

LiDAR Surveys and Flood Mapping of Imus River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Mapua Institute of Technology (MIT)

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and MAPUA Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP)
College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and F.A. Uy (eds.) (2017), LiDAR Surveys and Flood Mapping of Imus River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-256pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Francis Aldrine A. Uy

Project Leader, Phil-LiDAR 1 Program MAPUA Institute of Technology City of Manila, Metro Manila 1002 E-mail: faauy@mapua.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines

ISBN: 978-621-430-050-1

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF FIGURES	
LIST OF TABLES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	ix
CHAPTER 1: OVERVIEW OF THE PROGRAM AND IMUS RIVER	
1.1 Background of the Phil-LIDAR 1 Program	
1.2 Overview of the Imus River Basin CHAPTER 2: LIDAR ACQUISITION IN IMUS FLOODPLAIN	1
2.1 Flight Plans	
2.3 Flight Missions	
2.4 Survey Coverage CHAPTER 3: LIDAR DATA PROCESSING FOR IMUS FLOODPLAIN	11 12
3.1 Overview of LiDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
· ·	
3.5 LiDAR Data Quality Checking	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features CHAPTER 4: DATA VALIDATION SURVEY AND MEASUREMENTS IN THE IMUS RIVER BASIN	36
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing.	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
4.6 Validation Points Acquisition Survey	
4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING	
5.1 Data used in Hydrologic Modeling	
5.1.1 Hydrometry and Rating Curves	
5.1.2 Precipitation	
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outriow	
5.3 HMS Model	
5.4 Cross-section Data	
5.5 Flo 2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated outflow hydrographs and discharge values for different rainfall return period	
, , , ,	
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.8 River Analysis Model Simulation	
5.9 Flood Hazard and Flow Depth Map	
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	
REFERENCESANNEXES	
Annex 1. Optech Technical Specification of the Pegasus Sensor	
Annex 2. NAMRIA Certificates of Reference Points Used	
Annex 3. Baseline Processing Report of Reference Points Used	
Annex 3. Buseline i rocessing heport of herefelice i office Oseu	I J I

Annex 4. The LiDAR Survey Team Composition	159
Annex 5. Data Transfer Sheet For Imus Floodplain	
Annex 6. Flight Logs	
Annex 7. Flight Status	
Annex 8. Mission Summary Reports	
Annex 9. Imus Model Basin Parameters	
Annex 10. Imus Model Reach Parameters	
Annex 11. Imus Field Validation Data	236
Annex 12. Educational Institutions Affected in Imus Floodplain	238
Annex 13. Health Institutions Affected in Imus Floodplain	

LIST OF FIGURES

Figure 1. Map of Imus River Basin (in brown)	2
Figure 2. Flight plan and base station for Pegasus System used for Imus Floodplain	4
Figure 3. GPS set-up over CVT-194 (BLLM NO.1 PSC-94) near the Municipal Hall of Gen. Trias,	
Cavite (a) and NAMRIA reference point CVT-194 (b) as recovered by the field team	5
Figure 4. GPS set-up over CVT-3051 in a concrete bridge leading to Manggahan, 70 m SE of Jetti Gas	
Station and about 250 m from Gen. Trias Poblacion (a) and NAMRIA reference point	
CVT-3051 (b) as recovered by the field team.	6
Figure 5. GPS set-up over BTG-45 inside Santiago De Guzman Elementary School of Brgy. Malibu,	
Tuy, Batangas Province (a) and NAMRIA reference point BTG-45 (b) as recovered	
by the field team	7
Figure 6. GPS set-up over PB-1 as established in an elevated traffic island in Daang Hari Road, Imus,	
Cavite (a) and reference point PB-1 (b) as established by the field team	8
Figure 7. Actual LiDAR survey coverage for Imus Floodplain	12
Figure 8. Schematic Diagram for Data Pre-Processing Component	13
Figure 9. Smoothed Performance Metric Parameters of Imus Flight 1027P	14
Figure 10. Solution Status Parameters of Imus Flight 1027P	15
Figure 11. Best Estimated Trajectory for Imus Floodplain	16
Figure 12. Boundary of the processed LiDAR data over Imus Floodplain	17
Figure 13. Image of data overlap for Imus Floodplain	18
Figure 14. Pulse density map of merged LiDAR data for Imus Floodplain	19
Figure 15. Elevation difference map between flight lines for Imus Floodplain	20
Figure 16. Quality checking for Imus flight 1027P using the Profile Tool of QT Modeler	21
Figure 17. Tiles for Imus Floodplain (a) and classification results (b) in TerraScan	22
Figure 18. Point cloud before (a) and after (b) classification	22
Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Imus Floodplain	23
Figure 20. Imus Floodplain with available orthophotographs	24
Figure 21. Sample orthophotograph tiles for Imus Floodplain	24
Figure 22. Portions in the DTM of Imus Floodplain – a bridge before (a) and after (b) manual editing;	
a ridge before (c) and after (d) data retrieval; and a building before (e) and after (f)	
manual editing	26
Figure 23. Map of Processed LiDAR Data for Imus Floodplain	28
Figure 24. Map of Imus Flood Plain with validation survey points in green	30
Figure 25. Correlation plot between calibration survey points and LiDAR data	31
Figure 26. Correlation plot between validation survey points and LiDAR data	32
Figure 27. Map of Imus Floodplain with bathymetric survey points shown in blue	33
Figure 28. QC blocks for Imus building features	34
Figure 29. Extracted features for Imus Floodplain	36
Figure 30. Imus River Survey Extent	38
Figure 31. GNSS Network of Imus River field survey	40
Figure 32. Trimble® SPS 852 setup at MMA-5 located at Melchor Hall, University of the Philippines,	
Diliman, Quezon City	41
Figure 33. GNSS base setup of Trimble® SPS 852 at CV-123, located in front of the Iglesia ni Cristo	
chapel, Municipality of Naic, Cavite	42
Figure 34. Trimble® SPS 882 setup at UP-DH1 located in Daang Hari Bridge, Brgy. Anabu II-A,	
Municipality of Imus, Cavite	42

rigure 35.	. Irimble SPS 985 setup at OP-MAB located at the approach of Madacao Bridge,	
	Brgy. Bucal IV B, Municipality of Maragondon, Cavite	
_	. Imus Bridge facing upstream	
_	. Bridge As-Built Survey using PPK Technique	
	. Location map of Daang Hari Bridge cross-section	
	. Daang Hari Bridge cross-section diagram	
_	Bridge as-built form of Daang Hari Bridge	
•	. Water level markings on the side of the pier in Daang Hari Bridge	
Figure 42.	. Validation points acquisition survey set up for Imus River Basin	53
-	. LiDAR validation points acquisition survey for Imus River Basin	
	. Bathymetric survey in Imus River	
Figure 45.	. Manual Bathymetric Survey in Imus River in Brgy. Anabu, Imus	56
_	. Bathymetric points gathered from Imus River	
_	. Imus riverbed profile	
	. Location map of Dasmarinas rain gauge used for the calibration of the Imus HEC-HMS	
	. Cross-Section Plot of Imus Bridge	
Figure 50.	. Rating curve at Daang Hari Bridge, Imus, Cavite	61
	. Rainflow and outflow data at Imus River used for modeling	
Figure 52.	. Sangley Point RIDF location relative to Imus River Basin	63
Figure 53.	. Synthetic storm generated for a 24-hr period rainfall for various return periods	63
Figure 54.	. Soil map of the Imus River Basin	64
Figure 55.	. Land cover map of Imus River Basin	65
Figure 56.	. Slope map of Imus River Basin	66
Figure 57.	. Stream delineation map of Imus River Basin	67
Figure 58.	. HEC-HMS generated Imus River Basin Model	68
Figure 59.	. River cross-section of Imus River generated through Arcmap HEC GeoRAS tool	69
Figure 60.	. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GE	S Pro70
Figure 61.	. Outflow Hydrograph of Macalelon produced by the HEC-HMS model compared	
	with observed outflow	71
Figure 62.	. Outflow hydrograph at Imus Station generated using Sangley Point RIDF	
	simulated in HEC-HMS	73
Figure 63.	. Sample output of Imus RAS Model	74
Figure 64.	. 100-year Flood Hazard Map for Imus Floodplain overlaid on Google Earth imagery	75
Figure 65.	. 100-year Flow Depth Map for Imus Floodplain overlaid on Google Earth imagery	76
Figure 66.	. 25-year Flood Hazard Map for Imus Floodplain overlaid on Google Earth imagery	77
Figure 67.	. 25-year Flow Depth Map for Imus Floodplain overlaid on Google Earth imagery	78
Figure 68.	. 5-year Flood Hazard Map for Imus Floodplain overlaid on Google Earth imagery	79
Figure 69.	. 5-year Flood Depth Map for Imus Floodplain overlaid on Google Earth imagery	80
Figure 70.	. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period	84
Figure 71.	. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period	84
Figure 72.	. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period	85
Figure 73.	Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period	85
	Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	
Figure 75.	Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	89
_	Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	
Figure 77.	Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	90
_	Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	
_	Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	
	Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	

Figure 81. Affected Areas in Imus, Cavite during 5-year Rainfall Return PeriodPeriod	96
Figure 82. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	97
Figure 83. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	97
Figure 84. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	98
Figure 85. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	
Figure 86. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	
Figure 87. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	
Figure 88. Affected Areas in Kawit, Cavite during 5-year Rainfall Return Period	
Figure 89. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period	
Figure 90. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period	
Figure 91. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period	
Figure 92. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period	
Figure 93. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Figure 94. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Figure 95. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Figure 96. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Figure 97. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Figure 98. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Figure 99. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Figure 100. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Figure 101. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Figure 102. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Figure 103. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Figure 104. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Figure 105. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Figure 106. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Figure 107. Affected Areas in Kawit, Cavite during 25-year Rainfall Return Period	
Figure 108. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period	
Figure 109. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period	
Figure 110. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period	
Figure 111. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period	
Figure 112. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Figure 113. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Figure 114. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Figure 115. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Figure 116. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Figure 117. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Figure 118. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Figure 119. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Figure 120. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Figure 121. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Figure 122. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Figure 123. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Figure 124. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Figure 125. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Figure 126. Affected Areas in Mus, Cavite during 100-year Rainfall Return Period	
Figure 127. Validation points for 5-year Flood Depth Map of Imus Floodplain	
Figure 128. Flood map depth vs. actual flood depth	
1 1801 E 120. 1 1000 111ah nehiti va actual 11000 nehiti	144

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR System	3
Table 2. Flight planning parameters for Leica ALS-80 HP LiDAR System	3
Table 3. Details of the recovered NAMRIA horizontal control point CVT-194 used as base station	
for the LiDAR Acquisition	5
Table 4. Details of the recovered NAMRIA horizontal control point CVT-3051 with processed	
coordinates used as base station for the LiDAR Acquisition.	6
Table 5. Details of the recovered NAMRIA horizontal control point BTG-45 used as base station	
for the LiDAR Acquisition	7
Table 6. Details of the established horizontal control point PB-1 with processed coordinates	
used as base station for the LiDAR Acquisition	8
Table 7. Ground control points used during LiDAR data acquisition	9
Table 8. Details of the established horizontal control point BTG-45A with processed coordinates	
used as base station for the LiDAR Acquisition.	9
Table 9. Details of the recovered NAMRIA horizontal control point CVT-3123	
with processed coordinates used as base station for the LiDAR Acquisition	9
Table 10. Flight missions for LiDAR data acquisition in Imus Floodplain	10
Table 11. Actual parameters used during LiDAR data acquisition.	10
Table 12. List of municipalities and cities surveyed in Imus Floodplain LiDAR survey	
Table 13. Self-Calibration Results values for Imus flights	16
Table 14. List of LiDAR blocks for Imus Floodplain.	17
Table 15. Imus classification results in TerraScan.	21
Table 16. LiDAR blocks with its corresponding area.	25
Table 17. Shift Values of each LiDAR Block of Imus Floodplain	27
Table 18. Calibration Statistical Measures.	31
Table 19. Validation Statistical Measures.	32
Table 20. Quality Checking Ratings for Imus Building Features.	34
Table 21. Building Features Extracted for Imus Floodplain	35
Table 22. Length of Extracted Roads for Imus Floodplain	36
Table 23. Number of Extracted Water Bodies for Imus Floodplain	36
Table 24. List of Reference and Control Points occupied for Imus River Survey	41
Table 25. Baseline Processing Summary Report for Imus River Basin Static Survey	44
Table 26. Control Point Constraints	45
Table 27. Adjusted Grid Coordinates	45
Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	47
Table 28. Adjusted Geodetic Coordinates	47
Table 30. RIDF values for Infanta Rain Gauge computed by PAGASA	62
Table 31. Range of Calibrated Values for Imus	71
Table 32. Summary of the Efficiency Test of Imus HMS Model	72
Table 33. Peak values of the Imus HECH-MS Model outflow using the Alabat RIDF	73
Table 34. Municipalities affected in Imus Floodplain	74
Table 35. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period	82
Table 36. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period	
Table 37. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period	83
Table 38. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period	83
Table 39. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	86
Table 40. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	86

Table 41. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	87
Table 42. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	87
Table 43. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	88
Table 44. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period	88
Table 45. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	92
Table 46. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	92
Table 47. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	93
Table 48. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	
Table 49. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	
Table 50. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	
Table 51. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	
Table 52. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period	
Table 53. Affected Areas in Kawit, Cavite during 5-year Rainfall Return Period	
Table 54. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period	
Table 55. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period	
Table 56. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period	
Table 57. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period	
Table 58. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Table 59. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Table 60. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Table 61. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Table 62. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Table 63. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period	
Table 64. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Table 65. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Table 66. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Table 67. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Table 68. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Table 69. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Table 70. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Table 71. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period	
Table 72. Affected Areas in Kawit, Cavite during 25-year Rainfall Return Period	
Table 73. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period	
Table 74. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period	
Table 75. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period	
Table 76. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period	
Table 77. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Table 78. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Table 79. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Table 80. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Table 81. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Table 82. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period	
Table 83. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Table 84. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Table 85. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Table 86. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Table 87. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Table 88. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	
Table 89. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	135

Table 90. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period	135
Table 91. Affected Areas in Kawit, Cavite during 100-year Rainfall Return Period	140
Table 92. Areas covered by each warning level with respect to the rainfall scenarios	142
Table 93. Actual flood vs simulated flood depth at different levels in the Imus River Basin	144
Table 94. Summary of the Accuracy Assessment in the Imus River Basin Survey	144

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
ATQ	Antique
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
НС	High Chord
IDW	Inverse Distance Weighted [interpolation method]

IMU	Inertial Measurement Unit					
kts	knots					
LAS	LiDAR Data Exchange File format					
LC	Low Chord					
LGU	local government unit					
LiDAR	Light Detection and Ranging					
LMS	LiDAR Mapping Suite					
m AGL	meters Above Ground Level					
MIT	MAPUA Institute of Technology					
MMS	Mobile Mapping Suite					
MSL	mean sea level					
NSTC	Northern Subtropical Convergence					
PAF	Philippine Air Force					
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration					
PDOP	Positional Dilution of Precision					
PPK	Post-Processed Kinematic [technique]					
PRF	Pulse Repetition Frequency					
PTM	Philippine Transverse Mercator					
QC	Quality Check					
QT	Quick Terrain [Modeler]					
RA	Research Associate					
RIDF	Rainfall-Intensity-Duration-Frequency					
RMSE	Root Mean Square Error					
SAR	Synthetic Aperture Radar					
SCS	Soil Conservation Service					
SRTM	Shuttle Radar Topography Mission					
SRS	Science Research Specialist					
SSG	Special Service Group					
ТВС	Thermal Barrier Coatings					
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry					
UTM	Universal Transverse Mercator					
WGS	World Geodetic System					

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

CHAPTER 1: OVERVIEW OF THE PROGRAM AND IMUS RIVER

Enrico C. Paringit, Dr. Eng., Dr. Francis Aldrine Uy, and Engr. Fibor Tan

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the MAPUA Institute of Technology (MIT). MIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 26 river basins in the Cavite-Batangas-Rizal-Quezon (CABARZON) Region. The university is located in the City of Manila within Metro Manila in the National Capital Region.

1.2 Overview of the Imus River Basin

The Imus River Basin is located in the province of Cavite, covering the municipalities of Silang, General Trias, Kawit, Noveleta and the cities of Tagaytay, Dasmarinas, and Imus. The DENR River Basin Control Office identified the basin to have a drainage area of 105 km2 and an estimated annual runoff of 168 million cubic meter (MCM) (RBCO, 2015).

Its main stem, Imus River, is part of the twenty-six (26) river systems in Southern Luzon Region. According to the 2015 national census of NSO, a total of 59,493 persons are residing within the immediate vicinity of the river which is distributed among fifteen (15) barangays in Imus City, and six (6) barangays in Bacoor City, in the province of Cavite. Imus City is mostly an industrial and commercial city with establishments such as real estates, manufacturing factories, commercial establishments, financial institutions, etc. It is the leading banking center of the province where this activity propagates the city's development (Source: http://imus.gov.ph/city-projects/).

One of the major problems in the Imus River Basin area is that during typhoons and heavy rainfall, water level in the river rapidly increases. Several typhoons flood the communities nearby regularly, and it is especially evident in the coastal municipalities near the river. One example was Typhoon Ondoy in 2009, which caused the city to be flooded with water. Currently, the government has provided solutions to flooding. In April 2016, DPWH started a major flood-risk management in Imus River. Dike, drainage sluice, and retarding basins in Imus City and Bacoor City areas are being constructed to prevent the reoccurrence of flooding in the lower reaches of the river during 2006 and 2013. This flooding led to thousands of affected residents in the area, as well as damage to crops, fisheries, livestock and agriculture. This project is expected to be completed by March 2019.

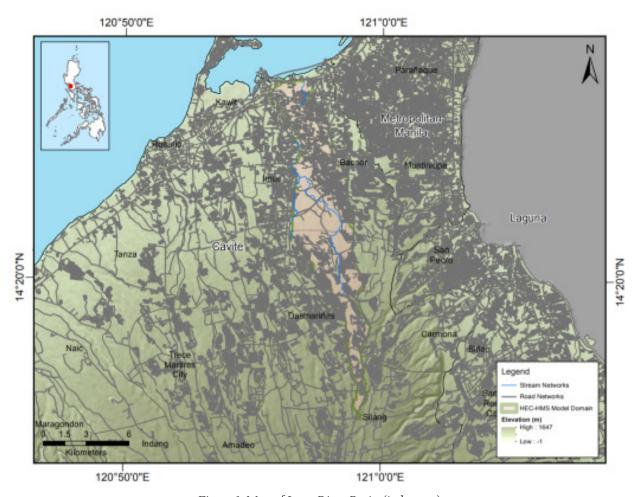


Figure 1. Map of Imus River Basin (in brown)

Meanwhile, even as flood management infrastructure were being constructed another typhoon hit the Imus River Basin. Last December 2016, Typhoon Nina, internationally known as Nock-Ten, made landfall in the Philippines and brought with it heavy rain and strong wind. The Province of Cavite was placed under Signal Number 3 by the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAG-ASA), wherein floods and landslides were to be expected during the onslaught of Nina (Source: http://www.rappler.com/nation/special-coverage/weather-alert/156614-20161226-typhoon-nina-pagasa-forecast-2am).

As a solution to the flooding, the generation of flood hazard maps incorporates LiDAR data and the hydrologic and hydraulic model of the river. Using LiDAR data with the surface elevation of an area, one can easily identify the low-lying areas prone to flooding. Through the flood hazard maps, the local government can easily determine the areas within the watershed that are prone to flooding during typhoon and heavy rainfall. These flood hazard maps are essential for planning purposes of the local government units. With proper dissemination of information about the flood inundation of a rainfall event with certain return periods, the community, especially those in low-lying and coastal areas, will be informed and aware in what to do when a typhoon or heavy rainfall occurs. Furthermore, these flood hazard maps can also be an important tool for economic purposes as these maps indicates the impeccable location or place for development projects, businesses, agriculture and livestock industry.

CHAPTER 2: LIDAR ACQUISITION IN IMUS FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Grace B. Sinadjan, Ms. Jonalyn S. Gonzales

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Imus Floodplain in Cavite. The mission was planned for 9 lines and ran for at most three (3) hours including take-off, landing and turning time. The flight planning parameters for Pegasus and Leica ALS80-HP LiDAR systems are found in Table 1 and Table 2, respectively. Figure 2 shows the flight plan for Imus Floodplain survey.

Table 1. Flight planning parameters for Pegasus LiDAR System.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency	Average Speed	Average Turn Time (Minutes)
BLK 18A	1000/1100	30	50	200	30	130	5
BLK 18B	1000	30	50	200	30	130	5
BLK 18C	1000/1100	30	50	200	30	130	5
BLK 18D	1000	30	50	200	30	130	5
BLK 18X	1200	30	50	200	30	130	5

Table 2. Flight planning parameters for Leica ALS-80 HP LiDAR System

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency	Average Speed	Average Turn Time (Minutes)
BLK18A	1000/ 1500	30	50/45	128	30/42	130	5
BLK18B	1500	30	45	128	42	130	5

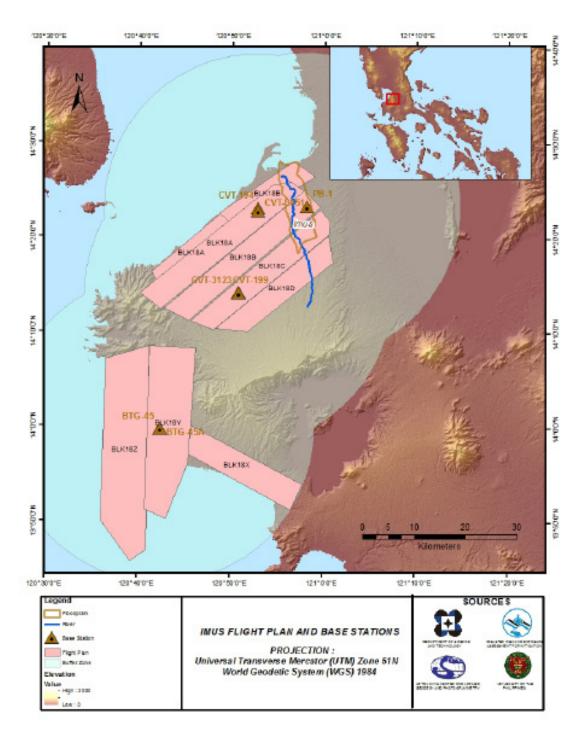


Figure 2. Flight plan and base station for Pegasus System used for Imus Floodplain

2.2 Ground Base Station

The project team was able to recover two (2) NAMRIA ground control points: CVT-194 and BTG-45 which are of second (2nd) order accuracy. The project team also established two (2) ground control points PB-1 and BTG-45A, and re-processed two (2) NAMRIA reference points CVT-3051 and CVT-3123. The certifications for the base stations are found in Annex 2 while the baseline processing reports for the re-processed ground control point and established points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (January 26-February 22, 2014, August 18, 2015, and May 3-6, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 985 and TOPCON GR5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Imus floodplain are shown in Figure 2. The list of team members for LiDAR data acquisition is found in Annex 4.

Figure 3 to Figure 6 show the recovered NAMRIA reference points within the area, in addition Table 3 to Table 8 show the details about the NAMRIA control stations and established points, Table 9 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

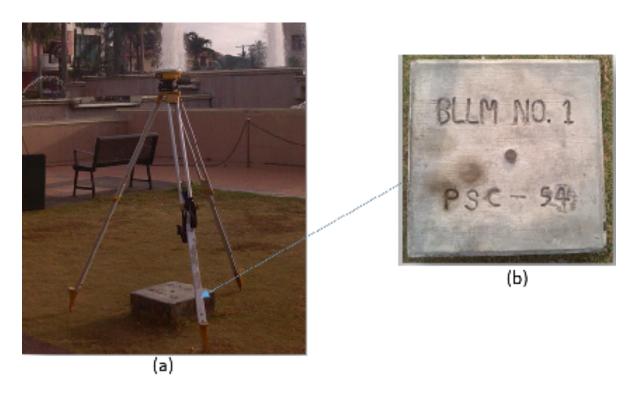


Figure 3. GPS set-up over CVT-194 (BLLM NO.1 PSC-94) near the Municipal Hall of Gen. Trias, Cavite (a) and NAMRIA reference point CVT-194 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point CVT-194 used as base station for the LiDAR Acquisition.

Station Name	(CVT-194
Order of Accuracy		2nd
Relative Error (horizontal positioning)	1	:50,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 23' 15.01186" North 120° 52' 43.52184" East 18.337 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	486924.253 meters 1591045.311 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14°23 '9.63386" North 120° 52' 48.43458" East 62.184 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	271265.13 meters 1591537.44 meters

Figure 4. GPS set-up over CVT-3051 in a concrete bridge leading to Manggahan, 70 m SE of Jetti Gas Station and about 250 m from Gen. Trias Poblacion (a) and NAMRIA reference point CVT-3051 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point CVT-3051 with processed coordinates used as base station for the LiDAR Acquisition.

Station Name	С	VT-3051
Order of Accuracy		2nd
Relative Error (horizontal positioning)	1	:50,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 22′ 58.33330″ North 120° 52′ 44.06059″East 21.122 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 22'52.95639" North 120° 52' 48.97372 East" 64.983 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	271276.565 meters 1591024.612 meters

Figure 5. GPS set-up over BTG-45 inside Santiago De Guzman Elementary School of Brgy. Malibu, Tuy, Batangas Province (a) and NAMRIA reference point BTG-45 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point BTG-45 used as base station for the LiDAR Acquisition.

Station Name		BTG-45
Order of Accuracy		2nd
Relative Error (horizontal positioning)	1	:50,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	13° 59' 52.18294" North 120° 42' 18.96476" East 48.43000 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	468159.677 meters 1547952.281 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	13° 59' 46.88216" North 120° 42' 23.91169" East 92.94300 meters

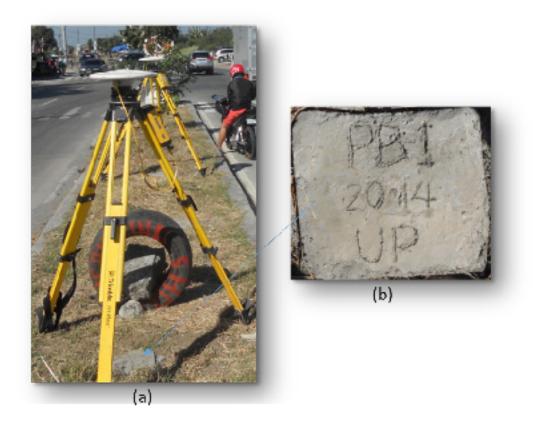


Figure 6. GPS set-up over PB-1 as established in an elevated traffic island in Daang Hari Road, Imus, Cavite (a) and reference point PB-1 (b) as established by the field team.

Table 6. Details of the established horizontal control point PB-1 with processed coordinates used as base station for the LiDAR Acquisition.

Station Name		PB-1
Order of Accuracy		2nd
Relative Error (horizontal positioning)	1	:50,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 23' 19.56635" North 120° 58' 04.29835"East 87.568 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 23'19.56635" North 120° 58' 04.29835" East 87.568 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	280881.093 meters 1591688.776 meters

Table 8. Details of the established horizontal control point BTG-45A with processed coordinates used as base station for the LiDAR Acquisition.

Station Name	E	BTG-45A
Order of Accuracy		2nd
Relative Error (horizontal positioning)	1	:50,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	13° 59′ 51.95603″ North 120° 42′ 18.98286 ″ East 49.08900 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	252126.100 meters 1548584.818 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	13° 59′ 46.65526″ North 120° 42′ 23.92980″ East 93.60200 meters

Table 9. Details of the recovered NAMRIA horizontal control point CVT-3123 with processed coordinates used as base station for the LiDAR Acquisition.

Station Name	CVT-3123		
Order of Accuracy		2nd	
Relative Error (horizontal positioning)	1	:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 14' 15.59521" North 120° 50' 41.86474" East 167.527 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 14'10.24962" North 120° 50' 46.79435" East 211.713 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	267465.517 meters 1574990.072 meters	

Table 7. Ground control points used during LiDAR data acquisition

Date Surveyed	Flight Number Mission Name		Ground Control Points	
26 January 2014	1031P	1BLK18C026A	PB-1 and CVT-194	
28 February 2014	1039P	1BLK18B028A	PB-1 and CVT-194	
3 February 2014	1063P	1BLK18D034A	PB-1 and CVT-194	
22 February 2014	1139P	1BLK18X53A	BTG-45 and BTG-45A	
18 August 2015	3309P	1BLK18AsS230A	CVT-199 and CVT-3051	
3 May 2016	10136L	4BLK18A124A	CVT-199 and CVT-3123	
6 May 2016	10142L	4BLK18AB127A	CVT-199 and CVT-3123	

2.3 Flight Missions

Seven (7) missions were conducted to complete the LiDAR Data Acquisition in Imus Floodplain, for a total of twenty-four hours and one minute (24+01) of flying time for RP-C9022 and RP-C9522. All missions were acquired using the Pegasus and Leica ALS-80 HP LiDAR systems. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 11 presents the actual parameters used during the LiDAR data acquisition.

Table 10. Flight missions for LiDAR data acquisition in Imus Floodplain

				Area	Area		Flying	Hours
Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Surveyed within the Floodplain (km2)	Surveyed Outside the Floodplain (km2)	No. of Images (Frames)	Hr	Min
26 January 2014	1031P	124.00	123.10	5.43	117.67	NA	3	17
3 February 2014	1063P	601.14	33.69	NA	33.69	348	2	59
22 February 2014	1139P	601.14	269.45	NA	269.45	474	3	56
28 February 2014	1039P	601.14	190.01	26.42	163.59	NA	3	17
18 August 2015	3309P	347.2	113.87	8.00	105.87	NA	3	16
3 May 2016	10136L	88.06	77.01	NA	77.01	679	3	18
6 May 2016	10142L	166.75	89.73	9.08	80.65	506	3	58
TOTA	L	2529.43	896.86	48.93	847.93	2007	24	1

Table 11. Actual parameters used during LiDAR data acquisition.

Flight Number	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1031P	1000	30	50	200	30	130	5
1063P	1000	30	50	200	30	130	5
1139P	1200	30	50	200	30	130	5
1039P	1000	30	50	200	30	130	5
3309P	1100	30	50	200	30	130	5
10136L	1000	30	50	200	32	130	5
10142L	1500	30	45	128	42	130	5

2.4 Survey Coverage

Imus Floodplain is situated within the municipalities of Cavite. The city of Trece Martires in Cavite is mostly covered during the survey. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 12. The actual coverage of the LiDAR acquisition for Imus floodplain is presented in Figure 7.

Table 12. List of municipalities and cities surveyed in Imus Floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Calaca	117.85	53.98	45.80%
	Lemery	82.32	29.28	35.57%
	Balayan	94.45	27.77	29.41%
Batangas	Tuy	92.55	17.92	19.36%
	Lian	91.27	16.49	18.07%
	Agoncillo	39.54	1.41	3.57%
	Nasugbu	266.83	5.52	2.07%
	Trece Martires City	44.35	44.20	99.64%
	Naic	76.11	70.51	92.65%
	General Trias	85.98	75.96	88.35%
	Dasmariñas	84.01	66.75	79.45%
	Tanza	71.41	48.38	67.75%
	Imus	56.81	37.10	65.32%
	Maragondon	147.39	88.38	59.96%
Cavite	General Emilio Aguinaldo	39.39	23.18	58.86%
	Amadeo	45.90	24.21	52.75%
	Rosario	4.89	2.54	51.92%
	Magallanes	69.07	32.36	46.85%
	Bacoor	47.43	18.16	38.29%
	Indang	88.65	26.57	29.98%
	Ternate	44.52	12.72	28.57%
	Noveleta	5.72	1.20	21.03%
	Silang	153.10	1.98	1.29%
Laguna	San Pedro	21.41	2.73	12.76%
NCD	Muntinlupa	38.52	7.28	18.88%
NCR	Las Piñas	33.19	3.90	11.74%
To	tal	1942.66	740.48	41.53%

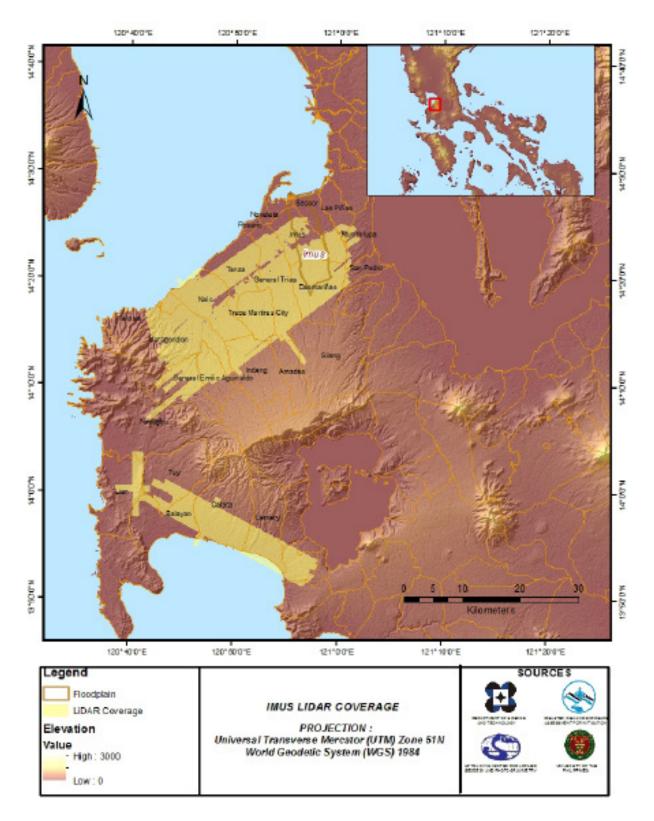


Figure 7. Actual LiDAR survey coverage for Imus Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING FOR IMUS FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Engr. Melissa F. Fernandez , Engr. Ma. Ailyn L. Olanda, Engr. Sheila-Maye F. Santillan, Engr. Chelou P. Prado , Engr. Ezzo Marc C. Hibionada, and Ziarre Anne P. Mariposa

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

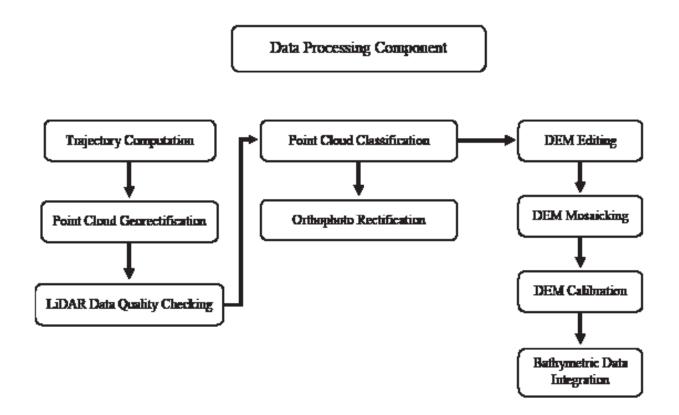


Figure 8. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Imus floodplain can be found in Annex 5. Missions flown during the first survey conducted on January 2014 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Pegasus system while missions acquired during the second survey on August 2015 were flown using the same system over Imus, Cavite. The third survey, which was done on May 2016, the fourth survey, on July 2016 and the last survey, on January 2017, were all done using the Leica system.

