Affected<br>Area<br>(sq. km.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | d Area         | by flood<br>(in m.) | 1    | 2 | 3        | 4        | 5     | 9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Affecte        | (sq. km.)<br>depth  |      |   | Affected | sq. km.) | -     |   |

| Return Period   | sq. km.)       | - Pobla- Pobla- Pobla-<br>1 cion 12 cion 13 cion 14 | 0.031 0.037 0.055 0.055 | 0 0 | 0 0 0    | 0 0 0     | 0 0 0 |   |
|-----------------|----------------|-----------------------------------------------------|-------------------------|-----|----------|-----------|-------|---|
| a 25-Year Rair  | angays in Taal | Pobla- Po<br>cion 10 cic                            | 0.028 0.                | 0   | 0        | 0         | 0     |   |
| ngas during a   | affected bara  | Pobla-<br>cion 1                                    | 0.098                   | 0   | 0        | 0         | 0     | , |
| າ Taal, Bata    | Area of        | Niogan                                              | 0.22                    | 0   | 0        | 0         | 0     |   |
| fected areas ir |                | Mahabang<br>Lodlod                                  | 1.17                    | 0   | 0        | 0         | 0     |   |
| able 60. Af     |                | Luntal                                              | 1.17                    | 0   | 0        | 0         | 0     |   |
| L               | d Area         | by flood<br>(in m.)                                 | 1                       | 2   | 3        | 4         | 5     |   |
|                 | Affecte        | (sq. km.)<br>depth                                  |                         |     | Affected | (sa. km.) |       |   |

**75-Vear Bainfall Return Period** n during Table 61 Affected areas in Taal Batan

|               |              | Tulo                | 1.05  | 0 | 0        | 0         | 0      | 0 |
|---------------|--------------|---------------------|-------|---|----------|-----------|--------|---|
|               |              | Tierra<br>Alta      | 0.22  | 0 | 0        | 0         | 0      | 0 |
|               |              | Tatlong<br>Maria    | 0.13  | 0 | 0        | 0         | 0.0058 | 0 |
| nn            |              | Seiran              | 0.67  | 0 | 0        | 0         | 0.0053 | 0 |
| יכוחו ו בכווי | ł. km.)      | Pook                | 0.75  | 0 | 0        | 0         | 0      | 0 |
|               | Taal (in sc  | Pobla-<br>cion 9    | 0.094 | 0 | 0        | 0         | 0      | 0 |
| 118 a 20-150  | arangays ii  | Pobla-<br>cion 8    | 0.15  | 0 | 0        | 0         | 0      | 0 |
| raligas uuli  | f affected b | Pobla-<br>cion 7    | 0.046 | 0 | 0        | 0         | 0      | 0 |
| III 1aal, Da  | Area o       | Pobla-<br>cion 6    | 0.024 | 0 | 0        | 0         | 0      | 0 |
| נרובת מו במא  |              | Pobla-<br>cion 5    | 0.088 | 0 | 0        | 0         | 0.019  | 0 |
| חוב חדי אווב  |              | Pobla-<br>cion 4    | 0.1   | 0 | 0        | 0         | 0.0036 | 0 |
| ומ            |              | Pobla-<br>cion 3    | 0.12  | 0 | 0        | 0         | 0      | 0 |
|               |              | Pobla-<br>cion 2    | 0.032 | 0 | 0        | 0         | 0      | 0 |
|               | ed Area      | by flood<br>(in m.) | 1     | 2 | 3        | 4         | 5      | 9 |
|               | Affecte      | (sq. km.)<br>depth  |       |   | Affected | (sg. km.) |        |   |



Figure 90. Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.



Figure 91. Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.



Figure 92. Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.



Figure 93. Areas affected by flooding in Taal, Batangas for a 25-Year Return Period rainfall event.

For the 100-year return period, 46.57% of the municipality of Lemery with an area of 72.15 sq. km. will experience flood levels of less than 0.20 meters. 2.17% of the area will experience flood levels of 0.21 to 0.50 meters while 1.52%, 0.54%, 0.96%, and 0.69% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

0.000017 0.000031 0.00059 District I 0.0002 0.140 Dayapan 0.016 0.026 0.012 0.028 0.054 1.41Cahilan 0.0038 0.0004 0.0096 0.0058 0.013 1.18= Cahilan I 0.0089 0.015 Area of affected barangays in Lemery (in sq. km.) 0.015 0.002 0.021 0.92 0.0054 Bukal 0.16 0.06 0.140 0 Balanga 0.0026 1.330.02 0 0 0 Bagong Sikat 0.0002 0.0057 0.001 0.037 0.24 0 Bagong Pook 0.0038 0.006 0.025 0.011 1.080.01 0.0001 0.036 0.027 0.017 Ayaolyao 2.04 0.18 0.00004 0.0016 0.0004 Aruma-0.0002 0.12 han 0 0.0002 Ĕ Anak-Dagat 0.12 0 0 0 0 (sq. km.) by flood depth (in m.) Affected Area ſ  $\sim$ m 4 ഹ 9 Area (sq. km.) Affected

| $\overline{\mathbf{n}}$ |
|-------------------------|
| ă                       |
| .≃                      |
| 5                       |
| Ð                       |
| Δ.                      |
| ~                       |
| 5                       |
| Ξ                       |
| 1                       |
| Ū.                      |
| $\tilde{\sim}$          |
| -                       |
| =                       |
| J<br>J                  |
| 4                       |
|                         |
| E.                      |
| $\sim$                  |
| <u> </u>                |
| _                       |
| σ                       |
| D.                      |
| >                       |
| 4                       |
| 2                       |
| 0                       |
| -                       |
| æ                       |
| 10                      |
| 60                      |
| 2                       |
| ·=                      |
| 5                       |
| 2                       |
| σ                       |
| 10                      |
| 22                      |
| 50                      |
| <u>_</u>                |
| 5                       |
| (O)                     |
| Ħ                       |
| ~~~                     |
| ш                       |
| ~                       |
| ~                       |
| 5                       |
| ¥                       |
| L                       |
| 5                       |
| Ψ.                      |
| _                       |
|                         |
|                         |
| S                       |
| g                       |
| Ū                       |
| Ξ.                      |
| σ                       |
| _                       |
| S.                      |
| Ψ.                      |
| 5                       |
| 3                       |
| ۳                       |
| Ψ,                      |
| $\triangleleft$         |
|                         |
| N.                      |
| ið                      |
| 9                       |
| Ð                       |
|                         |
|                         |
| 7                       |

| -                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                     |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                      |
| (                                     | ά<br>Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| -                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ξ                                      |
| ç                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                      |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| •                                     | ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                      |
| (                                     | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                      |
|                                       | ۷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                      |
|                                       | ά                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                      |
|                                       | ۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J                                      |
| 2                                     | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                      |
| (                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                      |
| Ċ                                     | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                      |
| ,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H                                      |
|                                       | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                      |
|                                       | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ľ                                      |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| •                                     | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
|                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                      |
| -                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                      |
|                                       | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                      |
|                                       | α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۰.                                     |
|                                       | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ŭ                                      |
|                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | í                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ğ                                      |
|                                       | 5<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|                                       | 201020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|                                       | 2010101 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V, Data Ing                            |
|                                       | Prv Katabar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                                       | COLLARADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                       | MORV Katahar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|                                       | COMPANY Katang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
|                                       | Camery Katang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|                                       | CID AMARV Katang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|                                       | Constant Namal di se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| -                                     | Constant Vianal ni sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|                                       | Constant Name I di search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                       | Constant Viama I di seare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                       | Caretex Viewer In seere P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
|                                       | CTER WARDEN CONCERNENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                       | CTER VIEWEI UN SERVE DETTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ככרכת מו כמס ווו בכוווכו לי המימווצנ   |
|                                       | Terted Viewel of sector betable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ווכררכת מו כמס ווו בכוווכו לי המומווצנ |
|                                       | CHARTER VIANAL NI SEATE RATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
|                                       | S Atterted vigence in sector betrefield to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|                                       | CATERNAL ALEGATE NETRE AND A CONTRACTER A                                                                                                                                                                                                                                                          |                                        |
|                                       | SAS Atterted visite in searchard the searchard s |                                        |
| · · · · · · · · · · · · · · · · · · · | Constraint and a search of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| · · · · · · · · · · · · · · · · · · · | Ship by Attacted sreas in Lemery Ratang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |

|              |             | Maligaya                      | 0.053 | 0       | 0        | 0         | 0       | 0      |
|--------------|-------------|-------------------------------|-------|---------|----------|-----------|---------|--------|
|              |             | Maigsing<br>Dahilig           | 0.44  | 0.0066  | 0.0059   | 0.0032    | 0.0046  | 0.017  |
| nnin         |             | Mahaya-<br>hay                | 0.59  | 0.013   | 0.0049   | 0.0021    | 0.00053 | 0      |
|              | sq. km.)    | Ma-<br>habang<br>Dahilig      | 0.9   | 0.018   | 0.009    | 0.0093    | 0.015   | 0.035  |
|              | Lemery (in  | Magui-<br>han                 | 0.13  | 0.0002  | 0        | 0         | 0       | 0      |
| 1115 a ±00   | rangays in  | Lucky                         | 0.11  | 0       | 0        | 0         | 0       | 0      |
| а кан базача | affected ba | Gulod                         | 1.51  | 0.033   | 0.011    | 0.011     | 0.019   | 0.063  |
|              | Area of     | Dita                          | 3.21  | 0.098   | 0.038    | 0.024     | 0.012   | 0.0044 |
|              |             | District<br>IV                | 0.082 | 0.00035 | 0        | 0         | 0.00084 | 0      |
|              |             | District<br>III               | 0.22  | 0.0008  | 0        | 0         | 0       | 0      |
|              |             | District II                   | 0.055 | 0.0017  | 0.0011   | 0         | 0.0079  | 0      |
|              |             | by flood<br>(in m.)           | 1     | 2       | 3        | 4         | 5       | 9      |
|              | Affort of   | Allecte<br>(sq. km.)<br>depth |       |         | Affected | (sq. km.) | -       |        |

|              |             | Sambal<br>Ibaba               | 0.14  | 0.0003 | 0        | 0         | 0.0011 | 0      |
|--------------|-------------|-------------------------------|-------|--------|----------|-----------|--------|--------|
|              |             | Rizal                         | 0.027 | 0      | 0        | 0         | 0      | 0      |
| eriod        |             | Payapa<br>Ilaya               | 0.24  | 0.0069 | 0.0045   | 0.0014    | 0.0006 | 0      |
| ll Return Pe | sq. km.)    | Payapa<br>Ibaba               | 1.56  | 0.045  | 0.026    | 0.02      | 0.02   | 0.018  |
| fear Rainfa  | Lemery (in  | Palanas                       | 0.58  | 0.013  | 0        | 0         | 0.17   | 0      |
| ring a 100-\ | rangays in  | Nonong<br>Casto               | 0.7   | 0.2    | 0.24     | 0.014     | 0      | 0      |
| atangas du   | affected ba | Matin-<br>gain II             | 1.44  | 0.037  | 0.018    | 0.015     | 0.02   | 0.028  |
| Lemery, B;   | Area of     | Matin-<br>gain I              | 1.34  | 0.12   | 0.083    | 0.023     | 0.011  | 0.013  |
| ed areas in  |             | Mata-<br>as Na<br>Bayan       | 0.71  | 0.18   | 0.14     | 0.11      | 0.071  | 0.16   |
| e 64. Affect |             | Masalisi                      | 0.35  | 0.0098 | 0.0044   | 0.0059    | 0.0075 | 0.0065 |
| Table        |             | Malinis                       | 1.88  | 0.18   | 0.2      | 0.0062    | 0.0063 | 0      |
|              |             | by flood<br>(in m.)           | 1     | 2      | 3        | 4         | 5      | 9      |
|              | U ff o of o | Allecte<br>(sq. km.)<br>depth |       |        | Affected | (sa. km.) | -      |        |

| erioo    |
|----------|
| 4        |
| nrn      |
| et       |
| ~        |
| all      |
| Ъf       |
| äi       |
| <u> </u> |
| -Yea     |
| ġ        |
| 10       |
| g        |
| Ø        |
| ÷        |
| ī        |
| S        |
| nga      |
| ta       |
| a<br>M   |
| ~        |
| 5        |
| Ĕ        |
| ē        |
|          |
| S -      |
| ŝ        |
| an e     |
| σ        |
| te       |
| ec       |
| Ĵ        |
| 4.       |
| 54       |
| e<br>B   |
| ō        |

E

Т

Table 65. Affected areas in Lemery. Batangas during a 100-Year Rainfall Return Period

|               |               | iwa<br>ya                      | 58     |          | 0038     | 0045              | 077     |         |
|---------------|---------------|--------------------------------|--------|----------|----------|-------------------|---------|---------|
|               |               | Wa                             | 0.0    |          | 0.00     | 0.00              | 0.00    |         |
|               |               | Wawa<br>Ibaba                  | 0.0084 | 0        | 0        | 0                 | 0.00047 | 0       |
|               | n.)           | Tubuan                         | 0.88   | 0.018    | 0.01     | 0.0078            | 0.0032  | 0       |
|               | ry (in sq. kr | Tubigan                        | 0.9    | 0.079    | 0.014    | 0.00041           | 0.0012  | 0       |
|               | ıys in Leme   | Talaga                         | 0.26   | 0.0061   | 0.0024   | 0.0021            | 0.0038  | 0.015   |
|               | ected baranga | Sinisian<br>East               | 0.039  | 0.000051 | 0.00012  | 0.000074          | 0.00019 | 0.00006 |
| ווורו אי שמנמ | Area of affe  | San-<br>galang                 | 0.27   | 0.0024   | 0        | 0                 | 0.013   | 0       |
|               |               | San<br>Isidro<br>Itaas         | 3.88   | 0.1      | 0.053    | 0.045             | 0.052   | 0.025   |
|               |               | San<br>Isidro<br>Ibaba         | 2      | 0.049    | 0.024    | 0.023             | 0.036   | 0.056   |
| וממור מי      |               | Sambal<br>Ilaya                | 0.3    | 0.0017   | 0        | 0                 | 0.076   | 0       |
|               | 0000          | ed Area<br>by flood<br>(in m.) | 1      | 2        | 3        | 4                 | 5       | 9       |
|               | A EC 212      | Allecte<br>(sq. km.)<br>depth  |        |          | Affected | area<br>(sg. km.) | -       |         |



Figure 94. Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.



Figure 95. Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.



Figure 96. Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.



Figure 97. Affected areas in Lemery, Batangas during a 100-Year Rainfall Return Period.

For the 100-year return period, 22.88% of the municipality of Santa Teresita with an area of 15.37 sq. km. will experience flood levels of less than 0.20 meters. 0.35% of the area will experience flood levels of 0.21 to 0.50 meters while 0.06%, 0.05%, 0.02%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Period   |   |
|----------|---|
| Return   | - |
| Rainfall | : |
| 0-Year   |   |
| ng a 10  |   |
| gas duri |   |
| Batan    | - |
| eresita, |   |
| Santa T  |   |
| areas in |   |
| fected a |   |
| e 66. Af |   |
| Table    |   |

| Affecte            | d Area              |          |       | A      | Vrea of affe  | cted baran       | gays in San       | ta Teresita        | (in sq. km.) |          |                |                |
|--------------------|---------------------|----------|-------|--------|---------------|------------------|-------------------|--------------------|--------------|----------|----------------|----------------|
| (sq. km.)<br>depth | by flood<br>(in m.) | Antipolo | Bihis | Burol  | Calum-<br>ala | Pobla-<br>cion I | Pobla-<br>cion II | Pobla-<br>cion III | Saimsim      | Sinipian | Tambo<br>Ibaba | Tambo<br>Ilaya |
|                    | 1                   | 0.25     | 0.031 | 0.7    | 0.39          | 0.001            | 0.052             | 0.003              | 0.92         | 0.64     | 0.13           | 0.4            |
|                    | 2                   | 0.0008   | 0     | 0.023  | 0.011         | 0                | 0.0002            | 0                  | 0.0054       | 0.0011   | 0.0035         | 0.0092         |
| Affected           | 3                   | 0        | 0     | 0.0052 | 0.0002        | 0                | 0                 | 0                  | 0.0022       | 0        | 0.0003         | 0.0019         |
| (sa. km.)          | 4                   | 0        | 0     | 0.0034 | 0.0001        | 0                | 0                 | 0                  | 0.0027       | 0        | 0.0001         | 0.0017         |
| -                  | 5                   | 0        | 0     | 0.0019 | 0             | 0                | 0                 | 0                  | 0.001        | 0        | 0              | 0.0002         |
|                    | 9                   | 0        | 0     | 0.0002 | 0             | 0                | 0                 | 0                  | 0            | 0        | 0              | 0              |



Figure 98. Areas affected by flooding in Santa Teresita, Batangas for a 100-Year Return Period rainfall event.

For the 100-year return period, 38.77% of the municipality of Agoncillo with an area of 48.8 sq. km. will experience flood levels of less than 0.20 meters. 1.17% of the area will experience flood levels of 0.21 to 0.50 meters while 0.43%, 0.27%, 0.17%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 67. Affected areas in Agoncillo, Batangas during a 100-Year Rainfall Return Period

| Affecte            | d Area              |        |                 | Area of a     | ffected ban | angays in A | Vgoncillo (in     | ו sq. km.) |        |        |
|--------------------|---------------------|--------|-----------------|---------------|-------------|-------------|-------------------|------------|--------|--------|
| (sq. km.)<br>depth | by flood<br>(in m.) | Adia   | Bagong<br>Sikat | Balan-<br>gon | Bangin      | Barigon     | Coral Na<br>Munti | Guitna     | Mabini | Pamiga |
|                    | 1                   | 0.99   | 0.93            | 1.22          | 1.35        | 2.16        | 1.68              | 0.24       | 1.25   | 0.46   |
|                    | 2                   | 0.038  | 0.026           | 0.024         | 0.013       | 0.065       | 0.049             | 0.0056     | 0.02   | 0.0074 |
| Affected           | 3                   | 0.011  | 0.025           | 0.011         | 0.0088      | 0.028       | 0.017             | 0.0016     | 0.0085 | 0.0036 |
| area<br>(sg. km.)  | 4                   | 0.0052 | 0.027           | 0.0091        | 0.0025      | 0.015       | 0.014             | 0          | 0.0074 | 0.0022 |
| -                  | 5                   | 0.0022 | 0.014           | 0.012         | 0.0002      | 0.01        | 0.0093            | 0          | 0.0097 | 0.0002 |
|                    | 9                   | 0      | 0.0032          | 0             | 0           | 0.0005      | 0.00031           | 0          | 0      | 0      |