The Data Acquisition Component (DAC) transferred a total of 87.56 Gigabytes of Range data, 986.08 Megabytes of POS data, 53.87 Megabytes of GPS base station data, and 67.54 Gigabytes of raw image data to the data server from February 2014 up to September 11, 2015 for Optech LiDAR system while a total of 27.7 Gigabytes of RawLaser data, 1.48 Gigabytes of GNSSIMU data, 233.59 Megabytes of base station data and 88.76 Gigabytes of RCD30 raw image data were transferred on February 13, 2017 for Leica LiDAR system. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Imus was fully transferred on February 13, 2017, as indicated on the Data Transfer Sheets for Imus floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1027P, one of the Imus flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on January 25, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

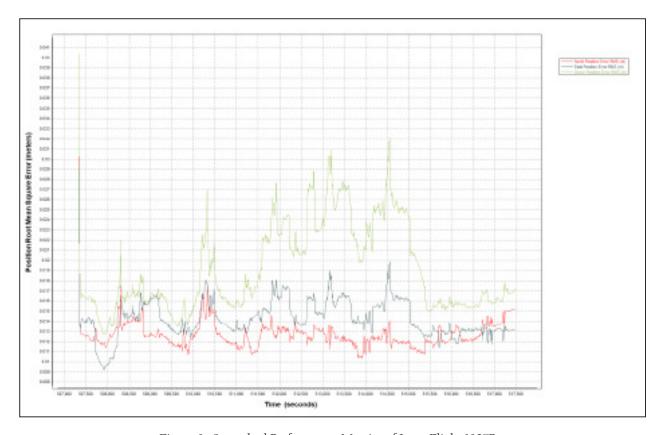


Figure 9. Smoothed Performance Metrics of Imus Flight 1027P.

The time of flight was from 507250 seconds to 517500 seconds, which corresponds to morning of January 25, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 1.76 centimeters, the East position RMSE peaks at 1.98 centimeters, and the Down position RMSE peaks at 3.22 centimeters, which are within the prescribed accuracies described in the methodology.

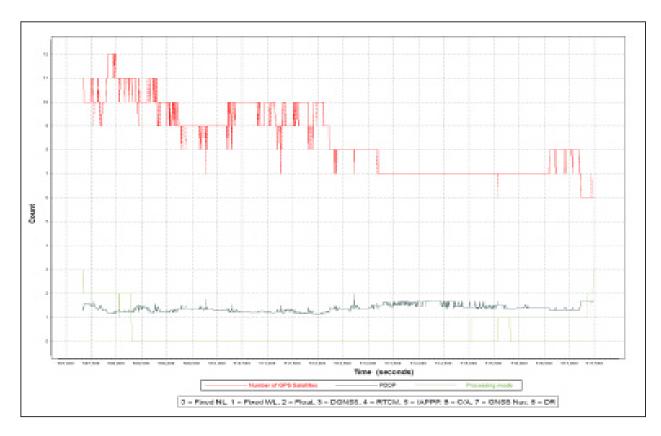


Figure 10. Solution Status Parameters of Imus Flight 1027P.

The Solution Status parameters of flight 1027P, one of the Imus flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Imus flights is shown in Figure 11.

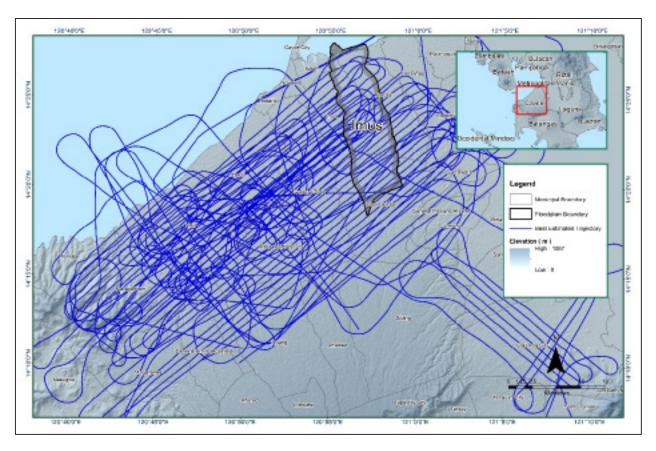


Figure 11. Best Estimated Trajectory for Imus Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 74 flight lines, with each flight line containing two channels, since the Pegasus and Leica systems both contain two. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Imus floodplain are given in Table 13.

Parameter	Acceptable Value	Value
Boresight Correction stdev	(<0.001degrees)	0.000453
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000946
GPS Position Z-correction stdev	(<0.01meters)	0.0019

Table 13. Self-Calibration Results values for Imus flights.

The optimum accuracy is obtained for all Imus flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Imus Floodplain is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

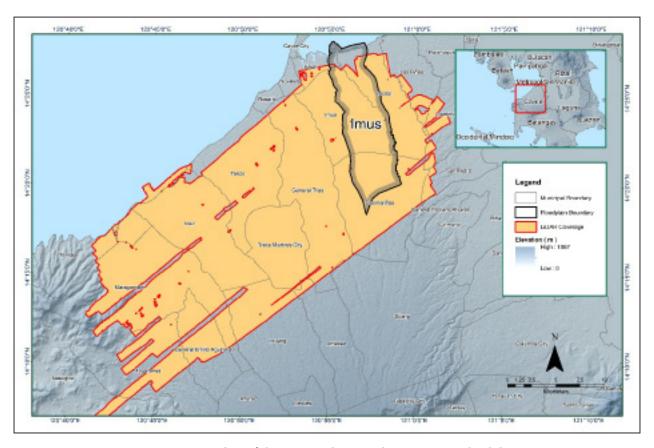


Figure 12. Boundary of the processed LiDAR data over Imus Floodplain

The total area covered by the Imus missions is 838.05 sq.km that is comprised of ten (10) flight acquisitions grouped and merged into ten (10) blocks as shown in Table 14.

Table 14. List of LiDAR blocks for Imus Floodplain.

LiDAR Blocks	Flight Numbers	Area (sq. km)
CALABARZON_Blk18B_supplement	3309P	106.91
CALADADZONI vastichta DII:10A	10136L	140.05
CALABARZON_reflights_Blk18A	10142L	149.85
CALABARZON_reflights_Blk18B_supplement1	10321L	5.66
CALABARZON_reflights_Blk18B_supplement3	10321L	9.47
CALABARZON_reflights_Blk18B_supplement4	10321L	8.74
CALABARZON_reflights_Blk18B_supplement5	10197L	2.01
Covito BU40AB	1023P	127.12
Cavite_Blk18AB	1027P	127.12
Cavite_Blk18C	1031P	117.91
Coulte DILAGE additional	1031P	210.76
Cavite_Blk18C_additional	1063P	210.76
Cavite_Blk18A_supplement2	1139P	99.62
TOTAL	838.05 sq.km	

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Pegasus and Leica systems both employ two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

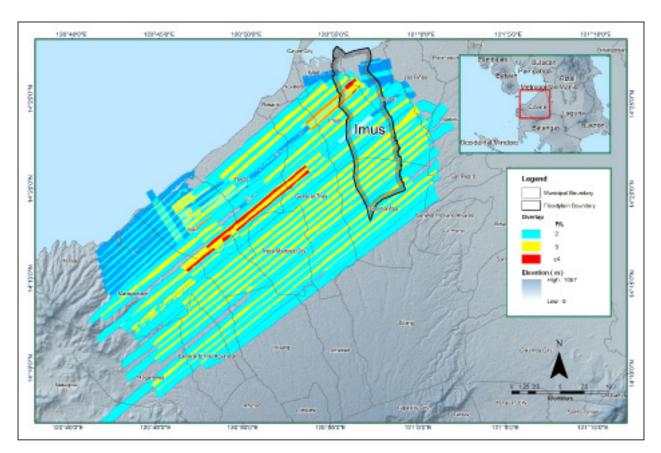


Figure 13. Image of data overlap for Imus Floodplain.

The overlap statistics per block for the Imus floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 28.57% and 51.19% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 14. It was determined that all LiDAR data for Imus floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.23 points per square meter.

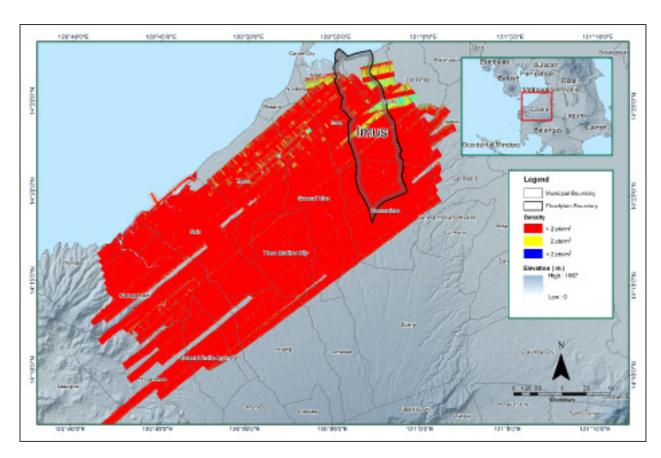


Figure 14. Pulse density map of merged LiDAR data for Imus Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

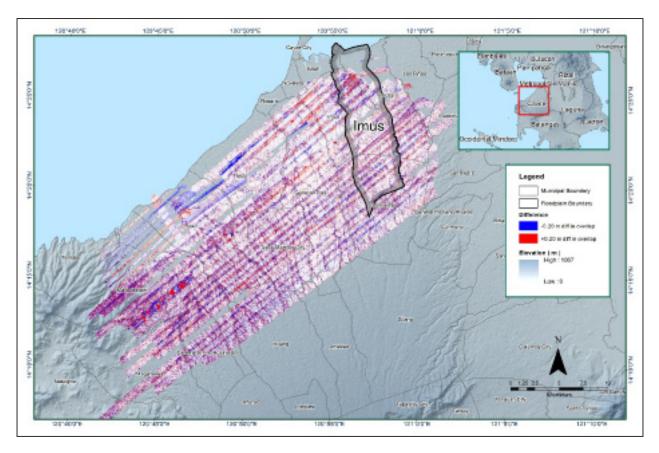


Figure 15. Elevation difference map between flight lines for Imus Floodplain.

A screen capture of the processed LAS data from Imus flight 1027P loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

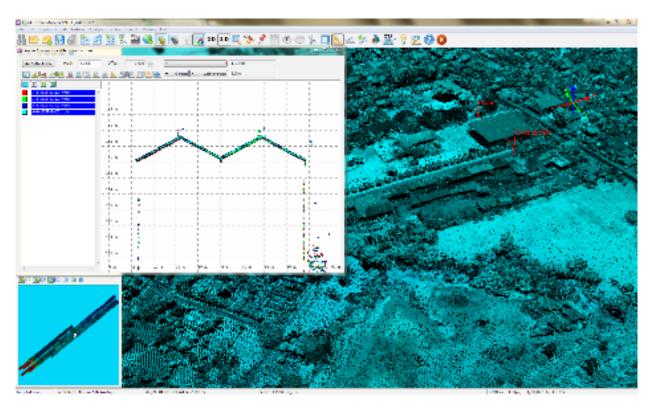


Figure 16. Quality checking for Imus flight 1027P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 15. Imus classification results in TerraScan.

Pertinent Class	Total Number of Points
Ground	1,042,551,229
Low Vegetation	796,670,929
Medium Vegetation	889,186,193
High Vegetation	731,269,771
Building	254,082,365

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Imus floodplain is shown in Figure 17. A total of 1,306 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 805.73 meters and 44.59 meters respectively.

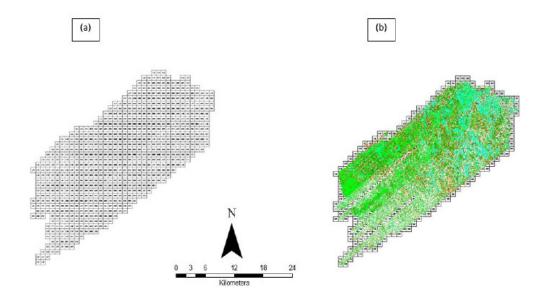


Figure 17. Tiles for Imus Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

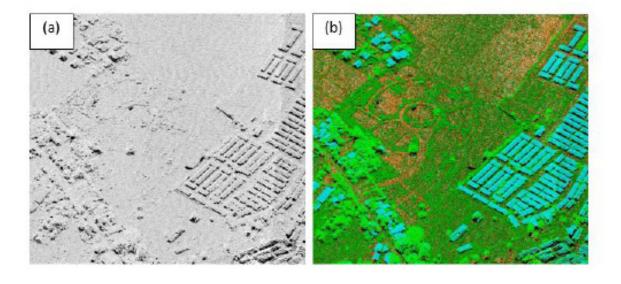


Figure 18. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

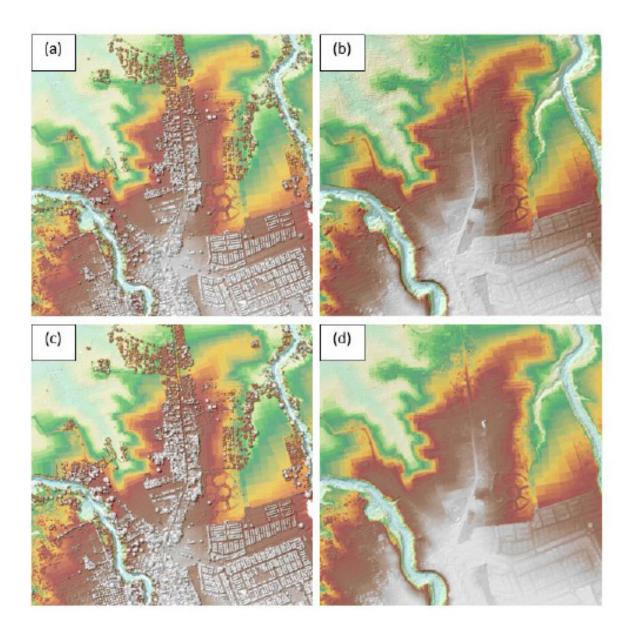


Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Imus Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 276 1km by 1km tiles area covered by Imus floodplain is shown in Figure 20. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Imus floodplain has a total of 179.65 sq.km orthophotograph coverage comprised of 1,203 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 21.

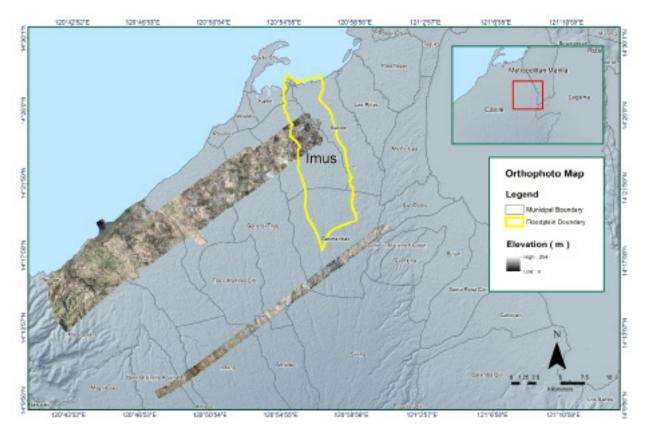


Figure 20. Imus Floodplain with available orthophotographs.

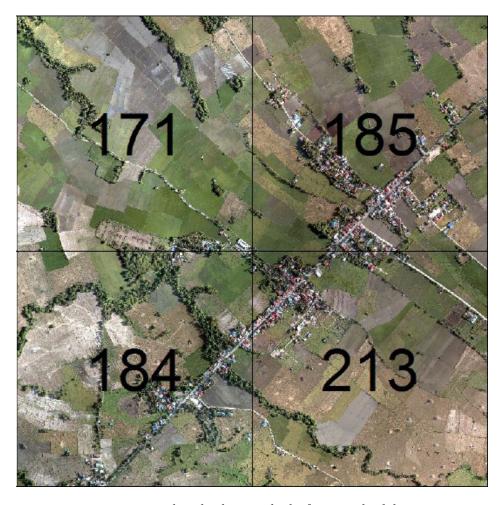


Figure 21. Sample orthophotograph tiles for Imus Floodplain.

3.8 DEM Editing and Hydro-Correction

Ten (10) mission blocks were processed for Imus flood plain. These blocks are composed of CALABARZON, CALABARZON_reflights and Cavite blocks with a total area of 838.05 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

Table 16. LiDAR blocks with its corresponding area.

LiDAR Blocks	Area (sq.km)
CALABARZON_Blk18B_supplement	106.91
CALABARZON_reflights_Blk18A	149.85
CALABARZON_reflights_Blk18B_supplement1	5.66
CALABARZON_reflights_Blk18B_supplement3	9.47
CALABARZON_reflights_Blk18B_supplement4	8.74
CALABARZON_reflights_Blk18B_supplement5	2.01
Cavite_Blk18AB	127.12
Cavite_Blk18C	117.91
Cavite_Blk18C_additional	210.76
Cavite_Blk18A_supplement2	99.62
TOTAL	838.05 sq.km

Portions of DTM before and after manual editing are shown in Figure 22. The bridge (Figure 22a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 22b) in order to hydrologically correct the river. The paddy field (Figure 22c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 22d) to allow the correct flow of water. Another example is a building that is still present in the DTM after classification (Figure 22e) and has to be removed through manual editing (Figure 22f).

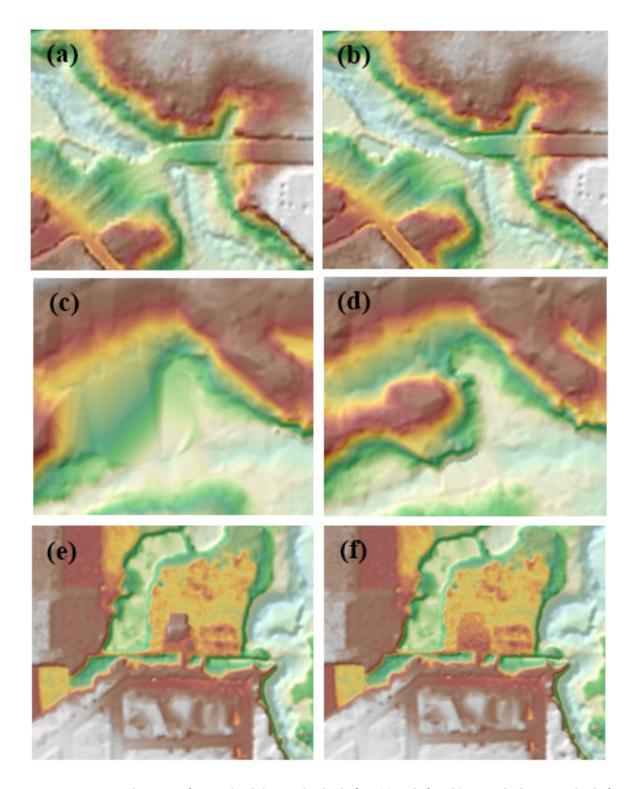


Figure 22. Portions in the DTM of Imus Floodplain – a bridge before (a) and after (b) manual editing; a ridge before (c) and after (d) data retrieval; and a building before (e) and after (f) manual editing.

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Calabarzon DEM overlapping with the blocks to be mosaicked. Table 17 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Imus floodplain is shown in Figure 23. It can be seen that the entire Imus floodplain is 100% covered by LiDAR data.

Table 17. Shift Values of each LiDAR Block of Imus Floodplain

Mission Blocks	Sh	ift Values (mete	ers)
IVIISSIOII DIOCKS	х	У	Z
CALABARZON_Blk18B_supplement	0.00	0.00	0.00
CALABARZON_reflights_Blk18A	-2.81	1.41	0.55
CALABARZON_reflights_Blk18B_supplement1	-1.25	0.55	0.05
CALABARZON_reflights_Blk18B_supplement3	0.00	0.00	0.00
CALABARZON_reflights_Blk18B_supplement4	-1.84	1.76	0.15
CALABARZON_reflights_Blk18B_supplement5	-1.52	-0.01	0.20
Cavite_Blk18AB	-1.80	1.13	-0.50
Cavite_Blk18C	-1.84	-1.54	-0.45
Cavite_Blk18C_additional	-1.81	1.32	-0.50
Cavite_Blk18A_supplement2	-2.31	1.34	0.00

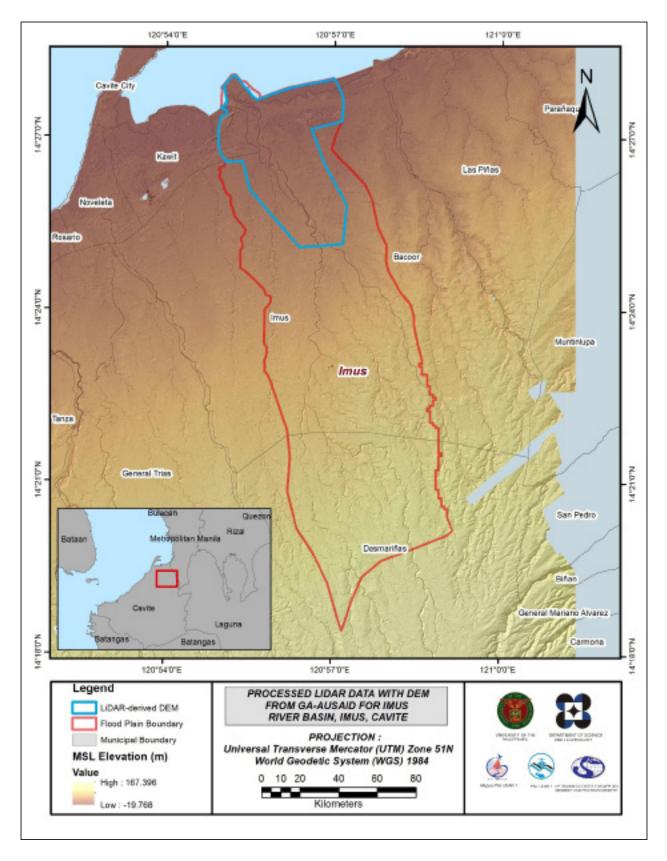


Figure 23. Map of Processed LiDAR Data for Imus Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Imus to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 24,251 survey points were gathered for all the flood plains within the provinces of CALABARZON wherein the Imus floodplain is located. Random selection of 80% of the survey points, resulting to 19,401 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 2.97 meters with a standard deviation of 0.20 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 2.97 meters, to the mosaicked LiDAR data. Table 18 shows the statistical values of the compared elevation values between the LiDAR data and calibration data.

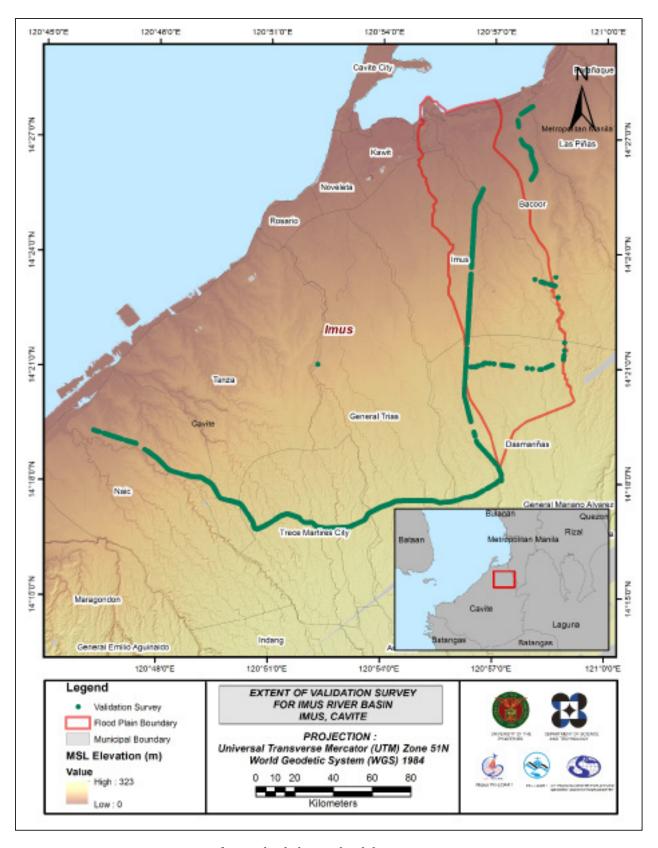


Figure 24. Map of Imus Flood Plain with validation survey points in green.

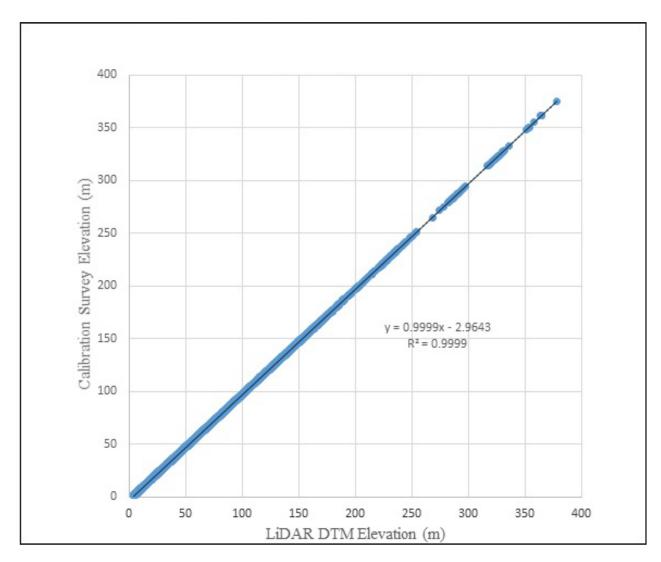


Figure 25. Correlation plot between calibration survey points and LiDAR data.

Table 18. Calibration Statistical Measures.

Calibration Statistical Measures	Value (meters)
Height Difference	2.97
Standard Deviation	0.20
Average	-2.97
Minimum	-3.48
Maximum	-2.40

The remaining 20% of the total survey points that are near Imus flood plain, resulting to 362 points, were used for the validation of calibrated Imus DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.15 meters, as shown in Table 19.

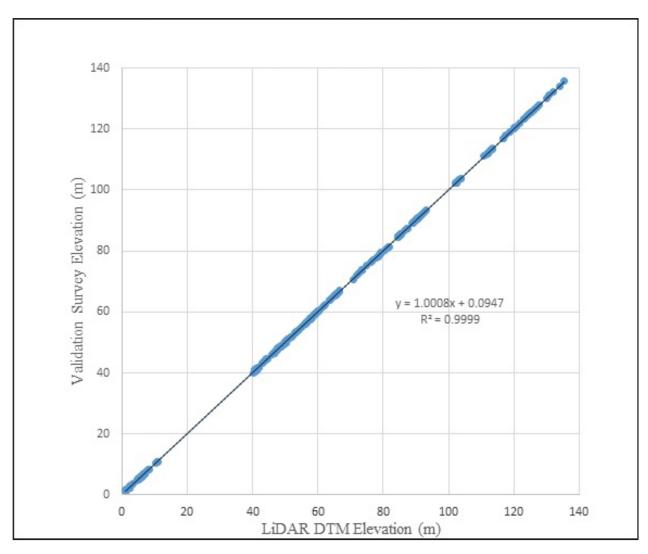


Figure 26. Correlation plot between validation survey points and LiDAR data.

Table 19. Validation Statistical Measures.

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.15
Average	0.14
Minimum	-0.44
Maximum	0.31

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, the centerline and zigzag data were available for Imus with 9023 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation and Kernel Interpolation (with Barriers) methods. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.31 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Imus integrated with the processed LiDAR DEM is shown in Figure 27.

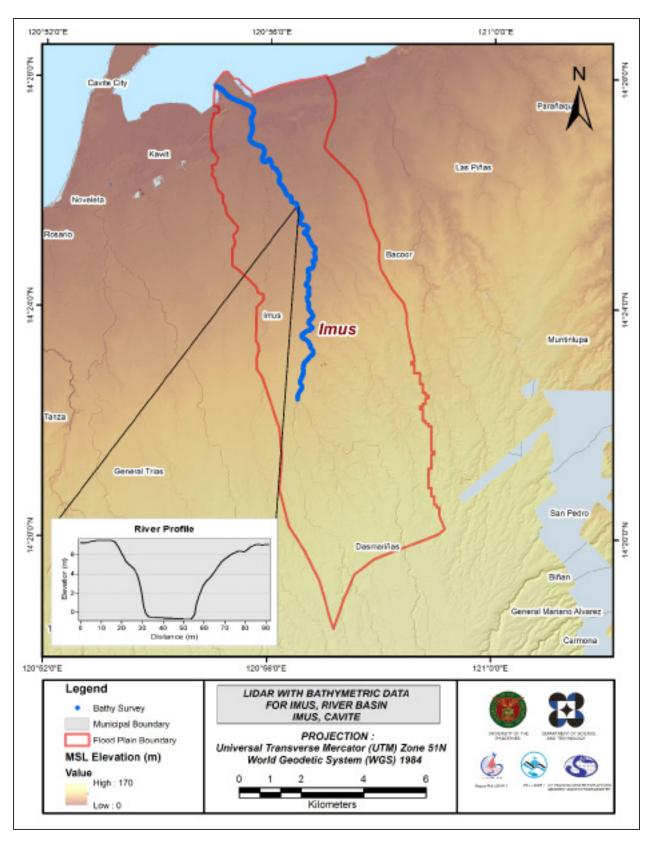


Figure 27. Map of Imus Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Imus floodplain, including its 200 m buffer, has a total area of 79.90 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 4759 building features, are considered for QC. Figure 28 shows the QC blocks for Imus floodplain.

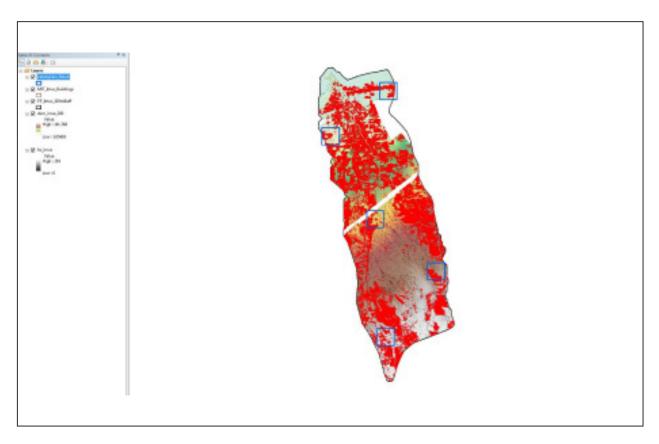


Figure 28. QC blocks for Imus building features.

Quality checking of Imus building features resulted in the ratings shown in Table 20

Table 20. Quality Checking Ratings for Imus Building Features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Imus	99.87	98.94	95.40	PASSED

3.12.2 Height Extraction

Height extraction was done for 105,772 building features in Imus floodplain. Of these building features, none was filtered out after height extraction, resulting to 105,722 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 13.31 m.

3.12.3 Feature Attribution

The attributes were obtained by field data gathering. GPS devices were used to determine the coordinates of important features. These points are uploaded and overlaid in ArcMap and are then integrated with the shapefiles.

Table 21 summarizes the number of building features per type. On the other hand, Table 22 shows the total length of each road type, while Table 23 shows the number of water features extracted per type.

Table 21. Building Features Extracted for Imus Floodplain.

Facility Type	No. of Features
Residential	103,837
School	612
Market	105
Agricultural/Agro-Industrial Facilities	2
Medical Institutions	64
Barangay Hall	96
Military Institution	0
Sports Center/Gymnasium/Covered Court	58
Telecommunication Facilities	0
Transport Terminal	3
Warehouse	32
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	3
Water Supply/Sewerage	17
Religious Institutions	100
Bank	6
Factory	236
Gas Station	76
Fire Station	0
Other Government Offices	34
Other Commercial Establishments	441
Total	105,722

Table 22. Length of Extracted Roads for Imus Floodplain.

	Road Network Length (km)						
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total	
Imus	883.75	62.57	32.13	0	0.00	978.46	

Table 23. Number of Extracted Water Bodies for Imus Floodplain.

		Water Body Type						
Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Others	Total	
Imus	11	140	1	0	0	0	152	

A total of 101 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 29 shows the Digital Surface Model (DSM) of Imus floodplain overlaid with its ground features.

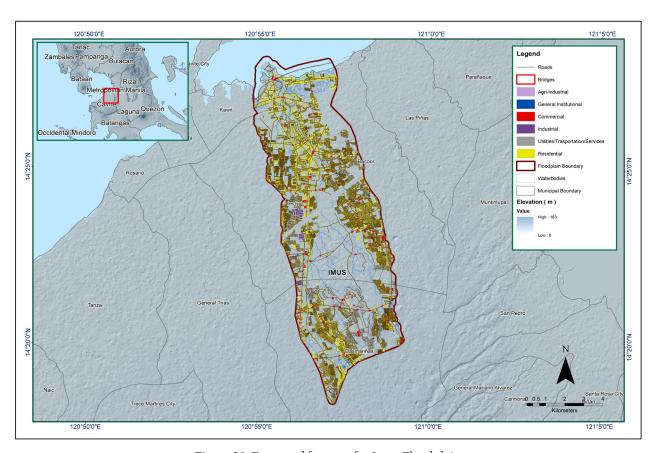


Figure 29. Extracted features for Imus Floodplain.

CHAPTER 4: DATA VALIDATION SURVEY AND MEASUREMENTS IN THE IMUS RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Basin Overview

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Imus River on September 13 to September 25, 2015 in partnership with the MAPUA Institute of Technology. The survey covered the bathymetric; as-built and cross-section of Daang Hari Bridge in Brgy. Anabu II-A, Imus City; and LiDAR Validation surveys in Imus River. The bathymetric survey was conducted using an OHMEX™ single beam echo sounder to determine the depth of the river while a Trimble® SPS 882 rover GPS gathered the coordinates and elevation values of the survey points. (Figure 30).

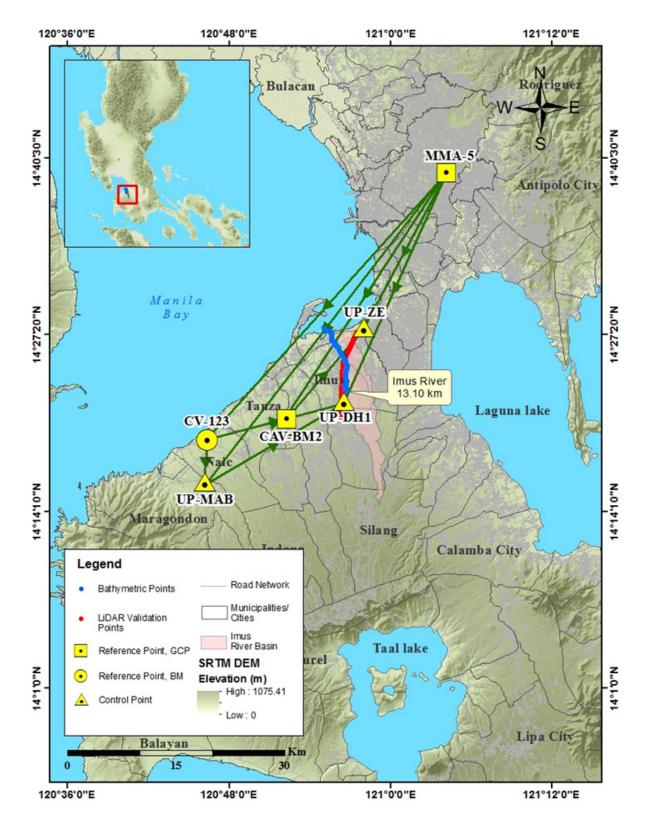


Figure 30. Imus River Survey Extent

4.2 Control Survey

The GNSS network used for Imus River Basin is composed of three (3) loops established on September 15, 2015 occupying the following reference points: MMA-5, a first order GCP in University of the Philippines, Diliman, Quezon City; and CV-123, a first order BM, located in front of Iglesia ni Cristo church, Brgy. Amaya, Municipality of Naic, Cavite.

Four control points were established along the approach of the bridges namely; UP-DH1, at Daang Hari Bridge in Brgy. Anabu II-A, Municipality of Imus, Cavite; UP-MAB, located at Mabacao Bridge, Brgy. Bucal IV B, Municipality of Maragondon, Cavite; UP-ZE at the right side of Zapote bridge, Brgy. Zapote, Basa I, Las Piñas City; and CAV-BM2, at Canas bridge, Brgy. Tapia, Municipality of General Trias, Cavite was also occupied to use as marker during the survey.

The summary of reference and control points and its location is summarized in Table 24 while GNSS network established is illustrated in Figure 31.

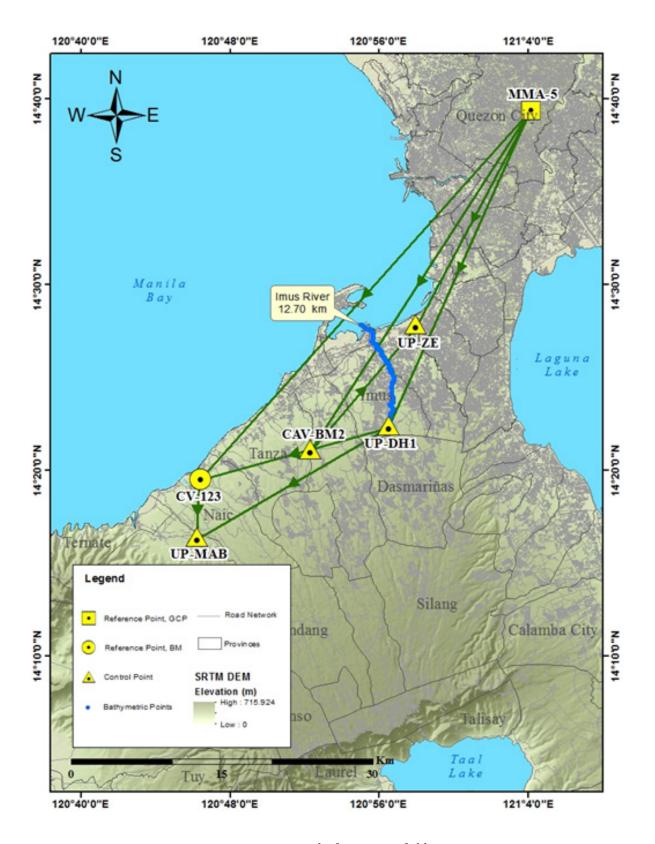


Figure 31. GNSS Network of Imus River field survey

Table 24. List of Reference and Control Points occupied for Imus River Survey (Source: NAMRIA, UP-TCAGP)

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude Longitude		Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
MMA-5	2nd Order, GCP	14°39'22.97451"	121°04'11.14940"	133.379	-	1956		
CV-123	1st Order, BM	-	-	52.071	9.314	2008		
CAV-BM2	UP Established	-	-	-	-	Sept. 15, 2015		
UP-DH1	UP Established	-	-	-	-	Sept. 15, 2015		
UP-MAB	UP Established	-	-	-	-	Sept. 17, 2015		
UP-ZE	UP Established	-	-	-	-	Sept. 17, 2015		

The GNSS set ups made in the location of the reference and control points are exhibited in Figure 32 to Figure 35.

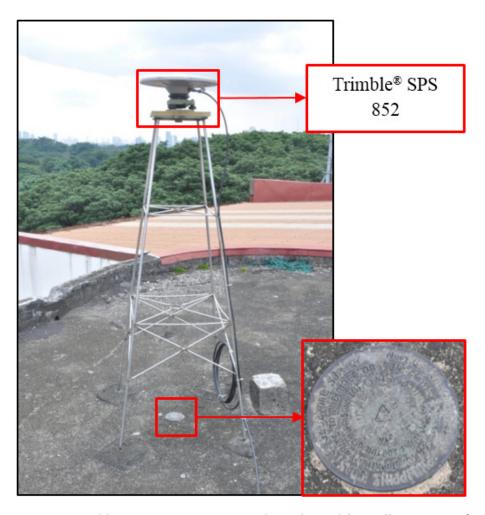


Figure 32. Trimble® SPS 852 setup at MMA-5 located at Melchor Hall, University of the Philippines, Diliman, Quezon City

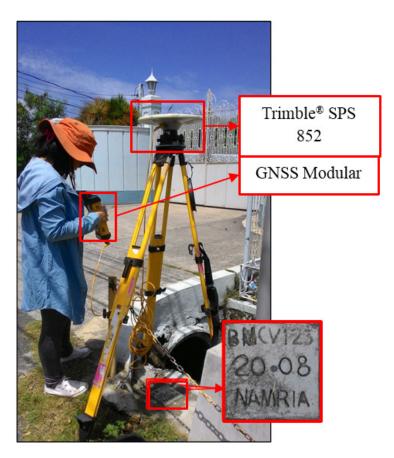


Figure 33. GNSS base setup of Trimble® SPS 852 at CV-123, located in front of the Iglesia ni Cristo chapel, Municipality of Naic, Cavite

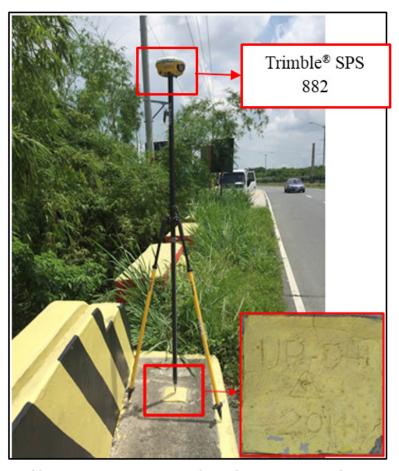


Figure 34. Trimble® SPS 882 setup at UP-DH1 located in Daang Hari Bridge, Brgy. Anabu II-A, Municipality of Imus, Cavite

Figure 35. Trimble® SPS 985 setup at UP-MAB located at the approach of Mabacao Bridge, Brgy. Bucal IV B, Municipality of Maragondon, Cavite

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20cm and +/-10cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Imus River Basin is summarized in Table 25 generated by TBC software.

Table 25. Baseline Processing Summary Report for Imus River Basin Static Survey

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
CV-123 UP-MAB	09-15-2015	Fixed	0.005	0.022	182°55'06"	5730.614	19.916
CV-123 UP-MAB	09-15-2015	Fixed	0.005	0.012	182°55'05"	5730.599	19.913
UP-DH1 UP-MAB	09-15-2015	Fixed	0.088	0.108	239°06'21"	21662.35	-9.875
UP-DH1 CV-123	09-15-2015	Fixed	0.006	0.034	253°33'16"	19073.15	-29.7
CAV-BM2 UP-ZE	09-17-2015	Fixed	0.005	0.022	39°14'40"	16153.02	-24.213
MMA-5 UP-DH1	09-15-2015	Fixed	0.006	0.014	203°41'56"	34213.76	-51.591
MMA-5 CV-123	09-15-2015	Fixed	0.023	0.021	221°06'52"	48736.51	-81.313
MMA-5 CV-123	09-15-2015	Fixed	0.023	0.025	221°06'52"	48736.48	-81.311
MMA-5 UP-ZE	09-17-2015	Fixed	0.005	0.018	207°38'44"	24003.52	-85.42
MMA-5— CAVBM2	09-17-2015	Fixed	0.004	0.014	212°19'39"	39957.2	-61.233

As shown in Table 25, a total of 10 baselines were processed with reference point MMA-5 held fixed for coordinate values; and CV-123 fixed for elevation values. All of them passed the required accuracy set

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates (Table 27) of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and $z_e < 10$ cm

Where:

xe is the Easting Error, yeis the Northing Error, and zeis the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 26 to Table 28 for the complete details.

The six (6) control points, MMA-5, CV-123, CAV-BM2, UP-DH1, UP-MAB, and UP-ZE were occupied and observed simultaneously to form a GNSS loop. Coordinates of MMA-5 and elevation values of CV-123 were held fixed during the processing of the control points as presented in Table 26. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 26. Control Point Constraints

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
CV-123	Grid				Fixed		
MMA-5	Global	Fixed	Fixed	Fixed			
Fixed = 0.000001(Meter)							

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 27. All fixed control points have no values for grid and elevation errors.

Table 27. Adjusted Grid Coordinates

Point ID	Easting	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
MMA-5	292122.994	?	1621207.085	?	89.331	0.047	LL
CV-123	259759.978	0.023	1584752.533	0.010	9.314	?	е
CAV-BM2	270467.286	0.011	1587618.081	0.007	29.230	0.068	
UP-DH1	278104.989	0.018	1589990.469	0.007	38.572	0.055	
UP-MAB	259413.172	0.025	1579030.620	0.013	29.050	0.040	
UP-ZE	280803.732	0.012	1600035.582	0.009	4.798	0.076	

With the mentioned equation, $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10$ cm for horizontal and for the vertical, respectively; the computation for the accuracy are as follows:

MMA-5 a. horizontal accuracy Fixed vertical accuracy 4.7 cm < 10 cm b. CV-123 $V((2.3)^2 + (1.0)^2)$ horizontal accuracy 2.51 cm < 20 cm = vertical accuracy Fixed = CAV-BM2 c. $\sqrt{((1.1)^2+(0.7)^2)}$ horizontal accuracy = 1.30cm < 20 cm = vertical accuracy 6.8 cm < 10 cm = d. UP-DH 1 horizontal accuracy $\sqrt{((1.8)^2 + (0.7)^2)}$ $\sqrt{(3.24 + 0.49)}$ 1.93 cm < 20 cm = vertical accuracy 5.5 cm < 10 cm **UP-MAB** e. horizontal accuracy = $\sqrt{((2.5)^2 + (1.3)^2)}$ 2.82 cm < 20 cm = vertical accuracy = 4.0 cm < 10 cm UP-ZE f. horizontal accuracy $\sqrt{((1.2)^2 + (0.9)^2)}$ $\sqrt{(1.44 + 0.81)}$ = = 1.5 cm < 20 cm vertical accuracy 7.6 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required accuracy of the project.

Table 28. Adjusted Geodetic Coordinates

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
MMA-5	N14°39'22.97451"	E121°04'11.14940"	133.379	0.047	LL
CV-123	N14°19'27.61225"	E120°46'21.72442"	52.071	?	е
CAV-BM2	N14°21'04.09862"	E120°52'18.03337"	72.153	0.068	
UP-DH1	N14°22'23.52073"	E120°56'32.16087"	81.814	0.055	
UP-MAB	N14°16'21.39512"	E120°46'11.99131"	71.979	0.040	
UP-ZE	N14°27'51.06089"	E120°57'59.25259"	47.954	0.076	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 28. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 29.

Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)			UTM ZONE 51 N			
		Latitude	Longitude	Ellipsoidal Height (m)	Northing	Easting	BM Ortho	
MMA-5	2nd Order, GCP	14°39'22. 97451"	121°04'11. 14940"	133.379	1621207.085	292122.994	89.331	
CV-123	1st Order, BM	14°19'27. 61225"	120°46'21. 72442"	52.071	1584752.533	259759.978	9.314	
CAV-BM2	UP Established	14°21'04. 09862"	120°52'18. 03337"	72.153	1587618.081	270467.286	29.230	
UP-DH1	UP Established	14°22'23. 52073"	120°56'32. 16087"	81.814	1589990.469	278104.989	38.572	
UP-MAB	UP Established	14°16'21. 39512"	120°46'11. 99131"	71.979	1579030.620	259413.172	29.050	
UP-ZE	UP Established	14°27'51. 06089"	120°57'59. 25259"	47.954	1600035.582	280803.732	4.798	

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were conducted on September 16, 2015 at the upstream side of Daang Hari Bridge in Brgy. Anabu II-A, Imus City as shown in Figure 36. A Trimble® SPS 882 in PPK survey technique at the upstream side of the bridge as shown in Figure 37.

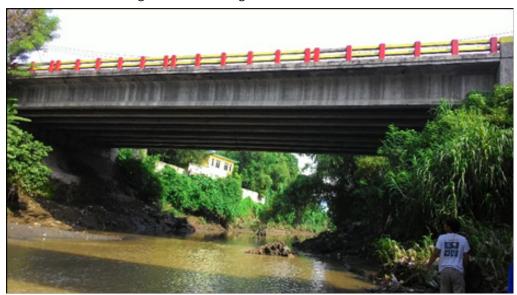


Figure 36. Imus Bridge facing upstream

Figure 37. Bridge As-Built Survey using PPK Technique.

The cross-sectional line of Daang Hari Bridge is about 103.3 meters with eighteen (18) cross-sectional points using the control point UP-DH1 as the GNSS base station. The location map, cross-section diagram, and the bridge data form are illustrated in Figure 38 to Figure 40.

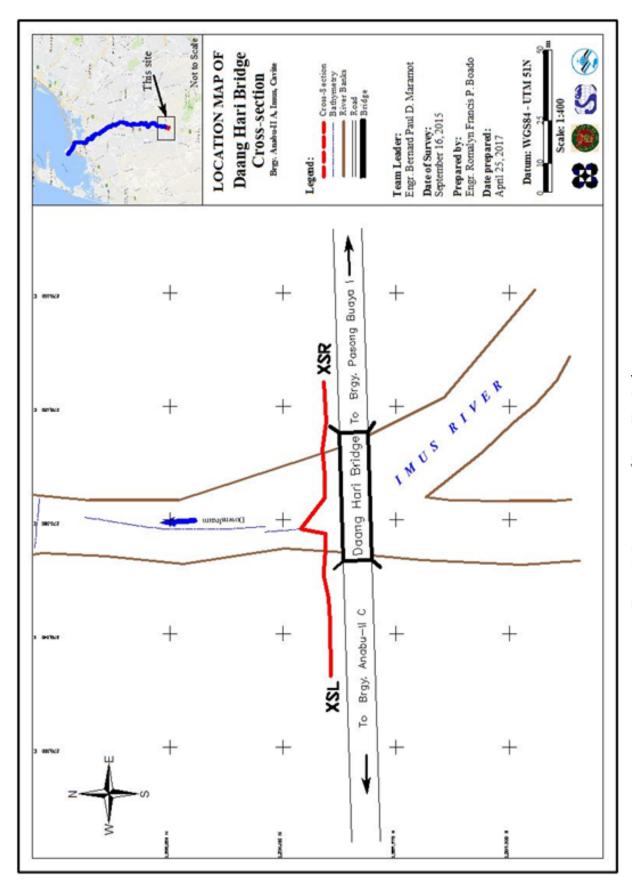


Figure 38. Location map of Daang Hari Bridge cross-section

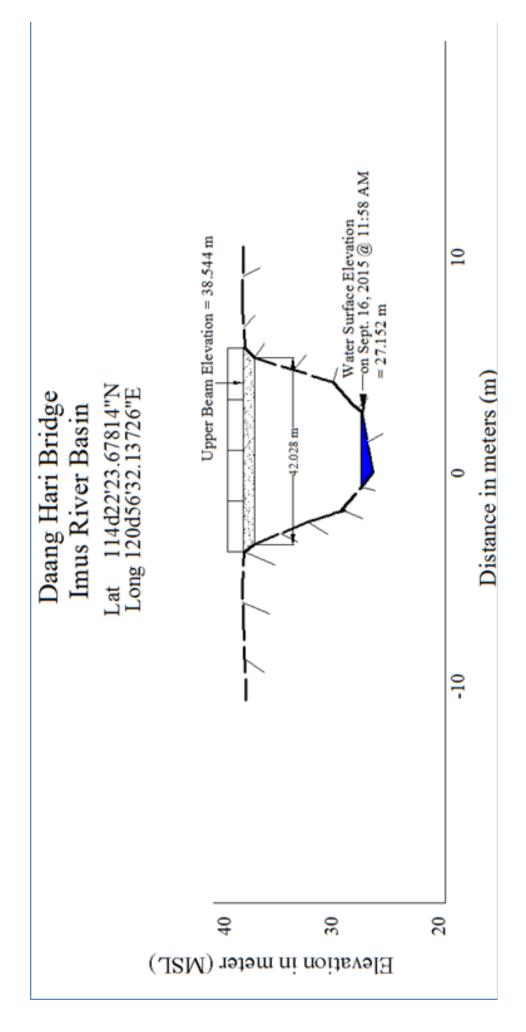


Figure 39. Daang Hari Bridge cross-section diagram

ridge Na	me:	Daang Hari Bridge				Date: Sept	ember 16, 201	
ver Nar	ne: Im	us River				Time: 11:09 A.	M.	
cation	(Brgy,	City, Region): Brgy Anabu-	II A, Imus, Ca	vite				
urvey Te	eam: I	eam Bernard						
ow con	dition:	low normal	high		Weather	Condition: (f	air rainy	
titude:	14d22'	23.67814"			Longitude	: 120d56'32.13726		
BA	2	D		€BA3	[7	gend:		
1					BA4 B	A . Bridge Approach P	Pler LC + Low C	
0.0						- Addition	Dect Inc - regit	
	Ab1			Ab2	N.	1 1 1	1 1	
				н				
		Deck (Please start your me		the left si		g downstream) BA2): 44.906		
vation: 3	38.344_	Station Width:	7.84	Hin	Chord Elevatio	- 1/2/A	ord Elevation	
		Station			38.45		38.26	
			_		30.43	_	30.20	
			-			-		
-			- 0			_		
4			- 0			-		
		Bridge Approach (House		er from the	helt side of the basis faci	as down record		
244	Stat	ion(Distance from BA1)	Elevation			ance from BA1) 0.770	Elevation 38.519	
BA1		0	37.865	BA3				
BA2		34.864	38.45	BA4	10:	3.3344	38.147	
utment	: Ist	he abutment sloping?	Yes No;	If yes	, fill in the follow	ving information:		
		STATE OF STA	eteres from		200,100,000			
Ab1		-	Station (Distance from BA1) 35.1877		Elevation 38.045			
					11.12.1	12.100 2.10		
-	b2	Pier (Mease start your mea	77.130	the left of	de of the book fords	37.074		
	Secre					Simon of the same		
Α		The state of the s	X 10 11 11 11 11 11		Height of colur	7.500		
-	e:		n BA1)	A1) Elevation		Pier Width		
Shap	\exists	Station (Distance from				4		
Shap		Station (Distance from	1					
Shap Pier 1 Pier 2		Station (Distance from				+		
Shap Pier 1 Pier 2 Pier 3		Station (Distance from	100100					
Shap Pier 1 Pier 2		Station (Distance from						

Figure 40. Bridge as-built form of Daang Hari Bridge

Water surface elevation of Imus River was determined using Trimble® SPS 882 in PPK mode technique on September 16, 2015 at 11:58 PM with a value of 27.152 m in MSL as shown in Figure 39. The water surface elevation was translated onto marking the bridge's pier using a digital level, illustrated in Figure 41. The marked pier shall serve as reference for flow data gathering and depth gauge deployment by the accompanying HEI, Mapua Institute, who is responsible for Imus River.

Figure 41. Water level markings on the side of the pier in Daang Hari Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on September 20, 2015 using a survey-grade GNSS Rover receiver, Trimble® SPS 882, mounted on a pole which was attached in front of the vehicle as shown in Figure 42. It was secured with a cable tie to ensure that it is horizontally and vertically balanced. The antenna height of 2.36 meters was measured from the ground up to the bottom of notch of the GNSS Rover receiver.

Figure 42. Validation points acquisition survey set up for Imus River Basin

The conducted survey on September 20, 2015 started from Brgy. Zapote IV, Bacoor City, Cavite going south to Brgy. Salitran IV, Dasmariñas, Cavite. A total of 2,440 ground validation points were acquired with an approximate length of 14.86 km using UP-DH 1 as the GNSS base station, as shown in the map in Figure 43.

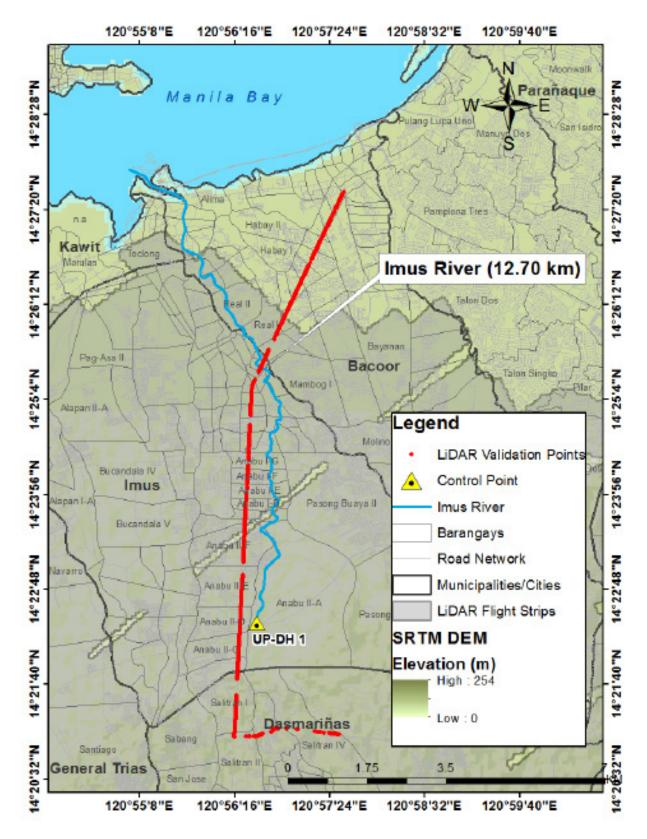


Figure 43. LiDAR validation points acquisition survey for Imus River Basin

4.7 Bathymetric Survey

Bathymetric survey was executed on September 16, 2015 using Trimble® SPS 882 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 44. The survey started in Brgy. Palico III, Imus City, Cavite, with coordinates 14°25′31.85031″N, 120°56′32.45009″E; and, ended at the mouth of the river in Brgy. Sineguelasan, Bacoor City, Cavite with coordinates 14°27′50.13509″N, 120°55′01.26006″E.

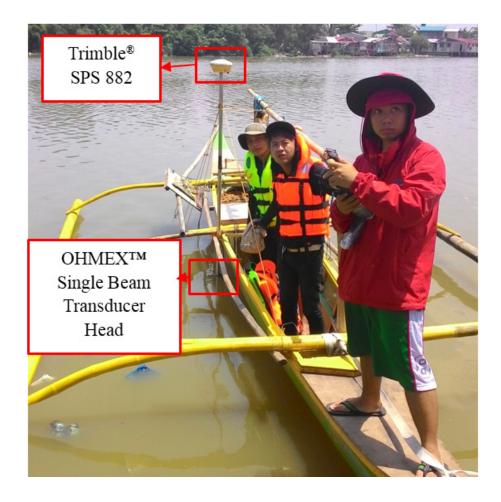


Figure 44. Bathymetric survey in Imus River

Manual Bathymetric survey on the other hand was also executed on September 20, 21, and 22, 2015 using Trimble® SPS 882 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 45. The survey started in the upstream in Brgy. Anabu II-A, Imus City, Cavite with coordinates 14°22′23.94297″N, 120°56′31.21804″E traversing down the river by foot and ended at the starting point of bathymetric survey using boat in Brgy. Palico II. The control point UP-DH1 was used as GNSS base station all throughout the entire survey.

Figure 45. Manual Bathymetric Survey in Imus River in Brgy. Anabu, Imus

The bathymetric survey for Imus River gathered a total of 8,873 points covering 12.70 km of the river traversing Barangay Anabu II-1, Imus City down to the mouth of the river in Brgy. Sineguelasan, Bacoor City, also in Cavite, as shown in Figure 46.

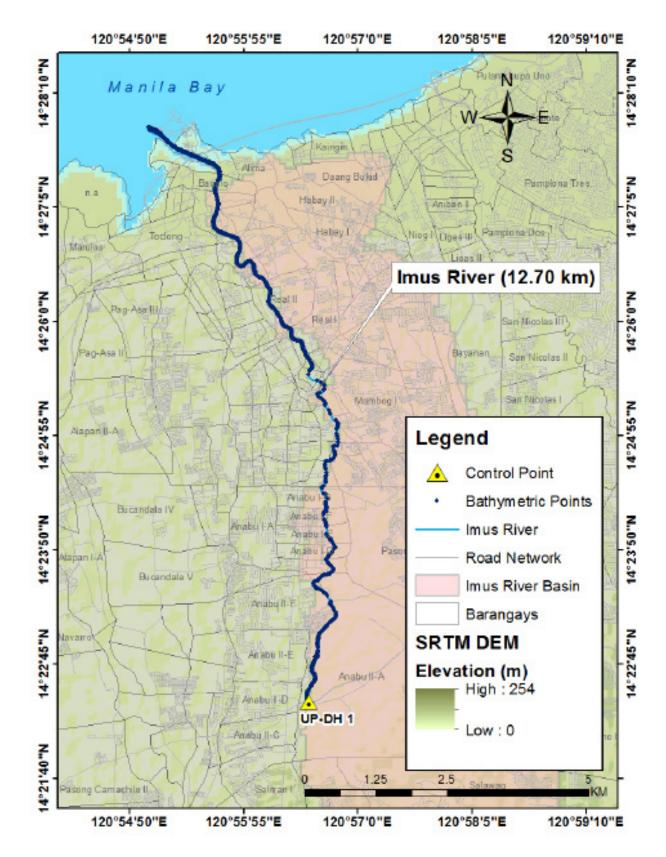


Figure 46. Bathymetric points gathered from Imus River

A CAD drawing was also produced to illustrate the riverbed profile of Macalelon River. As shown in Figure 51, the highest and lowest elevation has a 6.722-m difference for Macalelon River. The highest elevation observed was –1.5 m below MSL located at the middle part of Macalelon river; while the lowest was –8.22 m below MSL located in the downstream portion of the river.

A CAD drawing was also produced to illustrate the riverbed profile of Imus River. As shown in Figure 47, the highest and lowest elevation has a 30.733-m in MSL difference. The highest elevation observed was 35.696 m above MSL located upstream; while the lowest was -4.963 m below MSL located in the downstream part.

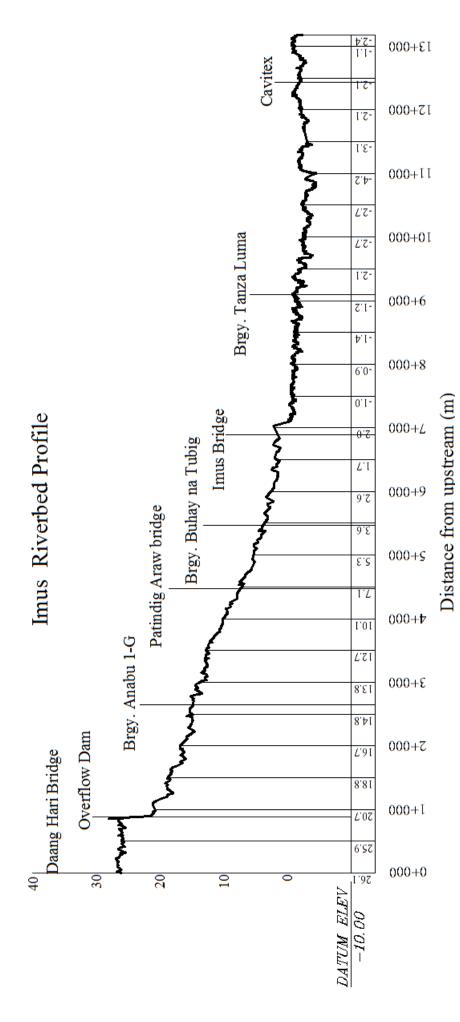


Figure 47. Imus riverbed profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data used in Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Imus River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Imus River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from one automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The location of the ARG used in the model is located at Dasmarinas, Cavite. The location of the rain gauge is shown in Figure 48.

The total rain from Dasmarinas rain gauge is 9.2 mm. It peaked to 2.4 mm on September 14, 2016, 15:45. The lag time between the peak rainfall and discharge is 5 hours, as shown in Figure 51.