ć 4 . ò 2 ò ij • . 4 4 0 7 Tablo

| Iable biolic Material Return Period           Affected Area of affected barangays in Agoncillo (in sq. km.)           Affected Area           Affected Area         Affected barangays in Agoncillo (in sq. km.)           Affected Area         Pansipit         Pobla-         Poola         San Te-         Santo         Subic         Subic           (sq. km.) by flood         Panhu-         Pansipit         Pobla-         Pook         Jacinto         Odoro         Cruz         Tomas         Ibaba         Ilaya           1         0.37         0.38         0.57         1.78         1.97         0.2         0.84         0.42         1.32         0.79           2         0.073         0.011         0.0055         0.037         0.056         0.0169         0.037         0.036         0.013         0.069         0.037           Affected         3         0.024         0.0034         0.022         0.0074         0.022         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.004         0.013         0.013 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                |                     |      |        |          |                     |         |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|---------------------|------|--------|----------|---------------------|---------|-------|
| Affected Area         Faith generating a 100-Year Rammali Return Period           Affected Area           Affected Area         Panhu-         Pansipit         Pobla-         Pook         Jain Curz         Santo         Subic           Value         Pansipit         Pobla-         Pook         Jain Odoro         Cruz         Tomas         Baba           1         0.37         0.38         0.57         1.78         1.97         0.2         0.84         0.42         1.32           2         0.073         0.011         0.0065         0.037         0.056         0.0166         0.013         0.069         0.013         0.069         0.069         0.069         0.01         0.069         0.013         0.069         0.01         0.069         0.01         0.069         0.01         0.069         0.01         0.069         0.01         0.0033         0.0011         0.0033         0.0011         0.0033         0.00044         0.01         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                | Subic<br>Ilaya      | 0.79 | 0.037  | 0.013    | 0.0048              | 0.0006  | U     |
| Iable b8. Affected areas in Agoncilio, batangas during a 100-Year Kaimali Keturn Period           Affected Area           Affected Area         Area of affected barangays in Agoncillo (in sq. km.)           (sq. km.) by flood         Panhu-<br>lan         Pobla-<br>cion         Pook         San         San Te-<br>odoro         Santa         Santa </td <td></td> <td></td> <td>Subic<br/>Ibaba</td> <td>1.32</td> <td>0.069</td> <td>0.01</td> <td>0.0033</td> <td>0.00044</td> <td>U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                | Subic<br>Ibaba      | 1.32 | 0.069  | 0.01     | 0.0033              | 0.00044 | U     |
| Iable bs. Affected areas in Agoncilio, batangas during a 100-Year Rainfair Rei<br>Affected Area           Affected Area         Affected barangas during a 100-Year Rainfair Rei<br>Area         Affected barangas in Agoncilio (in sq. k           (sq. km.) by flood<br>depth (in m.)         Panhu-<br>lan         Pansipit<br>cion         Pools-<br>Foo         Pools         San Te-<br>Jacinto         San Te-<br>odoro         San Te-<br>Cruz         San Te-<br>San Te-<br>Cruz         San Te-<br>San Te-<br>Cruz         San Te-<br>San Te-<br>San Te-<br>San Te-<br>Cruz         San Te-<br>San Te | curn Perioa  | :m.)           | Santo<br>Tomas      | 0.42 | 0.013  | 0.002    | 0.00011             | 0       | U     |
| Affected Area<br>(sq. km.) by floodArea of affected barangas during a 100-year<br>Area of affected barangays in Agonc<br>(sq. km.) by floodAffected Area<br>(sq. km.) by floodPanhu-<br>lanPansipit<br>cionPook<br>cionSan<br>JacintoSan Te-<br>odoro10.370.380.571.781.970.220.0730.0110.00650.0370.0360.036Affected<br>a30.0240.00080.00220.00740.0280Area<br>Area<br>(sq. km.)40.00110.000340.00310.0220050.00210.00066000.00010.00110.02100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | каіптан ке   | illo (in sq. k | Santa<br>Cruz       | 0.84 | 0.016  | 0.0069   | 0.0033              | 0.0006  | U     |
| Iable box. Affected areas in Agoncilio, batangas during.Affected AreaAffected AreaAffected barangas(sq. km.) by floodPanhu-PansipitPobla-PookJacintodepth (in m.)1 $0.37$ $0.38$ $0.57$ $1.78$ $1.97$ Affected2 $0.073$ $0.011$ $0.0065$ $0.037$ $0.056$ Affected3 $0.024$ $0.0008$ $0.0022$ $0.073$ $0.028$ Area4 $0.011$ $0.00034$ $0.0031$ $0.022$ Area5 $0.0021$ $0.00066$ $0$ $0.022$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a tuu-year   | s in Agonci    | San Te-<br>odoro    | 0.2  | 0.0036 | 0        | 0                   | 0       | U     |
| Iable bs. Affected areas in Agoncilio, batan<br>Affected Area<br>(sq. km.) by flood<br>depth (in m.)Area of affecteAffected<br>(sq. km.) by flood<br>depth (in m.)Panhu-<br>lanPansipit<br>cionPobla-<br>cionPook1 $0.37$ $0.38$ $0.57$ $1.78$ 2 $0.073$ $0.011$ $0.0065$ $0.037$ Affected<br>Area<br>(sq. km.)3 $0.024$ $0.0008$ $0.0022$ $0.074$ 5 $0.0021$ $0.0001$ $0.00034$ $0.0031$ $0.0001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gas during a | d barangay     | San<br>Jacinto      | 1.97 | 0.056  | 0.028    | 0.022               | 0.021   | 200.0 |
| Affected AreaAffected AreaAffected AreaArea(sq. km.) by floodPanhu-Pansipitdepth (in m.)PansipitPobla-depth (in m.)1an $0.37$ $0.38$ $0.57$ 20.073 $0.011$ $0.0065$ Affected3 $0.024$ $0.0008$ $0.0022$ Area4 $0.011$ $0.00034$ (sq. km.)5 $0.0021$ $0.00034$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cillo, batan | a of affecte   | Pook                | 1.78 | 0.037  | 0.0074   | 0.0031              | 0.0001  | U     |
| Iable b8. Affected are labeled are labeled are solution by flood lan by fl                                                                                                                                                                                                                                                                                                                                                                                      | as in Agono  | Are            | Pobla-<br>cion      | 0.57 | 0.0065 | 0.0022   | 0.00034             | 0       | U     |
| Affected Area<br>(sq. km.) by flood Panhu-<br>depth (in m.) lan<br>11 0.37<br>2 0.073<br>4 0.024<br>5 0.0021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mected are   |                | Pansipit            | 0.38 | 0.011  | 0.0008   | 0.0001              | 0.00066 | C     |
| Affected Area<br>(sq. km.) by flood<br>depth (in m.)<br>1<br>1<br>Affected 3<br>Area<br>(sq. km.)<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lable bo. A  |                | Panhu-<br>lan       | 0.37 | 0.073  | 0.024    | 0.011               | 0.0021  | U     |
| Affecte<br>(sq. km.)<br>depth<br>depth<br>Affected<br>Area<br>(sq. km.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | ed Area        | by flood<br>(in m.) | 1    | 2      | 3        | 4                   | 5       | 9     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | Affecte        | (sq. km.)<br>depth  |      |        | Affected | l area<br>(sa. km.) |         |       |



Figure 99. Affected areas in Agoncillo, Batangas during a 100-Year Rainfall Return Period



Figure 100. Affected areas in Agoncillo, Batangas during a 100-Year Rainfall Return Period

For the 100-year return period, 37.25% of the municipality of San Nicolas with an area of 21.34 sq. km. will experience flood levels of less than 0.20 meters. 0.55% of the area will experience flood levels of 0.21 to 0.50 meters while 0.09%, 0.02%, 0.44%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 69. Areas affected by flooding in San Nicolas, Batangas for a 100-Year Return Period rainfall event

|                 | unlaw-<br>in                  | 0.71 | .0044    | .0014    | 0.001     | .0001  | 0 |
|-----------------|-------------------------------|------|----------|----------|-----------|--------|---|
|                 | bud M<br>ith                  | 68   | )55 0    | 13 0     | 16 0      | 14 0   |   |
|                 | Maa<br>Sou                    | 0.3  | 0.00     | 0.00     | 0.00      | 0.00   | 0 |
| ст.)            | Maabud<br>North               | 0.61 | 0.0072   | 0.002    | 0.00072   | 0.0002 | 0 |
| colas (in sq. k | Hipit                         | 0.35 | 0.000036 | 0.000095 | 0.000092  | 0      | 0 |
| 's in San Ni    | Calangay                      | 0.53 | 0.0082   | 0.0037   | 0         | 0.021  | 0 |
| d barangay      | Bangin                        | 0.43 | 0.0071   | 0.0035   | 0.0006    | 0.016  | 0 |
| a of affecte    | Bancoro                       | 0.65 | 0.0039   | 0.0015   | 0.0008    | 0      | 0 |
| Area            | Ba-<br>luk-Ba-<br>luk         | 0.23 | 0.0011   | 0        | 0         | 0      | 0 |
|                 | Balete                        | 0.45 | 0.0036   | 0.0005   | 0.0001    | 0      | 0 |
|                 | Abelo                         | 0.5  | 0.011    | 0        | 0         | 0      | 0 |
|                 | by flood<br>(in m.)           | 1    | 2        | 3        | 4         | 5      | 9 |
| A FF 0 0 + 0    | allecte<br>(sq. km.)<br>depth |      |          | Affected | (sa. km.) | -      |   |

7 f || cf --H 

| all keturn Per<br>n sq. km.)<br>dd Talang<br>dd Talang<br>128 0.0044<br>017 0<br>02 0<br>0                      | 0 0 |
|-----------------------------------------------------------------------------------------------------------------|-----|
| n sq.<br>n sq.<br>1d-<br>1d-<br>117<br>012<br>002                                                               | 0   |
| Tague           Tague           10.2           0.20           0.00           0.00           0.00           0.00 |     |
| a 100-Year<br>in San Nicc<br>Sinturi-<br>san<br>1.19<br>0.025<br>0.0013<br>0                                    | 0   |
| ngas during<br>I barangays<br>Santo<br>Niño<br>0.3<br>0.0051<br>0<br>0<br>0                                     | 0   |
| colas, Batar<br>of affectec<br>Pobla-<br>cion<br>0.71<br>0.015<br>0.0022<br>0.0001<br>0.03                      | 0   |
| s in San Nic<br>Area<br>Pansipit<br>0.22<br>0.013<br>0.0012<br>0<br>0.026                                       | 0   |
| ected area<br>ed Area<br>by flood<br>(in m.)<br>2<br>3<br>4<br>4<br>5                                           | 9   |
| Affecte<br>Affecte<br>(sq. km.)<br>depth<br>Affected<br>Area<br>(sq. km.)                                       |     |



Figure 101. Areas affected by flooding in San Nicolas, Batangas for a 100-Year Return Period rainfall event.



Figure 102. Areas affected by flooding in San Nicolas, Batangas for a 100-Year Return Period rainfall event.

For the 100-Year return period, 91.72% of the municipality of Taal with an area of 27.07 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00%, 0.00%, 0.78%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 71. Affected areas in Taal, Batangas during a 100-Year Rainfall Return Period

|               | asay                | 21   | 063    | 0        |           | 0       |   |
|---------------|---------------------|------|--------|----------|-----------|---------|---|
|               | Cays                | .0   | 0.00   |          |           |         |   |
|               | Cawit               | 1.76 | 0.045  | 0.0064   | 0.001     | 0.037   | 0 |
| sq. km.)      | Carasuche           | 0.83 | 0.028  | 0.0028   | 0.00031   | 0       | 0 |
| s in Taal (in | Butong              | 0.83 | 0.024  | 0.0048   | 0.00055   | 0.021   | 0 |
| d barangay:   | Buli                | 0.55 | 0.0075 | 0.0013   | 0         | 0       | 0 |
| of affected   | Bolbok              | 0.81 | 0.013  | 0.0004   | 0         | 0       | 0 |
| Area          | Bihis               | 1.18 | 0.019  | 0.0014   | 0.0009    | 0       | 0 |
|               | Balisong            | 0.84 | 0.026  | 0.0057   | 0.0026    | 0.00052 | 0 |
|               | Арасау              | 1.61 | 0.013  | 0.006    | 0.0008    | 0.023   | 0 |
| d Area        | by flood<br>(in m.) | 1    | 2      | 3        | 4         | 5       | 9 |
| Affecte       | (sq. km.)<br>depth  |      |        | Affected | (sg. km.) |         |   |

| σ                                         |
|-------------------------------------------|
| <u>.</u>                                  |
| ē                                         |
| <u>д</u>                                  |
| Ľ                                         |
| Ę                                         |
| Å                                         |
| Ξ                                         |
| fa                                        |
| ij                                        |
| ĕ                                         |
| ar                                        |
| ě                                         |
| 5                                         |
| ŏ                                         |
| 1                                         |
| br                                        |
| ũ                                         |
| Ē                                         |
| б                                         |
|                                           |
| B                                         |
| gas                                       |
| angas                                     |
| atangas                                   |
| . Batangas                                |
| al, Batangas                              |
| Taal, Batangas                            |
| in Taal, Batangas                         |
| s in Taal, Batangas                       |
| eas in Taal, Batangas                     |
| areas in Taal, Batangas                   |
| d areas in Taal, Batangas                 |
| ted areas in Taal, Batangas               |
| ected areas in Taal, Batangas             |
| Affected areas in Taal, Batangas          |
| . Affected areas in Taal, Batangas        |
| 72. Affected areas in Taal, Batangas      |
| le 72. Affected areas in Taal, Batangas   |
| able 72. Affected areas in Taal, Batangas |

|         | רובח מובמא וו | וו וממו, טמני | aligas uulii |             |                |        |         |        |
|---------|---------------|---------------|--------------|-------------|----------------|--------|---------|--------|
|         |               | Area of       | f affected b | arangays ir | າ Taal (in sq. | km.)   |         |        |
| Cubamba | Cultihan      | Gahol         | Halang       | Iba         | Imamawo        | Ipil   | Laguile | Latag  |
| 1.54    | 1.09          | 0.5           | 1.48         | 0.88        | 0.56           | 0.35   | 2.44    | 0.54   |
| 0.027   | 0.019         | 0.019         | 0.047        | 0.02        | 0.017          | 0.0078 | 0.055   | 0.018  |
| 0.0037  | 0.004         | 0.0023        | 0.0031       | 0.0063      | 0.0061         | 0.0027 | 0.018   | 0.0015 |
| 0.0002  | 0.0032        | 0.0029        | 0.0014       | 0.0035      | 0.0038         | 0.0022 | 0.0024  | 0.0013 |
| 0       | 0.0003        | 0.0018        | 0.0008       | 0.0002      | 0.0008         | 0.0007 | 0.097   | 0.0002 |
| 0       | 0             | 0             | 0            | 0           | 0.0003         | 0      | 0       | 0      |

|                    |                   | Poblacion 14         | 0.052 | 0.0011  | 0.0011   | 0.0006    | 0.00085  | 0 |
|--------------------|-------------------|----------------------|-------|---------|----------|-----------|----------|---|
|                    |                   | Poblacion 13         | 0.037 | 0.0002  | 0        | 0         | 0        | 0 |
| n Period           |                   | Poblacion 12         | 0.031 | 0       | 0        | 0         | 0        | 0 |
| r Rainfall Returr  | Taal (in sq. km.) | Poblacion 11         | 0.054 | 0.0015  | 0.0002   | 0         | 0        | 0 |
| luring a 100-Yea   | ed barangays in   | Poblacion 10         | 0.028 | 0.00011 | 0        | 0         | 0        | 0 |
| aal, Batangas d    | Area of affect    | Poblacion 1          | 0.095 | 0.0028  | 0.00038  | 0         | 0        | 0 |
| l areas in Ta      |                   | Niogan               | 0.21  | 0.0037  | 0.0008   | 0.0005    | 0.00053  | 0 |
| Table 73. Affected |                   | Mahabang Lodlod      | 1.13  | 0.031   | 0.0063   | 0.0037    | 0.0006   | 0 |
|                    |                   | Luntal               | 1.14  | 0.026   | 0.004    | 0.00057   | 0.000058 | 0 |
|                    | d Area            | by flood<br>(in m.)  | 1     | 2       | 3        | 4         | 5        | 9 |
|                    | Affecte           | (sq. km.)<br>depth i |       |         | Affected | (sa. km.) |          |   |

foll c Ę Table 74. Affected areas in Taal. Batangas during a 100-Year Rainfall Return Period

|               |               | Tulo                  | 1.04  | 0.012   | 0.00031  | 0.00039   | 0      | 0 |
|---------------|---------------|-----------------------|-------|---------|----------|-----------|--------|---|
|               |               | Tierra<br>Alta        | 0.22  | 0.0027  | 0.00043  | 0         | 0      | 0 |
|               |               | Tatlong<br>Maria      | 0.13  | 0.006   | 0.000039 | 0         | 0.0058 | 0 |
| nn            |               | Seiran                | 0.64  | 0.019   | 0.0021   | 0.0016    | 0.0053 | 0 |
|               | q. km.)       | Pook                  | 0.74  | 0.0097  | 0.0019   | 0.0004    | 0.0001 | 0 |
|               | in Taal (in s | Pobla-<br>cion 9      | 0.094 | 0       | 0        | 0         | 0      | 0 |
| וופ מ דטט-וע  | barangays i   | Pobla-<br>cion 8      | 0.14  | 0.0049  | 0.0001   | 0         | 0      | 0 |
| tarigas uuri  | of affected   | Pobla-<br>cion 7      | 0.046 | 0.00016 | 0        | 0         | 0      | 0 |
| ווו וממו, שמ  | Area (        | Pobla-<br>cion 6      | 0.023 | 0.0002  | 0        | 0         | 0      | 0 |
| נרובת מובמס   |               | Pobla-<br>cion 5      | 0.081 | 0.0061  | 0.00083  | 0.00044   | 0.019  | 0 |
| NIC / +. 7110 |               | Pobla-<br>cion 4      | 0.095 | 0.0029  | 0.0011   | 0         | 0.0036 | 0 |
|               |               | Pobla-<br>cion 3      | 0.11  | 0.0032  | 0.00077  | 0.00021   | 0      | 0 |
|               |               | Pobla-<br>cion 2      | 0.03  | 0.0012  | 0        | 0         | 0      | 0 |
|               | ed Area       | ) by flood<br>(in m.) | 1     | 2       | 3        | 4         | 5      | 9 |
|               | Affecte       | (sq. km.)<br>depth    |       |         | Affected | (sa. km.) | -      |   |



Figure 103. Areas affected by flooding in Taal, Batangas for a 100-Year Return Period rainfall event



Figure 104. Areas affected by flooding in Taal, Batangas for a 100-Year Return Period rainfall event



Figure 105. Areas affected by flooding in Taal, Batangas for a 100-Year Return Period rainfall event



Figure 106. Areas affected by flooding in Taal, Batangas for a 100-Year Return Period rainfall event

Moreover, the generated flood hazard maps for the Pansipit Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps ("Low", "Medium", and "High"), the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 10-year).

| Warning Loval | Area   | Covered in | sq. km.  |
|---------------|--------|------------|----------|
| warning Level | 5 year | 25 year    | 100 year |
| Low           | 13.15  | 11.41      | 10.31    |
| Medium        | 18.1   | 21.55      | 22.03    |
| High          | 6.3    | 12.41      | 17.24    |
| TOTAL         | 37.55  | 45.37      | 49.58    |

Table 75. Areas covered by each warning level with respect to the rainfall scenarios

Of the 66 identified Education Institutes in Pansipit Flood plain, one (1) school was discovered exposed to Low-level flooding during a 5-year scenario, while two (2) schools were found exposed to Medium-level flooding in the same scenario.

In the 25-year scenario, one (1) school was found exposed to Low-level flooding, while two (2) schools were discovered exposed to Medium-level flooding.

For the 100-year scenario, one (1) school was discovered exposed to Low-level flooding , while two (2) schools were exposed to Medium-level flooding. In the same scenario, one (1) school was found exposed to high level flood hazards.

Apart from this, twenty-five (25) medical institutions were identified in Pansipit flood plain, but only Iba Health Care Center 1 in Brgy. Iba, Taal Municipality was exposed to low flood hazard levels for the 100-year scenario.

### 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, a validation survey work was performed. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and through interviews some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 336 points randomly selected all over the Pansipit flood plain. It has an RMSE value of 1.3067. The flood validation points are found in Annex 10.



Figure 107. Validation points for 5-year Flood Depth Map of Pansipit Floodplain



Figure 108. Flood map depth vs actual flood depth

| PANSI  | PIT BASIN |               |           | Modeled   | Flood Depth | (m)    |       |     |
|--------|-----------|---------------|-----------|-----------|-------------|--------|-------|-----|
| 0-     | 0.20      | 0.21-<br>0.50 | 0.51-1.00 | 1.01-2.00 | 2.01-5.00   | > 5.00 | Total |     |
|        | 0-0.20    | 83            | 5         | 3         | 0           | 0      | 0     | 91  |
|        | 0.21-0.50 | 78            | 3         | 0         | 0           | 0      | 0     | 81  |
| Actual | 0.51-1.00 | 68            | 1         | 2         | 0           | 1      | 0     | 72  |
| Depth  | 1.01-2.00 | 31            | 2         | 6         | 3           | 2      | 2     | 46  |
| (m)    | 2.01-5.00 | 4             | 0         | 0         | 1           | 16     | 9     | 30  |
|        | > 5.00    | 3             | 0         | 0         | 0           | 1      | 12    | 16  |
|        | Total     | 267           | 11        | 11        | 4           | 20     | 23    | 336 |

Table 76. Actual Flood Depth vs Simulated Flood Depth in Pansipit

The overall accuracy generated by the flood model is estimated at 35.42% with 119 points correctly matching the actual flood depths. In addition, there were 102 points estimated one level above and below the correct flood depths while there were 76 points and 38 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 195 points were underestimated in the modelled flood depths of Pansipit.

|                | No. of Points | %      |
|----------------|---------------|--------|
| Correct        | 119           | 35.42  |
| Overestimated  | 22            | 6.55   |
| Underestimated | 195           | 58.04  |
| Total          | 336           | 100.00 |

Table 77. Summary of Accuracy Assessment in Pansipit

# REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

# ANNEXES

# Annex 1. Technical Specifications of the LIDAR Sensors used in the Pansipit Floodplain Survey

1. PEGASUS SENSOR

Table A-1.1. Parameters and Specification of the Pegasus Sensor

| Parameter                              | Specification                                                         |
|----------------------------------------|-----------------------------------------------------------------------|
| Operational envelope (1,2,3,4)         | 150-5000 m AGL, nominal                                               |
| Laser wavelength                       | 1064 nm                                                               |
| Horizontal accuracy (2)                | 1/5,500 x altitude, 1σ                                                |
| Elevation accuracy (2)                 | < 5-20 cm, 1σ                                                         |
| Effective laser repetition rate        | Programmable, 100-500 kHz                                             |
| Position and orientation system        | POS AV ™AP50 (OEM)                                                    |
| Scan width (FOV)                       | Programmable, 0-75 °                                                  |
| Scan frequency (5)                     | Programmable, 0-140 Hz (effective)                                    |
| Sensor scan product                    | 800 maximum                                                           |
| Beam divergence                        | 0.25 mrad (1/e)                                                       |
| Roll compensation                      | Programmable, ±37° (FOV dependent)                                    |
| Vertical target separation<br>distance | <0.7 m                                                                |
| Range capture                          | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns |
| Intensity capture                      | Up to 4 intensity returns for each pulse, including last (12 bit)     |
| Image capture                          | 5 MP interline camera (standard); 60 MP full frame (optional)         |
| Full waveform capture                  | 12-bit Optech IWD-2 Intelligent Waveform Digitizer                    |
| Data storage                           | Removable solid state disk SSD (SATA II)                              |
| Power requirements                     | 28 V, 800 W, 30 A                                                     |
| Dimensions and weight                  | Sensor: 630 x 540 x 450 mm; 65 kg;                                    |
|                                        | Control rack: 650 x 590 x 490 mm; 46 kg                               |
| Operating Temperature                  | -10°C to +35°C                                                        |
| Relative humidity                      | 0-95% non-condensing                                                  |

#### 2. GEMINI SENSOR

| Table A-1.2. Parameters and Specific | cation of Gemini Sensor |
|--------------------------------------|-------------------------|
|--------------------------------------|-------------------------|

| Parameter                       | Specification                                                                                                          |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Operational envelope (1,2,3,4)  | 150-4000 m AGL, nominal                                                                                                |  |
| Laser wavelength                | 1064 nm                                                                                                                |  |
| Horizontal accuracy (2)         | 1/5,500 x altitude, (m AGL)                                                                                            |  |
| Elevation accuracy (2)          | <5-35 cm, 1 σ                                                                                                          |  |
| Effective laser repetition rate | Programmable, 33-167 kHz                                                                                               |  |
| Position and orientation system | POS AV™ AP50 (OEM);<br>220-channel dual frequency GPS/GNSS/Gal-<br>ileo/L-Band receiver                                |  |
| Scan width (WOV)                | Programmable, 0-50°                                                                                                    |  |
| Scan frequency (5)              | Programmable, 0-70 Hz (effective)                                                                                      |  |
| Sensor scan product             | 1000 maximum                                                                                                           |  |
| Beam divergence                 | Dual divergence: 0.25 mrad (1/e) and 0.8<br>mrad (1/e), nominal                                                        |  |
| Roll compensation               | Programmable, ±5° (FOV dependent)                                                                                      |  |
| Range capture                   | Up to 4 range measurements, including 1st,<br>2nd, 3rd, and last returns                                               |  |
| Intensity capture               | Up to 4 intensity returns for each pulse, in-<br>cluding last (12 bit)                                                 |  |
| Video Camera                    | Internal video camera (NTSC or PAL)                                                                                    |  |
| Image capture                   | Compatible with full Optech camera line<br>(optional)                                                                  |  |
| Full waveform capture           | 12-bit Optech IWD-2 Intelligent Waveform<br>Digitizer (optional)                                                       |  |
| Data storage                    | Removable solid state disk SSD (SATA II)                                                                               |  |
| Power requirements              | 28 V; 900 W;35 A(peak)                                                                                                 |  |
| Dimensions and weight           | Sensor: 260 mm (w) x 190 mm (l) x 570 mm<br>(h); 23 kg<br>Control rack: 650 mm (w) x 590 mm (l) x 530<br>mm (h); 53 kg |  |
| Operating temperature           | -10°C to +35°C (with insulating jacket)                                                                                |  |
| Relative humidity               | 0-95% no-condensing                                                                                                    |  |

## Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. BTG-51

| Republic of the P                                                                                                            | hilippines                                                                                                                                                                                                                                                                                 |                                                 | -                            |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|
| Department of En<br>NATIONAL M                                                                                               | wironment and Natural Resources<br>APPING AND RESOURCE INFORMATION                                                                                                                                                                                                                         | AUTHORITY                                       |                              |
|                                                                                                                              |                                                                                                                                                                                                                                                                                            |                                                 | January 05, 2016             |
|                                                                                                                              | CERTIFICATION                                                                                                                                                                                                                                                                              |                                                 |                              |
| whom it may concern:                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                 |                              |
| This is to cortify that according to                                                                                         | a the records on file in this office, the recu                                                                                                                                                                                                                                             | lected curvey inform                            | ation is as follows          |
| This is to certify that according to                                                                                         |                                                                                                                                                                                                                                                                                            |                                                 | auon is as ioliows           |
|                                                                                                                              | Province: BATANGAS                                                                                                                                                                                                                                                                         |                                                 |                              |
|                                                                                                                              | Olation Manual DTO 54                                                                                                                                                                                                                                                                      |                                                 |                              |
|                                                                                                                              | Station Name: BIG-51                                                                                                                                                                                                                                                                       |                                                 |                              |
|                                                                                                                              | Order: 2nd                                                                                                                                                                                                                                                                                 |                                                 |                              |
| Island: LUZON                                                                                                                | Order: 2nd<br>Barangay: TALAGA                                                                                                                                                                                                                                                             |                                                 |                              |
| Island: LUZON<br>Municipality: TANAUAN                                                                                       | Order: 2nd<br>Barangay: TALAGA<br>MSL Elevation:                                                                                                                                                                                                                                           |                                                 |                              |
| Island: LUZON<br>Municipality: TANAUAN                                                                                       | Order: 2nd<br>Barangay: TALAGA<br>MSL Elevation:<br>PRS92 Coordinates                                                                                                                                                                                                                      |                                                 |                              |
| Island: LUZON<br>Municipality: TANAUAN<br>Latitude: 14º 6' 8.57112"                                                          | Order: 2nd<br>Barangay: TALAGA<br>MSL Elevation:<br><i>PRS92 Coordinates</i><br>Longitude: 121° 5' 52.31002"                                                                                                                                                                               | Ellipsoidal Hgt:                                | 152.36900 m.                 |
| Island: LUZON<br>Municipality: TANAUAN<br>Latitude: 14º 6' 8.57112"                                                          | Order: 2nd<br>Barangay: TALAGA<br>MSL Elevation:<br><i>PRS92 Coordinates</i><br>Longitude: 121° 5' 52.31002"<br><i>WGS84 Coordinates</i>                                                                                                                                                   | Ellipsoidal Hgt:                                | 152.36900 m.                 |
| Island: LUZON<br>Municipality: TANAUAN<br>Latitude: 14º 6' 8.57112"<br>Latitude: 14º 6' 3.27790"                             | Station Name: BTG-51         Order: 2nd         Barangay: TALAGA         MSL Elevation:         PRS92 Coordinates         Longitude: 121° 5' 52.31002"         WGS84 Coordinates         Longitude: 121° 5' 57.24592"                                                                      | Ellipsoidal Hgt:<br>Ellipsoidal Hgt:            | 152.36900 m.<br>197.55100 m. |
| Island: LUZON<br>Municipality: TANAUAN<br>Latitude: 14º 6' 8.57112"<br>Latitude: 14º 6' 3.27790"                             | Station Name: BTG-51         Order: 2nd         Barangay: TALAGA         MSL Elevation:         PRS92 Coordinates         Longitude: 121° 5' 52.31002"         WGS84 Coordinates         Longitude: 121° 5' 57.24592"         PTM / PRS92 Coordinates                                      | Ellipsoidal Hgt:<br>Ellipsoidal Hgt:            | 152.36900 m.<br>197.55100 m. |
| Island: LUZON<br>Municipality: TANAUAN<br>Latitude: 14º 6' 8.57112"<br>Latitude: 14º 6' 3.27790"<br>Northing: 1559501.067 m. | Station Name: BTG-51         Order: 2nd         Barangay: TALAGA         MSL Elevation:         PRS92 Coordinates         Longitude: 121° 5' 52.31002"         WGS84 Coordinates         Longitude: 121° 5' 57.24592"         PTM / PRS92 Coordinates         Easting:       510567.544 m. | Ellipsoidal Hgt:<br>Ellipsoidal Hgt:<br>Zone: 3 | 152.36900 m.<br>197.55100 m. |
| Island: LUZON<br>Municipality: TANAUAN<br>Latitude: 14° 6' 8.57112"<br>Latitude: 14° 6' 3.27790"<br>Northing: 1559501.067 m. | Station Name: BTG-51         Order: 2nd         Barangay: TALAGA         MSL Elevation:         PRS92 Coordinates         Longitude: 121° 5' 52.31002"         WGS84 Coordinates         Longitude: 121° 5' 57.24592"         PTM / PRS92 Coordinates         Easting: 510567.544 m.       | Ellipsoidal Hgt:<br>Ellipsoidal Hgt:<br>Zone: 3 | 152.36900 m.<br>197.55100 m. |

Location Description

BTG-51 From Star Expressway Exit, Tanauan City, turn right to Talisay and continue traveling W until reaching the Y-road. Station is located inside the Mabini Shrine, approx. 100 m. from the right side of the road. It is situated approx. 2 m. S of the flagpole, about 15 m. N from the gate of the said shrine. Mark is the head of a 4 in. copper nail centered and embedded on a 30 cm. x 30 cm. concrete block flushed on the ground, with inscriptions "BTG-51 2007 NAMRIA".

Requesting Party: Purpose: OR Number: T.N.:

DOST-PCIEERD Reference 8089513 I 2016-0018

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G





NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

FigureA-2.1. BTG-51

#### 2. BTG-30



Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 19, 2014

#### CERTIFICATION

#### To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

|                             | Province: BATANGAS                                                                                              |                  |             |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|-------------|
|                             | Station Name: BTG-30                                                                                            |                  |             |
| Island: LUZON               | Order: 2nd                                                                                                      | Barangay: PALL   | OCAN        |
| (CAPITAL)                   | PRS92 Coordinates                                                                                               |                  |             |
| Latitude: 13º 45' 23.09641" | Longitude: 121º 3' 43.87174"                                                                                    | Ellipsoidal Hgt: | 7.82000 m.  |
|                             | WGS84 Coordinates                                                                                               |                  |             |
| Latitude: 13º 45' 17.88182" | Longitude: 121° 3' 48.83762"                                                                                    | Ellipsoidal Hgt: | 53.87200 m. |
|                             | PTM Coordinates                                                                                                 |                  |             |
| Northing: 1521226.725 m.    | Easting: 506725.034 m.                                                                                          | Zone: 3          |             |
|                             | UTM Coordinates                                                                                                 |                  |             |
| Northing: 1,521,536.18      | Easting: 290,477.09                                                                                             | Zone: 51         |             |
|                             | the second se |                  |             |

Location Description

Is in the vicinity of Brgy. Pallocan, Batangas City along the E side dike of Calumpang River, on the N side of Calumpang Bridge. It is about 0.67 m. WNW of the E edge of the dike, 1.3 m. ENE of the center of the concrete balluster and 50 m. NNE of the N side of the said bridge. Mark is the head of a 4" copper nail centered and embedded on top of a 30 cm. x 30 cm. cement putty set flushed to the pavement with inscriptions, "BTG-30 2004 NAMRIA".

 Requesting Party:
 UP DREAM

 Pupose:
 Reference

 OR Number:
 8795394 A

 T.N.:
 2014-354

RUEL OM. BELEN, MNSA Director, Mapping And Geodesy Branch 9





NAMRIA DFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig (ity, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraco St. San Nicoles, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.nemric.gov.ph

Figure A-2.2. BTG-30

#### 3. BTG-45

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY March 04, 2014 CERTIFICATION To whom it may concern: This is to certify that according to the records on file in this office, the requested survey information is as follows -Province: BATANGAS Station Name: BTG-45 Order: 2nd Island: LUZON Barangay: MALIBU Municipality: TUY PRS92 Coordinates Latitude: 13º 59' 52.18294" Longitude: 120º 42' 18.96476" Ellipsoidal Hgt: 48.43000 m. WGS84 Coordinates Latitude: 13º 59' 46.88216" Longitude: 120° 42' 23.91169" Ellipsoidal Hgt: 92.94300 m. PTM Coordinates Northing: 1547952.281 m. 468159.677 m. 3 Easting: Zone: UTM Coordinates Northing: 1,548,591.80 Easting: 252,125.62 Zone: 51 Location Description BTG-45 From Tuy Town Proper, travel S on the road going to Balayan, then turn right to the road going to Brgy. Malibu. Station is located on the NW side of a fenced garden and about 10 m. W of the school bldg. of Santiago De Guzman Elem. School. Mark is the head of a 4 in. copper nail centered and embedded on a 30 cm. x 30 cm. concrete block, with inscriptions "BTG-45 2007 NAMRIA". Requesting Party: **UP-DREAM** Pupose: Reference OR Number: 8795470 A T.N.: 2014-444 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 AB Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 ACCREDII que carination Accusatation MSA 001 www.namria.gov.ph CIP/4701/12/09/814

Figure A-2.3. BTG-45

# Annex 3.Baseline Processing Reports of Control Points used in the LIDAR Survey

1. BTG-A

Table A-3.1. BTG-A

| Project Information   |          |                |               | Coordinate S        | ystem               |                 |                               |                    |
|-----------------------|----------|----------------|---------------|---------------------|---------------------|-----------------|-------------------------------|--------------------|
| Name:                 |          |                |               | Name:               |                     | UTM             |                               |                    |
| Size:                 |          |                |               | Datum:              |                     | PRS 92          |                               |                    |
| Modified:             | 10/12/20 | 12 4:40:11 PM  | (UTC:-6)      | Zone:               |                     | 51 North (1)    | 23E)                          |                    |
| Time zone:            | Mountair | n Standard Tim | e             | Geoid:              |                     | EGMPH           |                               |                    |
| Reference number:     |          |                |               | Vertical datur      | m:                  |                 |                               |                    |
| Description:          |          |                |               |                     |                     |                 |                               |                    |
|                       |          | Ba             | seline Proce  | ssing Rep           | ort                 |                 |                               |                    |
|                       |          |                | Processing    | Summary             |                     |                 |                               |                    |
| Observation           | From     | То             | Solution Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |
| BTG-51 BTG-A<br>(B1)  | BTG-51   | BTG-A          | Fixed         | 0.003               | 0.013               | 170°48'36"      | 16216.677                     | 221.457            |
| BTG-51 BTG-A<br>(B2)  | BTG-51   | BTG-A          | Fixed         | 0.004               | 0.017               | 170°48'36"      | 16216.637                     | 221.577            |
| BTG-51 BTG-A<br>(B3)  | BTG-51   | BTG-A          | Fixed         | 0.003               | 0.012               | 170°48'36"      | 16216.621                     | 221.544            |
| TGT-1 BTG-A<br>(B4)   | BTG-A    | TGT-1          | Fixed         | 0.008               | 0.017               | 315°18'50"      | 24750.750                     | 239.384            |
| BTG-51 TGT-1<br>(B5)  | BTG-51   | TGT-1          | Fixed         | 0.009               | 0.018               | 276°06'46"      | 14901.801                     | 460.990            |
| BTG-A TGT-1<br>(B6)   | BTG-A    | TGT-1          | Fixed         | 0.005               | 0.019               | 315°18'50"      | 24750.733                     | 239.429            |
| BTG-51 TGT-1<br>(B7)  | BTG-51   | TGT-1          | Fixed         | 0.005               | 0.017               | 276°06'46"      | 14901.814                     | 461.001            |
| TGT-2 TGT-1<br>(B8)   | TGT-2    | TGT-1          | Fixed         | 0.005               | 0.008               | 183°02'45"      | 3.316                         | 0.124              |
| BTG-A TGT-2<br>(B9)   | TGT-2    | BTG-A          | Fixed         | 0.006               | 0.017               | 135°16'50"      | 24752.968                     | -239.298           |
| BTG-51 TGT-2<br>(B10) | BTG-51   | TGT-2          | Fixed         | 0.007               | 0.017               | 276°07'32"      | 14901.989                     | 460.964            |
| TGT-1 TGT-2<br>(B11)  | TGT-2    | TGT-1          | Fixed         | 0.003               | 0.004               | 182°17'41"      | 3.293                         | 0.187              |
| BTG-A TGT-2<br>(B12)  | TGT-2    | BTG-A          | Fixed         | 0.004               | 0.017               | 135°16'50"      | 24752.942                     | -239.320           |
| BTG-51 TGT-2<br>(B13) | BTG-51   | TGT-2          | Fixed         | 0.005               | 0.017               | 276°07'32"      | 14901.994                     | 460.970            |
| BTG-51 BTG-A<br>(B14) | BTG-51   | BTG-A          | Fixed         | 0.020               | 0.025               | 170°48'36"      | 16216.661                     | 221.703            |
| TGT-2 BTG-A<br>(B15)  | TGT-2    | BTG-A          | Fixed         | 0.065               | 0.038               | 135°16'50"      | 24753.003                     | -239.177           |
| BTG-51 TGT-2          | BTG-51   | TGT-2          | Fixed         | 0.004               | 0.013               | 276°07'31"      | 14901.990                     | 460.994            |

1

| Acceptance Summary |        |      |   |      |   |  |  |  |  |  |
|--------------------|--------|------|---|------|---|--|--|--|--|--|
| Processed          | Passed | Flag | P | Fall | Þ |  |  |  |  |  |
| 16                 | 16     | 0    |   | 0    |   |  |  |  |  |  |

| BTG-51 - BTG-A (10:17:13 AM-4:00:13 PM) (S1) |                                         |  |  |  |  |  |  |
|----------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
| Baseline observation:                        | BTG-51 BTG-A (B1)                       |  |  |  |  |  |  |
| Processed:                                   | 1/6/2016 4:11:57 PM                     |  |  |  |  |  |  |
| Solution type:                               | Fixed                                   |  |  |  |  |  |  |
| Frequency used:                              | Dual Frequency (L1, L2)                 |  |  |  |  |  |  |
| Horizontal precision:                        | 0.003 m                                 |  |  |  |  |  |  |
| Vertical precision:                          | 0.013 m                                 |  |  |  |  |  |  |
| RMS:                                         | 0.003 m                                 |  |  |  |  |  |  |
| Maximum PDOP:                                | 1.859                                   |  |  |  |  |  |  |
| Ephemeris used:                              | Broadcast                               |  |  |  |  |  |  |
| Antenna model:                               | NGS Absolute                            |  |  |  |  |  |  |
| Proceesing start time:                       | 12/21/2015 10:17:33 AM (Local: UTC+8hr) |  |  |  |  |  |  |
| Proceesing stop time:                        | 12/21/2015 4:00:13 PM (Local: UTC+8hr)  |  |  |  |  |  |  |
| Processing duration:                         | 05:42:40                                |  |  |  |  |  |  |
| Proceesing Interval:                         | 1 second                                |  |  |  |  |  |  |