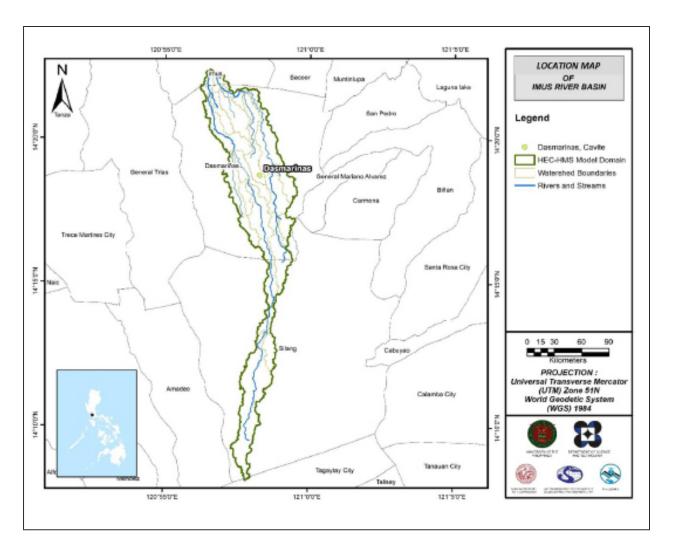


Figure 48. Location map of Dasmarinas rain gauge used for the calibration of the Imus HEC-HMS model

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Daang Hari Bridge, Imus, Cavite (14°22′23.61″N, 120°56′31.54″E). It gives the relationship between the observed water levels and outflow of the watershed at this location. It is expressed in the form of the following equation: Q=anh

where, Q : discharge (m3/s),

gauge height, and

a and n : constants.

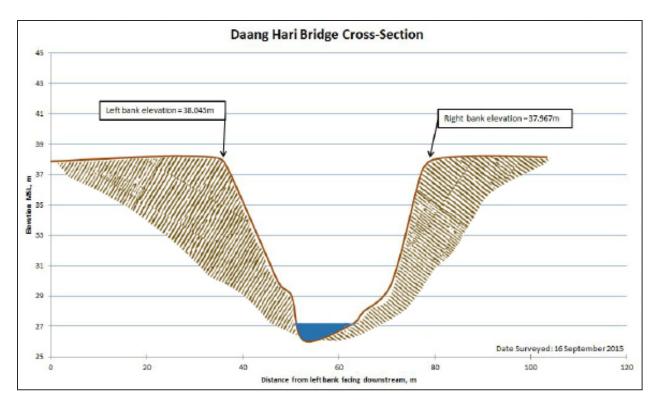


Figure 49. Cross-Section Plot of Imus Bridge

For Daang Hari Bridge, the rating curve is expressed y = 7E-286e23.227x as shown in Figure 50.

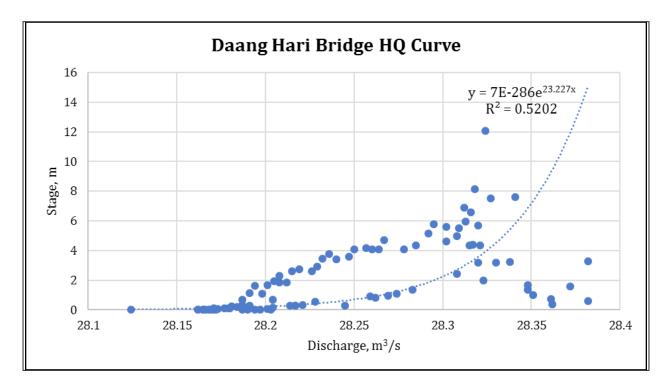


Figure 50. Rating curve at Daang Hari Bridge, Imus, Cavite

This rating curve equation was used to compute the river outflow at Daang Hari Bridge for the calibration of the HEC-HMS model shown in Figure 51. Peak discharge is 12.06 cms at 20:45, September 14, 2016.

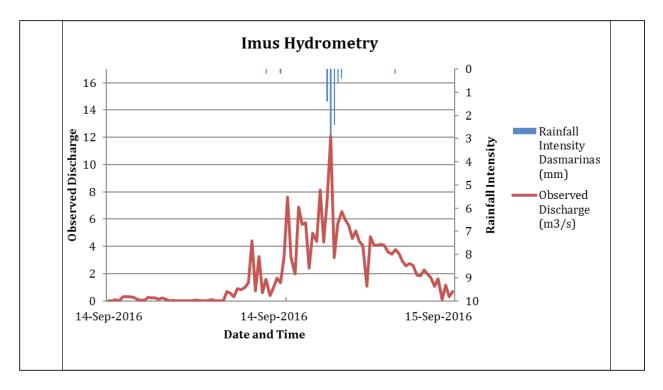


Figure 51. Rainflow and outflow data at Imus River used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Sangley Point Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to the Imus watershed. The extreme values for this watershed were computed based on a 26-year record, as shown in Table 30.

		COMPU	TED EXTRE	ME VALUE	S (in mm)	OF PRECIP	ITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	20.3	30	36.6	46.4	63.2	74.6	96.6	119.6	147.9
5	28.3	41.8	50.8	64.6	89.8	106.8	140.3	174	209.4
10	33.6	49.7	60.2	76.7	107.3	128.2	169.2	210	250.1
15	36.6	54.1	65.5	83.5	117.2	140.3	185.6	230.3	273.1
20	38.7	57.2	69.2	88.3	124.2	148.7	197	244.6	289.1
25	40.3	59.6	72.1	91.9	129.5	155.2	205.8	255.5	301.5
50	45.3	66.9	80.9	103.3	146	175.2	233	289.3	339.7
100	50.3	74.2	89.7	114.5	162.3	195.1	259.9	322.8	377.6

Table 30. RIDF values for Infanta Rain Gauge computed by PAGASA

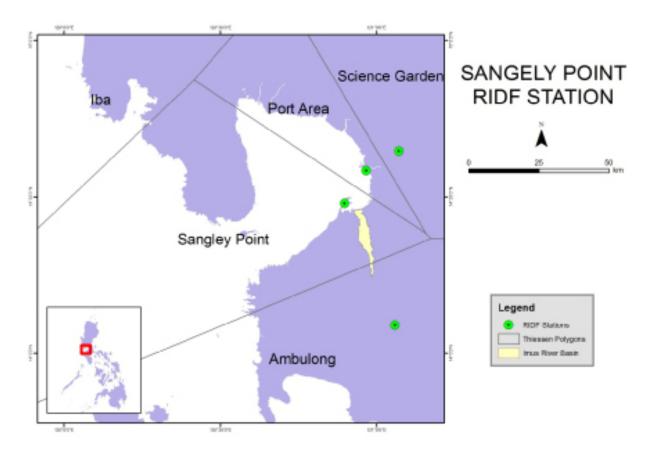


Figure 52. Sangley Point RIDF location relative to Imus River Basin

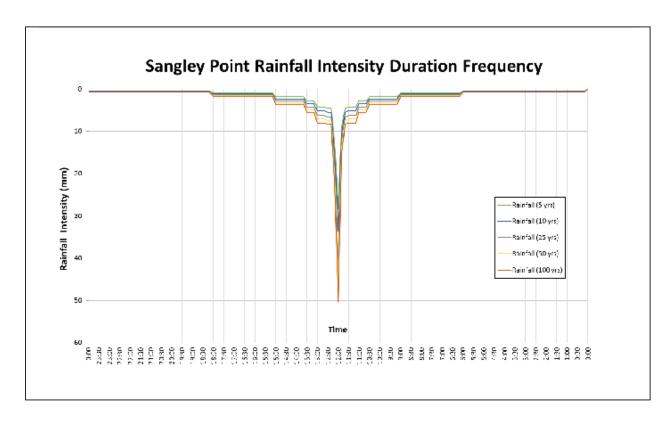


Figure 53. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 from the Bureau of Soil and Water Management (BSWM) under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Imus River Basin are shown in Figure 54 and Figure 55, respectively.

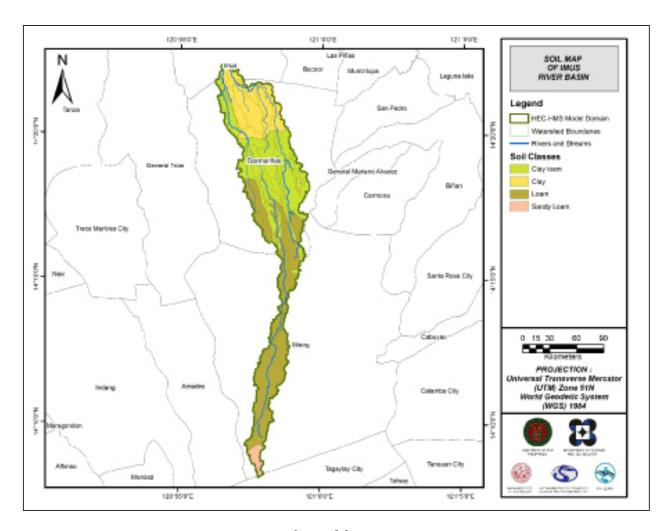


Figure 54. Soil map of the Imus River Basin

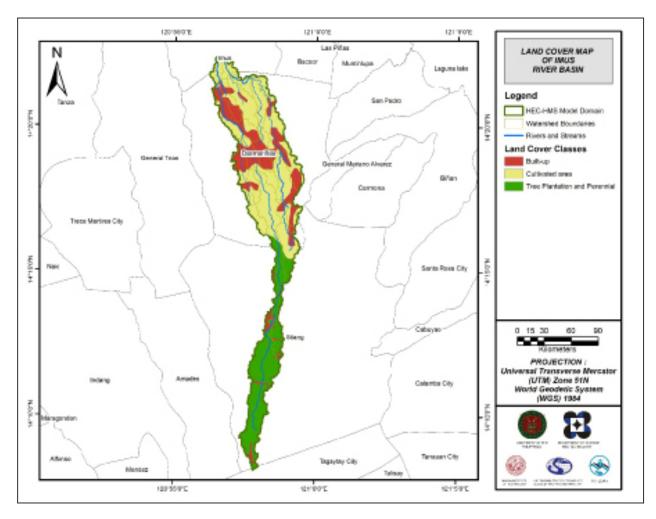


Figure 55. Land cover map of Imus River Basin

For Imus river basin, four (4) soil classes were identified. These are clay loam, clay, loam and sandy loam. Moreover, three (3) land cover classes were identified. These are built-up, cultivated area and tree plantation and perennial.

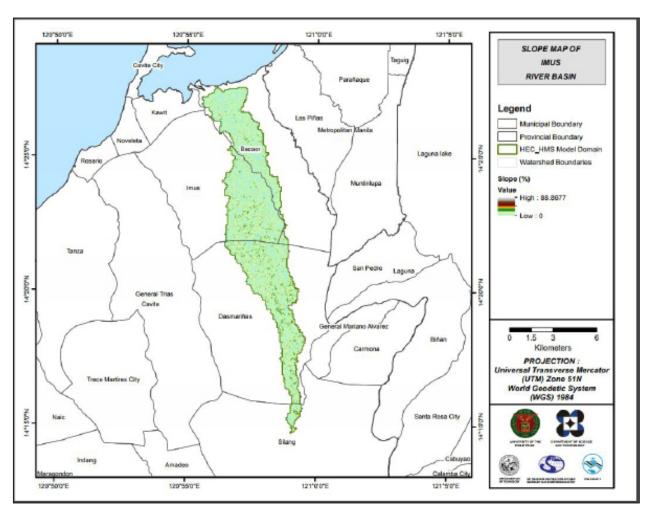


Figure 56. Slope map of Imus River Basin

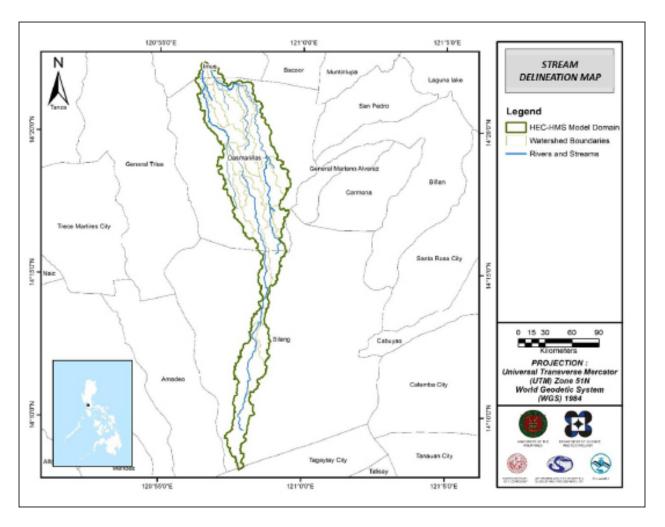


Figure 57. Stream delineation map of Imus River Basin

Using the SAR-based DEM, the Imus basin was delineated and further subdivided into subbasin. The Imus basin model consists of 18 sub basins, 9 reaches, and 9 junctions as shown in Figure 58. The main outlet is at the northernmost west tip of the watershed (W210). Finally, it was calibrated using depth gauge installed in Daang Hari Bridge.

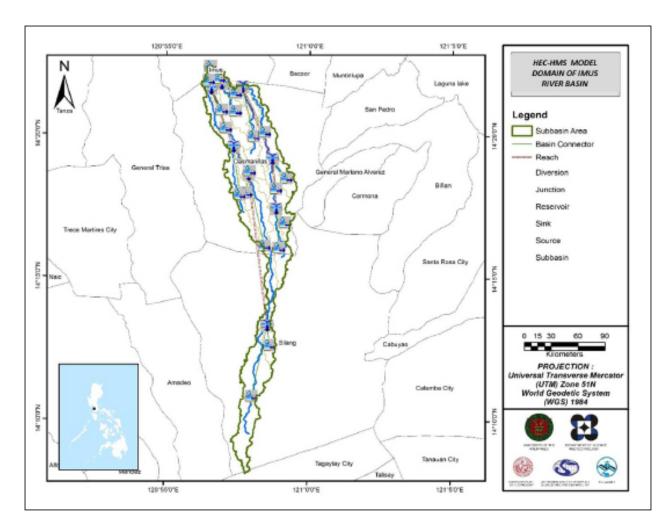


Figure 58. HEC-HMS generated Imus River Basin Model.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS. This is illustrated in Figure 59.

Figure 59. River cross-section of Imus River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 60. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 115.99292 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 81636384.00 m2.

There is a total of 111514881.82 m3 of water entering the model. Of this amount, 37922850.08 m3 is due to rainfall while 73592031.73 m3 is inflow from other areas outside the model. 16304948.00 m3 of this water is lost to infiltration and interception, while 16771999.99 m3 is stored by the flood plain. The rest, amounting up to 78437951.13 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Imus HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 67 shows the comparison between the two discharge data.

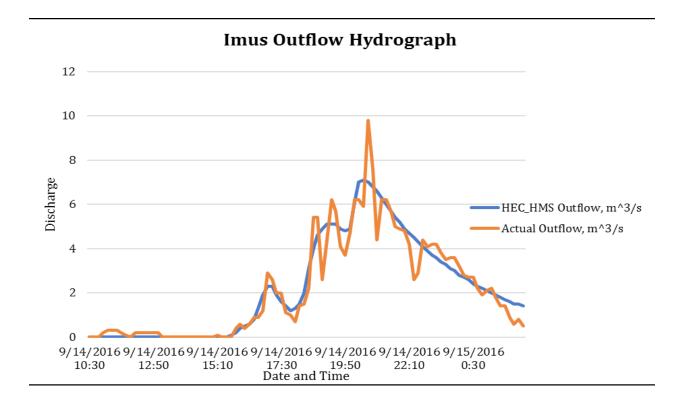


Figure 61. Outflow Hydrograph of Macalelon produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 31 are the adjusted ranges of values of the parameters used in calibrating the model.

Table 31. Range of Calibrated Values for Imus

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	0.73 – 9.21
	Loss	3C3 Curve Humber	Curve Number	60.038 - 99
Dasin	Transform	Clark Unit	Time of Concentration (hr)	0.31 – 30.55
Basin	Iransiorm	Hydrograph	Storage Coefficient (hr)	0.26 - 10.20
	Dasafla	Decesion	Recession Constant	0.026 - 0.05
	Baseflow	Recession	Ratio to Peak	0.045 – 0.05
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.014 - 0.74

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.73mm to 9.21mm means that there is a minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 60.038 to 99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Imus, four soil classes were identified. These are clay loam, clay, loam and sandy loam. Moreover, three land cover classes were identified. These are built-up, cultivated area and tree plantation and perennial.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.26 hours to 30.55 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. The Recession Constant ranges from 0.026 and 0.05 while the Ratio to Peak ranges from 0.045 to 0.05. The receding limb of the outflow hydrograph could be interpreted as likely to quickly return to its original discharge after an event.

Manning's roughness coefficient of 0.014 to 0.74 corresponds to the common roughness in Imus watershed (Brunner, 2010).

Accuracy measure	Value
RMSE	0.7
r2	0.94
NSE	1.00
PBIAS	-2.57
RSR	0.03

Table 32. Summary of the Efficiency Test of Imus HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 0.7 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.940805.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 1.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -2.57.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.03.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 62) shows the Imus outflow using the Sangley Point Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

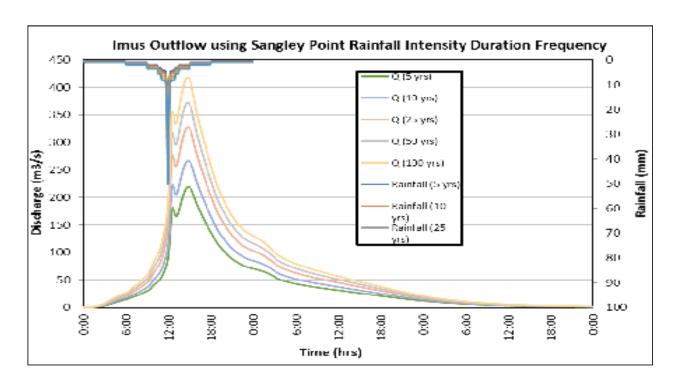


Figure 62. Outflow hydrograph at Imus Station generated using Sangley Point RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Imus discharge using the Sangley Point Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

Table 33. Peak values of the Imus HECHMS Model outflow using the Alabat RIDF

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	209.4	28.3	218.8	14 hours, 50 minutes
10-Year	250.1	33.6	266.6	14 hours, 50 minutes
25-Year	301.5	40.3	327.4	14 hours, 50 minutes
50-Year	339.7	45.3	372.8	14 hours, 50 minutes
100-Year	377.6	50.3	417.9	14 hours, 50 minutes

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Imus River using the calibrated HMS event flow with 50-year rain return scenario is shown in Figure 63.

Figure 63. Sample output of Imus RAS Model

5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps have a 10m resolution. Figure 64 to Figure 69 shows the 5-, 25-, and 100-year rain return scenarios of the Imus floodplain. Table 34 shows the municipalities affected in Imus Floodplain.

Table 34. Municipalities affected in Imus Floodplain

City / Municipality	Total Area	Area Flooded	% Flooded
Bacoor	47.43	16.74	35.30%
Dasmariñas	84.01	34.98	41.64%
Imus	56.81	35.73	62.89%
Kawit	9.47	1.21	12.83%

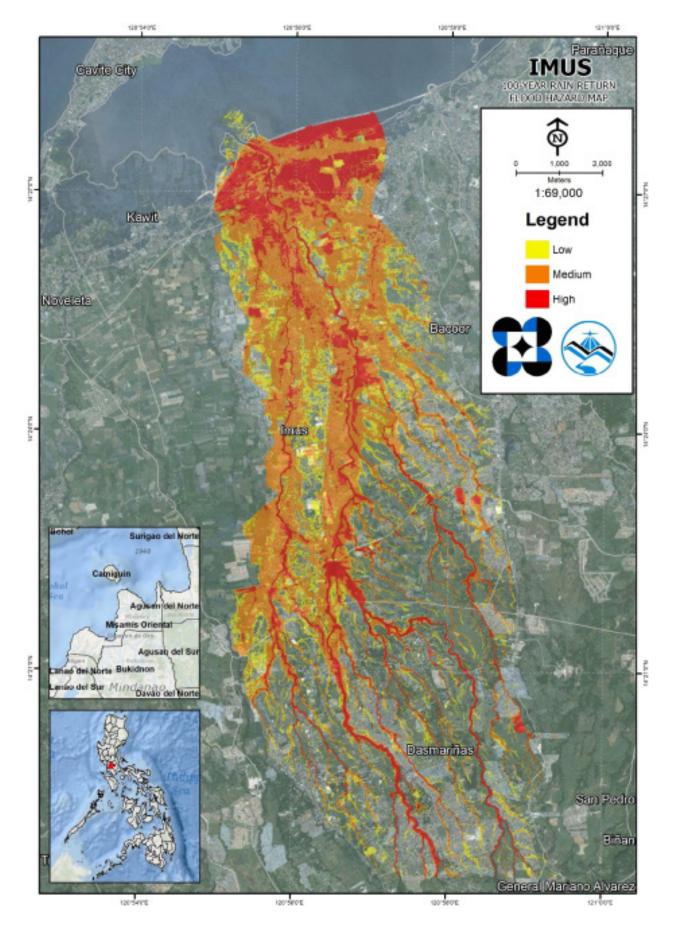


Figure 64. 100-year Flood Hazard Map for Imus Floodplain overlaid on Google Earth imagery

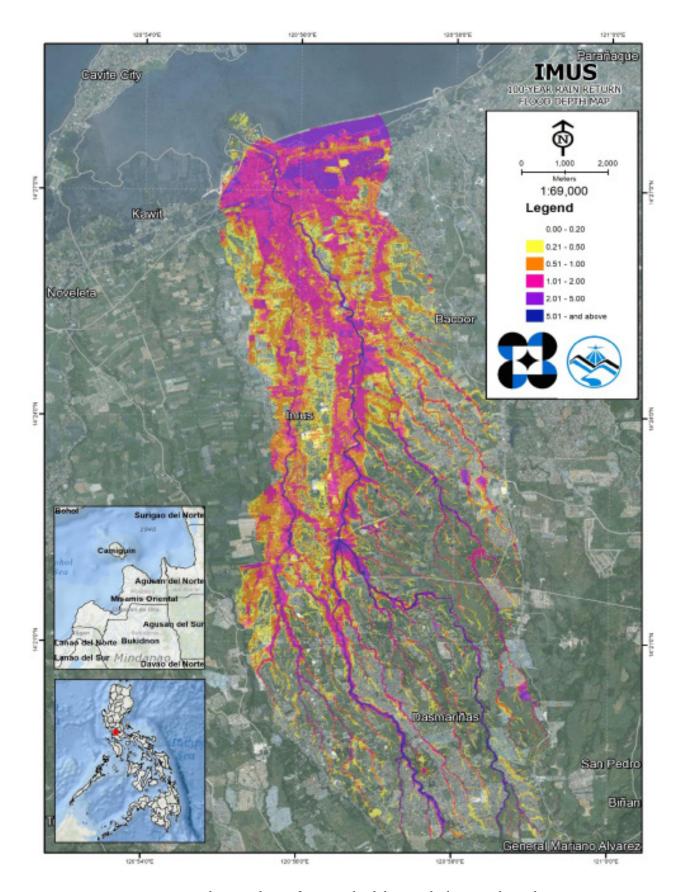


Figure 65. 100-year Flow Depth Map for Imus Floodplain overlaid on Google Earth imagery

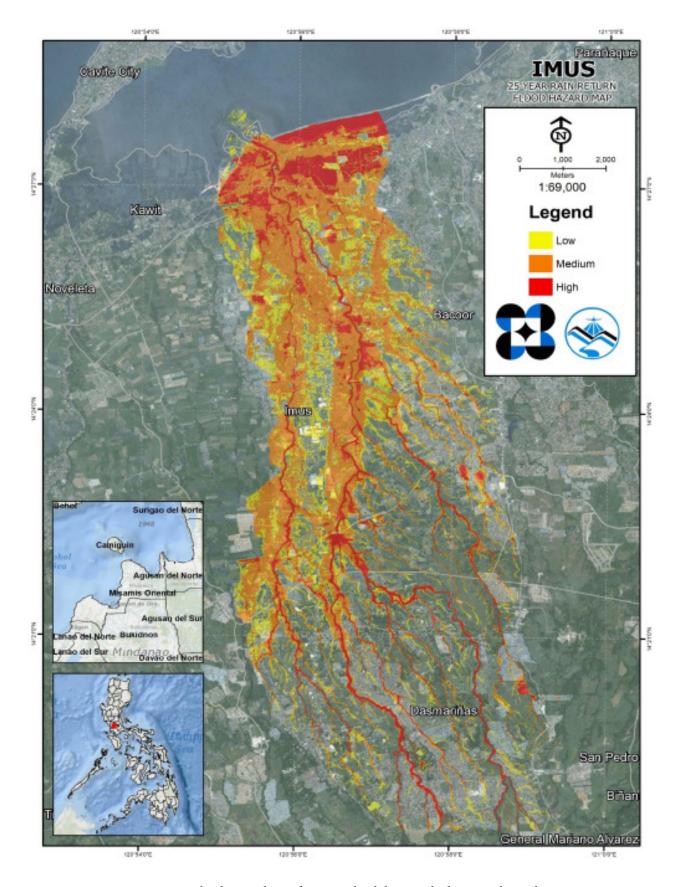


Figure 66. 25-year Flood Hazard Map for Imus Floodplain overlaid on Google Earth imagery

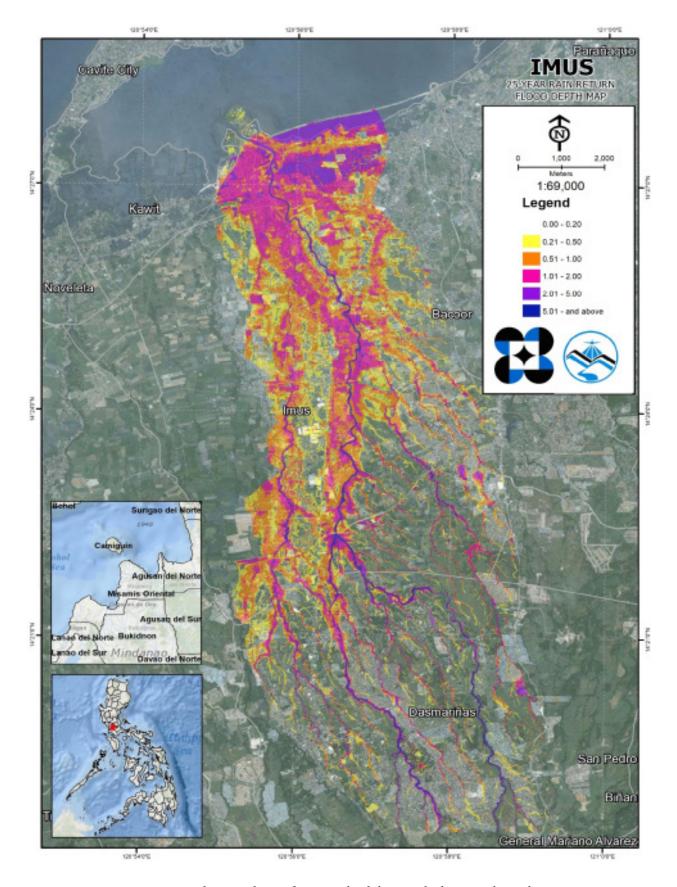


Figure 67. 25-year Flow Depth Map for Imus Floodplain overlaid on Google Earth imagery

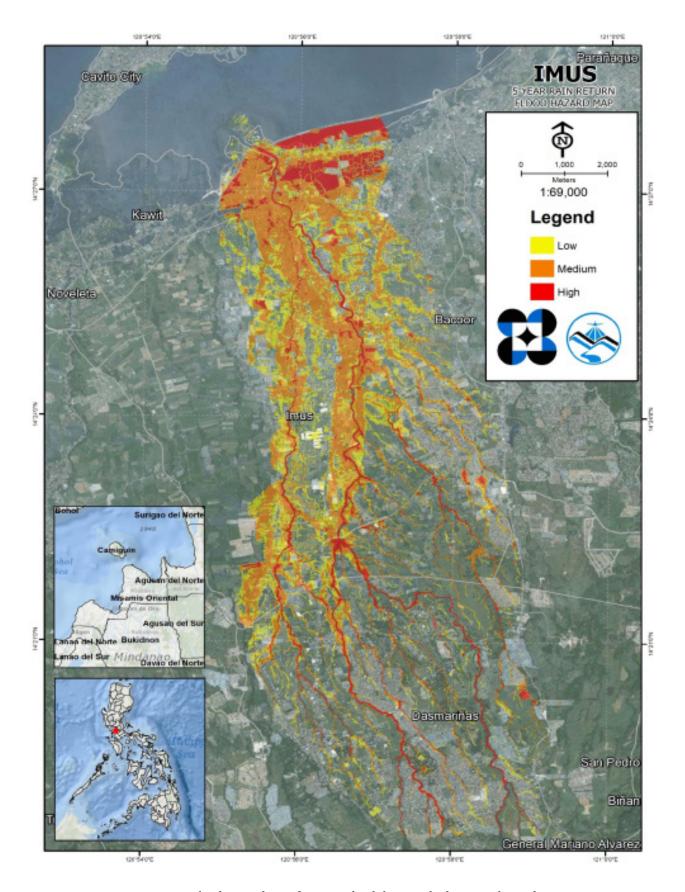


Figure 68. 5-year Flood Hazard Map for Imus Floodplain overlaid on Google Earth imagery

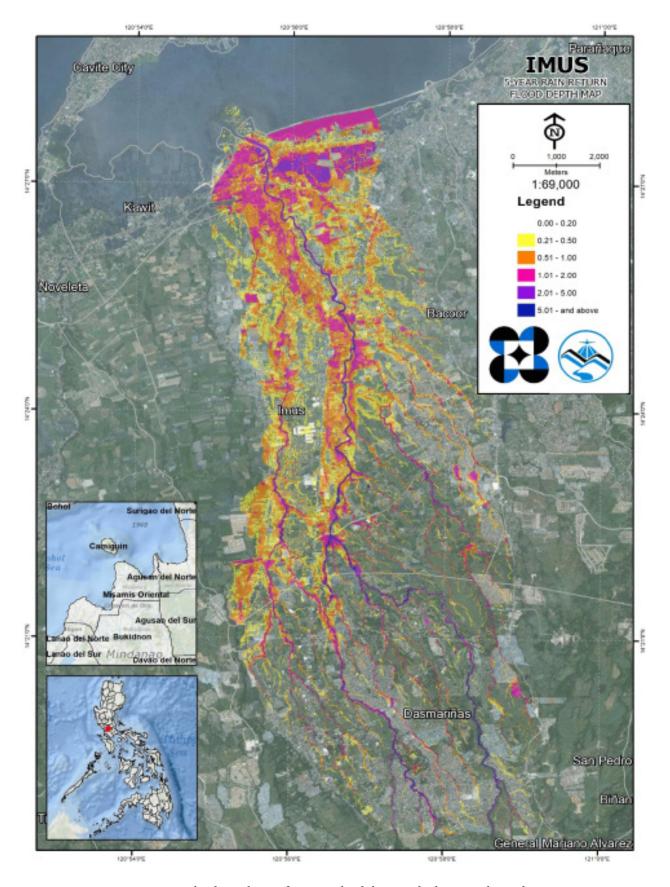


Figure 69. 5-year Flood Depth Map for Imus Floodplain overlaid on Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Imus river basin, grouped by municipality, are listed below. For the said basin, four (4) municipalities consisting of 196 barangays are expected to experience flooding when subjected to 5-, 25-, and 100-yr rainfall return period.

For the 5-year return period, 16.16% of the municipality of Bacoor with an area of 47.43 sq. km. will experience flood levels of less than 0.20 meters. 6.85% of the area will experience flood levels of 0.21 to 0.50 meters while 6.82%, 3.95%, 1.44%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 to Table 38 and shown in Figure 70 to Figure 73 are the affected areas in square kilometers by flood depth per barangay.