#### Vector Components (Mark to Mark)

| From:             | BTO           | BTG-51        |           |                 |                       |          |             |    |                   |  |
|-------------------|---------------|---------------|-----------|-----------------|-----------------------|----------|-------------|----|-------------------|--|
| Grid              |               | Local         |           | Global          |                       |          |             |    |                   |  |
| Easting           |               | 294641.947 m  | Lati      | tude            | N14°06'08             | 8.57113" | Latitude    |    | N14°06'03.27790"  |  |
| Northing          |               | 1559783.810 m | Lon       | gitude          | E121°05'5             | 2.31001" | Longitude   |    | E121°05'57.24592* |  |
| Elevation         |               | 152.867 m     | Height    |                 | 152.369 m             |          | Height      |    | 197.551 m         |  |
| To:               | BT            | G-A           |           |                 |                       |          |             |    |                   |  |
| Grid              |               | Local         |           | Giobel          |                       |          |             |    |                   |  |
| Easting           |               | 297103.192 m  | Lati      | tude            | N13°57'2              | 7.65020* | Latitude    |    | N13°57'22.39320"  |  |
| Northing          | 1543753.102 m |               | Longitude |                 | E121°07'18.59698"     |          | Longitude   |    | E121°07'23.54499" |  |
| Elevation         |               | 374.449 m     |           | ght             | 373.826 m <b>Heig</b> |          | Height      |    | 419.468 m         |  |
| Vector            |               |               |           |                 |                       |          |             |    |                   |  |
| ∆Easting          |               | 2461.24       | 16 m      | NS Fwd Azlmuth  |                       |          | 170°48'36"  | ΔX | -4333.540 m       |  |
| ∆Northing         |               | -16030.70     | )8 m      | Ellipsoid Dist. |                       |          | 16216.677 m | ΔY | 2168.834 m        |  |
| <b>∆Elevation</b> |               | 221.58        | 2 m       | ΔHeight         |                       |          | 221.457 m   | ΔZ | -15477.964 m      |  |

2
## Table A-3.2. BTG-30A

# Baseline Processing Report

|                         |        |         | Processing S  | Summary             |                     |                 |                               |                    |
|-------------------------|--------|---------|---------------|---------------------|---------------------|-----------------|-------------------------------|--------------------|
| Observation             | From   | То      | Solution Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |
| BTG-30 BTG-<br>30A (B2) | BTG-30 | BTG-30A | Fixed         | 0.004               | 0.005               | 190°01'30"      | 4.793                         | 0.078              |

|              |                      | Accept    | ance Summary      |           |        |                 |
|--------------|----------------------|-----------|-------------------|-----------|--------|-----------------|
| Proce        | essed                | Passed    | Flag              | •         | Fail   | •               |
|              | 1                    | 1         | 0                 |           | (      | )               |
| Vector Compo | nents (Mark to Mark) |           |                   |           |        |                 |
| From:        | BTG-30               |           |                   |           |        |                 |
|              | Grid                 |           | Local             |           | Global |                 |
| Easting      | 290477.094 m         | Latitude  | N13°45'23.09641"  | Latitude  | N      | 13°45'17.88182" |
| Northing     | 1521536.181 m        | Longitude | E121°03'43.87174" | Longitude | E1     | 21°03'48.83762" |
| Elevation    | 8.942 m              | Height    | 7.820 m           | Height    |        | 53.872 m        |
| To:          | BTG-30A              |           |                   |           |        |                 |
|              | Grid                 |           | Local             |           | Global |                 |
| Easting      | 290476.221 m         | Latitude  | N13°45'22.94284"  | Latitude  | N      | 13°45'17.72826" |
| Northing     | 1521531.468 m        | Longitude | E121°03'43.84397" | Longitude | E1     | 21°03'48.80985" |
|              |                      |           |                   |           |        |                 |

| Elevation  | 9.020 m Heig | ght             | 7.898 m Height |           | 53.950 m |
|------------|--------------|-----------------|----------------|-----------|----------|
| Vector     |              | <i>11</i>       | 50.            | 8.97 N.O. |          |
| ∆Easting   | -0.872 m     | NS Fwd Azimuth  | 190°01'30"     | ΔX        | 0.096 m  |
| ∆Northing  | -4.713 m     | Ellipsoid Dist. | 4.793 m        | ΔΥ        | 1.457 m  |
| ∆Elevation | 0.078 m      | ∆Height         | 0.078 m        | ΔZ        | -4.566 m |

#### Standard Errors

| Vector errors: |         |                   |          |     |         |
|----------------|---------|-------------------|----------|-----|---------|
| σ ΔEasting     | 0.002 m | σ NS fwd Azimuth  | 0°01'04" | σΔΧ | 0.002 m |
| σ ΔNorthing    | 0.001 m | σ Ellipsoid Dist. | 0.001 m  | σΔΥ | 0.002 m |
| σ ∆Elevation   | 0.002 m | σ ∆Height         | 0.002 m  | σΔΖ | 0.001 m |

#### 3. BTG-45A

#### Table A-3.3. BTG-45A

| Project Information |                                | Coordinate Syste | m               |
|---------------------|--------------------------------|------------------|-----------------|
| Name:               |                                | Name:            | UTM             |
| Size:               |                                | Datum:           | PRS 92          |
| Modified:           | 10/12/2012 4:40:11 PM (UTC:-6) | Zone:            | 51 North (123E) |
| Time zone:          | Mountain Standard Time         | Geoid:           | EGMPH           |
| Reference number:   |                                | Vertical datum:  |                 |
| Description:        |                                |                  |                 |

# **Baseline Processing Report**

|                         |        |         | Processing    | Summary             |                     |                 |                               |                    |
|-------------------------|--------|---------|---------------|---------------------|---------------------|-----------------|-------------------------------|--------------------|
| Observation             | From   | То      | Solution Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |
| BTG-45 BTG-<br>45A (B1) | BTG-45 | BTG-45A | Fixed         | 0.001               | 0.001               | 175°32'41"      | 6.995                         | 0.659              |

#### Acceptance Summary

| Processed | Passed | Flag | P | Fall | Þ |
|-----------|--------|------|---|------|---|
| 1         | 1      | 0    |   | 0    |   |

#### BTG-45 - BTG-45A (7:15:33 AM-11:52:39 AM) (S1)

| BTG-45 BTG-45A (B1)                   |
|---------------------------------------|
| 9/2/2015 11:37:56 AM                  |
| Fixed                                 |
| Dual Frequency (L1, L2)               |
| 0.001 m                               |
| 0.001 m                               |
| 0.000 m                               |
| 2.331                                 |
| Broadcast                             |
| Trimble Relative                      |
| 9/1/2015 7:15:33 AM (Local: UTC+8hr)  |
| 9/1/2015 11:52:39 AM (Local: UTC+8hr) |
| 04:37:06                              |
| 1 second                              |
|                                       |

#### 4. TGT-1

#### Table A-3.4. TGT-1

#### TGT-1 - BTG-A (8:02:03 AM-12:33:59 PM) (S4)

| Baseline observation:  | TGT-1 BTG-A (B4)                        |
|------------------------|-----------------------------------------|
| Processed:             | 1/6/2016 4:19:10 PM                     |
| Solution type:         | Fixed                                   |
| Frequency used:        | Dual Frequency (L1, L2)                 |
| Horizontal precision:  | 0.008 m                                 |
| Vertical precision:    | 0.017 m                                 |
| RMS:                   | 0.021 m                                 |
| Maximum PDOP:          | 2.798                                   |
| Ephemeris used:        | Broadcast                               |
| Antenna model:         | NGS Absolute                            |
| Processing start time: | 12/22/2015 8:02:03 AM (Local: UTC+8hr)  |
| Processing stop time:  | 12/22/2015 12:33:59 PM (Local: UTC+8hr) |
| Processing duration:   | 04:31:56                                |
| Processing interval:   | 1 second                                |

#### Vector Components (Mark to Mark)

| From:      | BTG-A         |                     |                   |             |    |                   |
|------------|---------------|---------------------|-------------------|-------------|----|-------------------|
|            | Grid          |                     | Local             |             | G  | ilobal            |
| Easting    | 297103.192 m  | Latitude            | N13°57'27.65020"  | Latitude    |    | N13°57'22.39320"  |
| Northing   | 1543753.102 m | Longitude           | E121°07'18.59698" | Longitude   |    | E121°07'23.54499" |
| Elevation  | 374.473 m     | Height              | 373.850 m         | Height      |    | 419.492 m         |
| To:        | TGT-1         |                     |                   |             |    |                   |
|            | Grid          |                     | Local             |             | G  | ilobal            |
| Easting    | 279835.803 m  | Latitude            | N14°07'00.06415"  | Latitude    |    | N14°06'54.75674"  |
| Northing   | 1561490.784 m | Longitude           | E120°57'38.31809" | Longitude   |    | E120°57'43.25314" |
| Elevation  | 614.013 m     | Height              | 613.234 m         | Height      |    | 658.040 m         |
| Vector     |               |                     |                   |             |    |                   |
| ∆Easting   | -17267.39     | 0 m NS Fwd Azim     | uth               | 315°18'50"  | ΔX | 16999.982 m       |
| ∆Northing  | 17737.68      | 2 m Ellipsoid Dist. | 1                 | 24750.750 m | ΔΥ | 5522.228 m        |
| ∆Elevation | 239.54        | 0 m ∆Height         |                   | 239.384 m   | ΔZ | 17124.706 m       |

# Annex 4. The LIDAR Survey Team Composition

| Data Acquisition<br>Component<br>Sub-team | Designation                                    | Name                           | Agency/Affiliation            |
|-------------------------------------------|------------------------------------------------|--------------------------------|-------------------------------|
| PHIL-LIDAR 1                              | Program Leader                                 | ENRICO C. PARINGIT, D.ENG      | UP-TCAGP                      |
| Data Acquisition                          | Data Component                                 | ENGR. CZAR JAKIRI S. SARMIENTO | UP TCAGP                      |
| Component Leader                          | Project Leader –I                              | ENGR. LOUIE P. BALICANTA       | UP TCAGP                      |
| Survey Supervisor                         | Chief Science<br>Research Specialist<br>(CSRS) | ENGR. CHRISTOPHER CRUZ         | UP TCAGP                      |
|                                           | Supervising Sci-                               | LOVELY GRACIA ACUNA            | UP TCAGP                      |
|                                           | ence Research<br>Specialist (SSRS)             | ENGR. LOVELYN ASUNCION         | UP TCAGP                      |
|                                           | F                                              | FIELD TEAM                     |                               |
|                                           | Senior Science                                 | JASMINE ALVIAR                 | UP TCAGP                      |
|                                           | (SSRS)                                         | JULIE PEARL MARS               | UP TCAGP                      |
|                                           | Research Associate<br>(RA)                     | JONALYN GONZALES               | UP TCAGP                      |
|                                           |                                                | ENGR. IRO NIEL ROXAS           |                               |
| LiDAR Operation                           |                                                | ENGR. LARAH KRISELLE PARAGAS   | UP TCAGP                      |
|                                           |                                                | KRISTINE JOY ANDAYA            | UP TCAGP                      |
|                                           | RA                                             | FAITH JOY SABLE                | UP TCAGP                      |
|                                           |                                                | ENGR. CHRISTOPHER JOAQUIN      | UP TCAGP                      |
|                                           |                                                | MA. VERLINA TONGA              | UP TCAGP                      |
|                                           |                                                | ENGR. KENNETH QUISADO          | UP TCAGP                      |
| Ground Survey,                            |                                                | ENGR. RENAN PUNTO              | UP TCAGP                      |
| Data Download and<br>Transfer             | Research Associate                             | ENGR. DAN ALDOVINO             | UP TCAGP                      |
|                                           |                                                | TSG. JULIUS RENDON             | PHILIPPINE AIR<br>FORCE (PAF) |
|                                           | Airborne Security                              | TSG. BENJIE CARBOLLEDO         | PHILIPPINE AIR<br>FORCE (PAF) |
| LiDAR Operation                           |                                                | SSG. RAYMUND DOMINE            | PHILIPPINE AIR<br>FORCE (PAF) |
|                                           |                                                | CAPT. MARK TANGONAN            | ASIAN AEROSPACE<br>CORP (AAC) |
|                                           | Pilot                                          | CAPT. RAUL CZ SAMAR II         | AAC                           |
|                                           |                                                | CAPT. FRANCO PEPITO            | AAC                           |

Table A-4.1. The LIDAR Survey Team Composition

# Annex 5. Data Transfer Sheet for Pansipit Floodplain



Figure A-5.1. Transfer Sheet for Pansipit Floodplain - A



Figure A-5.2. Transfer Sheet for Pansipit Floodplain - B



Figure A-5.3. Transfer Sheet for Pansipit Floodplain - C

|                      | SI FLIGHT PLAN | xi) (OPLOG) Actual KML LC  | 1KB 100 na ZVI<br>DA1 | 1KB 11 na 2VI    | 1KB 5/3 na 2/1   | 1KB NA na ZM     | 1KB 4/2 na Z/I<br>DA | 1KB 4/20 na 2/1  | 1KB 23 na 23     | 1KB 10 na 2M     |
|----------------------|----------------|----------------------------|-----------------------|------------------|------------------|------------------|----------------------|------------------|------------------|------------------|
|                      | BASE STATION   | BASE Base<br>STATION(S) (J | 11.1 1KB              | 27.2 <b>0</b> KB | 27.2 <b>0</b> KB | 18.5 <b>O</b> KB | 20.9 <b>0</b> KB     | 20.9 <b>0</b> KB | 12.9 <b>0</b> KB | 12.9 <b>0</b> KB |
|                      |                | E DIGITIZER                | na                    | na               | вп               | па               | na                   | na               | na               | na               |
|                      |                | ILE/CASI RANG<br>LOGS      | 85 7.11               | NA 38.7          | NA 12.8          | NA 24            | NA 24.4              | NA 17.2          | NA 16.3          | NA 6.95          |
| SFER SHEET           |                | RAW MIS<br>IMAGES/CASI     | 11.1                  | NA               | NA               | NA               | NA                   | NA               | ΝΑ               | NA               |
| DATA TRAN<br>Batangi | -              | B) POS                     | 107                   | 157              | 131              | 209              | 185                  | 172              | 219              | 124              |
|                      | -              | ath) LOGS(M                | 3.8                   | 669              | 401              | 0                | 786                  | 0                | 1.54             | 440              |
|                      | Patient and    | t LAS KML (sw              | 656                   | A 322            | A 60             | A 226            | A 99                 | A 214            | A 201            | A 12.8           |
|                      |                | SENSOR Outpu               | agasus 75             | EMINI            | EMINI            | EMINI            | EMINI N              | EMINI N          | EMINI            | EMINI P          |
|                      |                | MISSION NAME               | 1BLK18SB355A pt       | 2BLK18SK006A G   | 2BLK18SDG006B G  | 2BLK18SM007A G   | 2BLK18SF008A G       | 2BLK18SGS008B G  | 2BLK18SV009A G   | 2BLK18SVV009B    |
|                      |                | FLIGHT NO.                 | 3000P                 | 3677G            | 3679G            | 3681G            | 3685G                | 3687G            | 3689G            | 3691G            |
|                      |                | DATE                       | 21-Dec 1              | 6-Jan (          | 6-Jan 7          | 7-Jan %          | 8-Jan 9              | 8-Jan 10         | 9-Jan #          | 9-Jan            |

11-05

Figure A-5.4. Transfer Sheet for Pansipit Floodplain - D

| OPERATOR FLIGHT PLAN SERVER | fie LOGS Actual KML LOCATION |                   | 1KB 1/42 na Z'IDACIRAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1KB 1/42 na ZIDACRAW<br>1KB 88 na ZIDACRAW | 1KB 1/42 na ZIDACIRAW   1KB 88 na ZUDACIRAW   1KB 88 na ZUDACIRAW   1KB 1 na ZUDACIRAW | 14B 142 na ZIDACIRAW   1KB 88 na ZUDACIRAW   1KB 88 na ZUACIRAW   1KB 8 na ZUACIRAW   1KB 1 na ZUACIRAW   1KB 1 na ZUACIRAW   1KB 1 na ZUACIRAW   1KB 61.6 na ZUACIRAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------|------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | (.txt) (OPLOG) Actu          | 1KB 1/42          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1KB 88                                     | 1KB 88<br>1KB 1                                                                        | 1KB 88<br>1KB 1<br>1KB 61 <i>k</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date                        | SIAIION(S) (.tx              | 18.4 1KB          | - and | 19.4 1KB                                   | 19.4 1KB<br>7.67 1KB                                                                   | 19.4 1KB<br>7.67 1KB<br>6.43 1KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| s                           |                              | 9.59 na           | 11.9 na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 18.2 na                                                                                | 18.2 na<br>13.4 na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | LOGS                         | па                | na na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | na                                         |                                                                                        | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             |                              | 171               | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            | 212                                                                                    | 212<br>196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TOGS(MB                     | vath)                        | 6.66              | 7.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | 9.59                                                                                   | 9.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TAS KMI (sur                | t LAS KML (swa               | 2 756             | 7 757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 1 2.06                                                                                 | 1 2.06<br>9 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ENSOR                       | Output                       | asus 97.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1 Sust                                   | asus 1.1<br>asus 1.8                                                                   | 1.1. 150 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1 |
| IISSION NAME SE             | - docootot V Idi             | IBLK18JS229B Pega | - 1000-10171 IGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IBLK18AsS230A Pega                         | IBLK18AsS230A Pega<br>IBLK18OS246A Pega                                                | IBLK18AsS230A Реда   IBLK180S246A Реда   IBLK180S247A Реда                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ž                           | 3207D                        | JINCC             | 33000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3309P                                      | 3309P<br>3373P                                                                         | 3309P<br>3373P<br>3377P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LIGHT NO.                   | -                            | +                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                          | ++                                                                                     | +++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Figure A-5.5. Transfer Sheet for Pansipit Floodplain - E

NC-SI

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

# Annex 6. Flight logs for the flight missions

#### 1. Flight log for Mission1139P



Figure A-6.1. Flight log for Mission 1139P



Figure A-6.2. Flight log for Mission 3373P

#### 3. Flight Log for Mission3671G



Figure A-6.3. Flight Log for Mission 3671G



Figure A-6.4. Flight log for Mission 3673G

#### 5. Flight log for Mission3677P



Figure A-6.5. Flight log for Mission 3677P

2~2

•



Figure A-6.6. Flight log for Mission 3679G

# 7. Flight Log for Mission3685G

· · · ·



Figure A-6.7. Flight Log for Mission 3685G

#### 8. Flight Log for Mission3687G



Figure A-6.8. Flight Log for Mission 3687G

## 9. Flight Log for Mission3691G



Figure A-6.9. Flight Log for Mission 3691G



Figure A-6.10. Flight Log for Mission 3693G

# Annex 7. Flight status reports

#### CALABARZON

# (FEBRUARY 22, 2014; SEPTEMBER 3, 2016; DECEMBER 29, 2015 – JANUARY 8, 2016)

Table A-7.1. Flight Status Report

| FLIGHT<br>NO | AREA                    | MISSION       | OPERATOR   | DATE<br>FLOWN   | E REMARKS                                                                                                 |  |
|--------------|-------------------------|---------------|------------|-----------------|-----------------------------------------------------------------------------------------------------------|--|
| 1139P        | BLK 18X &<br>(ABCY)s    | 1BLK18X53A    | J ALVIAR   | Feb 22,<br>2014 | Surveyed gaps in<br>southern Cavite, voids<br>in BLK 18Z and covered<br>BLK 18X at 1200m flying<br>height |  |
|              |                         |               |            |                 | Line cut due to air traffic                                                                               |  |
| 3373P        | BLK 18OS                | 1BLK18OS246A  | G SINADJAN | SEPT 3,<br>2016 | Experienced POSAV error                                                                                   |  |
|              |                         |               |            |                 | Without Digitizer and<br>Camera                                                                           |  |
| 3671G        | BLK 18SBC<br>CUENCA     | 2BLK18BC363B  | J GONZALES | DEC 29,<br>2015 | SURVEYED BLK 18SBC                                                                                        |  |
|              | BLK 18SG, 18SB          |               |            | DEC 20          |                                                                                                           |  |
| 3673G        | LAUREL, LIPA,<br>CUENCA | 2BLK18S363A   | R PUNTO    | DEC 30,<br>2015 | GAPS IN BLK 18SB                                                                                          |  |
|              | BLK 18SK, SD            |               |            |                 |                                                                                                           |  |
| 3677G        | TALISAY                 | 2BLK18SK006A  | JGONZALES  | 2016            | SURVEYED BLK 18SKD                                                                                        |  |
|              | TAAL                    |               |            |                 |                                                                                                           |  |
|              | BLK 18G, SD             |               |            |                 |                                                                                                           |  |
| 3679G        | CALACA                  | 2BLK18SDG006B | P.MARS     | 2016            | SURVEYED BLK 18SGJ                                                                                        |  |
|              | BALAYAN                 |               |            |                 |                                                                                                           |  |
| 3681G        | BLK 18SM                | 2BLK18SM007A  | RPUNO      | JAN 7,<br>2016  | SURVEYED BLK 18SM                                                                                         |  |
|              | BLK 185G SE             |               |            |                 |                                                                                                           |  |
| 3685G        | CALAMBA                 | 2BLK18SF008A  | J GONZALES | JAN 8,<br>2016  | SURVEYED BLK 18SF,                                                                                        |  |
|              | CALACA                  |               |            |                 | 185G                                                                                                      |  |
| 3687G        | BLK18SG, SM             | 2BLK18SGS008B | R PUNTO    | JAN 8,<br>2016  | SURVEYED BLK 18SG<br>GAPS IN BLK 18SM                                                                     |  |
| 3691G        | GAPS IN<br>BLK18KLB     | 2BLK18SVV009B | PMARS      | JAN 9,<br>2016  | SURVEYED IN GAPS IN<br>BLK18SKL                                                                           |  |
| 3693G        | BLK18SC                 | 2BLK18SCB016A | P MARS     | JAN 16,<br>2016 | SURVEYED IN BLK18SC                                                                                       |  |

#### SWATH PER FLIGHT MISSION

| 1139P             |
|-------------------|
| BLK 18X & (ABCY)s |
| 1BLK18S53A        |
|                   |

LAS



Figure A-7.1. Swath for Flight No. 1139P

| 3373P        |
|--------------|
| BLK 18       |
| 1BLK18OS246A |
| PRF: 200kHz, |
|              |



Scan Angle: 25deg,

Overlap: 30%

Figure A-7.2. Swath for Flight No. 3373P

Flight No. : Area: Mission Name: Parameters: 3671G BLK 18SBC 1BLK18SBC363B PRF: 100kHz,

Scan Angle: 20deg,

Overlap: 30%



Figure A-7.3. Swath for Flight No. 3671G

| Flight No. :  | 36 |
|---------------|----|
| Area:         | BL |
| Mission Name: | 1B |
| Parameters:   | PR |
|               |    |

3673G BLK 18SG, 18SBS 1BLK18S364A PRF: 100 kHz,

Scan Angle: 20deg,

Overlap: 30%



Figure A-7.4. Swath for Flight No. 3673G

| Flight No. :  | 3677G         |                    |              |
|---------------|---------------|--------------------|--------------|
| Area:         | BLK 18SK, SD  |                    |              |
| Mission Name: | 2BLK18SK006A  |                    |              |
| Parameters:   | PRF: 166 kHz, | Scan Angle: 25deg, | Overlap: 30% |



Figure A-7.5. Swath for Flight No. 3677G

Flight No. : Area: Mission Name: Parameters: 3679G BLK 18G, SD 2BLK18SDG006B PRF: 167 kHz,

Scan Angle: 20deg,

Overlap: 40%



Figure A-7. 6. Swath for Flight No. 3679G

# Flight No. :36Area:BLMission Name:2BParameters:PR

3685G BLK 18SG, SF 2BLK18SF008A PRF: 100 kHz,

Scan Angle: 20deg,

Overlap: 30%

## LAS/SWATH



Figure A-7.7. Swath for Flight No. 3685G

Flight No. : Area: Mission Name: Parameters: 3687G BLK18SG, SM 2BLK18SGS008B PRF: 100 kHz,

Scan Angle: 20deg,

Overlap: 40%



Figure A-7.8. Swath for Flight No. 3687G

# Flight No. :3691GArea:BLK 18SG, SFMission Name:2BLK18SVV009BParameters:PRF: 125 kHz,

Scan Angle: 20deg,

Overlap: 30%



Figure A-7.9. Swath for Flight No. 3691G

Flight No. : Area: Mission Name: Parameters: 3693G BLK 18SC 2BLK18SCB016a PRF: 125 kHz,

Scan Angle: 20deg,

Overlap: 30%



Figure A-7.10. Swath for Flight No. 3693G

| Flight Area                                   | CALABARZON                                                     |  |  |
|-----------------------------------------------|----------------------------------------------------------------|--|--|
| Mission Name                                  | Bik180_supplement                                              |  |  |
| Inclusive Flights                             | 3373P                                                          |  |  |
| Range data size                               | 18.2 GB                                                        |  |  |
| Base data size                                | 7.67 MB                                                        |  |  |
| POS                                           | 212 MB                                                         |  |  |
| Image                                         | N/A                                                            |  |  |
| Transfer date                                 | 09/11/2015                                                     |  |  |
|                                               |                                                                |  |  |
| Solution Status                               |                                                                |  |  |
| Number of Satellites (>6)                     | Yes                                                            |  |  |
| PDOP (<3)                                     |                                                                |  |  |
| Baseline Length (<30km)                       | No                                                             |  |  |
| Processing Mode (<-1)                         | Ves                                                            |  |  |
|                                               | 103                                                            |  |  |
|                                               |                                                                |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                |  |  |
| RMSE for North Position (<4.0 cm)             | 1.1                                                            |  |  |
| RMSE for East Position (<4.0 cm)              | 1.8                                                            |  |  |
| RMSE for Down Position (<8.0 cm)              | 3.2                                                            |  |  |
|                                               |                                                                |  |  |
| Boresight correction stdev (<0.001deg)        | 0.000181                                                       |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.001510                                                       |  |  |
| GPS position stdev (<0.01m)                   | 0.0089                                                         |  |  |
|                                               |                                                                |  |  |
| Minimum % overlap (>25)                       | 48.55%                                                         |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 3.11                                                           |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                                            |  |  |
|                                               |                                                                |  |  |
| Number of 1km x 1km blocks                    | 215                                                            |  |  |
| Maximum Height                                | 449.37 m                                                       |  |  |
| Minimum Height                                | 45.80 m                                                        |  |  |
|                                               |                                                                |  |  |
| Classification (# of points)                  |                                                                |  |  |
| Ground                                        | 102.457.419                                                    |  |  |
| Low vegetation                                | 872 607 733                                                    |  |  |
| Medium vegetation                             | 202,007,735                                                    |  |  |
| High vegetation                               | 403 604 019                                                    |  |  |
|                                               | 25 650 619                                                     |  |  |
|                                               | 810,850,55                                                     |  |  |
|                                               |                                                                |  |  |
| Orthophoto                                    | No                                                             |  |  |
| Processed by                                  | Engr. AnalynNaldo, Engr. Mark Joshua Salvacion,<br>JovyNarisma |  |  |

# **ANNEX 8. Mission Summary Report**



Figure 1.1.1. Solution Status



Figure 1.1.2. Smoothed Performance Metrics Parameters



Figure 1.1.3. Best Estimated Trajectory



Figure 1.1.4. Coverage of LiDAR data



Figure 1.1.5. Image of data overlap



Figure 1.1.6. Density map of merged LiDAR data



Figure 1.1.7. Elevation difference between flight lines

| Flight Area                                   | Batangas                                                                        |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Mission Name                                  | Blk18_SL                                                                        |  |  |
| Inclusive Flights                             | 3673G                                                                           |  |  |
| Range data size                               | 16.6 GB                                                                         |  |  |
| Base data size                                | 11.4 MB                                                                         |  |  |
| POS                                           | 195 MB                                                                          |  |  |
| Image                                         | NA                                                                              |  |  |
| Transfer date                                 | January 6, 2016                                                                 |  |  |
|                                               |                                                                                 |  |  |
| Solution Status                               |                                                                                 |  |  |
| Number of Satellites (>6)                     | Yes                                                                             |  |  |
| PDOP (<3)                                     | Yes                                                                             |  |  |
| Baseline Length (<30km)                       | Yes                                                                             |  |  |
| Processing Mode (<=1)                         | Yes                                                                             |  |  |
|                                               |                                                                                 |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                                 |  |  |
| RMSE for North Position (<4.0 cm)             | 1.324                                                                           |  |  |
| RMSE for East Position (<4.0 cm)              | 1.672                                                                           |  |  |
| RMSE for Down Position (<8.0 cm)              | 4.09                                                                            |  |  |
|                                               |                                                                                 |  |  |
| Boresight correction stdev (<0.001deg)        | 0.000293                                                                        |  |  |
| INU attitude correction stdev (<0.001deg)     | 0.001442                                                                        |  |  |
| GPS position stdev (<0.01m)                   | 0.0090                                                                          |  |  |
| Minimum % overlan (>25)                       | 48 66 %                                                                         |  |  |
| Ave point cloud density per sq $m$ (>2.0)     | 40.00 /0                                                                        |  |  |
| Elevation difference between string (<0.20 m) | 4.07<br>Voc                                                                     |  |  |
|                                               | 185                                                                             |  |  |
| Number of 1km x 1km blocks                    | 139                                                                             |  |  |
| Maximum Height                                | 737 42 m                                                                        |  |  |
|                                               | 19.00 m                                                                         |  |  |
|                                               | 48.00 11                                                                        |  |  |
| Classification (# of points)                  |                                                                                 |  |  |
| Ground                                        | 38 856 112                                                                      |  |  |
|                                               | 13 300 708                                                                      |  |  |
| Medium vegetation                             | £5,550,708                                                                      |  |  |
|                                               |                                                                                 |  |  |
|                                               | 1/0,991,914                                                                     |  |  |
| Building                                      | 2,449,810                                                                       |  |  |
| Outbrack sta                                  | N -                                                                             |  |  |
| Urtnophoto                                    | INO                                                                             |  |  |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Edgardo Gubatanga, Jr.,<br>Kathryn Claudine Zarate |  |  |


Figure 1.2.1. Solution Status



Figure 1.2.2. Smoothed Performance Metric Parameters



Figure 1.2.3. Best Estimate Trajectory



Figure 1.2.4. Coverage of LiDAR data



Figure 1.2.5. Image of data overlap



Figure 1.2.6. Density Map of merged LiDAR data



Figure 1.2.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas                                                                                  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------|
| Mission Name                                  | Blk18_SL_additional                                                                       |
| Inclusive Flights                             | 3691G                                                                                     |
| Range data size                               | 6.93 GB                                                                                   |
| Base data size                                | 12.9 MB                                                                                   |
| POS                                           | 124 MB                                                                                    |
| Image                                         | NA                                                                                        |
| Transfer date                                 | January 15, 2016                                                                          |
|                                               |                                                                                           |
| Solution Status                               |                                                                                           |
| Number of Satellites (>6)                     | Yes                                                                                       |
| PDOP (<3)                                     | Yes                                                                                       |
| Baseline Length (<30km)                       | No                                                                                        |
| Processing Mode (<=1)                         | Yes                                                                                       |
|                                               |                                                                                           |
| Smoothed Performance Metrics (in cm)          |                                                                                           |
| RMSE for North Position (<4.0 cm)             | 1.138                                                                                     |
| RMSE for East Position (<4.0 cm)              | 1.344                                                                                     |
| RMSE for Down Position (<8.0 cm)              | 2.192                                                                                     |
|                                               |                                                                                           |
| Boresight correction stdev (<0.001deg)        | 0.004743                                                                                  |
| IMU attitude correction stdev (<0.001deg)     | 0.006674                                                                                  |
| GPS position stdev (<0.01m)                   | 0.0032                                                                                    |
|                                               |                                                                                           |
| Minimum % overlap (>25)                       | 46.12%                                                                                    |
| Ave point cloud density per sq.m. (>2.0)      | 4.36                                                                                      |
| Elevation difference between strips (<0.20 m) | Yes                                                                                       |
|                                               |                                                                                           |
| Number of 1km x 1km blocks                    | 28                                                                                        |
| Maximum Height                                | 253.64 m                                                                                  |
| Minimum Height                                | 49.27 m                                                                                   |
|                                               |                                                                                           |
| Classification (# of points)                  |                                                                                           |
| Ground                                        | 4,592,195                                                                                 |
| Low vegetation                                | 1,798,070                                                                                 |
| Medium vegetation                             | 11,111,123                                                                                |
| High vegetation                               | 27,351,777                                                                                |
| Building                                      | 324,192                                                                                   |
|                                               |                                                                                           |
| Orthophoto                                    | No                                                                                        |
| Processed by                                  | Engr. Sheila-Maye Santillan, Engr. Edgardo<br>Gubatanga, Jr., Engr. Krisha Marie Bautista |



Figure 1.3.1. Smoothed Solution Status



Figure 1.3.2. Smoothed Performance Metric Parameters



Figure 1.3.3. Best Estimate Trajectory



Figure 1.3.4. Coverage of LiDAR data



Figure 1.3.5. Image of data overlap



Figure 1.3.6. Density Map of merged LiDAR data



Figure 1.3.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas                                                           |
|-----------------------------------------------|--------------------------------------------------------------------|
| Mission Name                                  | Blk18_SGa                                                          |
| Inclusive Flights                             | 3687G                                                              |
| Range data size                               | 17.2 GB                                                            |
| Base data size                                | 20.9 MB                                                            |
| POS                                           | 172 MB                                                             |
| Image                                         | NA                                                                 |
| Transfer date                                 | January 15, 2016                                                   |
|                                               |                                                                    |
| Solution Status                               |                                                                    |
| Number of Satellites (>6)                     | Yes                                                                |
| PDOP (<3)                                     | Yes                                                                |
| Baseline Length (<30km)                       | No                                                                 |
| Processing Mode (<=1)                         | Yes                                                                |
|                                               |                                                                    |
| Smoothed Performance Metrics (in cm)          |                                                                    |
| RMSE for North Position (<4.0 cm)             | 1.271                                                              |
| RMSE for East Position (<4.0 cm)              | 1.572                                                              |
| RMSE for Down Position (<8.0 cm)              | 3.414                                                              |
|                                               |                                                                    |
| Boresight correction stdev (<0.001deg)        | 0.000888                                                           |
| IMU attitude correction stdev (<0.001deg)     | 0.002194                                                           |
| GPS position stdev (<0.01m)                   | 0.0097                                                             |
|                                               |                                                                    |
| Minimum % overlap (>25)                       | 35.38%                                                             |
| Ave point cloud density per sq.m. (>2.0)      | 3.8                                                                |
| Elevation difference between strips (<0.20 m) | Yes                                                                |
|                                               |                                                                    |
| Number of 1km x 1km blocks                    | 141                                                                |
| Maximum Height                                | 417.30 m                                                           |
| Minimum Height                                | 81.82 m                                                            |
|                                               |                                                                    |
| Classification (# of points)                  |                                                                    |
| Ground                                        | 25,787,288                                                         |
| Low vegetation                                | 60,651,992                                                         |
| Medium vegetation                             | 355,371,443                                                        |
| High vegetation                               | 273,161,795                                                        |
| Building                                      | 32,404,871                                                         |
|                                               |                                                                    |
| Orthophoto                                    | No                                                                 |
| Processed by                                  | Engr. Regis Guhiting, Engr. Edgardo Gubatanga, Jr.,<br>JovyNarisma |



Figure 1.4.1. Solution Status



Figure 1.4.2. Smoothed Performance Metric Parameters



Figure 1.4.3. Best Estimate Trajectory



Figure 1.4.4. Coverage of LiDAR data



Figure 1.4.5. Image of data overlap



Figure 1.4.6. Density Map of merged LiDAR data



Figure 1.4.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas                                                                           |
|-----------------------------------------------|------------------------------------------------------------------------------------|
| Mission Name                                  | Blk18_SGb                                                                          |
| Inclusive Flights                             | 3685G                                                                              |
| Range data size                               | 24.4 GB                                                                            |
| Base data size                                | 20.9 MB                                                                            |
| POS                                           | 185 MB                                                                             |
| Image                                         | NA                                                                                 |
| Transfer date                                 | January 15, 2016                                                                   |
|                                               |                                                                                    |
| Solution Status                               |                                                                                    |
| Number of Satellites (>6)                     | Yes                                                                                |
| PDOP (<3)                                     | Yes                                                                                |
| Baseline Length (<30km)                       | Yes                                                                                |
| Processing Mode (<=1)                         | No                                                                                 |
|                                               |                                                                                    |
| Smoothed Performance Metrics (in cm)          |                                                                                    |
| RMSE for North Position (<4.0 cm)             | 0.9832                                                                             |
| RMSE for East Position (<4.0 cm)              | 0.7895                                                                             |
| RMSE for Down Position (<8.0 cm)              | 1.421                                                                              |
|                                               |                                                                                    |
| Boresight correction stdev (<0.001deg)        | NA                                                                                 |
| IMU attitude correction stdev (<0.001deg)     | NA                                                                                 |
| GPS position stdev (<0.01m)                   | NA                                                                                 |
|                                               |                                                                                    |
| Minimum % overlap (>25)                       | 13.26                                                                              |
| Ave point cloud density per sq.m. (>2.0)      | 3.69                                                                               |
| Elevation difference between strips (<0.20 m) | Yes                                                                                |
|                                               |                                                                                    |
| Number of 1km x 1km blocks                    | 135                                                                                |
| Maximum Height                                | 500.91 m                                                                           |
| Minimum Height                                | 65.60 m                                                                            |
|                                               |                                                                                    |
| Classification (# of points)                  |                                                                                    |
| Ground                                        | 33,097,103                                                                         |
| Low vegetation                                | 25,611,785                                                                         |
| Medium vegetation                             | 157,156,268                                                                        |
| High vegetation                               | 126,487,134                                                                        |
| Building                                      | 327,955                                                                            |
|                                               |                                                                                    |
| Orthophoto                                    | No                                                                                 |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Merven Matthew<br>Natino, Engr. Krisha Marie Bautista |



Figure 1.5.1. Solution Status



Figure 1.5.2. Smoothed Performance Metric Parameters



Figure 1.5.3. Best Estimate Trajectory



Figure 1.5.4. Coverage of LiDAR data



Figure 1.5.5. Image of data overlap



Figure 1.5.6. Density Map of merged LiDAR data



Figure 1.5.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas                                                                        |
|-----------------------------------------------|---------------------------------------------------------------------------------|
| Mission Name                                  | Blk18_SG_additional                                                             |
| Inclusive Flights                             | 3679G                                                                           |
| Range data size                               | 12.8 GB                                                                         |
| Base data size                                | 27.2 MB                                                                         |
| POS                                           | 131 MB                                                                          |
| Image                                         | NA                                                                              |
| Transfer date                                 | January 15, 2016                                                                |
|                                               |                                                                                 |
| Solution Status                               |                                                                                 |
| Number of Satellites (>6)                     | Yes                                                                             |
| PDOP (<3)                                     | Yes                                                                             |
| Baseline Length (<30km)                       | No                                                                              |
| Processing Mode (<=1)                         | No                                                                              |
|                                               |                                                                                 |
| Smoothed Performance Metrics (in cm)          |                                                                                 |
| RMSE for North Position (<4.0 cm)             | 1.40                                                                            |
| RMSE for East Position (<4.0 cm)              | 2.115                                                                           |
| RMSE for Down Position (<8.0 cm)              | 5.33                                                                            |
|                                               |                                                                                 |
| Boresight correction stdev (<0.001deg)        | 0.005160                                                                        |
| IMU attitude correction stdev (<0.001deg)     | 0.015986                                                                        |
| GPS position stdev (<0.01m)                   | 0.0156                                                                          |
|                                               |                                                                                 |
| Minimum % overlap (>25)                       | 14.29%                                                                          |
| Ave point cloud density per sq.m. (>2.0)      | 5.98                                                                            |
| Elevation difference between strips (<0.20 m) | Yes                                                                             |
|                                               |                                                                                 |
| Number of 1km x 1km blocks                    | 66                                                                              |
| Maximum Height                                | 481.08 m                                                                        |
| Minimum Height                                | 66.84 m                                                                         |
|                                               |                                                                                 |
| Classification (# of points)                  |                                                                                 |
| Ground                                        | 18,665,956                                                                      |
| Low vegetation                                | 15,228,294                                                                      |
| Medium vegetation                             | 63,218,237                                                                      |
| High vegetation                               | 76,995,124                                                                      |
| Building                                      | 805,560                                                                         |
|                                               |                                                                                 |
| Orthophoto                                    | No                                                                              |
| Processed By                                  | Engr. Kenneth Solidum, Engr. Edgardo Gubatanga,<br>Jr., Engr. Melissa Fernandez |