Table 35. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period

Affected area (so km) hv			7	Area of affected barangays in Bacoor (in sq. km)	d barangays i	n Bacoor (in	sq. km)			
flood depth (in m.)	Alima	Banalo	Bayanan	Campo Santo	Daang Bukid	Digman	Dulong Bayan	Habay I	Habay II	Kaingin
0.03-0.20	0.033	0.0083	0.0055	0.023	0.088	0.035	0.013	0.17	0.2	0.14
0.21-0.50	990.0	0.02	0.001	0.064	0.041	0.051	0.051	0.18	0.11	0.088
0.51-1.00	0.11	0.084	0.00056	0.067	0.099	0.016	0.13	0.17	0.14	0.073
1.01-2.00	0.13	0.098	0	0.075	0.22	0.0002	0.14	0.028	0.16	0.042
2.01-5.00	0.05	0.092	0	0.014	0.097	0	0.062	0.013	0.14	0.00068
> 5.00	0	0	0	0	0	0	0	0	0	0

Table 36. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period

Affected area (so km) by			f .	Area of affected barangays in Bacoor (in sq. km)	d barangays iı	n Bacoor (in	sq. km)			
flood depth (in m.)	Mabolo I	Mabolo I Mabolo II Mabolo III	Mabolo III	Maliksi I	Maliksi II	Maliksi II Mambog I	Mambog II	Mambog III	MambogMambogMambogMambogIIIIIIVV	Mambog V
0.03-0.20	0.019	0.013	0.0058	0.079	0.01	0.65	0.76	69.0	0.28	0.17
0.21-0.50	0.043	0.038	0.0045	0.026	0.0056	0.51	0.14	0.13	0.12	0.088
0.51-1.00	0.19	0.069	0.035	0.053	0.0023	0.33	0.054	0.035	0.08	0.065
1.01-2.00	0.14	0.056	0.046	0.048	0.0047	0.085	0.0069	0.011	0.0014	0.0036
2.01-5.00	0.045	0.011	0.044	0.0082	0	0.0025	0	0.0004	0	0
> 5.00	0.004	0.00073	0	0	0	0	0	0	0	0

Table 37. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period

Affected area (so km) hv			7	Area of affect	ed barangays in	Area of affected barangays in Bacoor (in sq. km)	km)		
flood depth (in m.)	Molino II	Molino III	Molino II Molino III Molino IV	Molino V	P.F. Espiritu I	P.F. Espiritu II	P.F. Espiritu III	P.F. Espiritu IV	P.F. Espiritu V
0.03-0.20	0.52	0.26	0.04	0.78	0.13	0.14	0.13	0.054	0.022
0.21-0.50	0.033	0.02	0.0045	0.16	0.064	0.076	0.055	0.046	0.046
0.51-1.00	0.021	0.0053	0	0.083	0.033	0.075	0.025	0.057	0.065
1.01-2.00	0.01	0.0043	0	0.028	0.0026	0.0096	0.0028	0.021	0.013
2.01-5.00	0.0013	0.0001	0	0.0026	0	0	0	0	0.0001
> 5.00	0	0	0	0	0	0	0	0	0

Table 38. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period

According Solution (Control of the follow) Queens Row East Real II Real II Salinas II Salinas III Salinas III Salinas III Salinas III Sineguelasan Tabing Dagat 0.03-0.20 1.16 0.28 0.3 0.0077 0.0075 0.035 0.1 0.037 0.094 0.035 0.094 0.0094 0.0093 0.51-1.00 0.066 0.3 0.19 0.098 0.13 0.047 0.12 0.11 0.094 0.0083 1.01-2.00 0.037 0.086 0.14 0.075 0.044 0.019 0.014 0.0054 0.0085 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.0075 0.0041 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0	Affected area (so km) by				Area of affec	ted barangays i	Area of affected barangays in Bacoor (in sq. km)	. km)		
1.16 0.28 0.3 0.0077 0.0075 0.035 0.18 0.053 0.053 0.055 0.13 0.094 0.01 0.066 0.3 0.19 0.098 0.13 0.047 0.12 0.11 0.037 0.086 0.14 0.075 0.044 0.015 0.046 0.014 0.0067 0.0012 0.0085 0.016 0 0.022 0 0.0064 0.013 0.00088 0.0041 0.0071 0 0	flood depth (in m.)	Queens Row East	Real I	Real II	Salinas I	Salinas II	Salinas III	Salinas IV	Sineguelasan	Tabing Dagat
0.1 0.35 0.18 0.053 0.025 0.025 0.056 0.11 0.094 0.13 0.047 0.12 0.11 0.01 0.037 0.086 0.14 0.075 0.044 0.019 0.027 0.046 0.046 0.014 0.0067 0.0012 0.0085 0.016 0 0 0.029 0 0 0 0.0064 0.013 0.00088 0.0041 0.0071 0 0 0 0	0.03-0.20	1.16	0.28	0.3	0.0077	0.0073	0.035	0.1	0.27	0.038
0.066 0.3 0.19 0.098 0.13 0.047 0.12 0.11 0.037 0.086 0.14 0.075 0.044 0.019 0.027 0.046 0 0.014 0.0057 0.0012 0.0085 0.016 0 0.029 0 0 0.0064 0.013 0.00088 0.0041 0.0071 0 0 0	0.21-0.50	0.1	0.35	0.18	0.053	0.025	0.056	0.1	0.094	0.0092
0.037 0.086 0.14 0.075 0.044 0.019 0.027 0.046 0.046 0 0.014 0.0067 0.022 0.0012 0.0085 0.016 0 0 0.029 0 0 0 0.0064 0.013 0.00088 0.0041 0.0071 0 0 0 0	0.51-1.00	0.066	0.3	0.19	0.098	0.13	0.047	0.12	0.11	0.0083
0.014 0.0067 0.022 0.0012 0.0085 0.016 0 0 0.0064 0.013 0.00088 0.0041 0.0071 0	1.01-2.00	0.037	0.086	0.14	0.075	0.04	0.019	0.027	0.046	0.015
0 0.0064 0.013 0.00088 0.0041	2.01-5.00	0.014	0.0067	0.022	0.0012	0.0085	0.016	0	0.029	0
	> 5.00	0	0.0064	0.013	0.00088	0.0041	0.0071	0	0	0

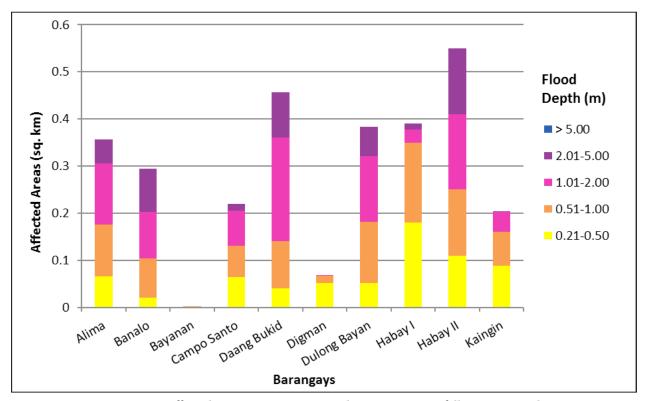


Figure 70. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period

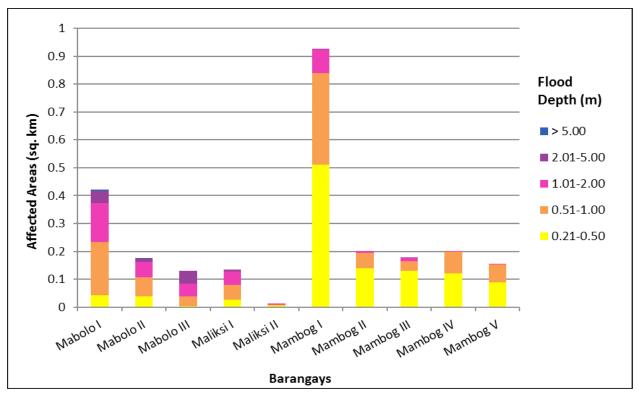


Figure 71. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period

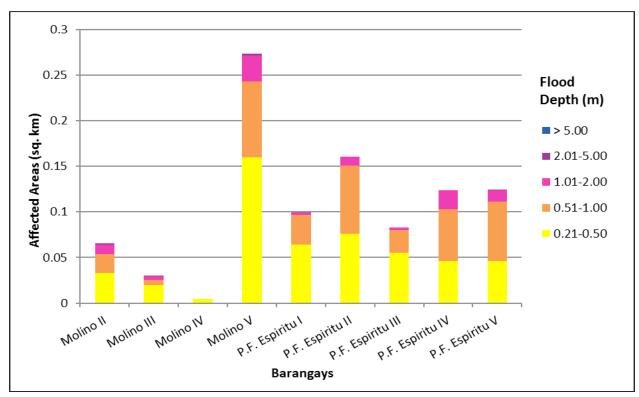


Figure 72. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period

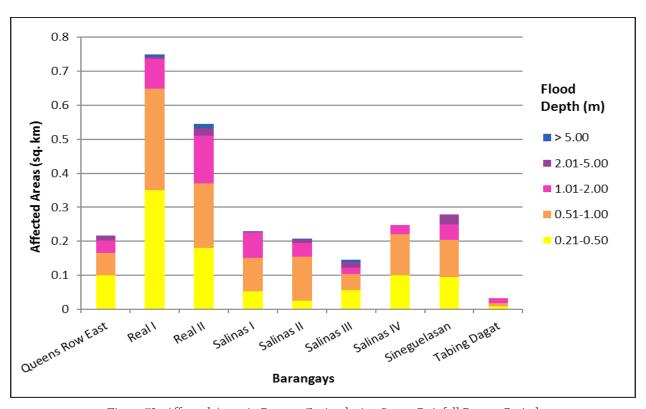


Figure 73. Affected Areas in Bacoor, Cavite during 5-year Rainfall Return Period

For the 5-year return period, 34.93% of the municipality of Dasmariñas with an area of 84.01 sq. km. will experience flood levels of less than 0.20 meters. 2.82% of the area will experience flood levels of 0.51 to 0.50 meters while 1.69%, 1.21%, 0.70%, and 0.26% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 to Table 44 and shown in Figure 74 to Figure 79 are the affected areas in square kilometers by flood depth per barangay.

Table 39. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

Affected area (sa km) hy				Area c	of affected l	barangays in	Area of affected barangays in Dasmariñas (in sq. km)	(in sq. km)			
flood depth (in m.)	Burol	Burol Burol I Burol II	Burol II	Burol III	Datu Esmael	Emmanuel Emmanuel Bergado I Bergado II	Emmanuel Bergado II	Fatima I	Fatima II	Fatima III	Luzviminda I
0.03-0.20	2.07	2.07 0.17	0.13	0.3	0.19	990.0	0.046	0.086	0.11	0.21	960.0
0.21-0.50	0.16	0.16 0.0057	0.016	0.014	0.0072	0.0019	0.001	0.0034	0.00017	0.018	0.0027
0.51-1.00	0.093	0.093 0.0059 0.0048	0.0048	0.013	0.0058	0.0029	0.0014	0.0012	0	0.012	0.0024
1.01-2.00	0.05	0.05 0.0067 0.0066	9900.0	0.0095	0.0086	0.0039	0.0034	0.00094	0	0.0039	0.00058
2.01-5.00	0.026	0.026 0.0073 0.0021	0.0021	0.005	0.0099	0.0054	0.0052	0.000032	0	0.0016	0.0001
> 5.00	0.0042	0.0042 0.011 0.0033	0.0033	0	6900.0	0.0088	90000	0	0	0.000073	0

Table 40. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

				Area c	Area of affected barangays in Dasmariñas (in sq. km)	angays in Das	smariñas (in	sq. km)			
Affected area (sq.km.) by flood depth (in m.)	Luzvi- minda II	Pali- paran II	Pali- Pali- paran II paran III	Sabang	Saint Peter Saint Peter I II	Saint Peter II	Salawag	Salitran I	Salitran II	Salitran III	Salitran IV
0.03-0.20	0.3	0.58	2.24	0.87	0.033	0.072	9.19	8.0	1.11	0.47	2.57
0.21-0.50	0.027	0.035	0.15	0.31	0.0012	0.0025	0.47	0.18	0.078	0.12	0.22
0.51-1.00	0.011	0.016	0.044	0.16	0.0017	0.0034	0.29	0.13	0.046	0.16	0.13
1.01-2.00	0.0014	0.014	0.028	0.1	0.00072	0.0057	0.27	0.071	0.031	0.095	0.1
2.01-5.00	0	0.01	0.031	0.037	0.0023	0.0065	0.2	0.011	0.0099	0.035	0.047
> 5.00	0	0.0022	0.037	0	0.00083	0.0023	0.075	0.0002	0.0002 0.0001 0.0086	0.0086	0.0083

Table 41. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

				Area of	affected b	arangays	in Dasmariñ	Area of affected barangays in Dasmariñas (in sq. km)			
Affected area (sq.km.) by	Commolos	San	San	San	San	San	San	San	20	20	200
flood depth (in m.)	Sampaioc IV	Agustin	Agustin	Agustin	Andres	Andres	Antonio	Antonio de	Dionisio	Fsteban	Sall Francisco I
		I	II	III	Ι	II	de Padua I	Padua II			
0.03-0.20	0.15	0.74	0.84	0.17	0.015	0.025	0.027	0.061	0.27	0.086	0.044
0.21-0.50	0.011	0.058	0.07	0.017	0.0016 0.0016	0.0016	0.0011	0.0012	0.016	0.0069	0.00096
0.51-1.00	0.0005	0.014	0.026	0.011	0.0021	0.0013	0.00098	0.00071	0.016	0.0029	0.0012
1.01-2.00	0.00089	900.0	0.0099	0.0049	0.0027 0.0014	0.0014	0.00042	0.00094	0.015	0.002	0.0012
2.01-5.00	0.0016	0.0061	0.0014	0.0003	0	0	0.0019	0.002	0.012	0.0007	0.0003
> 5.00	0.0013	0.0023 2.3E-06	2.3E-06	0	0	0	0.0003	0.00072	0	0	0

Table 42. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

			A	rea of affe	Area of affected barangays in Dasmariñas (in sq. km)	ays in Dasm	ıariñas (in	sq. km)			
Affected area (sq.km.) by flood depth (in m.)	San Francisco II		San Isidro San Isidro Labrador Labrador II II San Jose San Juan	San Jose	San Juan	San Lorenzo Ruiz I	San Lorenzo Ruiz II	San Luis I	San Luis II	San Manuel I	San San San Luis II Manuel I Manuel II
0.03-0.20	0.026	0.17	0.066	1.1	0.16	0.038	0.051	0.3	0.19	0.047	0.035
0.21-0.50	0.00095	0.012	0.0064	0.097	0.016	0.00065 0.00014 0.0056 0.0068	0.00014	0.0056	0.0068	0.0042	0.0029
0.51-1.00	0	0.011	0.0036	0.043	0.0018	0	0.0006	0.0006 0.0095	0.011	0.0021	0.0045
1.01-2.00	0	0.0072	0.0032	0.022	0.0019	0	0.00068 0.0047		0.016	0.0036	0.012
2.01-5.00	0	0.0013	0.0001	0.0026	0.0026 0.00085	0	0.0028	0.0062	0.023	0.0041	0.02
> 5.00	0	0	0	0	0	0	0	0.0007	0.015	0.0026	0.0019

Table 43. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

Affected area (so km) hv				Area of a	Area of affected barangays in Dasmariñas (in sq. km)	ngays in Da	smariñas ((in sq. km)			
flood depth (in m.)	San	San	San	San	San	San	San	Santa	Santa	Santa	Santa Cruz
(included a second	Mateo	Miguel	Miguel Miguel II	Nicolas I	Nicolas II	Roque	Simon	Cristina I	Cristina I Cristina II	Cruz I	II
0.03-0.20	0.11	0.065	0.038	0.21	0.53	0.015	0.077	0.034	0.036	0.17	0.094
0.21-0.50	0.0068	0.0068 0.0041	0.0035	0.021	0.04	0.000039	0.0039	0.0024	0.0018	0.0052	0.0013
0.51-1.00	0.0076	0.0076 0.0067	0.00025	0.0034	0.018	0	0.0026	0.003	0.0014	0.0024	0.0017
1.01-2.00	0.0046	0.0046 0.0083	0	0.003	0.008	0	0.0023	0.0041	0.0014	0.0026	0.0024
2.01-5.00	0.0006	0.013	0	0.0006	0.002	0	0	0.0023	0.00021	0.0045	0.0057
> 5.00	0	0.0056	0	0	0.000058	0	0	0	0	0.0028	9000.0

Table 44. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

Affected area (so km) hw			A	rea of affect	ed barangays	Area of affected barangays in Dasmariñas (in sq. km)	s (in sq. km)			
flood depth (in m.)	Santa Fe	Santa Lucia	Santa Maria	Santo Cristo	Santo Niño Santo Niño II	Santo Niño II	Zone I	Zone I-B Zone II	Zone II	Zone IV
0.03-0.20	0.024	0.25	0.054	0.11	0.091	0.031	0.11	0.65	0.035	0.29
0.21-0.50	0.004	0.012	0.002	0.016	0.0057	0.0032	0.0073	0.041	0.00011	0.027
0.51-1.00	0.0028	0.0085	0.0024	0.006	0.0032	0.0033	0.00078	0.03	0	0.016
1.01-2.00	0.0031	0.0025	0.0055	0.00089	0.0044	0.002	0	0.026	0	0.007
2.01-5.00	0	0.000014	0.0088	0	0.0037	0.0007	0	0.0075	0	0.00015
> 5.00	0	0	0.012	0	0	0	0	0	0	0

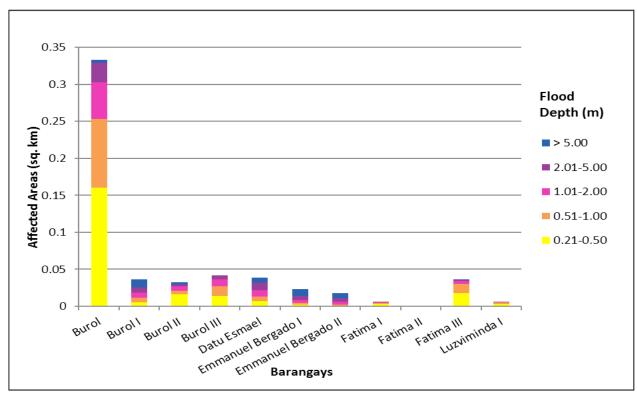


Figure 74. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

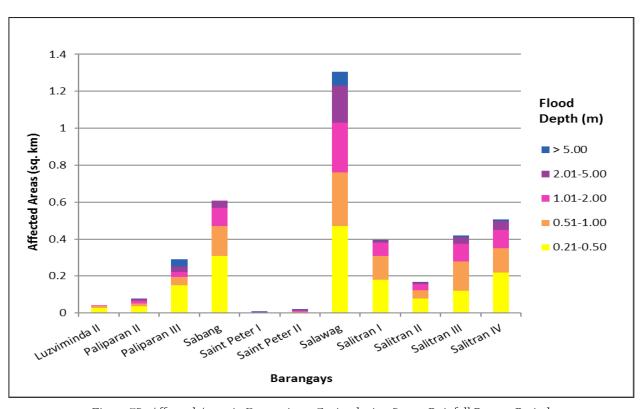


Figure 75. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period



Figure 76. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

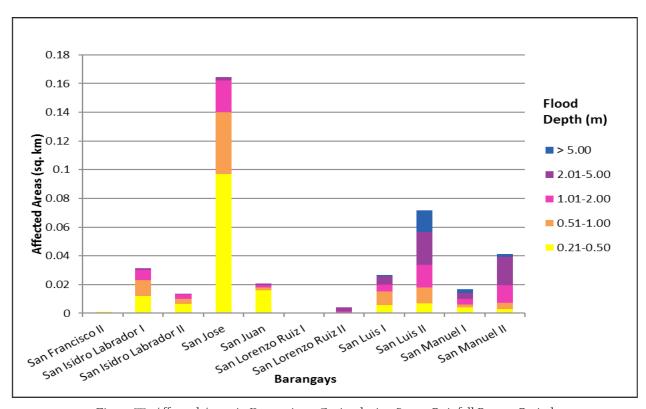


Figure 77. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

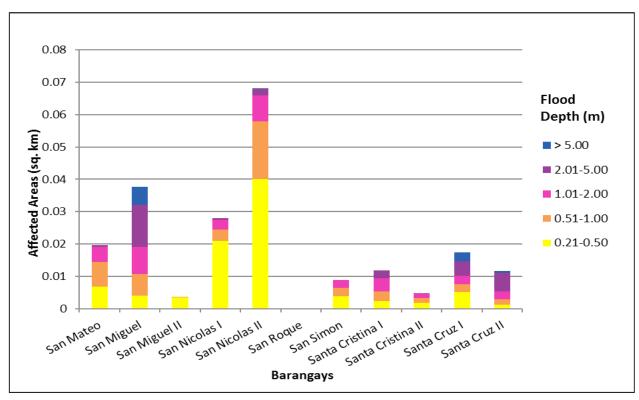


Figure 78. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

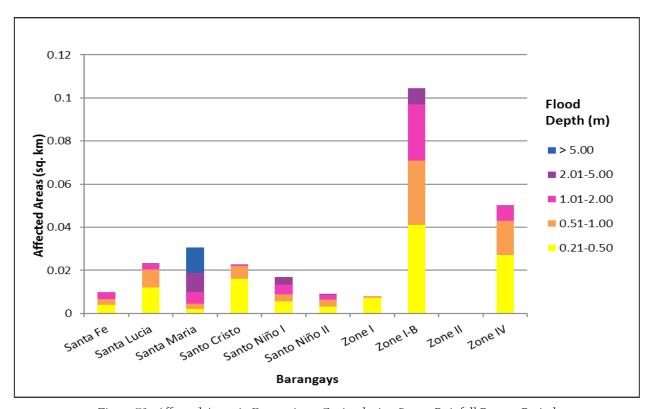


Figure 79. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

For the 5-year return period, 31.95% of the municipality of Imus with an area of 56.81 sq. km. will experience flood levels of less than 0.20 meters. 12.19% of the area 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 to Table 52 and shown in Figure 80 to Figure 87 are the affected areas in square kilometers will experience flood levels of 0.21 to 0.50 meters while 12.48%, 4.71%, 1.08%, and 0.41% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, by flood depth per barangay.

Table 45. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period

Affected area (so km) hv				Area	of affected ba	rangays in In	Area of affected barangays in Imus (in sq. km)	(1			
flood depth (in m.)	Anabu I-A	Anabu I-B	Anabu I-C	Anabu I-D	Anabu I-E	Anabu I-F	Anabu I-G	Anabu II-A	Anabu II-B	Anabu II-C	Anabu II-D
0.03-0.20	0.44	0.16	0.074	0.086	0.12	0.13	0.17	4.03	0.25	0.35	0.32
0.21-0.50	0.32	0.1	0.069	0.069	0.083	0.099	0.084	0.63	0.12	0.21	0.19
0.51-1.00	0.22	0.055	0.082	0.13	0.17	0.11	0.13	0.64	0.11	0.13	0.17
1.01-2.00	0.066	0.015	0.03	0.029	0.027	0.026	0.044	0.36	0.045	0.067	0.052
2.01-5.00	0.015	0.012	0.0045	0.01	0.0032	0.0042	0.0089	0.18	0.01	0.017	0.021
> 5.00	0.000065 0.0001	0.0001	0.0057	0.005	0.007	0.0068	0.0072	0.1	0	0	0.012

Table 46. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period

				Area	Area of affected barangays in Imus (in sq. km)	rangays in In	ıus (in sq. kn	1)			
Affected area (sq.km.) by flood depth (in m.)	Anabu II-E	Anabu II-F	Bagong Silang	Bayan Luma I	Bayan Luma II	Bayan Luma III	Bayan Luma IV	Bayan Luma IX	Bayan Luma V	Bayan Luma VI	Bayan Luma VII
0.03-0.20	0.47	0.64	0.086	0.0098	0.02	0.011	0.064	0.045	0.022	0.022	0.11
0.21-0.50	0.3	0.31	0.018	0.017	0.026	0.04	0.051	0.061	0.035	0.027	0.055
0.51-1.00	0.25	0.27	0.03	0.049	0.048	0.091	0.025	0.023	0.03	0.03	0.014
1.01-2.00	0.067	0.065	0.028	0.032	0.026	0.03	0	0.0021	0.0025	0.0097	0
2.01-5.00	0.026	0.022	0	0.0049	0.0053	900.0	0	0	0	0	0
> 5.00	0.0039	0.0098	0	0.0005	0	0	0	0	0	0	0

Table 47. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period

Affected area				Area	of affected ba	ırangays in	Area of affected barangays in Imus (in sq. km)	km)			
(sq.km.) by flood depth (in m.)	Bayan Luma VIII	Bucandala I	Bucandala II	Bucandala III	Bucandala V	Buhay na Tubig	Carsadang Carsadang Bago I Bago II	Carsadang Bago II	Magdalo	Magdalo Maharlika	Malagasang I-B
0.03-0.20	0.15	0.17	0.045	0.2	0.016	0.098	0.3	0.42	0.071	0.017	0.0056
0.21-0.50	0.076	0.18	0.053	0.093	0.099	0.022	0.38	0.24	0.023	0.021	0.014
0.51-1.00	0.0087	0.2	0.017	0.047	0.11	0.03	0.17	0.071	0.043	0.043	0.0028
1.01-2.00	0	0.062	0.00094	0	0.0051	0.032	0.077	0.013	0.011	0.048	0
2.01-5.00	0	0.0011	0	0	0.00021	0	0.0018	0	0	0.012	0
> 5.00	0	0	0	0	0.000035	0	0	0	0	0.0064	0

Table 48. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period

				Area	of affected l	oarangays ir	Area of affected barangays in Imus (in sq. km)	. km)			
Affected area (sq.km.)	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mariano
by flood depth (in m.)	gasang I-C	gasang I-D	gasang I-E	gasang I-F	gasang I-G	gasang II-C	gasang II-D	gasang II-E	gasang II-F	gasang II-G	Espeleta I
0.03-0.20	0.0022	0.0021	0.0052	0.034	0.063	60.0	0.051	0.029	0.22	0.063	0.022
0.21-0.50	0.0018	0.0025	0.017	0.13	0.14	0.071	0.048	0.12	0.087	0.1	0.017
0.51-1.00	0	0.0008	0.018	0.17	0.15	690.0	0.026	0.26	0.049	0.13	0.048
1.01-2.00	0	0	0.0021	0.0086	0.004	0.022	0.00021	0.049	0.015	0.013	0.038
2.01-5.00	0	0	0	0.0011	0	0.0074	0	0.0056	0.0023	0	0
> 5.00	0	0	0	0.00041	0	0	0	0	0	0	0

Table 49. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period

				Area	of affected	barangays ir	Area of affected barangays in Imus (in sq. km)	. km)			
Affected area (sq.km.) by flood depth (in m.)		Mariano Mariano Espeleta Espeleta II III	Medicion Me I-A	Medicion I-B	Medicion I-C	Medicion I-D	Medicion II-B	Medicion II-C	MedicionMedicionMedicionII-CII-DII-E	Medicion II-E	Medicion II-F
0.03-0.20	0.0011	0.0029	0.049	0.054	0.02	0.03	0.0007	0.071	0.029	0.054	0.11
0.21-0.50	0.0072	0.029	0.0059	0.015	0.026	0.0075	0.0017	0.024	0.023	0.02	0.023
0.51-1.00	0.034	0.039	0.0047	0.0083	0.018	0.035	0.0019	0.011	0.014	0.0059	0.0014
1.01-2.00	0.045	0.019	0.0013	0.0028	0.000029	0.015	0	0	0.013	0	0
2.01-5.00	0	0.0042	0	0	0	0	0	0	0	0	0
> 5.00	0	0.0049	0	0	0	0	0	0	0	0	0

Table 50. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period

Affected area (so km)				Area of af	Area of affected barangays in Imus (in sq. km)	ays in Imus (in sq. km)			
by flood depth (in m.)	Pag-Asa III Palico I	Palico I	Palico II	Palico III	Palico IV	Pasong Buaya I	Pasong Buaya II	Pinag- buklod	Poblacion I-A	Poblacion I-B
0.03-0.20	0.11	0.044	0.0073	0.028	0.018	3.72	3.36	0.017	0.02	0.0028
0.21-0.50	0.041	0.016	0.013	0.014	0.019	0.27	0.65	0.031	0.047	0.01
0.51-1.00	0.0076	0.0054	0.0074	0.019	0.007	0.24	0.37	960'0	0.081	0.05
1.01-2.00	0	0.0034	0.0064	0.0053	0.0004	0.16	0.13	0.049	0.002	0.01
2.01-5.00	0	0.0066	0.0055	0.0085	0	0.069	0.07	0.0056	0	0
> 5.00	0	0.0069	0.0052	0.0083	0	0.0025	0.0042	0.0083	0	0

Table 51. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period

Affected area (so km)				Area of affe	Area of affected barangays in Imus (in sq. km)	ys in Imus (i	n sq. km)			
by flood depth (in m.)	Poblacion I-C	PoblacionPoblacionPoblacionII-AII-BIII-A	Poblacion II-B	Poblacion III-A	Poblacion III-B	Poblacion IV-A	Poblacion IV-B	Poblacion IV-C	Poblacion IV-D	Tanzang Luma I
0.03-0.20	0.0013	0.0033	0.0057	0.027	0.025	0.052	0.0018	0.037	0.0089	0.29
0.21-0.50	0.011	0.013	0.011	0.048	0.042	0.12	0.015	0.081	0.035	0.093
0.51-1.00	0.058	0.05	0.03	0.12	0.031	0.082	0.014	0.078	0.14	0.055
1.01-2.00	0.006	0.0093	0.0025	0.048	0.018	0.019	0.025	0.016	0.051	0.0013
2.01-5.00	0	0	0	0.0065	0.0029	0.0053	0.00031	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0

Table 52. Affected Areas in Imus, Cavite during 5-year Rainfall Return Period

Affected area (co bm)				Area of affe	Area of affected barangays in Imus (in sq. km)	ys in Imus (i.	n sq. km)			
by flood depth (in m.)	Tanzang Luma II	Tanzang Luma III	Tanzang Luma IV	Tanzang Luma V	Tanzang Luma VI	Toclong I-A	Toclong I-B	Toclong I-C	Toclong II-A	Toclong II-B
0.03-0.20	0.049	0.02	0.0029	0.0035	0.092	0.0003	0.0015	0.0018	0.0057	0.017
0.21-0.50	0.037	0.032	0.024	0.015	0.079	0.0054	0.014	0.013	0.01	0.084
0.51-1.00	0.043	0.057	0.08	0.1	0.057	0.05	0.1	0.13	0.12	0.17
1.01-2.00	0.025	0.071	0.031	0.1	0.023	0.063	0.069	0.052	0.078	0.08
2.01-5.00	0.0037	0.012	0.011	0.011	0.001	0.0019	0.002	0.004	0	0
> 5.00	0	0.0041	0.0069	0.018	0.0015	0	0	0	0	0

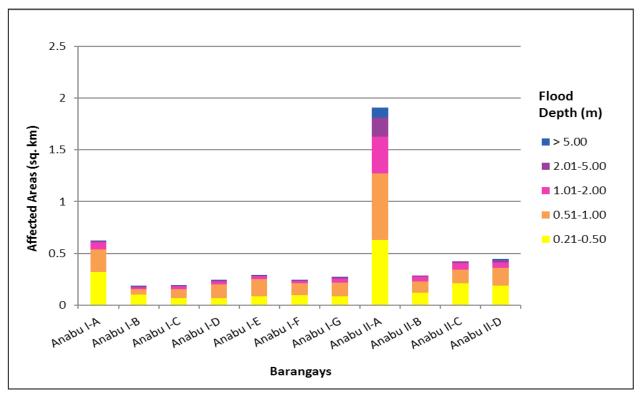


Figure 80. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

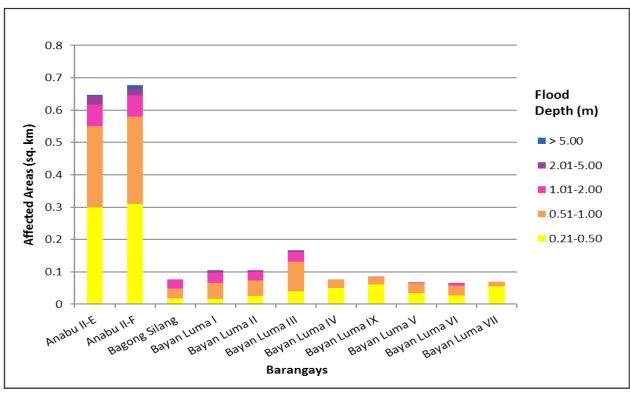


Figure 81. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

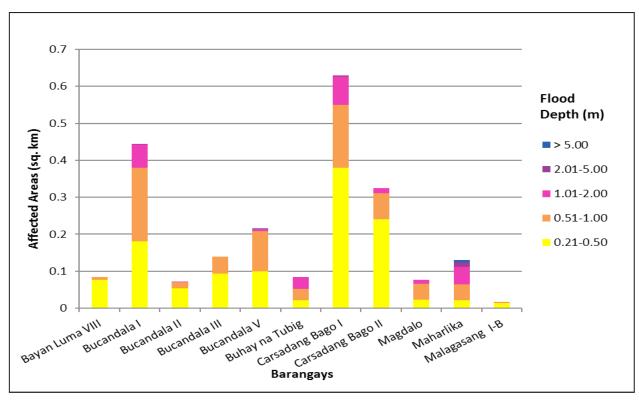


Figure 82. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

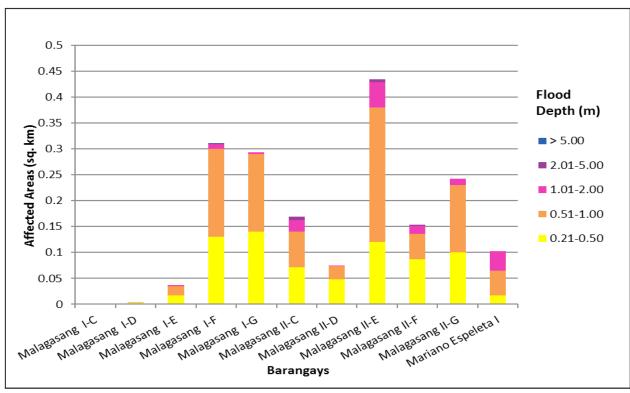


Figure 83. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

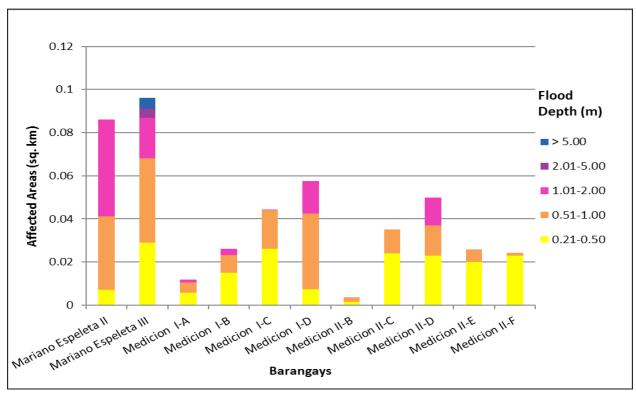


Figure 84. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

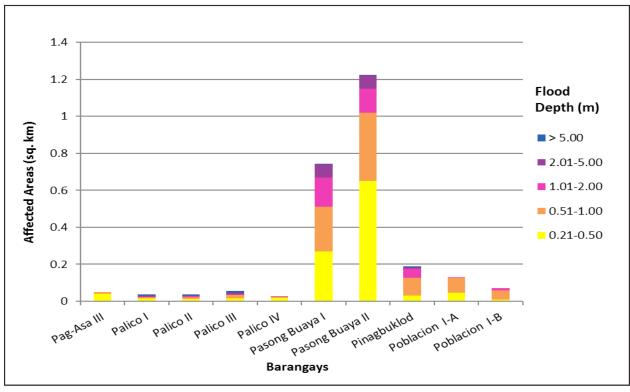


Figure 85. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

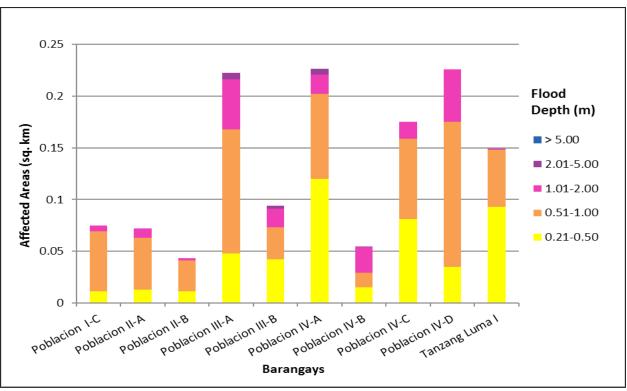


Figure 86. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

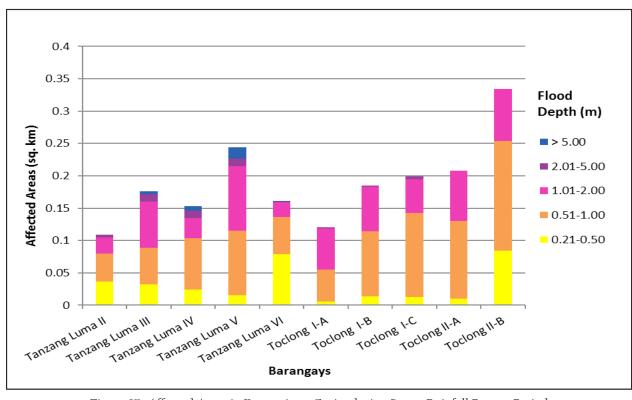


Figure 87. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

For the 5-year return period, 1.92% of the municipality of Kawit with an area of 9.47 sg. km. will experience flood levels of less than 0.20 meters. 0.83% of the area will experience flood levels of 0.21 to 0.50 meters while 3.40%, 6.39%, and 0.31% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 53 and shown in Figure 88 are the affected areas in square kilometers by flood depth per barangay.