Figure 1.6.1. Solution Status



Figure 1.6.2. Smoothed Performance Metric Parameters



Figure 1.6.3. Best Estimate Trajectory



Figure 1.6.4. Coverage of LiDAR data



Figure 1.6.5. Image of data overlap



Figure 1.6.6. Density Map of merged LiDAR data



Figure 1.6.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas                                                                   |
|-----------------------------------------------|----------------------------------------------------------------------------|
| Mission Name                                  | Blk18_SJ                                                                   |
| Inclusive Flights                             | 3679G                                                                      |
| Range data size                               | 3679G                                                                      |
| Base data size                                | 12.8 GB                                                                    |
| POS                                           | 27.2 MB                                                                    |
| Image                                         | 131 MB                                                                     |
| Transfer date                                 | NA                                                                         |
|                                               | January 15, 2016                                                           |
| Solution Status                               |                                                                            |
| Number of Satellites (>6)                     | Yes                                                                        |
| PDOP (<3)                                     | Yes                                                                        |
| Baseline Length (<30km)                       | No                                                                         |
| Processing Mode (<=1)                         | No                                                                         |
|                                               |                                                                            |
| Smoothed Performance Metrics (in cm)          |                                                                            |
| RMSE for North Position (<4.0 cm)             | 1.40                                                                       |
| RMSE for East Position (<4.0 cm)              | 2.115                                                                      |
| RMSE for Down Position (<8.0 cm)              | 5.33                                                                       |
|                                               |                                                                            |
| Boresight correction stdev (<0.001deg)        | NA                                                                         |
| IMU attitude correction stdev (<0.001deg)     | NA                                                                         |
| GPS position stdev (<0.01m)                   | NA                                                                         |
|                                               |                                                                            |
| Minimum % overlap (>25)                       | 44.00%                                                                     |
| Ave point cloud density per sq.m. (>2.0)      | 5.27                                                                       |
| Elevation difference between strips (<0.20 m) | Yes                                                                        |
|                                               |                                                                            |
| Number of 1km x 1km blocks                    | 42                                                                         |
| Maximum Height                                | 108.92 m                                                                   |
| Minimum Height                                | 41.77 m                                                                    |
|                                               |                                                                            |
| Classification (# of points)                  |                                                                            |
| Ground                                        | 6,481,197                                                                  |
| Low vegetation                                | 4,667,448                                                                  |
| Medium vegetation                             | 90,559,680                                                                 |
| High vegetation                               | 22,658,677                                                                 |
| Building                                      | 105,352                                                                    |
|                                               |                                                                            |
| Orthophoto                                    | No                                                                         |
| Processed By                                  | Engr. Kenneth Solidum, Engr. Edgardo Gubatanga,<br>Jr., Marie Denise Bueno |



Figure 1.7.1. Solution Status



Figure 1.7.2. Smoothed Performance Metric Parameters



Figure 1.7.3. Best Estimate Trajectory



Figure 1.7.4. Coverage of LiDAR data



Figure 1.7.5. Image of data overlap



Figure 1.7.6. Density Map of merged LiDAR data



Figure 1.7.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas                                                                           |
|-----------------------------------------------|------------------------------------------------------------------------------------|
| Mission Name                                  | Blk18_SC                                                                           |
| Inclusive Flights                             | 3671G                                                                              |
| Range data size                               | 7.41 GB                                                                            |
| Base data size                                | 7.42 MB                                                                            |
| POS                                           | 85 MB                                                                              |
| Image                                         | NA                                                                                 |
| Transfer date                                 | January 6, 2016                                                                    |
|                                               |                                                                                    |
| Solution Status                               |                                                                                    |
| Number of Satellites (>6)                     | Yes                                                                                |
| PDOP (<3)                                     | Yes                                                                                |
| Baseline Length (<30km)                       | Yes                                                                                |
| Processing Mode (<=1)                         | Yes                                                                                |
|                                               |                                                                                    |
| Smoothed Performance Metrics (in cm)          |                                                                                    |
| RMSE for North Position (<4.0 cm)             | 0.8015                                                                             |
| RMSE for East Position (<4.0 cm)              | 0.8839                                                                             |
| RMSE for Down Position (<8.0 cm)              | 1.236                                                                              |
|                                               |                                                                                    |
| Boresight correction stdev (<0.001deg)        | 0.001711                                                                           |
| IMU attitude correction stdev (<0.001deg)     | 0.002627                                                                           |
| GPS position stdev (<0.01m)                   | 0.0018                                                                             |
|                                               |                                                                                    |
| Minimum % overlap (>25)                       | 1.04%                                                                              |
| Ave point cloud density per sq.m. (>2.0)      | 3.75                                                                               |
| Elevation difference between strips (<0.20 m) | Yes                                                                                |
|                                               |                                                                                    |
| Number of 1km x 1km blocks                    | 113                                                                                |
| Maximum Height                                | 779.19 m                                                                           |
| Minimum Height                                | 49.56 m                                                                            |
|                                               |                                                                                    |
| Classification (# of points)                  |                                                                                    |
| Ground                                        | 36,956,676                                                                         |
| Low vegetation                                | 15,958,180                                                                         |
| Medium vegetation                             | 46,648,268                                                                         |
| High vegetation                               | 133,227,835                                                                        |
| Building                                      | 5,156,617                                                                          |
|                                               |                                                                                    |
| Orthophoto                                    | No                                                                                 |
| Processed by                                  | Engr. Don Matthew Banatin, Engr.<br>Edgardo Gubatanga, Jr., Engr. Elainne<br>Lopez |



Figure 1.8.1. Solution Status



Figure 1.8.2. Smoothed Performance Metric Parameters



Figure 1.8.3. Best Estimate Trajectory



Figure 1.8.4. Coverage of LiDAR data



Figure 1.8.5. Image of data overlap



Figure 1.8.6. Density Map of merged LiDAR data



Figure 1.8.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas           |
|-----------------------------------------------|--------------------|
| Mission Name                                  | Blk18SC_supplement |
| Inclusive Flights                             | 3693G              |
| Range data size                               | 7.98 GB            |
| Base data size                                | 8.36 MB            |
| POS                                           | 82.9 MB            |
| Image                                         | NA                 |
| Transfer date                                 | January 20, 2016   |
|                                               |                    |
| Solution Status                               |                    |
| Number of Satellites (>6)                     | Yes                |
| PDOP (<3)                                     | Yes                |
| Baseline Length (<30km)                       | Yes                |
| Processing Mode (<=1)                         | No                 |
|                                               |                    |
| Smoothed Performance Metrics (in cm)          |                    |
| RMSE for North Position (<4.0 cm)             | 0.6823             |
| RMSE for East Position (<4.0 cm)              | 0.6974             |
| RMSE for Down Position (<8.0 cm)              | 1.6279             |
|                                               |                    |
| Boresight correction stdev (<0.001deg)        | NA                 |
| IMU attitude correction stdev (<0.001deg)     | NA                 |
| GPS position stdev (<0.01m)                   | NA                 |
|                                               |                    |
| Minimum % overlap (>25)                       | 38.51%             |
| Ave point cloud density per sq.m. (>2.0)      | 4.78               |
| Elevation difference between strips (<0.20 m) | Yes                |
|                                               |                    |
| Number of 1km x 1km blocks                    | 78                 |
| Maximum Height                                | 553.45 m           |
| Minimum Height                                | 48.17 m            |
|                                               |                    |
| Classification (# of points)                  |                    |
| Ground                                        | 9,620,275          |
| Low vegetation                                | 5,386,146          |
| Medium vegetation                             | 79,015,481         |
| High vegetation                               | 95,038,735         |
| Building                                      | 344,062            |
|                                               |                    |
| Orthophoto                                    | No                 |



Figure 1.9.1. Solution Status



Figure 1.9.2. Smoothed Performance Metric Parameters


Figure 1.9.3. Best Estimate Trajectory



Figure 1.9.4. Coverage of LiDAR data



Figure 1.9.5. Image of data overlap



Figure 1.9.6. Density Map of merged LiDAR data



Figure 1.9.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas                                                                |
|-----------------------------------------------|-------------------------------------------------------------------------|
| Mission Name                                  | Blk18_SD                                                                |
| Inclusive Flights                             | 3677G                                                                   |
| Range data size                               | 38.7 GB                                                                 |
| Base data size                                | 27.2 MB                                                                 |
| POS                                           | 157 MB                                                                  |
| Image                                         | NA                                                                      |
| Transfer date                                 | January 15, 2016                                                        |
|                                               |                                                                         |
| Solution Status                               |                                                                         |
| Number of Satellites (>6)                     | Yes                                                                     |
| PDOP (<3)                                     | Yes                                                                     |
| Baseline Length (<30km)                       | Yes                                                                     |
| Processing Mode (<=1)                         | No                                                                      |
|                                               |                                                                         |
| Smoothed Performance Metrics (in cm)          |                                                                         |
| RMSE for North Position (<4.0 cm)             | 1.316                                                                   |
| RMSE for East Position (<4.0 cm)              | 1.534                                                                   |
| RMSE for Down Position (<8.0 cm)              | 3.56                                                                    |
|                                               |                                                                         |
| Boresight correction stdev (<0.001deg)        | NA                                                                      |
| IMU attitude correction stdev (<0.001deg)     | NA                                                                      |
| GPS position stdev (<0.01m)                   | NA                                                                      |
|                                               |                                                                         |
| Minimum % overlap (>25)                       | 29.49%                                                                  |
| Ave point cloud density per sq.m. (>2.0)      | 5.4                                                                     |
| Elevation difference between strips (<0.20 m) | Yes                                                                     |
|                                               |                                                                         |
| Number of 1km x 1km blocks                    | 142                                                                     |
| Maximum Height                                | 357.33 m                                                                |
| Minimum Height                                | 35.93 m                                                                 |
|                                               |                                                                         |
| Classification (# of points)                  |                                                                         |
| Ground                                        | 23,921,261                                                              |
| Low vegetation                                | 5,511,136                                                               |
| Medium vegetation                             | 187,063,336                                                             |
| High vegetation                               | 188,358,347                                                             |
| Building                                      | 861                                                                     |
|                                               |                                                                         |
| Orthophoto                                    | No                                                                      |
| Processed by                                  | Engr. Don Matthew Banatin, Engr. Edgardo<br>Gubatanga, Jr., JovyNarisma |



Figure 1.10.1. Solution Status



Figure 1.10.2. Smoothed Performance Metric Parameters



Figure 1.10.3. Best Estimate Trajectory



Figure 1.10.4. Coverage of LiDAR data



Figure 1.10.5. Image of data overlap



Figure 1.10.6. Density Map of merged LiDAR data



Figure 1.10.7. Elevation Difference Between flight lines

| Flight Area                                   | Batangas                                                                         |
|-----------------------------------------------|----------------------------------------------------------------------------------|
| Mission Name                                  | Blk18_SK_supplement                                                              |
| Inclusive Flights                             | 3691G                                                                            |
| Range data size                               | 6.93 GB                                                                          |
| Base data size                                | 12.9 MB                                                                          |
| POS                                           | 124 MB                                                                           |
| Image                                         | NA                                                                               |
| Transfer date                                 | January 15, 2016                                                                 |
|                                               |                                                                                  |
| Solution Status                               |                                                                                  |
| Number of Satellites (>6)                     | Yes                                                                              |
| PDOP (<3)                                     | Yes                                                                              |
| Baseline Length (<30km)                       | Yes                                                                              |
| Processing Mode (<=1)                         | No                                                                               |
|                                               |                                                                                  |
| Smoothed Performance Metrics (in cm)          |                                                                                  |
| RMSE for North Position (<4.0 cm)             | 1.037                                                                            |
| RMSE for East Position (<4.0 cm)              | 1.268                                                                            |
| RMSE for Down Position (<8.0 cm)              | 3.76                                                                             |
|                                               |                                                                                  |
| Boresight correction stdev (<0.001deg)        | 0.004743                                                                         |
| IMU attitude correction stdev (<0.001deg)     | 0.006199                                                                         |
| GPS position stdev (<0.01m)                   | 0.0025                                                                           |
|                                               |                                                                                  |
| Minimum % overlap (>25)                       | 26.74%                                                                           |
| Ave point cloud density per sq.m. (>2.0)      | 5.65                                                                             |
| Elevation difference between strips (<0.20 m) | Yes                                                                              |
|                                               |                                                                                  |
| Number of 1km x 1km blocks                    | 35                                                                               |
| Maximum Height                                | 734.44 m                                                                         |
| Minimum Height                                | 49.14 m                                                                          |
|                                               |                                                                                  |
| Classification (# of points)                  |                                                                                  |
| Ground                                        | 7,168,271                                                                        |
| Low vegetation                                | 2,764,694                                                                        |
| Medium vegetation                             | 13,456,626                                                                       |
| High vegetation                               | 54,931,225                                                                       |
| Building                                      | 878,864                                                                          |
|                                               |                                                                                  |
| Orthophoto                                    | No                                                                               |
| Processed by                                  | Engr. Sheila-Maye Santillan, Engr. Edgardo<br>Gubatanga, Jr., Alex John Escobido |



Figure 1.11.1. Solution Status



Figure 1.11.2. Smoothed Performance Metric Parameters



Figure 1.11.3. Best Estimate Trajectory



Figure 1.11.4. Coverage of LiDAR data



Figure 1.11.5. Image of data overlap



Figure 1.11.6. Density Map of merged LiDAR data



Figure 1.11.7. Elevation Difference Between flight lines

| Flight Area                                   | BATANGAS                                                            |
|-----------------------------------------------|---------------------------------------------------------------------|
| Mission Name                                  | Blk18X                                                              |
| Inclusive Flights                             | 1137P                                                               |
| Range data size                               | 21.0 GB                                                             |
| Base data size                                | 6.71 MB                                                             |
| POS                                           | 238 MB                                                              |
| Image                                         | 29.3 GB                                                             |
| Transfer date                                 | 04/23/2014                                                          |
|                                               |                                                                     |
| Solution Status                               |                                                                     |
| Number of Satellites (>6)                     | Yes                                                                 |
| PDOP (<3)                                     | No                                                                  |
| Baseline Length (<30km)                       | No                                                                  |
| Processing Mode (<=1)                         | Yes                                                                 |
|                                               |                                                                     |
| Smoothed Performance Metrics (in cm)          |                                                                     |
| RMSE for North Position (<4.0 cm)             | 1.0                                                                 |
| RMSE for East Position (<4.0 cm)              | 1.3                                                                 |
| RMSE for Down Position (<8.0 cm)              | 5.0                                                                 |
|                                               |                                                                     |
| Boresight correction stdev (<0.001deg)        | 0.000588                                                            |
| IMU attitude correction stdev (<0.001deg)     | 0.003259                                                            |
| GPS position stdev (<0.01m)                   | 0.0030                                                              |
|                                               |                                                                     |
| Minimum % overlap (>25)                       | 30.34%                                                              |
| Ave point cloud density per sq.m. (>2.0)      | 2.10                                                                |
| Elevation difference between strips (<0.20 m) | Yes                                                                 |
|                                               |                                                                     |
| Number of 1km x 1km blocks                    | 248                                                                 |
| Maximum Height                                |                                                                     |
| Minimum Height                                | 30.39 m                                                             |
|                                               | 338.28 m                                                            |
| Classification (# of points)                  |                                                                     |
| Ground                                        | 152,060,482                                                         |
| Low vegetation                                | 125,728,402                                                         |
| Medium vegetation                             | 130,120,793                                                         |
| High vegetation                               | 115,395,158                                                         |
| Building                                      | 17,658,970                                                          |
|                                               |                                                                     |
| Orthophoto                                    | Yes                                                                 |
| Processed by                                  | Engr. Irish Cortez, Engr. Melanie Hingpit, Engr.<br>Gladys Mae Apat |



Figure 1.12.1. Solution Status



Figure 1.12.2. Smoothed Performance Metrics Parameters



Figure 1.12.3. Best Estimated Trajectory



Figure 1.12.4. Coverage of LiDAR data



Figure 1.12.5. Image of data overlap



Figure 1.12.6. Density map of merged LiDAR data



Figure 1.12.7. Elevation difference between flight lines

Annex 9. Pansipit Model Basin Parameters

Table A-8.1. Pansipit Model Basin Parameters

|                          | Ratio to<br>Peak                 | 0.5           | 0.22409       | 0.32504       | 0.32013       | 0.4706        | 0.47541       | 0.4694        | 0.46825       | 0.41507       | 0.5           | 0.57647       | 0.43406       | 0.33092       | 0.45762       | 0.5           |
|--------------------------|----------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| MO                       | Threshold Type                   | Ratio to Peak |
| ecession Basef           | Recession<br>Constant            | 0.99934       | 0.6681        | 0.66667       | 0.20413       | 0.82518       | 0.8232        | 0.94755       | 0.98          | 0.11833       | 0.9916        | 0.17009       | 0.97498       | 0.93044       | 0.44177       | 0.99865       |
| æ                        | Initial<br>Discharge<br>(M3/S)   | 0.2054        | 0.049315      | 0.12748       | 0.006493      | 0.15087       | 0.17633       | 0.21515       | 0.15057       | 0.04897       | 0.18753       | 0.089398      | 0.041552      | 0.15397       | 0.12067       | 0.1971        |
|                          | Initial Type                     | Discharge     |
| drograph<br>rm           | Storage<br>Coefficient<br>(HR)   | 1.2391        | 3.2181        | 3.9983        | 4.0371        | 3.8827        | 2.6418        | 2.441         | 2.3936        | 2.0608        | 1.9258        | 2.7133        | 4.6352        | 1.9555        | 2.8347        | 2.6252        |
| Clark Unit Hy<br>Transfo | Time of<br>Concentration<br>(HR) | 0.51888       | 4.4295        | 3.6092        | 6.3118        | 1.7121        | 5.7169        | 5.0951        | 4.9978        | 0.56889       | 5.8945        | 1.0809        | 1.2712        | 1.2177        | 6.0115        | 5.5617        |
| r Loss                   | Impervious<br>(%)                | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             |
| urve Numbei              | Curve<br>Number                  | 33.5          | 42.1055       | 37.558        | 60.246        | 32.0245       | 38.188        | 39.1945       | 39.02         | 39.054        | 39.0025       | 36.729        | 35.0055       | 40.9655       | 31.4525       | 36.861        |
| SCS C                    | Initial<br>Abstraction<br>(mm)   | 1.8519        | 1.0636        | 2.7621        | 3.7421        | 4.7753        | 2.6189        | 1.525         | 1.5565        | 2.3362        | 1.5597        | 3.0127        | 5.4661        | 1.2509        | 4.9927        | 4.4364        |
|                          | Basin<br>Number                  | W1000         | W1010         | W1020         | W520          | W530          | W540          | W550          | W560          | W570          | W580          | W590          | W600          | W610          | W620          | W630          |