Table 53. Affected Areas in Kawit, Cavite during 5-year Rainfall Return Period

, i , i , i , i , i , i , i , i , i , i			Area of a	Area of affected barangays in Kawit (in sq. km)	in Kawit (in sq.	km)		
Affected area (sq.km.) by flood depth (in m.)	Balsahan -Bisita	Binakayan -Aplaya	Binakayan -Kanluran	Congbalay -Legaspi	Manggahan -Lawin	Pulvorista	Samala -Marquez	Toclong
0.03-0.20	0.022	0.048	0.0001	0.015	0.019	0.0001	0.0002	0.077
0.21-0.50	0.004	0.013	0.0019	0.0022	0.01	0.00058	0.0017	0.045
0.51-1.00	0.0055	0.0047	0.052	0.0043	0.0084	0.0058	0.041	0.2
1.01-2.00	0.0053	0.0055	0.025	0.0087	0.069	0.1	0.072	0.32
2.01-5.00	0.0033	0.0001	0	0	0.011	0	0.0033	0.012
> 5.00	0	0	0	0	0	0	0	0

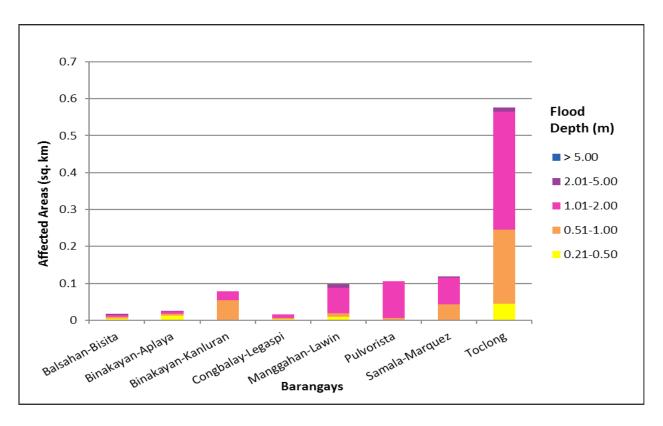


Figure 88. Affected Areas in Dasmariñas, Cavite during 5-year Rainfall Return Period

area will experience flood levels of 0.21 to 0.50 meters while 8.22%, 6.69%, 2.62%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 For the 25-year return period, 11.92% of the municipality of Bacoor with an area of 47.43 sq. km. will experience flood levels of less than 0.20 meters. 5.70% of the meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 54 to Table 57 and shown in Figure 89 to Figure 92 are the affected areas in square kilometers by flood depth per barangay.

Table 54. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period

Affected area (sq km) by			7	Area of affected barangays in Bacoor (in sq. km)	d barangays in	n Bacoor (in	sq. km)			
flood depth (in m.)	Alima	Banalo	Bayanan	Campo Santo	Daang Bukid	Digman	Dulong Bayan	Habay I	Habay II	Kaingin
0.03-0.20	0.0014	0.0024	0.005	0.0024	0.049	0.0042	0	0.067	0.077	0.035
0.21-0.50	0.017	0.004	0.0014	0.013	0.025	0.021	0.0041	0.11	0.1	0.056
0.51-1.00	0.11	0.041	0.0007	0.1	0.065	0.065	0.085	0.25	0.15	0.12
1.01-2.00	0.12	0.14	0.000064	0.056	0.21	0.013	0.19	0.13	0.18	0.096
2.01-5.00	0.14	0.12	0	0.068	0.2	0	0.11	0.016	0.23	0.028
> 5.00	0	0.0006	0	0	0	0	0	0	0	0

Table 55. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period

Affected area (so km) hv			7	Area of affected barangays in Bacoor (in sq. km)	d barangays iı	n Bacoor (in	sq. km)			
flood depth (in m.)	Mabolo I	Mabolo II	Mabolo I Mabolo II Mabolo III	Maliksi I	Maliksi II	Maliksi II Mambog I	Mambog II	Mambog Mambog Mambog II IV	Mambog IV	Mambog V
0.03-0.20	0.0035	0.001	0.0028	0.022	0.00095	0.38	69.0	0.62	0.19	0.11
0.21-0.50	0.0079	0.0046	0.0017	0.032	0.00057	0.44	0.16	0.16	0.11	0.085
0.51-1.00	0.086	0.054	0.0076	0.042	0.011	0.55	0.087	0.064	0.15	0.098
1.01-2.00	0.28	0.11	990.0	0.072	0.0057	0.2	0.013	0.015	0.03	0.035
2.01-5.00	0.053	0.018	0.056	0.044	0.0042	0.0077	0.0001	0.0012	0	0
> 5.00	0.0094	0.00083	0	0	0	0	0	0	0	0

Table 56. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period

Affected area (so km) hv			1	Area of affecto	ed barangays in	Area of affected barangays in Bacoor (in sq. km)	km)		
flood depth (in m.)	Molino II	Molino III	Molino II Molino III Molino IV Molino V	Molino V	P.F. Espiritu I	P.F. Espiritu II	P.F. Espiritu III	P.F. Espiritu IV	P.F. Espiritu V
0.03-0.20	0.51	0.24	0.038	99.0	0.095	0.057	0.071	0.017	0.0077
0.21-0.50	0.041	0.03	0.0064	0.19	0.075	0.069	0.069	0.031	0.013
0.51-1.00	0.027	900.0	0.0001	0.14	0.05	0.11	0.058	0.072	0.08
1.01-2.00	0.014	0.0064	0	0.055	0.014	0.067	0.01	0.058	0.045
2.01-5.00	0.0021	0.0001	0	0.005	0	0.00098	0	0.00052	0.0000
> 5.00	0	0	0	0	0	0	0	0	0

Table 57. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period

Affected area (sa km) by				Area of affec	ted barangays i	Area of affected barangays in Bacoor (in sq. km)	.km)		
flood depth (in m.)	Queens Row East	Real I	Real II	Salinas I	Salinas II	Salinas III	Salinas IV	Sineguelasan	Tabing Dagat
0.03-0.20	1.09	0.13	0.2	0.00075	0.0017	0.017	0.053	0.2	0.00047
0.21-0.50	0.13	0.3	0.19	0.014	0.0083	0.039	0.093	0.049	0.0021
0.51-1.00	0.09	0.4	0.23	0.087	0.07	0.061	0.13	0.12	0.033
1.01-2.00	0.054	0.18	0.19	0.13	0.12	0.038	0.081	0.13	0.02
2.01-5.00	0.02	0.0076	0.024	0.0012	0.01	0.018	0	0.043	0.015
> 5.00	0	0.0069	0.014	0.00096	0.0056	0.0083	0	0	0

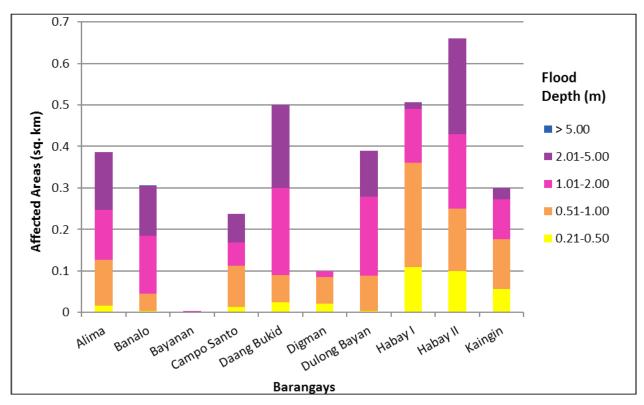


Figure 89. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period

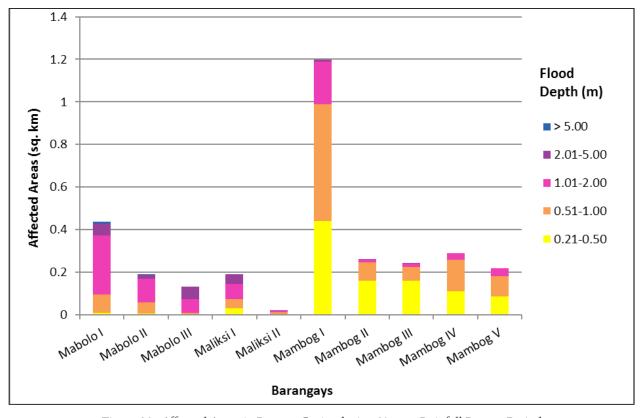


Figure 90. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period

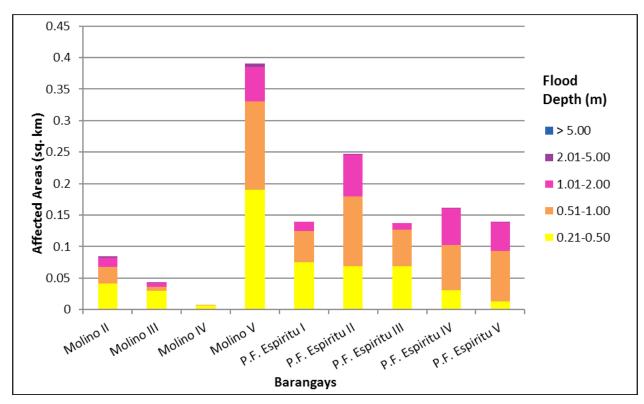


Figure 91. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period

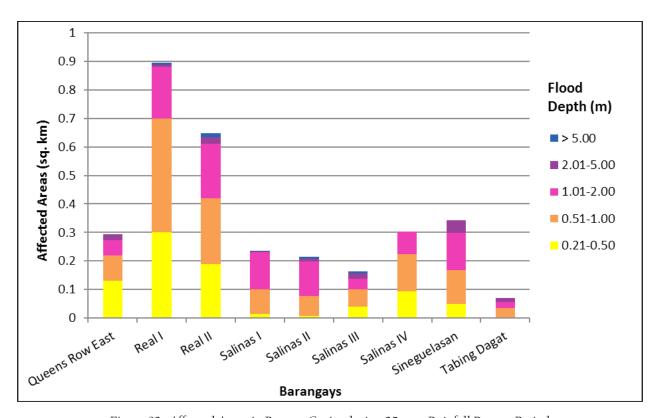


Figure 92. Affected Areas in Bacoor, Cavite during 25-year Rainfall Return Period

For the 25-year return period, 32.50% of the municipality of Dasmariñas with an area of 84.01 sq. km. will experience flood levels of less than 0.20 meters. 3.56% of the area will experience flood levels of 0.21 to 0.50 meters while 2.25%, 1.78%, 1.15%, and 0.41% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 58 to Table 63 and shown in Figure 93 to Figure 98 are the affected areas in square kilometers by flood depth per barangay.

Table 58. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

Affected area (sa km) by				Area o	f affected baı	Area of affected barangays in Dasmariñas (in sq. km)	smariñas (in	sq. km)			
flood depth (in m.)	D.,,,01	11 D D	D0 III	D.r.c. 1111	Datu	Emmanuel	Emmanuel	Fatima	Fatima	Fatima	Luzviminda
	Daioi	Duioi i	Daioi	Duioi III	Esmael	Bergado I	Bergado II	I	II	III	I
0.03-0.20	1.96	0.16	0.12	0.28	0.16	0.057	0.037	0.083	0.11	0.2	0.093
0.21-0.50	0.19	0.0053	0.02	0.019	0.0085	0.0025	0.0025	0.005	0.00017	0.02	0.0041
0.51-1.00	0.12	0.0069	0.0057	0.015	0.0088	0.0046	0.0023	0.0017	0	0.016	0.0029
1.01-2.00	0.076	0.014	0.009	0.014	0.013	0.0049	0.0045	0.0016	0	0.0056	0.0011
2.01-5.00	0.049	0.013	0.0039	0.0077	0.017	0.0082	0.0082	0.00013	0	0.0035	0.0001
> 5.00	0.0083	0.015	0.0042	0	0.013	0.011	0.0086	7.7E-06	0	0.00023	0

Table 59. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

				Area o	Area of affected barangays in Dasmariñas (in sq. km)	angays in Da	smariñas (in	sq. km)			
Affected area (sq.km.) by flood depth (in m.)	Luzvi- minda II	Pali- paran II	Pali- Pali- paran II paran III	Sabang	Saint Peter Saint Peter I II	Saint Peter II	Salawag	Salitran I	Salitran Salitran II III	Salitran	Salitran IV
0.03-0.20	0.29	0.56	2.13	0.64	0.028	0.061	89.8	0.65	1.04	0.38	2.38
0.21-0.50	0.036		0.22	0.35	0.0016	0.0061	0.63	0.22	0.11	0.098	0.27
0.51-1.00	0.014	0.019	0.059	0.25	0.0026	0.0052	0.39	0.18	0.065	0.18	0.19
1.01-2.00	0.0033		0.035	0.17	0.0035	0.0063	0.36	0.11	0.035	0.18	0.15
2.01-5.00	0	0.014	0.042	990.0	0.0026	0.01	0.32	0.028	0.024	0.054	0.076
> 5.00	0	0.0048	0.048	0.0001	0.0013	0.0034	0.13	0.0002	0.0002 0.0008	0.012	0.01

Table 60. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

				Area of	affected	oarangays	in Dasmariñ	Area of affected barangays in Dasmariñas (in sq. km)			
Affected area (sq.km.) by flood depth (in m.)	Sampaloc IV	San Agustin I	San Agustin II	San Agustin III	San Andres I	San Andres II	San Antonio de Padua I	San Antonio de Padua II	San Dionisio	San Esteban	San Francisco I
0.03-0.20	0.15	0.7	0.8	0.16	0.014	0.024	0.026	0.059	0.25	0.079	0.043
0.21-0.50	0.018	0.086	0.099	0.023	0.0018	0.0018 0.00064	0.001	0.0024	0.017	0.0095	0.0011
0.51-1.00	0.0013	0.021	0.036	0.013	0.0022 0.0021	0.0021	0.00067	0.0005	0.016	0.0044	0.0000
1.01-2.00	0.0004	0.0077	0.014	0.0074	0.0034 0.0021	0.0021	0.0011	0.0016	0.02	0.0036	0.0017
2.01-5.00	0.0022	0.0079	0.0025	0.0006	0.0004 0.00031	0.00031	0.002	0.0022	0.017	0.0018	0.0008
> 5.00	0.0015	0.0015 0.0031 2.3E-06	2.3E-06	0	0	0	0.00065	0.0012	0	0	0

Table 61. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

			A	rea of affeα	ted barang	Area of affected barangays in Dasmariñas (in sq. km)	ıariñas (in	sq. km)			
Affected area (sq.km.) by flood depth (in m.)	San Francisco II	San Isidro San Isidro Labrador Labrador I II		San Jose San Juan	San Juan	San Lorenzo Ruiz I	San Lorenzo Ruiz II	San Luis I	San Luis II	San Manuel I	San Manuel II
0.03-0.20	0.025	0.16	0.061	1.05	0.15	0.037	0.05	0.29	0.16	0.041	0.023
0.21-0.50	0.0015	0.013	0.0092	0.12	0.023	0.0014	0.00036 0.0085	0.0085	0.0072	0.0066	0.0038
0.51-1.00	0	0.013	0.0047	90.0	0.0026	0	0.00042	0.0093	0.01	0.0026	0.0055
1.01-2.00	0	0.012	0.0041	0.032	0.002	0	0.0009	0.0099	0.019	0.0028	0.01
2.01-5.00	0	0.0028	0.0001	0.0098	0.0022	0	0.0033	0.006	0.038	0.0065	0.026
> 5.00	0	0	0	0	0	0	8.6E-06	8.6E-06 0.0023	0.023	0.0038	0.0067

Table 62. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

Affected area (so km) hv				Area of a	Area of affected barangays in Dasmariñas (in sq. km)	ngays in Da	smariñas ((in sq. km)			
flood depth (in m.)	San	San	San	San	San	San	San	Santa	Santa	Santa	Santa Cruz
	Mateo	Miguel	Miguel II	Nicolas I	Nicolas II	Roque	Simon	Cristina I	Cristina I Cristina II	Cruz I	II
0.03-0.20	0.1	0.051	0.035	0.2	0.51	0.015	0.074	0.03	0.034	0.16	0.092
0.21-0.50	0.0061	0.0061 0.0047	0.0043	0.029	0.052	69000000	0.005	0.0043	0.0029	0.01	0.0018
0.51-1.00	0.008	0.008 0.0066	0.002	0.0042	0.023	0	0.0037	0.0027	0.0019	0.0023	0.001
1.01-2.00	0.0075	0.011	0.00004	0.004	0.013	0	0.0034	0.0047	0.0017	0.0038	0.0029
2.01-5.00	0.0013	0.019	0	0.0008	0.0017	0	0	0.0044	0.00084	0.0067	0.0059
> 5.00	0	0.01	0	0	0.00078	0	0	0	0	0.0042	0.0019

Table 63. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

Affected area (so km) hy			Aı	rea of affect	ted barangays	Area of affected barangays in Dasmariñas (in sq. km)	s (in sq. km)			
flood depth (in m.)	Santa Fe	Santa Lucia	Santa Maria	Santo Cristo	Santo Niño Santo Niño II	Santo Niño II	Zone I	Zone I-B Zone II	Zone II	Zone IV
0.03-0.20	0.021	0.23	0.04	0.1	980.0	0.029	0.11	0.62	0.035	0.28
0.21-0.50	0.0042	0.018	0.0044	0.021	0.0068	0.0036	0.011	0.051	0.00021	0.034
0.51-1.00	0.004	0.01	0.0037	6900'0	0.0048	0.0031	0.00093	0.036	0	0.018
1.01-2.00	0.0041	0.0083	0.007	0.0026	0.0038	0.0037	0	0.028	0	0.013
2.01-5.00	0	0.00071	0.013	0	0.0068	0.001	0	0.02	0	0.00064
> 5.00	0	0	0.017	0	0	0	0	0	0	0

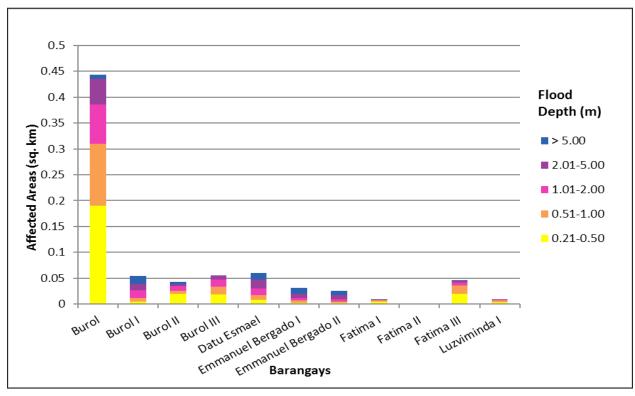


Figure 93. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

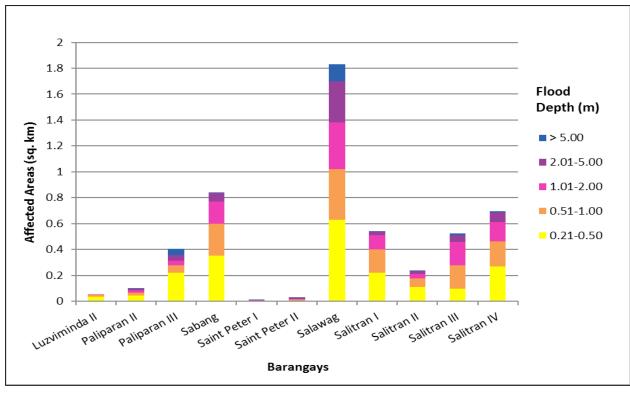


Figure 94. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

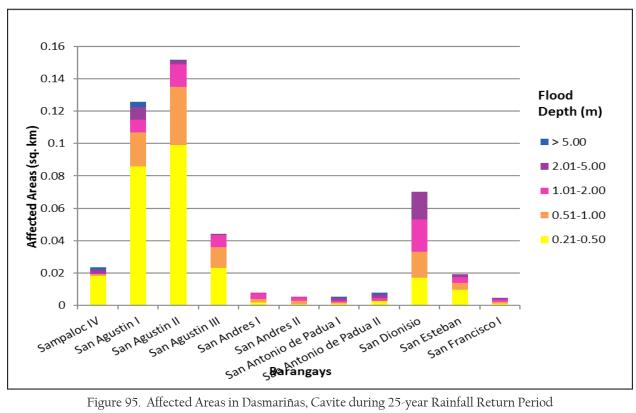


Figure 95. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

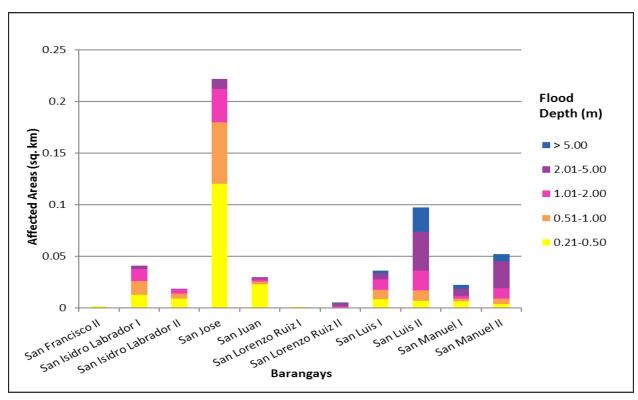


Figure 96. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

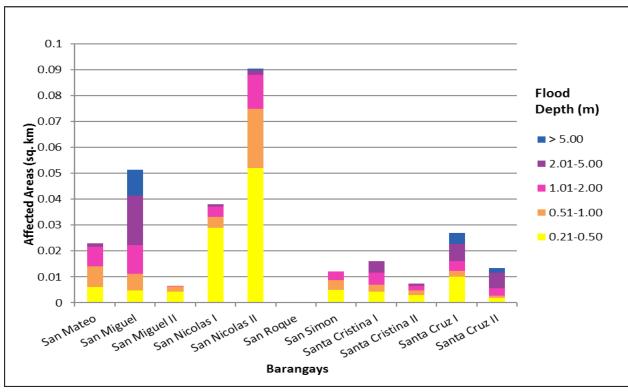


Figure 97. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

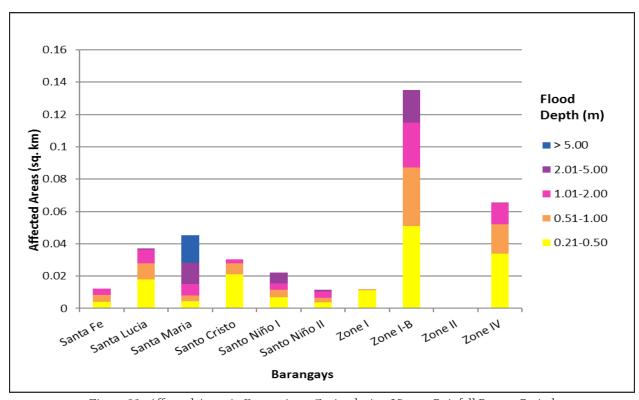


Figure 98. Affected Areas in Dasmariñas, Cavite during 25-year Rainfall Return Period

For the 25-year return period, 24.55% of the municipality of Imus with an area of 56.81 sq. km. will experience flood levels of less than 0.20 meters. 10.99% of the area will experience flood levels of 0.21 to 0.50 meters while 15.34%, 9.86%, 1.62%, and 0.50% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 64 to Table 71 and shown in Figure 99 to Figure 106 are the affected areas in square kilometers by flood depth per barangay.

Table 64. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

Affected area (so km) by				Area	Area of affected barangays in Imus (in sq. km)	rangays in In	ıus (in sq. km	1)			
flood depth (in m.)	Anabu I-A	Anabu I-B	Anabu I-C	Anabu I-D	Anabu I-E	Anabu I-F Anabu I-G	Anabu I-G	Anabu II-A	Anabu II-B	Anabu II-C	Anabu II-D
0.03-0.20	0.26	0.082	0.033	0.047	990.0	0.089	0.12	3.53	0.18	0.19	0.22
0.21-0.50	0.32	0.082	0.059	0.053	0.08	0.064	0.064	0.58	0.11	0.24	0.16
0.51-1.00	0.32	0.12	0.095	0.12	0.18	0.15	0.12	0.8	0.14	0.21	0.24
1.01-2.00	0.14	0.04	0.067	0.083	0.077	0.068	0.12	99.0	0.09	0.098	0.11
2.01-5.00	0.019	0.014	0.0059	0.014	0.0034	0.0043	0.012	0.25	0.021	0.026	0.026
> 5.00	0.00045	0.00041	0.0059	0.0054	0.0071	0.0076	0.0078	0.12	0	0.0001	0.015

Table 65. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

				Area	Area of affected barangays in Imus (in sq. km)	rangays in In	ıus (in sq. km	(1			
Affected area (sq.km.) by flood depth (in m.)	Anabu II-E	Anabu II-F	Bagong Silang	Bayan Luma I	Bayan Luma II	Bayan Luma III	Bayan Luma IV	Bayan Luma IX	Bayan Luma V	Bayan Luma VI	Bayan Luma VII
0.03-0.20	0.28	0.4	0.058	0.0056	0.007	0.0035	0.023	0.0092	0.0074	0.0097	0.057
0.21-0.50	0.27	0.28	0.035	0.0079	0.021	0.016	0.046	0.036	0.023	0.024	0.092
0.51-1.00	0.33	0.39	0.019	0.046	0.037	0.09	0.067	0.076	0.044	0.033	0.03
1.01-2.00	0.21	0.21	0.049	0.046	0.05	0.061	0.0025	0.0091	0.016	0.022	0.0015
2.01-5.00	0.029	0.025	0.0002	0.0066	0.0091	0.0074	0	0	0	0	0
> 5.00	0.0069	0.012	0	0.0006	0	0	0	0	0	0	0

Table 66. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

			Area	Area of affected barangays in Imus (in sq. km)	arangays in	Imus (in sq.	km)			
Bucandala Bucandala Bi		В	Bucandala III	Bucandala V	Buhay na Tubig	Carsadang Carsadang Bago I Bago II	Carsadang Bago II	Magdalo	Magdalo Maharlika	Malagasang I-B
0.092 0.009	0.009		0.14	0.0043	0.06	0.11	0.26	0.05	0.0075	0.0024
0.15 0.054	0.054		0.11	0.033	0.043	0.36	0.26	0.032	0.0099	0.014
0.25 0.049	0.049		0.087	0.16	0.025	0.34	0.18	0.032	0.037	0.0065
0.13 0.0045	0.0045		0.0041	0.038	0.054	0.11	0.037	0.034	0.068	0
0.0031 0	0		0	0.00049	0	0.009	0.0001	0	0.017	0
0 0	0		0	0.000054	0	0	0	0	0.0068	0

Table 67. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

				Area	of affected l	oarangays in	Area of affected barangays in Imus (in sq. km)	. km)			
Affected area (sq.km.)	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mala-	Mariano
by flood depth (1n m.)	gasang I-C	gasang I-D	gasang I-E	gasang I-F	gasang I-G	gasang II-C	gasang II-D	gasang II-E	gasang II-F	gasang II-G	Espeleta I
0.03-0.20	0.00058	0.00098	0.00049	9900.0	0.015	0.08	0.042	0.014	0.16	0.0071	0.011
0.21-0.50	0.003	0.0025	0.005	0.063	0.087	0.067	0.051	0.088	0.1	0.078	0.014
0.51-1.00	0.00041	0.0019	0.027	0.19	0.23	0.08	0.033	0.28	0.082	0.18	0.036
1.01-2.00	0	0	0.011	0.082	0.024	0.024	0.00061	0.079	0.02	0.035	0.059
2.01-5.00	0	0	0	0.0011	0	0.0091	0	0.0061	0.0054	0	0.006
> 5.00	0	0	0	0.00054	0	0	0	0	0	0	0

Table 68. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

				Area	of affected	barangays ii	Area of affected barangays in Imus (in sq. km)	. km)			
Affected area (sq.km.) Mariano Mariano by flood depth (in m.) Espeleta Espeleta III	Mariano Espeleta II	Mariano Espeleta III		Medicion Medicion I-B	Medicion I-C	Medicion I-D	MedicionMedicionMedicionMedicionMedicionI-CII-DII-EII-E	Medicion II-C	Medicion II-D	Medicion II-E	Medicion II-F
0.03-0.20	0	0.00063	0.016	0.024	0.0095	0.017	0	0.03	0.0061	0.017	0.087
0.21-0.50	0.002	0.0047	0.026	0.032	0.017	0.011	0.0004	0.043	0.019	0.031	0.042
0.51-1.00	0.02	0.055	0.012	0.016	0.028	0.011	0.003	0.029	0.028	0.028	0.0055
1.01-2.00	0.066	0.028	0.0055	0.0082	0.011	0.051	0.001	0.0036	0.022	0.004	0
2.01-5.00	0.0001	0.0058	0	0	0	0.0001	0	0	0.0038	0	0
> 5.00	0	0.005	0	0	0	0	0	0	0	0	0

Table 69. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

Affected area (sa km)				Area of af	Area of affected barangays in Imus (in sq. km)	ays in Imus (in sq. km)			
by flood depth (in m.)	Pag-Asa III Palico I	Palico I	Palico II	Palico III	Palico IV	Pasong Buaya I	Pasong Buaya II	Pinag- buklod	Poblacion I-A	Poblacion I-B
0.03-0.20	0.067	0.024	2600000	0.02	0.0063	3.5	2.92	0.011	0.0037	0
0.21-0.50	0.054	0.025	9600'0	0.0095	0.018	0.29	0.72	900.0	0.022	0.0036
0.51-1.00	0.03	0.014	0.014	0.023	0.018	0.27	0.6	0.064	0.087	0.034
1.01-2.00	0.0026	0.0044	0.0076	0.012	0.0025	0.27	0.23	0.11	0.038	0.036
2.01-5.00	0	0.0067	0.007	0.0091	0	0.12	0.1	0.0077	0	0
> 5.00	0	0.0074	0.0056	0.0088	0	0.0099	0.0071	0.0087	0	0

Table 70. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

Affected area (ca km)				Area of affe	Area of affected barangays in Imus (in sq. km)	ys in Imus (i	n sq. km)			
by flood depth (in m.)	Poblacion I-C	PoblacionPoblacionPoblacionII-AII-BIII-A	Poblacion II-B	Poblacion III-A	Poblacion III-B	Poblacion IV-A	Poblacion IV-B	Poblacion IV-C	Poblacion IV-D	Tanzang Luma I
0.03-0.20	0	0.00038	0.00071	0.011	0.014	0.017	0.0002	9800'0	0.0021	0.23
0.21-0.50	0.0014	0.003	0.0061	0.027	0.021	0.092	0.0036	0.035	0.0065	0.092
0.51-1.00	0.04	0.034	0.024	0.083	0.057	0.14	0.022	0.13	0.098	0.11
1.01-2.00	0.035	0.037	0.019	0.12	0.022	0.025	0.03	0.039	0.13	0.0091
2.01-5.00	0	0.00039	0	0.0092	0.0037	0.0064	0.00047	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0