| W640 | 2.373   | 34.9895 | 0 | 5.8637  | 1.8384  | Discharge | 0.16089  | 0.70091 | Ratio to Peak | 0.48075 |
|------|---------|---------|---|---------|---------|-----------|----------|---------|---------------|---------|
| W650 | 2.1482  | 31.829  | 0 | 5.9261  | 1.6877  | Discharge | 0.39244  | 0.99863 | Ratio to Peak | 0.5     |
| W660 | 3.2449  | 36.2455 | 0 | 2.1369  | 3.6671  | Discharge | 0.079847 | 1       | Ratio to Peak | 0.44292 |
| W670 | 0.77159 | 43.8795 | 0 | 0.49326 | 0.2574  | Discharge | 0.091743 | 0.67827 | Ratio to Peak | 0.5     |
| W680 | 6.2782  | 33.235  | 0 | 4.9011  | 2.3114  | Discharge | 0.10202  | 0.64317 | Ratio to Peak | 0.48136 |
| W690 | 5.2879  | 30.2975 | 0 | 5.0217  | 3.5366  | Discharge | 0.96938  | 0.9545  | Ratio to Peak | 0.5     |
| W700 | 1.7129  | 38.178  | 0 | 0.84144 | 2.9081  | Discharge | 0.3231   | 0.9787  | Ratio to Peak | 0.5     |
| W710 | 5.2611  | 35.144  | 0 | 5.1999  | 3.66    | Discharge | 0.037508 | 1       | Ratio to Peak | 0.5     |
| W720 | 5.945   | 24.411  | 0 | 5.9116  | 3.7633  | Discharge | 0.65871  | 0.96698 | Ratio to Peak | 0.5     |
| W730 | 2.5226  | 38.161  | 0 | 0.14407 | 0.15675 | Discharge | 0.21091  | 0.97083 | Ratio to Peak | 0.5     |
| W740 | 1.6308  | 34.8825 | 0 | 5.0807  | 2.3445  | Discharge | 0.56353  | 0.97605 | Ratio to Peak | 0.5     |
| W750 | 3.0525  | 40.343  | 0 | 5.3674  | 4.3914  | Discharge | 0.12623  | 0.92376 | Ratio to Peak | 0.57327 |
| W760 | 1.6579  | 38.4695 | 0 | 2.1119  | 2.4993  | Discharge | 0.18398  | 0.98319 | Ratio to Peak | 0.5     |
| W770 | 1.9947  | 36.7485 | 0 | 5.884   | 2.5509  | Discharge | 0.095743 | 0.94224 | Ratio to Peak | 0.4802  |
| W780 | 2.4419  | 38.888  | 0 | 6.8677  | 2.2041  | Discharge | 0.33082  | 0.98328 | Ratio to Peak | 0.5     |
| W790 | 2.9263  | 37.2515 | 0 | 5.5374  | 5.3169  | Discharge | 0.013035 | 0.93543 | Ratio to Peak | 0.37694 |
| W800 | 5.7118  | 29.7895 | 0 | 6.3747  | 3.2096  | Discharge | 0.52917  | 0.99    | Ratio to Peak | 0.5     |
| W810 | 2.383   | 38.668  | 0 | 6.025   | 2.8497  | Discharge | 0.20652  | 0.9957  | Ratio to Peak | 0.5     |
| W820 | 23.459  | 17.561  | 0 | 27.669  | 45.156  | Discharge | 0.12629  | 0.97862 | Ratio to Peak | 0.5     |
| W830 | 2.2739  | 42.34   | 0 | 6.3661  | 3.2053  | Discharge | 0.5976   | 0.99831 | Ratio to Peak | 0.5     |
| W840 | 5.138   | 35.6385 | 0 | 6.4347  | 2.204   | Discharge | 0.18813  | 0.99891 | Ratio to Peak | 0.5     |
| W850 | 3.0251  | 39.9015 | 0 | 5.5668  | 2.7361  | Discharge | 0.12711  | 0.99073 | Ratio to Peak | 0.5     |
| W860 | 4.9103  | 31.757  | 0 | 6.4904  | 16.292  | Discharge | 0.17934  | 1       | Ratio to Peak | 0.5     |
| W870 | 4.8313  | 31.9375 | 0 | 7.1285  | 3.5891  | Discharge | 0.11441  | 1       | Ratio to Peak | 0.5     |
| W880 | 14.451  | 23.388  | 0 | 13.675  | 22.318  | Discharge | 0.10086  | 1       | Ratio to Peak | 0.5     |

| 0.5           | 0.5           | 0.5           | 0.5           | 0.57212       | 0.5           | 0.5           | 0.49          | 0.5           | 0.5           | 0.50692       |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Ratio to Peak |
| 0.99942       | 0.6515        | 0.65147       | 1             | 1             | 1             | 1             | 0.99073       | 1             | 1             | 0.024483      |
| 0.18809       | 7.39E-05      | 0.000267      | 0.10849       | 0.067968      | 0.1756        | 0.2409        | 0.14448       | 0.10623       | 0.093214      | 0.022903      |
| Discharge     |
| 2.7018        | 12.566        | 16.534        | 10.607        | 5.4597        | 2.1217        | 2.7596        | 2.2769        | 2.4684        | 2.1439        | 2.8382        |
| 5.8701        | 7.3946        | 10.131        | 6.2422        | 7.2291        | 1.3           | 5.8782        | 1.0091        | 5.7784        | 6.5424        | 2.4552        |
| 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             |
| 30.9675       | 34.5825       | 22.543        | 28.631        | 32.5415       | 31.0095       | 32.9015       | 37.686        | 30.668        | 30            | 38.4615       |
| 4.9976        | 3.8123        | 15.468        | 6.3809        | 4.5862        | 2.3045        | 4.3285        | 1.8533        | 5.1707        | 2.5037        | 3.7673        |
| W890          | 006M          | W910          | W920          | W930          | W940          | W950          | W960          | 079W          | W980          | 066M          |

| Reach  |                          | Muskingu   | um Cunge Chann | el Routing  |           |       |            |
|--------|--------------------------|------------|----------------|-------------|-----------|-------|------------|
| Number | Time Step Method         | Length (m) | Slope          | Manning's n | Shape     | Width | Side Slope |
| R100   | Automatic Fixed Interval | 1158.4     | 0.008591       | 0.00063     | Trapezoid | 30    | 1          |
| R110   | Automatic Fixed Interval | 1998.1     | 0.00917        | 0.000627    | Trapezoid | 30    | 1          |
| R140   | Automatic Fixed Interval | 1456.6     | 0.004          | 0.000427    | Trapezoid | 30    | 1          |
| R190   | Automatic Fixed Interval | 670.83     | 0.001882       | 0.000922    | Trapezoid | 30    | 1          |
| R230   | Automatic Fixed Interval | 3405.6     | 0.001156       | 0.000922    | Trapezoid | 30    | 1          |
| R240   | Automatic Fixed Interval | 4883.8     | 0.018158       | 0.000427    | Trapezoid | 30    | 1          |
| R250   | Automatic Fixed Interval | 1844.4     | 0.004          | 0.000627    | Trapezoid | 30    | 1          |
| R260   | Automatic Fixed Interval | 4863.4     | 0.003563       | 0.000642    | Trapezoid | 30    | 1          |
| R270   | Automatic Fixed Interval | 678.82     | 0.004          | 0.000627    | Trapezoid | 30    | 1          |
| R290   | Automatic Fixed Interval | 905.1      | 0.004          | 0.000922    | Trapezoid | 30    | 1          |
| R30    | Automatic Fixed Interval | 3845.8     | 0.004752       | 0.000917    | Trapezoid | 30    | 1          |
| R340   | Automatic Fixed Interval | 1371.8     | 0.004          | 0.000427    | Trapezoid | 30    | 1          |
| R360   | Automatic Fixed Interval | 7803.5     | 0.004          | 0.000922    | Trapezoid | 30    | 1          |
| R370   | Automatic Fixed Interval | 6038.7     | 0.004          | 0.00029     | Trapezoid | 30    | 1          |
| R390   | Automatic Fixed Interval | 10438      | 0.004          | 0.000427    | Trapezoid | 30    | 1          |
| R400   | Automatic Fixed Interval | 1937.5     | 0.004          | 0.000627    | Trapezoid | 30    | 1          |
| R420   | Automatic Fixed Interval | 4902.8     | 0.002889       | 0.00029     | Trapezoid | 30    | 1          |
| R430   | Automatic Fixed Interval | 1315.2     | 0.004          | 0.000922    | Trapezoid | 30    | 1          |
| R450   | Automatic Fixed Interval | 1527.4     | 0.004          | 0.000627    | Trapezoid | 30    | 1          |

Table A-9.1. Pansipit Model Reach Parameters

Annex 10. Pansipit Model Reach Parameters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

| 1                        | 1                        | 1                        | 1                        | 1                        | 1                        |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 30                       | 30                       | 30                       | 30                       | 30                       | 30                       |
| Trapezoid                | Trapezoid                | Trapezoid                | Trapezoid                | Trapezoid                | Trapezoid                |
| 0.00029                  | 0.000198                 | 0.00029                  | 0.003382                 | 0.000427                 | 0.00029                  |
| 0.004263                 | 0.05129                  | 0.004                    | 0.004                    | 0.004                    | 0.004                    |
| 1637.1                   | 155.56                   | 497.49                   | 4474                     | 1216.2                   | 3648.7                   |
| Automatic Fixed Interval |
| R460                     | R470                     | R480                     | R490                     | R70                      | R90                      |

## Annex 11. Pansipit Field Validation Points

| Point  | Validation | Coordinates | Model<br>Var | Valid-<br>ation | Error (m) | Event/Date                      | Rain<br>Return/ |
|--------|------------|-------------|--------------|-----------------|-----------|---------------------------------|-----------------|
| Number | Lat        | Long        | (m)          | Points          |           |                                 | Scenario        |
| 1      | 13.923184  | 120.957407  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 2      | 13.907810  | 120.928171  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 3      | 13.908430  | 120.927897  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 4      | 13.908828  | 120.927368  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 5      | 13.909260  | 120.927218  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 6      | 13.909557  | 120.927031  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 7      | 13.920701  | 120.958668  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 8      | 13.920857  | 120.958627  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 9      | 13.921325  | 120.958365  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 10     | 13.921620  | 120.960327  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 11     | 13.921665  | 120.958186  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 12     | 13.932184  | 120.928559  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 13     | 13.932476  | 120.928524  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 14     | 13.908294  | 120.888586  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 15     | 13.908388  | 120.888483  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 16     | 13.908896  | 120.891313  | 0.38         | 0               | 0.1444    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 17     | 13.908965  | 120.891599  | 0.24         | 0               | 0.0576    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 18     | 13.872611  | 120.913783  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 19     | 13.908463  | 120.960855  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 20     | 13.933912  | 120.940212  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 21     | 13.933958  | 120.938246  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 22     | 13.934016  | 120.938732  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |
| 23     | 13.934096  | 120.939527  | 0.03         | 0               | 0.0009    | Typhoon Glenda/<br>July 19,2014 | 5-Year          |

Table A-10.1. Pansipit Field Validation Points

| 24 | 13.909476 | 120.926518 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|----|-----------|------------|------|---|--------|---------------------------------|--------|
| 25 | 13.909570 | 120.925742 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 26 | 13.920823 | 120.963561 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 27 | 13.909432 | 120.960313 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 28 | 13.911117 | 120.960382 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 29 | 13.911505 | 120.961310 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 30 | 13.911812 | 120.961941 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 31 | 13.913173 | 120.878311 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 32 | 13.915040 | 120.878645 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 33 | 13.920878 | 120.878961 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 34 | 13.921569 | 120.879321 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 35 | 13.911297 | 120.883328 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 36 | 13.911741 | 120.882475 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 37 | 13.911980 | 120.881976 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 38 | 13.912102 | 120.881551 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 39 | 13.913210 | 120.878527 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 40 | 13.923277 | 120.880170 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 41 | 13.907960 | 120.889259 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 42 | 13.931790 | 120.948087 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 43 | 13.932342 | 120.947812 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 44 | 13.933106 | 120.947518 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 45 | 13.923833 | 120.950253 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 46 | 13.932941 | 120.928447 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 47 | 13.933703 | 120.927618 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 48 | 13.933815 | 120.928943 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 49 | 13.933838 | 120.929428 | 0.03 | 0 | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |

| 50 | 13.933839 | 120.927819 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|----|-----------|------------|------|------|--------|---------------------------------|--------|
| 51 | 13.933624 | 120.941397 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 52 | 13.933634 | 120.940908 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 53 | 13.933859 | 120.947218 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 54 | 13.935054 | 120.943481 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 55 | 13.914967 | 120.938594 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 56 | 13.921604 | 120.962681 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 57 | 13.921726 | 120.960661 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 58 | 13.921860 | 120.960961 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 59 | 13.920980 | 120.946541 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 60 | 13.921300 | 120.946997 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 61 | 13.923377 | 120.949655 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 62 | 13.873170 | 120.913788 | 0.03 | 0    | 0.0009 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 63 | 13.923384 | 120.957287 | 0.03 | 0.2  | 0.0289 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 64 | 13.925235 | 120.956370 | 0.03 | 0.2  | 0.0289 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 65 | 13.896090 | 120.906013 | 0.03 | 0.2  | 0.0289 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 66 | 13.896907 | 120.904685 | 0.03 | 0.2  | 0.0289 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 67 | 13.890527 | 120.911227 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 68 | 13.890912 | 120.911521 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 69 | 13.890945 | 120.911567 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 70 | 13.904399 | 120.880396 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 71 | 13.874840 | 120.915244 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 72 | 13.887568 | 120.911147 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 73 | 13.889008 | 120.910298 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 74 | 13.889206 | 120.910078 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 75 | 13.889645 | 120.910223 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |

| 76  | 13.889897 | 120.910799 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|-----|-----------|------------|------|------|--------|---------------------------------|--------|
| 77  | 13.879590 | 120.914519 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 78  | 13.879837 | 120.914972 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 79  | 13.880142 | 120.914765 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 80  | 13.880514 | 120.914616 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 81  | 13.882063 | 120.913577 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 82  | 13.883257 | 120.912151 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 83  | 13.897622 | 120.891668 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 84  | 13.897997 | 120.890726 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 85  | 13.879729 | 120.919224 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 86  | 13.880248 | 120.919685 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 87  | 13.881445 | 120.919714 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 88  | 13.881811 | 120.919687 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 89  | 13.882001 | 120.919558 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 90  | 13.882051 | 120.919579 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 91  | 13.875543 | 120.913148 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 92  | 13.882644 | 120.909066 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 93  | 13.882807 | 120.909292 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 94  | 13.882840 | 120.909422 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 95  | 13.883002 | 120.907904 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 96  | 13.883848 | 120.909329 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 97  | 13.874082 | 120.913555 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 98  | 13.874599 | 120.914398 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 99  | 13.874711 | 120.913137 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 100 | 13.874748 | 120.913495 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 101 | 13.874921 | 120.913967 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |

| 102 | 13.875045 | 120.914387 | 0.03 | 0.25 | 0.0484 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|-----|-----------|------------|------|------|--------|---------------------------------|--------|
| 103 | 13.905902 | 120.910648 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 104 | 13.903458 | 120.877699 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 105 | 13.903464 | 120.877980 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 106 | 13.903735 | 120.876877 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 107 | 13.903840 | 120.875837 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 108 | 13.903932 | 120.875271 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 109 | 13.904629 | 120.880915 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 110 | 13.907303 | 120.886017 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 111 | 13.924409 | 120.960133 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 112 | 13.906877 | 120.894015 | 0.36 | 0.5  | 0.0196 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 113 | 13.906960 | 120.893609 | 0.45 | 0.5  | 0.0025 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 114 | 13.908247 | 120.894944 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 115 | 13.908405 | 120.894865 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 116 | 13.910265 | 120.894288 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 117 | 13.910457 | 120.894385 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 118 | 13.910791 | 120.894284 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 119 | 13.872804 | 120.917661 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 120 | 13.872821 | 120.917743 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 121 | 13.872844 | 120.918179 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 122 | 13.873371 | 120.917228 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 123 | 13.876267 | 120.914996 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 124 | 13.877964 | 120.914872 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 125 | 13.881919 | 120.918690 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 126 | 13.890104 | 120.909528 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 127 | 13.879750 | 120.913727 | 0.03 | 0.5  | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |

| 128 | 13.877495 | 120.912143 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|-----|-----------|------------|------|-----|--------|---------------------------------|--------|
| 129 | 13.898223 | 120.891103 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 130 | 13.899855 | 120.901011 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 131 | 13.900679 | 120.900610 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 132 | 13.901261 | 120.902539 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 133 | 13.907085 | 120.892832 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 134 | 13.892192 | 120.908254 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 135 | 13.893892 | 120.907359 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 136 | 13.926104 | 120.953975 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 137 | 13.890680 | 120.909196 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 138 | 13.906517 | 120.895665 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 139 | 13.906650 | 120.895070 | 0.06 | 0.5 | 0.1936 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 140 | 13.906657 | 120.895752 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 141 | 13.906761 | 120.894619 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 142 | 13.907952 | 120.895131 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 143 | 13.908110 | 120.895063 | 0.03 | 0.5 | 0.2209 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 144 | 13.924534 | 120.956702 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 145 | 13.903464 | 120.878074 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 146 | 13.903587 | 120.878438 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 147 | 13.881917 | 120.918630 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 148 | 13.881951 | 120.918884 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 149 | 13.879523 | 120.914549 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 150 | 13.879600 | 120.914996 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 151 | 13.880095 | 120.914416 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 152 | 13.880237 | 120.914686 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 153 | 13.921154 | 120.963182 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |

| 154 | 13.877401 | 120.912088 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|-----|-----------|------------|------|-----|--------|---------------------------------|--------|
| 155 | 13.877768 | 120.911972 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 156 | 13.877948 | 120.912283 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 157 | 13.878531 | 120.913348 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 158 | 13.897934 | 120.891354 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 159 | 13.898111 | 120.890867 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 160 | 13.901452 | 120.902967 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 161 | 13.892820 | 120.907926 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 162 | 13.893743 | 120.907395 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 163 | 13.925985 | 120.953874 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 164 | 13.926284 | 120.954425 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 165 | 13.926531 | 120.954915 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 166 | 13.875787 | 120.917045 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 167 | 13.875856 | 120.916526 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 168 | 13.875929 | 120.917594 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 169 | 13.876722 | 120.917479 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 170 | 13.877321 | 120.917415 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 171 | 13.875026 | 120.917567 | 0.03 | 0.6 | 0.3249 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 172 | 13.924651 | 120.960180 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 173 | 13.924893 | 120.959778 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 174 | 13.897112 | 120.912197 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 175 | 13.897573 | 120.912161 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 176 | 13.898037 | 120.912135 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 177 | 13.904132 | 120.879778 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 178 | 13.912755 | 120.893534 | 0.09 | 1   | 0.8281 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 179 | 13.913062 | 120.893374 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |

| 180 | 13.872806 | 120.918037 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|-----|-----------|------------|------|-----|--------|---------------------------------|--------|
| 181 | 13.914292 | 120.893469 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 182 | 13.914489 | 120.893416 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 183 | 13.914650 | 120.893395 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 184 | 13.914763 | 120.893585 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 185 | 13.914958 | 120.893621 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 186 | 13.915359 | 120.892312 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 187 | 13.903943 | 120.900848 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 188 | 13.904087 | 120.900672 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 189 | 13.904211 | 120.900379 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 190 | 13.913162 | 120.891314 | 0.56 | 1   | 0.1936 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 191 | 13.913304 | 120.891409 | 0.55 | 1   | 0.2025 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 192 | 13.896741 | 120.912224 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 193 | 13.875697 | 120.916142 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 194 | 13.875823 | 120.916222 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 195 | 13.875847 | 120.916059 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 196 | 13.875847 | 120.916196 | 0.03 | 1   | 0.9409 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 197 | 13.924872 | 120.958784 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 198 | 13.924923 | 120.958417 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 199 | 13.901660 | 120.911899 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 200 | 13.891576 | 120.908984 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 201 | 13.903393 | 120.877933 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 202 | 13.903459 | 120.877924 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 203 | 13.918180 | 120.969718 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 204 | 13.918405 | 120.969214 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 205 | 13.918428 | 120.969311 | 0.03 | 1.5 | 2.1609 | Typhoon Glenda/<br>July 19,2014 | 5-Year |

| 206 | 13.897742 | 120.891599 | 0.03 | 1.5 | 2.1609   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|-----|-----------|------------|------|-----|----------|---------------------------------|--------|
| 207 | 13.897913 | 120.903429 | 0.03 | 1.5 | 2.1609   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 208 | 13.901822 | 120.903054 | 0.03 | 1.5 | 2.1609   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 209 | 13.891490 | 120.908959 | 0.03 | 1.5 | 2.1609   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 210 | 13.897448 | 120.904015 | 0.03 | 1.7 | 2.7889   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 211 | 13.881545 | 120.918396 | 0.03 | 2   | 3.8809   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 212 | 13.881658 | 120.918351 | 0.03 | 2   | 3.8809   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 213 | 13.881728 | 120.918324 | 0.03 | 2   | 3.8809   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 214 | 13.882709 | 120.918702 | 0.03 | 2   | 3.8809   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 215 | 13.900650 | 120.903933 | 0.03 | 2   | 3.8809   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 216 | 13.900751 | 120.903852 | 0.03 | 2   | 3.8809   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 217 | 13.900925 | 120.903747 | 0.03 | 2   | 3.8809   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 218 | 13.901379 | 120.903420 | 0.03 | 2   | 3.8809   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 219 | 13.903408 | 120.901572 | 0.03 | 2.5 | 6.1009   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 220 | 13.903645 | 120.901275 | 0.03 | 2.5 | 6.1009   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 221 | 13.903826 | 120.901060 | 0.03 | 2.5 | 6.1009   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 222 | 13.911881 | 120.867195 | 2.82 | 2.5 | 0.1024   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 223 | 13.912482 | 120.866412 | 3.57 | 2.5 | 1.1449   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 224 | 13.913135 | 120.866542 | 3.3  | 2.5 | 0.64     | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 225 | 13.913194 | 120.866910 | 2.35 | 2.5 | 0.0225   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 226 | 13.911901 | 120.866505 | 4.28 | 3   | 1.638401 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 227 | 13.912037 | 120.866358 | 4.56 | 3   | 2.4336   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 228 | 13.912061 | 120.868236 | 4.87 | 3   | 3.4969   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 229 | 13.912750 | 120.866363 | 3.8  | 3   | 0.64     | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 230 | 13.913027 | 120.866207 | 4.03 | 3   | 1.0609   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 231 | 13.911939 | 120.868260 | 3.27 | 4   | 0.5329   | Typhoon Glenda/<br>July 19,2014 | 5-Year |

| 232 | 13.912540 | 120.868842 | 5.8  | 4    | 3.240001 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
|-----|-----------|------------|------|------|----------|---------------------------------|--------|
| 233 | 13.912230 | 120.868458 | 5.45 | 5.5  | 0.0025   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 234 | 13.912436 | 120.868126 | 4.01 | 5.5  | 2.220099 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 235 | 13.912814 | 120.867972 | 5.71 | 5.5  | 0.0441   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 236 | 13.913064 | 120.865990 | 5.98 | 5.5  | 0.2304   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 237 | 13.913245 | 120.865954 | 6.8  | 5.5  | 1.69     | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 238 | 13.913915 | 120.866541 | 6.6  | 5.5  | 1.21     | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 239 | 13.914327 | 120.866541 | 5.94 | 5.5  | 0.1936   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 240 | 13.914464 | 120.865901 | 6.7  | 5.5  | 1.44     | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 241 | 13.914541 | 120.866284 | 6.45 | 5.5  | 0.9025   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 242 | 13.913020 | 120.868942 | 7.26 | 6    | 1.587601 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 243 | 13.914019 | 120.869052 | 7.57 | 6    | 2.464901 | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 244 | 13.914956 | 120.869631 | 7.15 | 6    | 1.3225   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 245 | 13.916260 | 120.870642 | 5.03 | 6    | 0.9409   | Typhoon Glenda/<br>July 19,2014 | 5-Year |
| 246 | 13.873967 | 120.913605 | 0.03 | 0    | 0.0009   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 247 | 13.875680 | 120.916202 | 0.03 | 1.5  | 2.1609   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 248 | 13.875757 | 120.915188 | 0.03 | 0    | 0.0009   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 249 | 13.876820 | 120.912543 | 0.03 | 0.25 | 0.0484   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 250 | 13.883362 | 120.908534 | 0.03 | 0.25 | 0.0484   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 251 | 13.883487 | 120.911420 | 0.03 | 0    | 0.0009   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 252 | 13.888433 | 120.910574 | 0.03 | 0.25 | 0.0484   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 253 | 13.891510 | 120.909258 | 0.03 | 1    | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 254 | 13.891526 | 120.909243 | 0.03 | 1    | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 255 | 13.891558 | 120.909102 | 0.03 | 1    | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 256 | 13.900177 | 120.900458 | 0.03 | 0    | 0.0009   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 257 | 13.901967 | 120.902953 | 0.03 | 1    | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |

| 258 | 13.902270 | 120.902709 | 0.03 | 1.5 | 2.1609  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
|-----|-----------|------------|------|-----|---------|---------------------------------|--------|
| 259 | 13.902503 | 120.902569 | 0.03 | 1.5 | 2.1609  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 260 | 13.903884 | 120.933776 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 261 | 13.904152 | 120.911627 | 0.03 | 1   | 0.9409  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 262 | 13.904539 | 120.911432 | 0.03 | 1   | 0.9409  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 263 | 13.905015 | 120.911168 | 0.03 | 1   | 0.9409  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 264 | 13.905585 | 120.910849 | 0.03 | 1   | 0.9409  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 265 | 13.905776 | 120.883226 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 266 | 13.906067 | 120.910388 | 0.03 | 1   | 0.9409  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 267 | 13.906564 | 120.936171 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 268 | 13.906682 | 120.885347 | 0.03 | 6   | 35.6409 | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 269 | 13.906968 | 120.885587 | 0.03 | 6   | 35.6409 | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 270 | 13.907199 | 120.891193 | 0.43 | 0   | 0.1849  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 271 | 13.907221 | 120.885819 | 0.03 | 6   | 35.6409 | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 272 | 13.908156 | 120.888884 | 0.03 | 2   | 3.8809  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 273 | 13.908217 | 120.890572 | 0.91 | 2   | 1.1881  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 274 | 13.908307 | 120.890895 | 0.89 | 0   | 0.7921  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 275 | 13.908324 | 120.891020 | 0.72 | 0   | 0.5184  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 276 | 13.908359 | 120.891170 | 0.55 | 0   | 0.3025  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 277 | 13.908395 | 120.888337 | 0.03 | 2   | 3.8809  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 278 | 13.908533 | 120.890570 | 0.78 | 2   | 1.4884  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 279 | 13.908550 | 120.891260 | 0.31 | 0   | 0.0961  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 280 | 13.908604 | 120.887845 | 0.03 | 2   | 3.8809  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 281 | 13.908743 | 120.891297 | 0.25 | 0   | 0.0625  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 282 | 13.908888 | 120.936843 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 283 | 13.909698 | 120.936986 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |

| 284 | 13.910638 | 120.891693 | 0.48 | 2   | 2.3104   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
|-----|-----------|------------|------|-----|----------|---------------------------------|--------|
| 285 | 13.910851 | 120.891661 | 0.51 | 2   | 2.2201   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 286 | 13.911033 | 120.894278 | 0.03 | 1   | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 287 | 13.911133 | 120.891621 | 0.57 | 2   | 2.0449   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 288 | 13.911329 | 120.894240 | 0.03 | 1   | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 289 | 13.911348 | 120.937291 | 0.03 | 0   | 0.0009   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 290 | 13.911489 | 120.891549 | 0.43 | 2   | 2.4649   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 291 | 13.911546 | 120.894201 | 0.03 | 1   | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 292 | 13.911557 | 120.867244 | 1.74 | 1.5 | 0.0576   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 293 | 13.911585 | 120.882799 | 0.03 | 5   | 24.7009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 294 | 13.911759 | 120.891498 | 0.6  | 2   | 1.96     | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 295 | 13.911838 | 120.894057 | 0.03 | 1   | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 296 | 13.912086 | 120.891428 | 0.51 | 2   | 2.2201   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 297 | 13.912165 | 120.866594 | 3.45 | 2.5 | 0.9025   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 298 | 13.912166 | 120.868343 | 5.58 | 3   | 6.6564   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 299 | 13.912214 | 120.867150 | 1.72 | 1.5 | 0.0484   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 300 | 13.912220 | 120.866039 | 4.82 | 2.5 | 5.382401 | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 301 | 13.912225 | 120.866297 | 3.95 | 2.5 | 2.1025   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 302 | 13.912265 | 120.866860 | 2.47 | 2.5 | 0.0009   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 303 | 13.912273 | 120.880828 | 0.03 | 0   | 0.0009   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 304 | 13.912343 | 120.868590 | 5.87 | 3   | 8.236899 | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 305 | 13.912396 | 120.893735 | 0.03 | 1   | 0.9409   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 306 | 13.912418 | 120.866669 | 3.03 | 2.5 | 0.2809   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 307 | 13.912681 | 120.868887 | 5.66 | 2   | 13.3956  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 308 | 13.912762 | 120.868929 | 5.93 | 2   | 15.4449  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 309 | 13.912906 | 120.868934 | 7.03 | 5   | 4.120901 | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |

| 310 | 13.913273 | 120.867355 | 2.4  | 2.5 | 0.01    | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
|-----|-----------|------------|------|-----|---------|---------------------------------|--------|
| 311 | 13.913348 | 120.875508 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 312 | 13.913490 | 120.869041 | 6.38 | 5   | 1.9044  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 313 | 13.913498 | 120.891575 | 0.49 | 1   | 0.2601  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 314 | 13.913779 | 120.938103 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 315 | 13.913827 | 120.891833 | 0.13 | 1   | 0.7569  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 316 | 13.913874 | 120.869101 | 7.92 | 3   | 24.2064 | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 317 | 13.914045 | 120.892012 | 0.03 | 1   | 0.9409  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 318 | 13.914120 | 120.868996 | 3.9  | 2   | 3.61    | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 319 | 13.914347 | 120.869045 | 3.3  | 1   | 5.29    | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 320 | 13.914388 | 120.892171 | 0.03 | 1   | 0.9409  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 321 | 13.915035 | 120.869915 | 6.05 | 5   | 1.1025  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 322 | 13.915934 | 120.870387 | 4.67 | 2   | 7.1289  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 323 | 13.916107 | 120.870494 | 6.69 | 5   | 2.8561  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 324 | 13.917982 | 120.878796 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 325 | 13.918131 | 120.969832 | 0.03 | 1.5 | 2.1609  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 326 | 13.918284 | 120.969514 | 0.03 | 1.5 | 2.1609  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 327 | 13.918416 | 120.871684 | 7.98 | 5   | 8.8804  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 328 | 13.925219 | 120.957863 | 0.03 | 1.5 | 2.1609  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 329 | 13.933847 | 120.936226 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 330 | 13.933892 | 120.934598 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 331 | 13.933940 | 120.942505 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 332 | 13.934919 | 120.944094 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 333 | 13.935137 | 120.945929 | 0.03 | 0   | 0.0009  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 334 | 13.942305 | 120.935924 | 1.13 | 2   | 0.7569  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 335 | 13.942764 | 120.936310 | 1.88 | 3   | 1.2544  | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
| 336 | 13.943839 | 120.942033 | 0.23 | 0.5  | 0.0729   | Typhoon Yolanda/<br>Nov. 9,2013 | 5-Year |
|-----|-----------|------------|------|------|----------|---------------------------------|--------|
|     |           |            |      | RMSE | 1.306669 |                                 |        |

## Annex 12. Educational Institutions Affected by Flooding in Pansipit Flood Plain

Table A-11.1. Educational Institutions in Agoncillo, Batangas affected by flooding in Pansipit Flood Plain

| Batangas                                 |              |                   |         |          |  |
|------------------------------------------|--------------|-------------------|---------|----------|--|
| Agoncillo                                |              |                   |         |          |  |
| Duilding Name                            | Demonstra    | Rainfall Scenario |         |          |  |
| Building Name                            | Barangay     | 5-year            | 25-year | 100-year |  |
| Bernardo Ondo Memorial Elementary School | Bagong Sikat |                   |         |          |  |
| Balangon Elementary School               | Balangon     |                   |         |          |  |
| Breath of Life Academy Batangas          | Balangon     |                   |         |          |  |
| Aurelio Solis Learning Center            | Bangin       |                   |         |          |  |
| Pook Elementary School                   | Bangin       |                   |         |          |  |
| Coral Na Munti Elementary School         | Mabini       |                   |         |          |  |
| Coral Na Munti National High School      | Mabini       |                   |         |          |  |
| Pamiga Elementary School                 | Pamiga       |                   |         |          |  |
| Panhulan Elementary School               | Panhulan     |                   |         |          |  |
| Pansipit Elementary School               | Pansipit     |                   |         |          |  |
| Agoncillo Central School                 | Poblacion    |                   |         |          |  |
| Agoncillo College Inc.                   | Poblacion    |                   |         |          |  |
| Agoncillo Montessory High School         | Poblacion    |                   |         |          |  |
| Day Care Center                          | Pook         |                   |         |          |  |
| Day Care Center                          | Santa Cruz   |                   |         |          |  |
| Subic Elementary School                  | Subic Ibaba  |                   |         |          |  |
| Subic Ilaya National High School         | Subic Ibaba  |                   |         |          |  |

Table A-11.2. Educational Institutions in Lemery, Batangas affected by flooding in Pansipit Flood Plain

| Batangas                                       |              |                   |         |          |  |  |
|------------------------------------------------|--------------|-------------------|---------|----------|--|--|
| Lemery                                         |              |                   |         |          |  |  |
| Duilding Name                                  | Derengeu     | Rainfall Scenario |         |          |  |  |
|                                                | Barangay     | 5-year            | 25-year | 100-year |  |  |
| Ayao Iyao Elementary School                    | Ayao-Iyao    | Low               | Low     | Medium   |  |  |
| Day Care Center                                | Cahilan I    |                   |         |          |  |  |
| Day Care Center                                | Cahilan II   |                   |         |          |  |  |
| Dionisio P. Vito Memorial National High School | Cahilan II   |                   |         |          |  |  |
| Dita Elementary School                         | Cahilan II   |                   |         |          |  |  |
| Esteban E. Vito Memorial Elementary School     | Cahilan II   |                   |         |          |  |  |
| College of St. Jerome Damaica                  | District I   |                   |         |          |  |  |
| Ruperto Ventoranza Central School              | District I   |                   |         |          |  |  |
| Batangas State University - Lemery Campus      | District III |                   |         |          |  |  |
| Lemery Pilot Elem. School                      | District III |                   |         |          |  |  |
| Lemery Pilot Elementary School                 | District III |                   |         |          |  |  |
| Day Care Center                                | Dita         |                   |         |          |  |  |
| Dita Elementary School                         | Dita         |                   |         |          |  |  |
| St. Mary's Educational Institute               | Maguihan     |                   |         |          |  |  |
| Mahayahay Elementary School                    | 42Mahayahay  |                   |         |          |  |  |

| Bukal Elementary School            | Matingain I  |        |        | Low    |
|------------------------------------|--------------|--------|--------|--------|
| Doña Matilde Memorial School       | Matingain I  |        |        |        |
| San Isidro Labac Elementary School | Matingain II |        |        |        |
| Bukal Elementary School            | Nonong Casto | Medium | Medium | Medium |
| Day Care Center                    | Nonong Casto | Medium | Medium | High   |
| Christian Knights Academy          | Palanas      |        |        |        |
| Ruperto Ventoranza Central School  | Rizal        |        |        |        |
| Sambal Elementary School           | Sambal Ibaba |        |        |        |
| Ruperto Ventoranza Central School  | Wawa Ilaya   |        |        |        |

Table A-11.3. Educational Institutions in Taal, Batangas affected by flooding in Pansipit Flood Plain

| Batangas                                      |                    |                   |         |          |  |  |
|-----------------------------------------------|--------------------|-------------------|---------|----------|--|--|
| Taal                                          |                    |                   |         |          |  |  |
| Duilding Norra                                | Barangay           | Rainfall Scenario |         |          |  |  |
| Building Name                                 |                    | 5-year            | 25-year | 100-year |  |  |
| Apacay Elementary School                      | Арасау             |                   |         |          |  |  |
| Day Care Center                               | Bolbok             |                   |         |          |  |  |
| Tulo Elementary School                        | Carasuche          |                   |         |          |  |  |
| Gov. Vicente Noble Memorial Elementary School | Cawit              |                   |         |          |  |  |
| Aguedo L. Asinas Memorial Elementary School   | Caysasay           |                   |         |          |  |  |
| Cubamba-Gahol Elementary School               | Cubamba            |                   |         |          |  |  |
| Cultihan-Bolbok Elementary School             | Cultihan           |                   |         |          |  |  |
| Halang Elementary School                      | Halang             |                   |         |          |  |  |
| Apacay Elementary School                      | Laguile            |                   |         |          |  |  |
| Balisong Elementary School                    | Latag              |                   |         |          |  |  |
| Daycare Center                                | Luntal             |                   |         |          |  |  |
| Buli Elementary School                        | Mahabang<br>Lodlod |                   |         |          |  |  |
| Taal Central School                           | Niogan             |                   |         |          |  |  |
| Our Lady of Caysasay Academy                  | Poblacion 11       |                   |         |          |  |  |
| Rizal College of Taal                         | Poblacion 11       |                   |         |          |  |  |
| Taal Central School                           | Poblacion 11       |                   |         |          |  |  |
| Taal Central School                           | Poblacion 14       |                   |         |          |  |  |
| Our Lady of Caysasay Academy                  | Poblacion 7        |                   |         |          |  |  |
| Rizal College of Taal                         | Poblacion 7        |                   |         |          |  |  |
| Balisong Elementary School                    | Pook               |                   |         |          |  |  |
| Isabelo Baleros Memorial Elementary School    | Seiran             |                   |         |          |  |  |
| Aguedo L. Asinas Memorial Elementary School   | Tatlong Maria      |                   |         |          |  |  |
| Balisong Elem. School                         | Tierra Alta        |                   |         |          |  |  |
| Luntal Elementary School                      | Tulo               |                   |         |          |  |  |
| Tulo Elementary School                        | Tulo               |                   |         |          |  |  |

## Annex 13. Health Institutions Affected in Pansipit Flood Plain

Table A-12.1. Health Institutions in Agoncillo, Batangas affected by flooding in Pansipit Flood Plain

| Batangas                                                                                           |              |                   |         |          |  |  |
|----------------------------------------------------------------------------------------------------|--------------|-------------------|---------|----------|--|--|
| Agoncillo                                                                                          |              |                   |         |          |  |  |
|                                                                                                    |              | Rainfall Scenario |         |          |  |  |
| Building Name                                                                                      | Barangay     | 5-year            | 25-year | 100-year |  |  |
| Health Center                                                                                      | Bangin       |                   |         |          |  |  |
| Table A-12.1. Health Institutions in Lemery, Batangas affected by flooding in Pansipit Flood Plain |              |                   |         |          |  |  |
| Bat                                                                                                | angas        |                   |         |          |  |  |
| Le                                                                                                 | mery         | r                 |         |          |  |  |
| Building Name                                                                                      | Barangay -   | Rainfall Scenario |         |          |  |  |
|                                                                                                    |              | 5-year            | 25-year | 100-year |  |  |
| Health Center                                                                                      | Ayao-Iyao    |                   |         |          |  |  |
| Lemery Doctors Medical Center                                                                      | District I   |                   |         |          |  |  |
| Health Center                                                                                      | District III |                   |         |          |  |  |
| Metro Lemery Medical Center                                                                        | District III |                   |         |          |  |  |
| Our Lady of Caysasay Medical Center                                                                | District III |                   |         |          |  |  |
| Salazar Polyclinic                                                                                 | District III |                   |         |          |  |  |
| St. Martin General Hospital                                                                        | District III |                   |         |          |  |  |
| Metro Lemery Medical Center                                                                        | District IV  |                   |         |          |  |  |
| Our Lady of Caysasay Medical Center                                                                | Lucky        |                   |         |          |  |  |
| Liezl Medrano Luciano Clinic                                                                       | Maguihan     |                   |         |          |  |  |
| Little Angels Medical Hospital                                                                     | Maguihan     |                   |         |          |  |  |
| St. Martin General Hospital                                                                        | Maguihan     |                   |         |          |  |  |
| Batangas Provincial Hospital                                                                       | Malinis      |                   |         |          |  |  |
| Little Angels Medical Hospital                                                                     | Sangalang    |                   |         |          |  |  |
| Table A-12.1. Health Institutions in Taal, Batangas affected by flooding in Pansipit Flood Plain   |              |                   |         |          |  |  |

| Dataligas                             |           |                   |         |          |  |  |
|---------------------------------------|-----------|-------------------|---------|----------|--|--|
| Taal                                  |           |                   |         |          |  |  |
| Duilding Name                         | Barangay  | Rainfall Scenario |         |          |  |  |
| Building Name                         |           | 5-year            | 25-year | 100-year |  |  |
| Polymedic Hospital and Medical Center | Carasuche |                   |         |          |  |  |
| Iba Health Care Center 1              | Iba       |                   |         | Low      |  |  |
| Iba Health Care Center 2              | Iba       |                   |         |          |  |  |
| Imamawo Health Center                 | Ipil      |                   |         |          |  |  |
| Health Center                         | Laguile   |                   |         |          |  |  |
| ALB Medical Clinic                    | Niogan    |                   |         |          |  |  |
| Rural Health Unit                     | Niogan    |                   |         |          |  |  |
| San Martin Medical Clinic             | Niogan    |                   |         |          |  |  |