Table 71. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

Affected area (so km)				Area of affe	Area of affected barangays in Imus (in sq. km)	ys in Imus (i	n sq. km)			
by flood depth (in m.)	Tanzang Luma II	Tanzang Luma III	Tanzang Luma IV	Tanzang Luma V	Tanzang Luma VI	Toclong I-A	Toclong I-B	Toclong I-C	Toclong II-A	Toclong II-B
0.03-0.20	0.016	0.026	0.000076	0.0013	0.04	0	0.0002	0	0	0.0002
0.21-0.50	0.047	0.044	0.001	0.002	0.06	0.0003	0.0016	0.0018	0.0045	0.011
0.51-1.00	0.042	0.041	0.057	0.046	0.11	0.011	0.04	0.055	0.027	0.14
1.01-2.00	0.048	0.11	0.073	0.16	0.036	0.11	0.14	0.14	0.18	0.18
2.01-5.00	0.0054	0.021	0.016	0.025	0.006	0.0043	0.003	0.0078	0.0065	0.014
> 5.00	0	0.0045	0.0082	0.019	0.0017	0	0	0	0	0

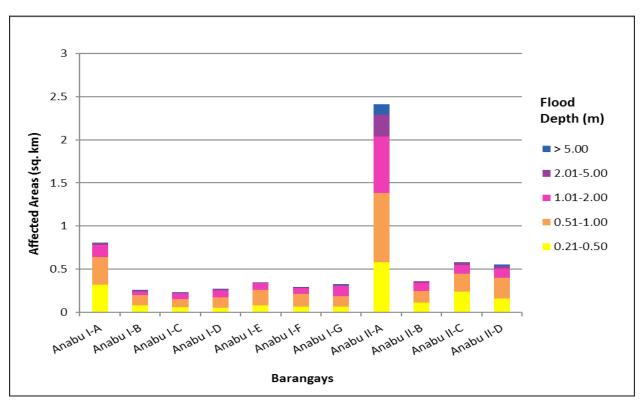


Figure 99. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

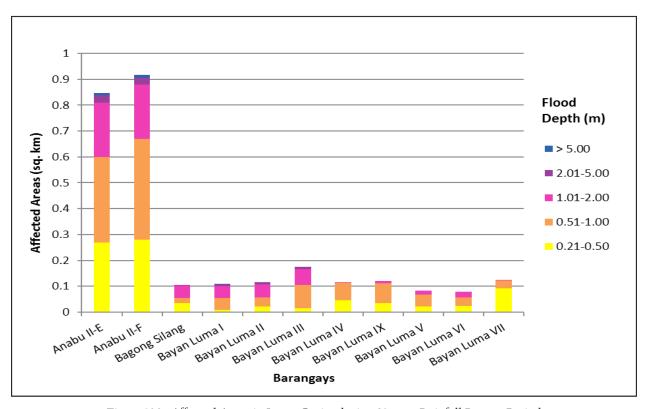


Figure 100. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

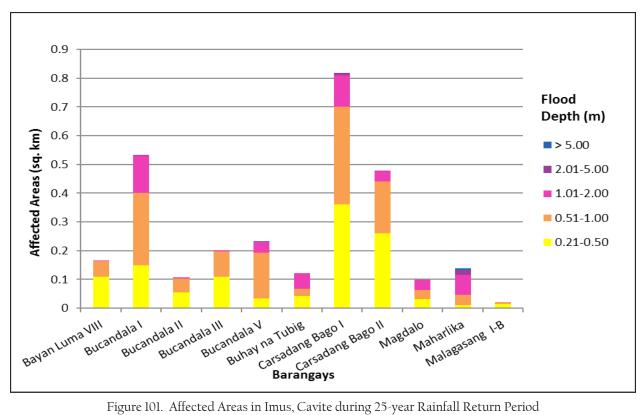


Figure 101. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

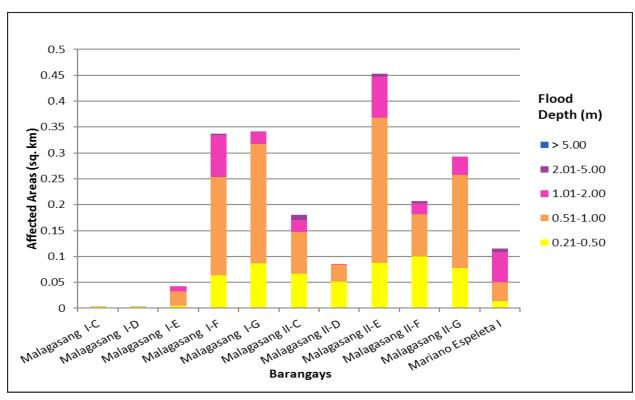


Figure 102. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

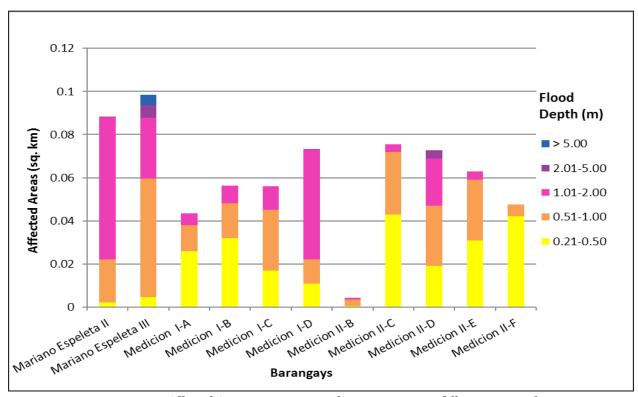


Figure 103. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

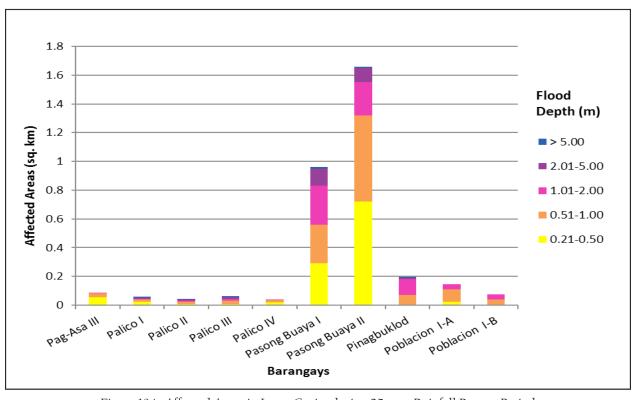


Figure 104. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

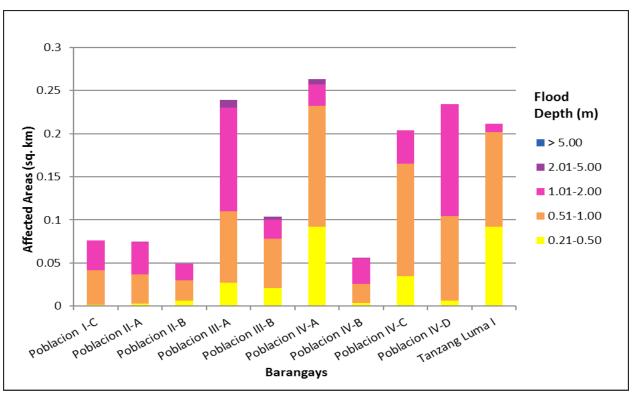


Figure 105. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

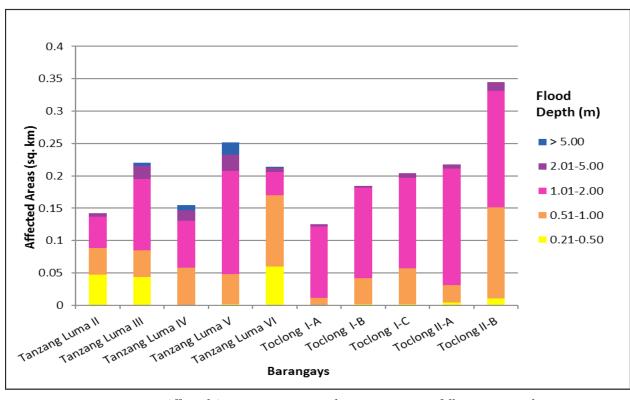


Figure 106. Affected Areas in Imus, Cavite during 25-year Rainfall Return Period

For the 25-year return period, 1.10% of the municipality of Kawit with an area of 9.47 sq. km. will experience flood levels of less than 0.20 meters. 0.71% of the area will experience flood levels of 0.21 to 0.50 meters while 1.35%, 8.34%, and 1.35% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 72 and shown in Figure 107 are the affected areas in square kilometers by flood depth per barangay.

Table 72. Affected Areas in Kawit, Cavite during 25-year Rainfall Return Period

	Toclong	0.034	0.035	0.081	0.44	0.06	0
	Samala -Marquez	0	0.0001	0.0039	0.11	0.0088	0
km)	Pulvorista	0	0	0.0014	0.1	0.0044	0
in Kawit (in sq.	Manggahan -Lawin	2900'0	0.0064	0.018	0.046	0.04	0
Area of affected barangays in Kawit (in sq. km)	Congbalay -Legaspi	0.0085	0.0039	0.0033	0.0078	0.0067	0
Area of a	Binakayan -Kanluran	0	0	900.0	0.073	0	0
	Binakayan -Aplaya	0.038	0.018	0.0075	0.0054	0.003	0
	Balsahan -Bisita	0.017	0.0038	0.0071	0.0076	0.005	0
	Affected area (sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

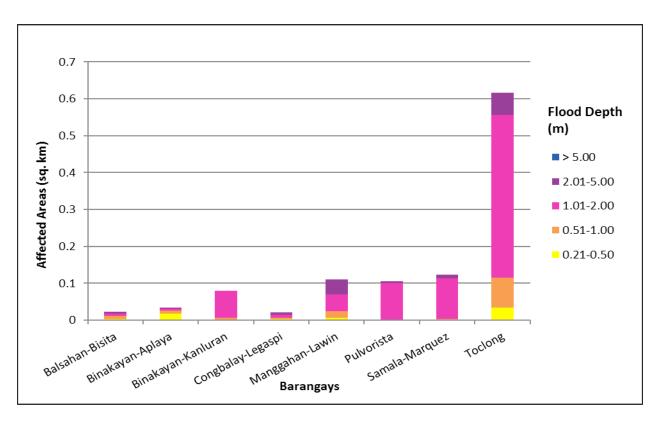


Figure 107. Affected Areas in Kawit, Cavite during 25-year Rainfall Return Period

For the 100-year return period, 10.15% of the municipality of Bacoor with an area of 47.43 sq. km. will experience flood levels of less than 0.20 meters. 4.92% of the meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 73 to Table 76 and shown in Figure 108 to Figure 111 are the affected areas in square area will experience flood levels of 0.21 to 0.50 meters while 7.69%, 9.00%, 3.42%, and 0.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 kilometers by flood depth per barangay.

Table 73. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period

Affected area (sq km) by			7	Area of affected barangays in Bacoor (in sq. km)	d barangays i	n Bacoor (in	sq. km)			
flood depth (in m.)	Alima	Banalo	Bayanan	Campo Santo	Daang Bukid	Digman	Dulong Bayan	Habay I	Habay II	Kaingin
0.03-0.20	0	0.00061	0.0045	0.0013	0.0052	0	0	0.042	0.034	0.013
0.21-0.50	0.0019	0.0022	0.0019	0.00048	0.042	0.0044	0	0.055	0.054	0.015
0.51-1.00	0.049	0.016	0.00081	0.058	0.045	0.053	0.023	0.23	0.19	0.098
1.01-2.00	0.18	0.15	0.000064	0.1	0.19	0.044	0.22	0.21	0.2	0.15
2.01-5.00	0.16	0.13	0	0.081	0.26	0.001	0.15	0.026	0.27	0.063
> 5.00	0	0.0018	0	0	0	0	0	0	0	0

Table 74. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period

Affected area (so km) by			f	Area of affected barangays in Bacoor (in sq. km)	d barangays iı	n Bacoor (in	sq. km)			
flood depth (in m.)	Mabolo I	Mabolo I Mabolo II Mabolo III	Mabolo III	Maliksi I	Maliksi II	Maliksi II Mambog I	Mambog II	Mambog Mambog III	Mambog IV	Mambog V
0.03-0.20	0.0029	0.0008	0.0017	0.0014	0	0.27	0.65	0.57	0.15	0.071
0.21-0.50	0.0011	0.0003	0.0012	0.013	0.00062	0.37	0.18	0.19	0.095	0.087
0.51-1.00	0.037	0.024	0.0043	0.045	0.0007	0.63	0.11	0.084	0.15	0.11
1.01-2.00	0.31	0.13	0.063	0.057	0.014	0.31	0.021	0.02	0.089	90.0
2.01-5.00	0.072	0.034	0.064	0.097	0.0068	0.013	0.0001	0.0017	0	0.0002
> 5.00	0.012	0.00093	0	0	0	0	0	0	0	0

Table 75. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period

Affected area (so km) hv			1	Area of affect	ed barangays in	Area of affected barangays in Bacoor (in sq. km)	km)		
flood depth (in m.)	Molino II	Molino III	Molino II Molino III Molino IV Molino V	Molino V	P.F. Espiritu I	P.F. Espiritu II	P.F. Espiritu III	P.F. Espiritu IV	P.F. Espiritu V
0.03-0.20	0.49	0.23	0.036	9.0	0.068	0.035	0.043	0.0073	0.0044
0.21-0.50	0.043	0.039	0.0078	0.21	0.082	0.041	0.061	0.02	0.0079
0.51-1.00	0.03	0.0072	0.00038	0.16	0.055	0.11	0.086	0.063	0.051
1.01-2.00	0.019	0.0075	0	0.08	0.028	0.11	0.019	0.086	0.08
2.01-5.00	0.0032	0.0001	0	0.0068	0	0.0026	0	0.0014	0.0024
> 5.00	0	0	0	0	0	0	0	0	0

Table 76. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period

Affected area (so km) by				Area of affec	ted barangays	Area of affected barangays in Bacoor (in sq. km)	. km)		
flood depth (in m.)	Queens Row East	Real I	Real II	Salinas I	Salinas II	Salinas III	Salinas IV	Sineguelasan	Tabing Dagat
0.03-0.20	1.04	0.076	0.14	0	0.00078	0.0065	0.03	0.19	0
0.21-0.50	0.15	0.22	0.19	0.0016	0.0036	0.033	0.063	0.045	0.00023
0.51-1.00	0.1	0.47	0.24	0.04	0.028	0.062	0.11	0.07	0.0058
1.01-2.00	0.069	0.24	0.23	0.19	0.16	0.049	0.15	0.19	0.045
2.01-5.00	0.025	0.013	0.028	0.0079	0.013	0.019	0.00098	0.052	0.019
> 5.00	0	0.0071	0.015	96000'0	0.0061	0.0092	0	0.0004	0

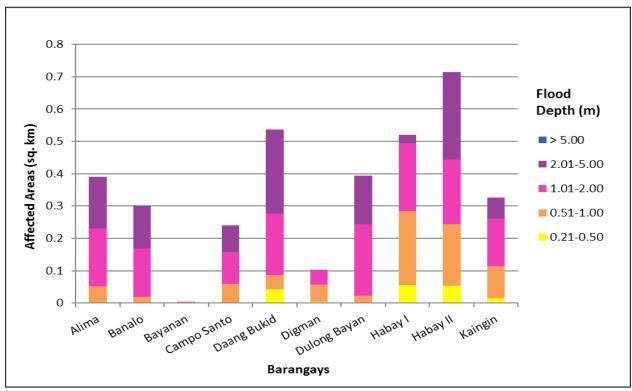


Figure 108. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period

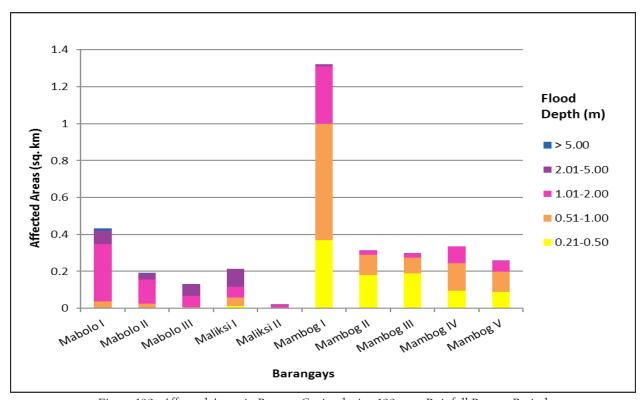


Figure 109. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period

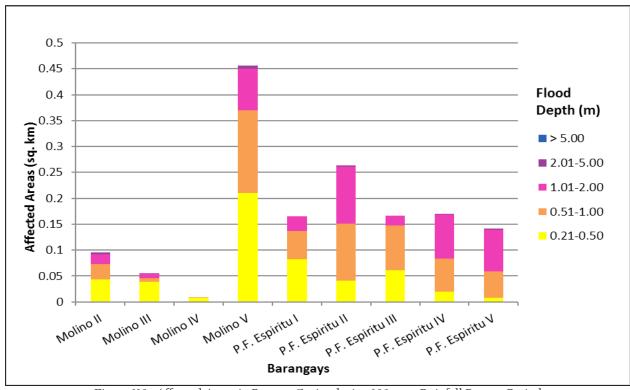


Figure 110. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period

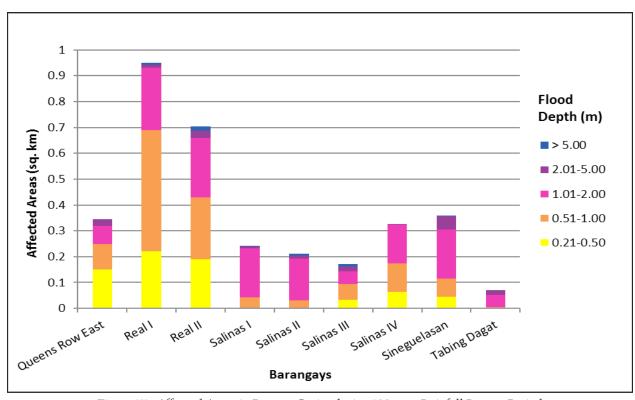


Figure 111. Affected Areas in Bacoor, Cavite during 100-year Rainfall Return Period

For the 100-year return period, 30.73% of the municipality of Dasmariñas with an area of 84.01 sq. km. will experience flood levels of less than 0.20 meters. 4.13% of the area will experience flood levels of 0.51 to 0.50 meters while 2.54%, 2.25%, 1.48%, and 0.51% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 77 to Table 82 and Figure 112 to Figure 117 shown in are the affected areas in square kilometers by flood depth per barangay.

Table 77. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

Affected area (sq km) by				Area o	f affected b	arangays in I	Area of affected barangays in Dasmariñas (in sq. km)	in sq. km)			
flood depth (in m.)	D01	11 D D	D 111	III lõmid	Datu	Emmanuel	Emmanuel Emmanuel	Eo timo I	Fatima	Fatima	Luzviminda
(I)	Daioi	Duioi I	Daioi II		Esmael	Bergado I	Bergado II	rauma 1	II	III	I
0.03-0.20	1.86	0.14	0.11	0.27	0.15	0.049	0.028	0.081	0.11	0.19	0.092
0.21-0.50	0.21	0.007	0.024	0.026	0.0075	0.004	0.0028	0.0066	0.00048	0.02	0.0039
0.51-1.00	0.14	0.0089	0.0083	0.015	0.0092	0.0039	0.0033	0.0017	0	0.019	0.0037
1.01-2.00	0.1	0.013	0.0089	0.017	0.016	0.0076	0.0059	0.0019	0	0.0074	0.0017
2.01-5.00	0.072	0.021	0.0048	0.0099	0.023	0.011	0.012	0.00032	0	0.0062	0.0001
> 5.00	0.013	0.017	0.0055	0	0.016	0.013	0.011	0.000032	0	0.00055	0

Table 78. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

	Salitran IV	2.24	0.33	0.21	0.18	0.099	0.011
	Salitran III	0.31	0.093	0.15	0.25	0.078	0.014
	Salitran II	1	0.13	0.081	0.047	0.03	0.0013
sq. km)	Salitran I	0.53	0.25	0.21	0.17	0.04	0.0002
smariñas (in	Salawag	8.34	0.74	0.46	0.43	0.39	0.15
angays in Da	Saint Peter Saint Peter II	0.033	0.023	0.0092	0.0093	0.014	0.0045
Area of affected barangays in Dasmariñas (in sq. km)	Saint Peter I	0.024	0.0016	0.0027	0.005	0.0045	0.0018
Area o	Sabang	0.58	0.34	0.26	0.22	0.08	0.0002
	Pali- Pali- paran II paran III	2.04	0.27	0.077	0.04	0.048	0.062
	Pali- paran II	0.54	0.053	0.02	0.02	0.018	0.0057
	Luzvi- minda II	0.28	0.041	0.017	0.0054	0.0002	0
	Affected area (sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 79. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

				Area of	affected l	arangays	in Dasmariñ	Area of affected barangays in Dasmariñas (in sq. km)			
Affected area (sq.km.) by	Commoloc	San	San	San	San	San	San	San	Con	Con	Son
flood depth (in m.)	Samparoc	Agustin	Agustin	Agustin	Andres	Andres	Antonio	Antonio de		Sall	Sall Francisco I
	۸ ۲	Ι	II	III	I	II	de Padua I	Padua II		Lacoan	rialicisco i
0.03-0.20	0.14	0.67	0.76	0.15	0.012	0.024	0.026	0.056	0.25	0.071	0.042
0.21-0.50	0.024	0.1	0.12	0.027	0.0021 0.00079	0.00079	0.0011	0.0035	0.017	0.015	0.0015
0.51-1.00	0.0015	0.027	0.044	0.016	0.016 0.0025	0.0013	0.0009	0.0015	0.017	0.0053	0.0011
1.01-2.00	0.00068	0.012	0.018	0.0089	0.0036	0.0025	0.00058	0.0015	0.023	0.0042	0.0018
2.01-5.00	0.0019	0.0094	0.0033	0.0012	0.0011	0.0011	0.0025	0.0026	0.02	0.0025	0.0011
> 5.00	0.0019	0.0019 0.0037	0.0003	0	0	0	0.00095	0.0016	0	0	0

Table 80. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

			A	rea of affec	ted barang	Area of affected barangays in Dasmariñas (in sq. km)	ariñas (in	sq. km)			
Affected area (sq.km.) by flood depth (in m.)	San Francisco II			San Jose San Juan	San Juan	San Lorenzo Ruiz I	San Lorenzo Ruiz II	San Luis I	San Luis II	San San San Luis II Manuel I	San Manuel II
0.03-0.20	0.024	0.15	0.057	1.01	0.14	0.036	0.049	0.28	0.14	0.022	0.011
0.21-0.50	0.0024	0.019	0.012	0.13	0.028	0.003	0.001	0.01	0.0079	0.018	0.0035
0.51-1.00	0.000041	0.014	0.0048	0.074	0.0034	0	0.0003	0.0088	0.0091	0.0062	0.0098
1.01-2.00	0	0.014	0.0048	0.038	0.0027	0	0.00092	0.013	0.02	0.0043	0.011
2.01-5.00	0	0.0045	0.0003	0.014	0.0027	0	0.0035	0.0087	0.051	0.0077	0.03
> 5.00	0	0	0	0.0001	0	0	0.0003	0.003	0.032	0.0051	0.011

Table 81. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

Affected area (so km) hv				Area of a	Area of affected barangays in Dasmariñas (in sq. km)	ngays in De	ısmariñas (in sq. km)			
flood depth (in m.)	San	San	San	San	San	San	San	Santa	Santa	Santa	Santa Cruz
() I	Mateo	Miguel	Miguel II	Nicolas I	Nicolas I Nicolas II	Roque	Simon	Cristina I	Cristina I Cristina II	Cruz I	II
0.03-0.20	0.1	0.037	0.032	0.19	0.49	0.015	0.072	0.027	0.032	0.15	0.09
0.21-0.50	0.0079	0.0079 0.0059	0.0043	0.036	0.062	0.0004	0.0058	0.005	0.0032	0.015	0.0023
0.51-1.00	0.0082	0.0083	0.0031	0.0057	0.028	0	0.0039	0.0038	0.0026	0.0034	0.0014
1.01-2.00	0.0094	0.014	0.0023	0.0049	0.017	0	0.0039	0.0053	0.0024	0.0043	0.0025
2.01-5.00	0.0018	0.025	0.000015	0.0011	0.0018	0	0.00063	0.0053	0.001	0.0086	0.0063
> 5.00	0	0.013	0	0	0.0011	0	0	0	0	0.0055	0.0029

Table 82. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

Affected area (so km) hy			Aı	ea of affect	ed barangays	Area of affected barangays in Dasmariñas (in sq. km)	s (in sq. km)			
flood depth (in m.)	Santa Fe	Santa Lucia	Santa Maria	Santo Cristo	Santo Niño I	Santo Niño Santo Niño I II	Zone I	Zone I-B Zone II	Zone II	Zone IV
0.03-0.20	0.02	0.21	0.023	0.1	0.08	0.027	0.11	0.59	0.034	0.27
0.21-0.50	0.0043	0.031	0.0063	0.023	0.011	0.0036	0.013	90.0	0.00041	0.037
0.51-1.00	0.0042	0.013	0.0072	0.0089	0.0047	0.0036	0.0015	0.04	8.1E-06	0.024
1.01-2.00	0.0052	0.012	0.0091	0.0034	0.0052	0.0038	0	0.03	0	0.015
2.01-5.00	0	0.0011	0.018	0	0.0079	0.0016	0	0.029	0	0.0012
> 5.00	0	0	0.021	0	0	0	0	0	0	0

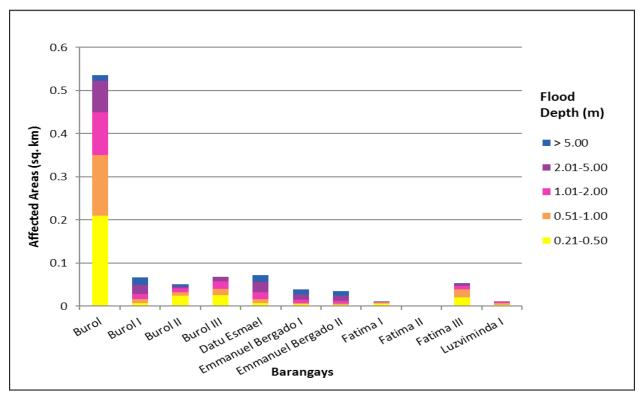


Figure 112. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

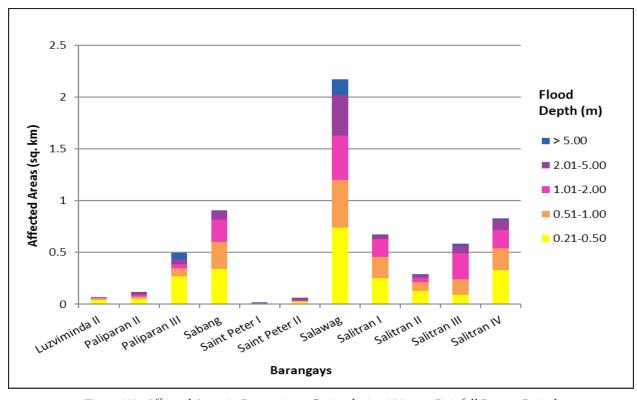


Figure 113. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

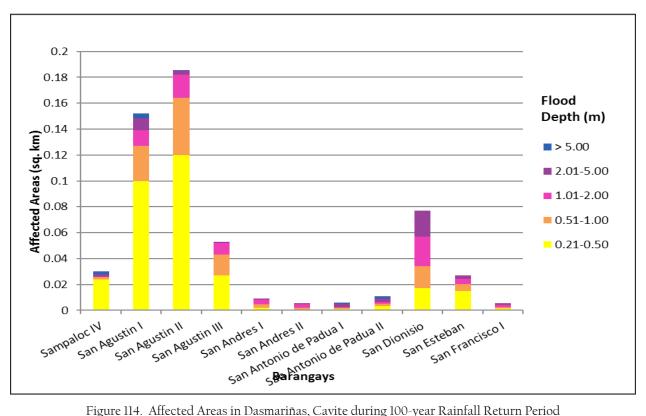


Figure 114. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

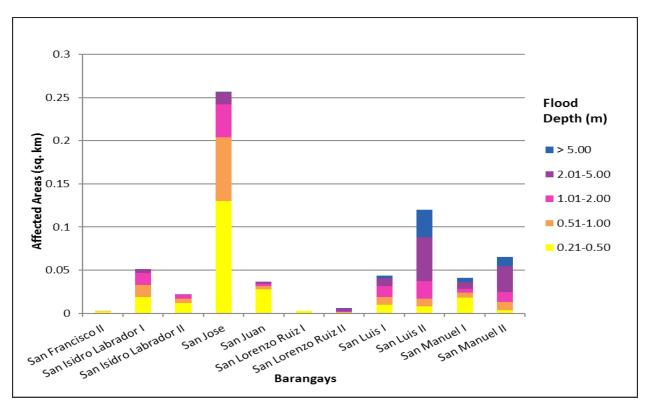


Figure 115. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

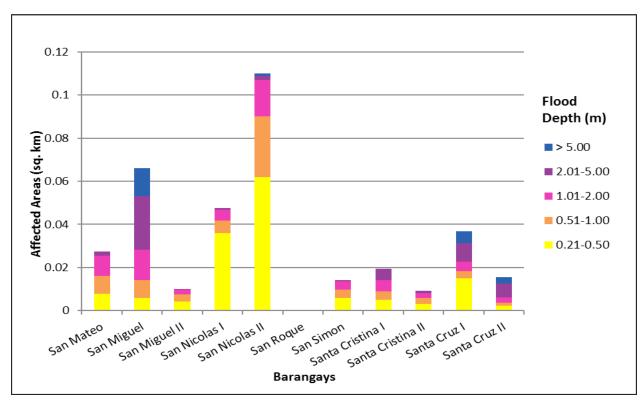


Figure 116. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

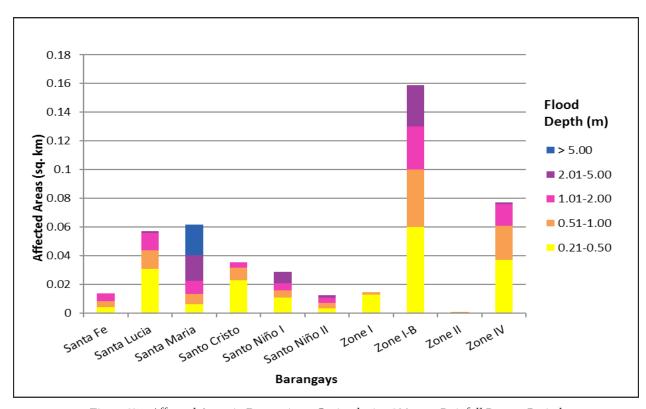


Figure 117. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

For the 100-year return period, 21.23% of the municipality of Imus with an area of 56.81 sq. km. will experience flood levels of less than 0.20 meters. 9.68% of the area will experience flood levels of 0.21 to 0.50 meters while 15.98%, 13.21%, 2.24%, and 0.55% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 83 to Table 90 and shown in Figure 118 to Figure 125 are the affected areas in square kilometers by flood depth per barangay.

Table 83. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period

Affected area (so km) hv				Area	of affected ba	rangays in In	Area of affected barangays in Imus (in sq. km)	(1			
flood depth (in m.)	Anabu I-A	Anabu I-B	Anabu I-C	Anabu I-D	Anabu I-E	Anabu I-E Anabu I-F Anabu I-G	Anabu I-G	Anabu II-A	Anabu II-B	Anabu II-C	Anabu II-D
0.03-0.20	0.17	0.058	0.021	0.031	0.048	0.075	0.098	3.25	0.13	0.12	0.14
0.21-0.50	0.27	0.054	0.043	0.049	0.068	0.052	0.078	0.54	0.1	0.21	0.14
0.51-1.00	0.4	0.14	0.097	0.11	0.15	0.13	0.096	0.81	0.15	0.28	0.24
1.01-2.00	0.21	0.067	0.089	0.12	0.13	0.11	0.15	0.86	0.12	0.13	0.2
2.01-5.00	0.022	0.015	0.0098	0.015	0.0033	0.0061	0.017	0.35	0.027	0.033	0.029
> 5.00	0.00075	0.00075 0.0009 0.0059	0.0059	0.0055	0.0073	0.0077	0.0085	0.13	0	0.0002	0.016

Table 84. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period

				Area	Area of affected barangays in Imus (in sq. km)	rangays in In	ıus (in sq. km	1)			
Affected area (sq.km.) by flood depth (in m.)	Anabu II-E	Anabu II-F	Bagong Silang	Bayan Luma I	Bayan Luma II	Bayan Luma III	Bayan Luma IV	Bayan Luma IX	Bayan Luma V	Bayan Luma VI	Bayan Luma VII
0.03-0.20	0.19	0.3	0.041	0.0041	0.0032	0.0025	0.012	0.0014	0.0026	0.006	0.029
0.21-0.50	0.24	0.25	0.043	0.0051	0.015	0.0082	0.036	0.019	0.014	0.02	0.089
0.51-1.00	0.34	0.41	0.023	0.04	0.036	0.076	0.077	0.081	0.048	0.033	0.058
1.01-2.00	0.31	0.32	0.052	0.055	0.058	0.082	0.014	0.029	0.025	0.03	0.0054
2.01-5.00	0.034	0.027	0.0029	0.0085	0.012	0.0087	0	0	0	0	0
> 5.00	0.008	0.013	0	0.0007	0	0	0	0	0	0	0

Table 85. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period

Area of affected barangays in Imus (in sq. km)	Buhay Carsadang Carsadang Magdalo Maharlika Halagasang Bago I Bago II	0.049 0.068 0.21 0.036 0.0042 0.0016	0.044 0.29 0.25 0.04 0.0073 0.011	0.03 0.43 0.22 0.027 0.031 0.01	0.06 0.13 0.053 0.045 0.074 0	0.0001 0.013 0.0016 0 0.023 0	0 0 0.0071 0
of affected bar	Bucandala V	0.0023	0.014	0.15	0.07	6900000	0.000054
Area	Bucandala III	0.12	0.1	0.1	0.013	0	0
	Bucandala Bucandala I II	0.0036	0.021	0.084	0.0084	0	0
	Bucandala I	0.065	0.12	0.25	0.18	0.0053	0
	Bayan Luma VIII	0.025	0.1	0.1	0.0027	0	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 86. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period

Area of affected barangays in Imus (in sq. km)	Mala- Mala- Mala- Mala- Mala- Mariano	gasang gasang gasang gasang gasang Espeleta I II-C II-D II-E III-F II-G	0.075 0.033 0.0076 0.13 0.0024 0.0061	0.064 0.057 0.069 0.11 0.037 0.012	0.084 0.034 0.28 0.096 0.19 0.027	0.026 0.0015 0.1 0.03 0.073 0.067	0.01 0 0.007 0.008 0 0.013	
faffected bar	Mala-	gasang {	0.0069	0.051	0.25	0.051	0	0
Area of	Mala-	gasang I-F	0.0027	0.04	0.17	0.13	0.0013	0.00054
	Mala-	gasang I-E	0.00019	0.0013	0.026	0.015	0	0
	Mala-	gasang I-D	0.0004	0.0025	-	0	0	0
	Mala-	gasang I-C	0.00048	0.0025	0.00099 0.0025	0	0	0
	Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 87. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period

				Area	of affected	barangays ii	Area of affected barangays in Imus (in sq. km)	. km)			
Affected area (sq.km.) Mariano Mariano by flood depth (in m.) Espeleta Espeleta III	Mariano Espeleta II	Mariano Espeleta III		Medicion Medicion I-B	Medicion I-C	Medicion I-D	Medicion II-B	Medicion II-C	MedicionMedicionMedicionII-CII-DII-E	Medicion II-E	Medicion II-F
0.03-0.20	0	0.00033	0.0076	0.011	0.0059	0.0053	0	0.013	0.0011	0.003	0.046
0.21-0.50	0.0006	0.0026	0.021	0.034	0.011	0.017	0	0.032	0.01	0.02	0.054
0.51-1.00	0.013	0.046	0.023	0.025	0.032	0.01	0.002	0.048	0.031	0.041	0.034
1.01-2.00	0.073	0.038	0.0084	0.011	0.016	0.053	0.0024	0.014	0.029	0.016	0.001
2.01-5.00	0.0007	0.0071	0.00027	0.00027	0	0.0028	0	0	0.0073	0	0
> 5.00	0	0.0052	0	0	0	0	0	0	0	0	0

Table 88. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period

Affected area (sq km)				Area of af	Area of affected barangays in Imus (in sq. km)	ays in Imus (in sq. km)			
by flood depth (in m.)	Pag-Asa III	Palico I	Palico II	Palico III	Palico IV	Pasong Buaya I	Pasong Buaya II	Pinag- buklod	Poblacion Poblacion I-A I-B	Poblacion I-B
0.03-0.20	0.046	0.013	0.00032	0.018	0.0044	3.36	2.67	0.0082	0.00061	0
0.21-0.50	0.066	0.025	0.0061	0.0071	0.013	0.31	0.7	0.0055	0.011	0.0001
0.51-1.00	0.031	0.023	0.016	0.021	0.022	0.3	0.74	0.04	0.073	0.023
1.01-2.00	0.011	0.0061	0.0091	0.017	0.0053	0.31	0.34	0.13	0.066	0.05
2.01-5.00	0	0.0065	0.0076	0.0098	0	0.17	0.13	0.0089	0	0
> 5.00	0	0.0075	0.0056	0.0089	0	0.018	0.012	0.0092	0	0

Table 89. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period

Affected area (so km)				Area of affe	Area of affected barangays in Imus (in sq. km)	ys in Imus (i	n sq. km)			
by flood depth (in m.)	Poblacion I-C	PoblacionPoblacionPoblacionI-CII-AII-B	Poblacion II-B	Poblacion III-A	Poblacion III-B	Poblacion IV-A	Poblacion IV-B	Poblacion Poblacion IV-C	Poblacion IV-D	Tanzang Luma I
0.03-0.20	0	0.0001	0.000029	0.006	0.0072	0.01	0	0.0024	0.0004	0.19
0.21-0.50	3.8E-08	0.00061	0.0033	0.02	0.019	0.063	0.0018	0.019	0.005	0.11
0.51-1.00	0.017	0.017	0.015	0.061	0.061	0.17	0.02	0.13	0.053	0.12
1.01-2.00	0.06	0.056	0.031	0.15	0.026	0.035	0.031	0.064	0.18	0.026
2.01-5.00	0.0001	0.0014	0	0.012	0.0046	0.007	0.0035	0.0013	0.0001	0.0001
> 5.00	0	0	0	0	0	0	0	0	0	0

Table 90. Affected Areas in Imus, Cavite during 100-year Rainfall Return Period

Affected area (sa km.)				Area of affe	Area of affected barangays in Imus (in sq. km)	ys in Imus (i	n sq. km)			
by flood depth (in m.)	Tanzang	Tanzang	Tanzang	Tanzang	Tanzang	Toclong	Toclong	Toclong	Toclong	Toclong
	Luma II	Luma III	Luma IV	Luma V	Luma VI	I-A	I-B	I-C	II-A	II-B
0.03-0.20	0.0056	0.015	0	0.00019	0.029	0	0	0	0	0
0.21-0.50	0.042	0.036	0.000076	0.0023	0.043	0	0.0004	0.000042	0.00034	0.0019
0.51-1.00	0.046	0.045	0.027	0.02	0.12	0.0044	0.015	0.021	0.011	0.095
1.01-2.00	0.058	0.11	0.1	0.17	0.053	0.11	0.17	0.17	0.18	0.22
2.01-5.00	0.0086	0.037	0.02	0.04	0.0089	0.0062	0.0039	0.013	0.025	0.025
> 5.00	0	0.0046	0.0086	0.019	0.0017	0	0	0	0	0

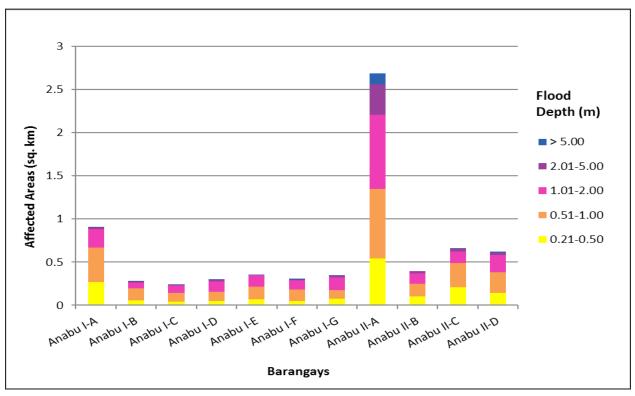


Figure 118. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

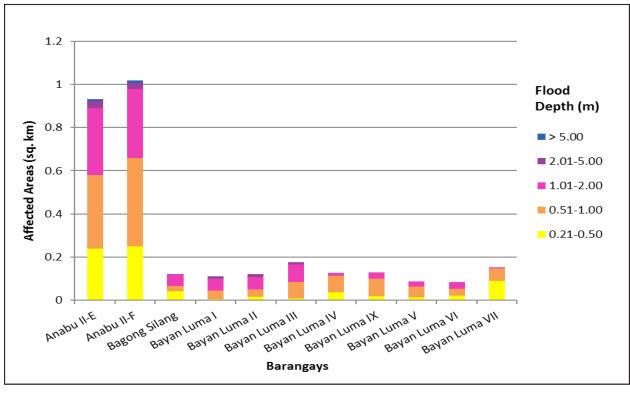


Figure 119. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

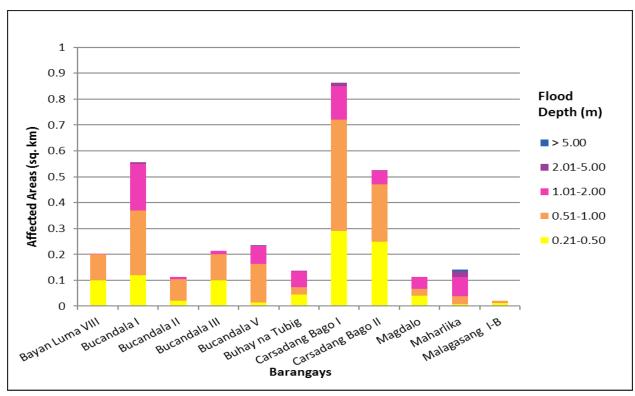


Figure 120. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

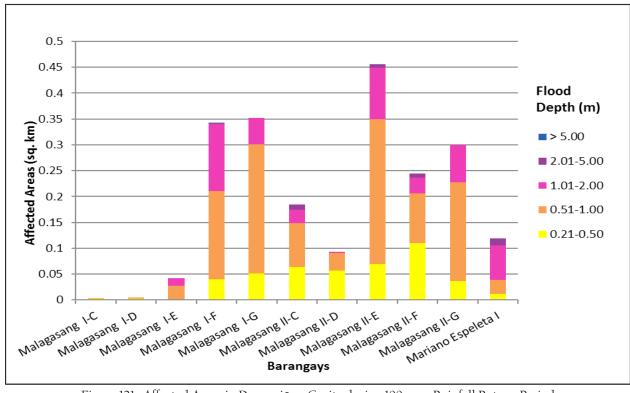


Figure 121. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

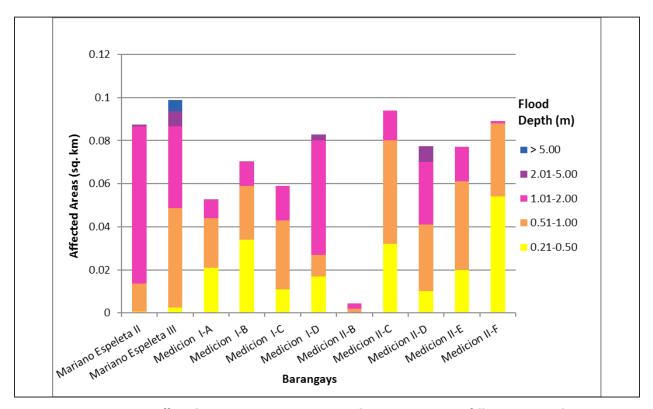


Figure 122. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

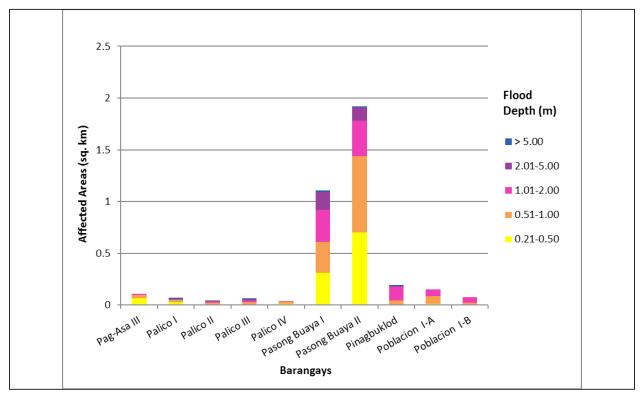


Figure 123. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

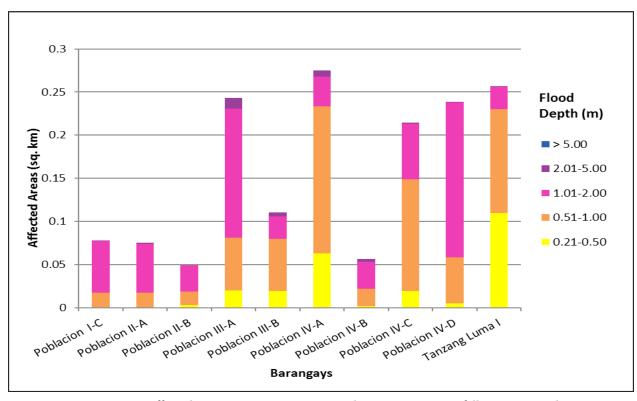


Figure 124. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

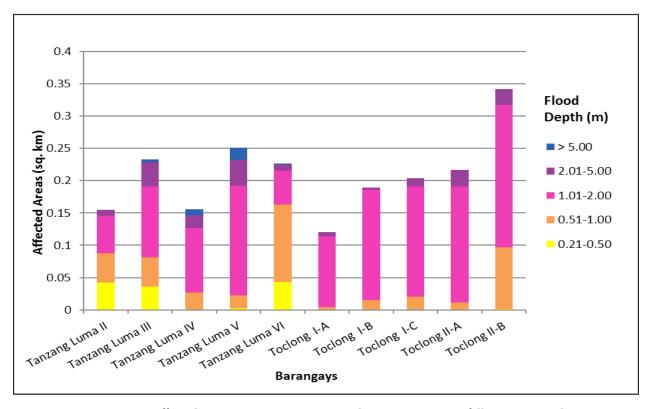


Figure 125. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

For the 100-year return period, 0.76% of the municipality of Kawit with an area of 9.47 sq. km. will experience flood levels of less than 0.20 meters. 0.59% of the area will experience flood levels of 0.21 to 0.50 meters while 1.06%, 7.78%, and 2.64% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed Table 91 and shown in Figure 126 are the affected areas in square kilometers by flood depth per barangay.

Table 91. Affected Areas in Kawit, Cavite during 100-year Rainfall Return Period

	Toclong	0.015	0.028	0.058	0.41	0.14	0
	Samala -Marquez	0	0	0.00067	0.1	0.016	0
km)	Pulvorista	0	0	0.00078	0.096	0.013	0
in Kawit (in sq.	Manggahan -Lawin	0.0051	0.0028	0.019	0.03	0.061	0
Area of affected barangays in Kawit (in sq. km)	Congbalay -Legaspi	0.0056	0.0045	0.0044	0.0072	0.0085	0
Area of a	Binakayan -Kanluran	0	0	0.00063	0.078	0	0
	Binakayan -Aplaya	0.031	0.019	0.01	0.007	0.0042	0
	Balsahan -Bisita	0.015	0.0018	0.0068	0.0089	0.007	0
	Affected area (sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

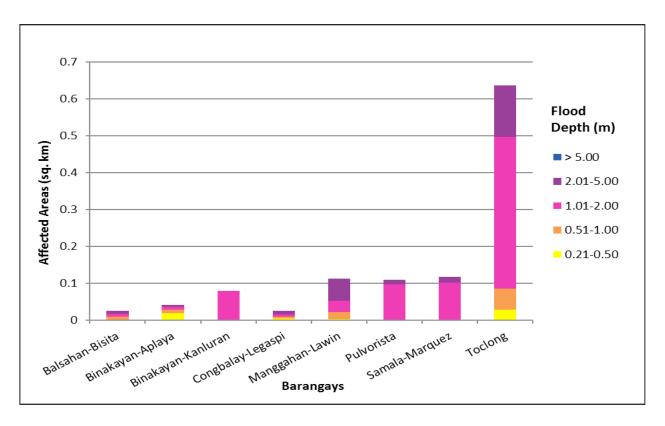


Figure 126. Affected Areas in Dasmariñas, Cavite during 100-year Rainfall Return Period

Among the barangays in the municipality of Bacoor in Cavite, Mambog I is projected to have the highest percentage of area that will experience flood levels at 3.36%. Meanwhile, Queens Row East posted the second highest percentage of area that may be affected by flood depths at 2.92%.

Among the barangays in the municipality of Dasmariñas in Cavite, Salawag is projected to have the highest percentage of area that will experience flood levels at 22.16%. Meanwhile, Salitran IV posted the second highest percentage of area that may be affected by flood depths at 6.47%.

Among the barangays in the municipality of Imus in Cavite, Anabu II-A is projected to have the highest percentage of area that will experience flood levels at 12.52%. Meanwhile, Pasong Buaya II posted the second highest percentage of area that may be affected by flood depths at 9.68%.

Among the barangays in the municipality of Kawit in Cavite, Toclong is projected to have the highest percentage of area that will experience flood levels at 1.37%. Meanwhile, Manggahan-Lawin posted the second highest percentage of area that may be affected by flood depths at 0.25%.

Moreover, the generated flood hazard maps for the Imus Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps ("Low", "Medium", and "High"), the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 10-year).

TAT . T 1	A	rea Covered in sq. kr	n.
Warning Level	5 year	25 year	100 year
Low	12.90	12.24	11.61
Medium	16.66	22.59	24.67
High	5.07	8.12	10.94
TOTAL	34.63	42.95	47.22

Table 92. Areas covered by each warning level with respect to the rainfall scenarios

Of the 160 identified educational institutions in Imus Floodplain, thirty-four (34) schools were discovered exposed to low-level flooding while thirty-nine (39) schools were found exposed to medium-level flooding, both during the 5-year scenario. In the same scenario, four (4) schools were discovered exposed to high-level flooding.

For the 25-year scenario, twenty-three (23) schools were discovered exposed to Low-level flooding while sixty-two (62) schools were found exposed to medium-level flooding. In the same scenario, nine (9) schools were discovered exposed to High-level flooding.

For the 100-year scenario, nineteen (19) schools were discovered exposed to Low-level flooding while sixty-six (66) schools were found exposed to medium-level flooding. In the same scenario, fifteen (15) schools were discovered exposed to high-level flooding. The list of educational institutions affected by flooding are found in Annex 12.

Of the 51 identified medical institutions in Imus Floodplain, twelve (12) medical institutions were discovered exposed to low-level flooding while fifteen (15) medical institutions were found exposed to medium-level flooding, both during the 5-year scenario.

For the 25-year scenario, ten (10) medical institutions were discovered exposed to low-level flooding while twenty-one (21) medical institutions were found exposed to medium-level flooding. In the same scenario, four (4) medical institutions were discovered exposed to high-level flooding.

For the 100-year scenario, seven (7) medical institutions were discovered exposed to low-level flooding while twenty-three (23) medical institutions were found exposed to medium-level flooding. In the same scenario, six (6) medical institutions were discovered exposed to high-level flooding. The list of medical or health institutions affected by flooding are found in Annex 13.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office, obtaining maps or situation reports about the past flooding events and through interview with some residents who have knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 128.

Comparing it with	ion consisted of n the flood depth m contingency matrix	ap of the nearest	storm event, the r	the Imus floodpla nap has an RMSE v	in (Figure 127) value ofm

Figure 127. Validation points for 5-year Flood Depth Map of Imus Floodplain

Figure 128. Flood map depth vs. actual flood depth

Table 93. Actual flood vs simulated flood depth at different levels in the Imus River Basin.

Actual Flood Depth	Modeled Flood Depth (m)							
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
0-0.20								
0.21-0.50								
0.51-1.00								
1.01-2.00								
2.01-5.00								
> 5.00								
Total								

Table 94. Summary of the Accuracy Assessment in the Imus River Basin Survey

	No. of Points	%
Correct		
Overestimated		
Underestimated		
Total		

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

ANNEXES

Annex 1. Optech Technical Specification of the Pegasus Sensor

1. PEGASUS SENSOR

Figure A-1.1 Pegasus Sensor

2. PARAMETERS AND SPECIFICATIONS OF THE PEGASUS SENSOR

Table A-1.1 Parameters and Specifications of the Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

^{1.} Target reflectivity ≥20%

^{2.} Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

^{3.} Angle of incidence ≤20°

^{4.} Target size ≥ laser footprint5 Dependent on system configuration

3. LEICA Geosystems ALS80-HP

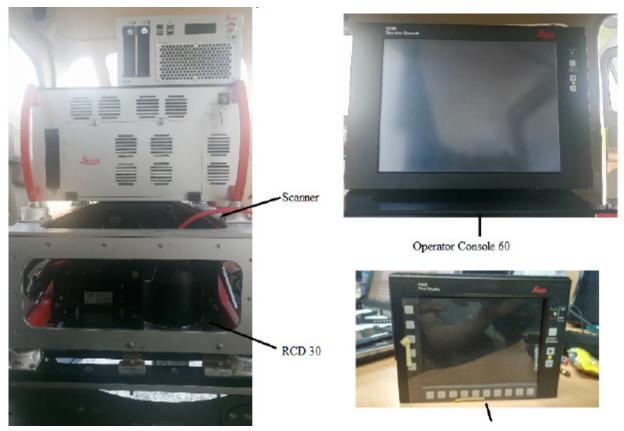


Figure A-1.1 LEICA Geosystems ALS80-HP Sensor

4. PARAMETERS AND SPECIFICATIONS OF THE LEICA SENSOR

Table A-1.2 Parameters and Specifications of the Leica Sensor

Parameter	Specification
Operational altitude	100 to 3500 m max AGL
Maximum measurement rate	1000 kHz
Maximum scan rate	200 Hz for sine; 158 for triangle;120 for raster
Field of view (degrees, full angle, useradjustable)	0 to 72
Roll Stabilization(automatic adaptive, degrees)	72 – active FOV
Number of returns	unlimited
Number of intensity measurements	3(first, second and third)
Data Storage	ALS80: removable SSD hard disk (800GB each volume)
Power Consumption	922 W @ 22.0-30.3 VDC
Dimensions and weight	Scanner:37 W x 68 L x 26 H cm; 47 kg; Control Electronics: 45 W x 47 D x 25 H cm; 33 kg
Operating temperature	0-40°C

Annex 2. NAMRIA Certificates of Reference Points Used

1. CVT-194

Philippery C4, 2014.

CERTIFICATION

To when 5 may porcent:

This is to carbly that according to the recents on the in this office. The requested corway information is no follows -

	Province CEVITE	
	Station Name CAT-FM-(SLLIB-1)	
Island: LUZION	Order Sted	Darangay, PODLACION
Municipality GENERAL TRAS	FRSS2 Coordinates	
Lateral Total Talenting	Language 120° ST 43,62180	100po./444 Mgd. 10.35700 m
	WG584 Coordinates	
Lateral 14"27 BASSET	Langitude: 100° KT 48.40486*	МПрисков Mgz — 42.16400 м
	PTS Coordinates	
Softing 1591045.011 m.	Employ: 459024.353 m.	Zere: 1
	APR Countlineiro	
Northing 1,881,837.44	Easting: 271,398.13	Zone 61

Legation Descriptions

CVT-186 (BLIAN-1)
In leading leading the course purely selected TOE on RP from the Core. Trices Ellers, Hall, Minch is adjacent and condensed and quadratided on accompanie block, with incorriplisms "SUM No. 1 PSC-SV".

Requesting Party - UP-SPRIAM Reference Propietoria CR Markey 0790250 A TALL 2004-200

NG, RUIN, DM, RIFLING, MISSA. Director, Mapping And Geodesy Branch

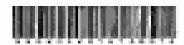


Figure A-2.1 CVT-194

2. **BTG-45**

March 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province	BATANGAS			
	Station N	ame: BTG-45			
Island: LUZON Municipality: TUY	Order	2nd	Baranga	y: MALI	BU
	PRSS	2 Coordinates			
Latitude: 13° 59' 52.18294"	Longitude:	120° 42" 18.96476"	Elipsoid	al Hgt:	48,43000 m.
	WGS	34 Coordinates			
Latitude: 13° 59' 46.88216"	Langitude:	120° 42" 23.91169"	Elipsoid	al Hgt:	92.94300 m.
	PTM	Coordinates			
Northing: 1547952.281 m.	Easting:	468159.677 m.	Zone:	3	
	UTM	Coordinates			
Northing: 1,548,591.80	Easting:	252,125.62	Zone:	51	

Location Description

BTG-45 From Tuy Town Proper, travel S on the road going to Balayan, then turn right to the road going to Brgy. Malibu. Station is located on the NW side of a fenced garden and about 10 m. W of the school bidg, of Santiago De Guzman Elem. School. Mark is the head of a 4 in. copper nail centered and embedded on a 30 cm. x 30 cm. concrete block, with inscriptions "BTG-45 2007 NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference

OR Number: 8795470 A T.N.: 2014-444

RUEL DM. BELEN, MNSA Director/Mapping And Geodesy Branch

Alain: Lawten Avenue, Fort Bastilledo, 1634 Toguig City, Philippines Tel. No.: (632) 810-4821 to 41 Brand: -421 Barreco St. San Hicelos, 1016 Marria, Philippines, Tel. No. (522) 241-3494 to 55 www.neurories.gov.ph

Figure A-2.2 BTG-45

Annex 3. Baseline Processing Report of Reference Points Used

1. CVT-3051

Project Information		Coordinate Syste	NTS
Name:		Name:	UTM
Size:		Datum:	PRS 92
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Goold:	EGMPH
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Proc. (Meter)	V. Proc. (Meter)	Geodetic Az.	Ellipsoid Dist. (Mater)	Airtolght (Meter)
CVT-199 — CVT 3051 (B1)	CVT-199	CVT-3051	Fixed	0.073	0.126	121581471	16463.417	-145.079

Acceptance Summary

Processed	Passed	Flag P	Fell P
1	0	1	0

CVT-199 - CVT-3051 (3:06:13 PM-4:03:02 PM) (S1)

-	and the same of th
Baseline observation:	CVT-199 CVT-3051 (B1)
Processed:	9/2/2015 11:27:19 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Hortzontal precision:	0.073 m
Vertical precision:	0.128 m
RMS:	0.006 m
Meximum PDOP:	9.772
Ephemeria used:	Broadcast
Antanna model:	Trimble Relative
Processing start time:	9/1/2015 3:06:41 PM (Local: UTC+8hv)
Processing stop time:	9H(2015 4:03:02 PM (Local: UTC+8hv)
Processing duration:	00:59:21
Proceeding Intervel:	1 second

Figure A-3.1 Baseline Processing Report - A

1

From:	CVT-199	CVT-199						
Grid Local Global					Global			
Easting	267428.741 m	Latitude	N14*14'16.32329"	Latitude	N14*14'10.97763*			
Northing	1575012.795 m	Longitude	E120*50'40.63536"	Longitude	E120*50'45.56096*			
Elevation	167.120 m	Height	166.201 m	Height	210.386 m			

To:		CVT-3051					
Grid Local Global						Global	
Easting		271276.565 m	Lattudo	N14*22'58.33330"	Latitude	N14*22'52.95639*	
Northing		1591024.612 m	Longitude	E120°52'44.06059"	Longitude	E120°52'48.97372"	
Elevation		22.137 m	Height	21.122 m	Height	64.983 m	

Vector					
ΔEasting	3847.824 m	NS Fwd Azimuth	12°58'47"	ΔΧ	-1068.623 m
ΔNorthing	16011.817 m	Ellipsoid Dist.	16463.417 m	ΔΥ	-5421.802 m
ΔElevation	-144.982 m	ΔHeight	-145.079 m	ΔZ	15509.176 m

Standard Errors

Vector errors:			A .		
σ ΔEasting	0.029 m	or NS fwd Azimuth	0,00,00.	σΔΧ	0.036 m
σ ΔNorthing	0.020 m	σ Ellipsoid Dist.	0.019 m	σ ΔΥ	0.058 m
σ ΔΕlevation	0.065 m	σ ΔHeight	0.065 m	σ ΔΖ	0.029 m

Aposteriori Covariance Matrix (Meter²)

	x	Y	Z
X	0.0012710639		
Υ	-0.0011111494	0.0033830758	
z	-0.0004897536	0.0012701754	0.0008644866

Figure A-3.2 Baseline Processing Report - B

2. CVT-3123

Project information		Coordinate System		
Name:	I:\Doc\DAC\2016\Fieldwork\Baseline	Name:	UTM	
	Processing Requests/QZ-352 vs QZN-82 + CVT-3123 vs CVT-199.vcq	Datum:	PRS 92	
Size:	665 KB	Zone:	51 North (123E)	
Modified:	8/7/2016 9:10:48 PM (UTC:8)	Geoid:	EGMPH	
Time zone:	Taipei Standard Time	Vertical datum:		
Reference number:				
Description:				

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
CVT-199 CVT- 3123 (B3)	CVT-199	CVT-3123	Fixed	0.001	0.001	121°10'48"	43.218	1.326
CVT-3123 CVT- 199 (B4)	CVT-199	CVT-3123	Fixed	0.002	0.003	121°11'34"	43.216	1.383

Acceptance Summary

Processed	Passed	Flag 🏲	Fall
2	2	0	0

CVT-199 - CVT-3123 (6:10:41 AM-2:38:11 PM) (S3)

Baseline observation: CVT-199 --- CVT-3123 (B3) 6/7/2016 9:18:19 PM Processed: Solution type: Fixed Dual Frequency (L1, L2) Frequency used: Horizontal precision: 0.001 m 0.001 m Vertical precision: 0.001 m RMS: 5.311 Maximum PDOP: Broadcast Ephemeris used: Antenna model: NGS Absolute 5/3/2016 6:11:22 AM (Local: UTC+8hr) Processing start time: 5/3/2016 2:38:11 PM (Local: UTC+8hr) Processing stop time: Processing duration: 08:26:49 Processing interval: 1 second

Figure A-3.3 Baseline Processing Report - C

From:	CVT-199				
	Grid		Local		Global
Easting	267428.741 m	Latitude	N14*14'16.32329*	Letitude	N14*14'10.97763*
Northing	1575012.795 m	Longitude	E120*50'40.63536*	Longitude	E120*50'45.56096*
Elevation	167.120 m	Height	166.201 m	Height	210.386 m
_	C) (T 0.100				

To:	CVT-3123	CVT-3123				
G	Grid		Local		bal	
Easting	267465.517 m	Latitude	N14*14'15.59521*	Latitude	N14*14'10.24962"	
Northing	1574990.072 m	Longitude	E120*50'41.86874*	Longitude	E120°50'46.79435"	
Elevation	168.445 m	Height	167.527 m	Height	211.713 m	

Vector					
ΔEesting	36.776 m	NS Fwd Azlmuth	121*10'48"	ΔX	-35.227 m
ΔNorthing	•22.723 m	Ellipsoid Dist.	43.218 m	ΔY	-13.131 m
ΔElevetion	1.325 m	ΔHeight	1.326 m	ΔZ	-21.362 m

Standard Errors

Vector errors:					
σ ΔEesting	0.000 m	σ NS fwd Azimuth	0*00*01**	σΔΧ	0.000 m
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔΥ	0.001 m
σ ΔElevetion	0.001 m	σ ΔHeight	0.001 m	σΔZ	0.000 m

Aposteriori Covariance Matrix (Meter*)

	х	Y	Z
x	0.0000001903		
Y	-0.0000001733	0.0000004088	
z	-0.0000000653	0.0000001166	0.0000001007

Figure A-3.4 Baseline Processing Report - D

3. PB-1

Project information		Coordinate Syste	sm
Name:		Name:	ити
Size:		Datum:	WGS 1984
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geold:	EGMPH
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodelio Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
PB-1 CVT-194 (51)	CVT-194	PB-1	Fixed	0.004	0.017	88108/291	9467.724	25,384

Acceptance Summary

Processed	Passed	Flag P	>	Fell	-
1	1	0		0	

PB-1 - CVT-194 (4:15:24 AM-8:06:34 AM) (S1)

 Baseline observation:
 PB-1 --- CVT-194 (B1)

 Processed:
 2/4/2014 9:50:26 PM

Solution type: Fixed

Frequency used: Dual Frequency (L1, L2)

Horizontal precision: 0.004 m

Vertical precision: 0.017 m

RMS: 0.005 m

Maximum PDOP: 2.254

Ephemerie used: Broadcast

Antenna model: NGS Absolute

Proceeding start time: 2/3/2014 4:15:24 AM (Local: UTC+8hr)
Proceeding stop time: 2/3/2014 8:06:34 AM (Local: UTC+8hr)

Proceeding duration: 03:51:10
Proceeding interval: 5 seconds

Figure A-3.5 Baseline Processing Report - E

From:	CVT-194	/T-194					
G	rid	Local		Giobal			
Easting	271413.844 m	Leftude	N14"23'09.63386"	Lettude	N14"23'09.63386"		
Northing	1591468.703 m	Longitude	E120°52'48.43458"	Longitude	E120°52'48.43458"		
Elevation	19.356 m	Height	62.184 m	Height	62.184 m		

To:	PB-1	-1							
Grid		Local		Giobal					
Easting	250881.093 m	Leffude	N14*23*19.56635*	Leffude	N14°23'19.56635"				
Northing	1591688.776 m	Longitudo	E120*58*04.29835*	Longitude	E120"58"04.29835"				
Elevation	44,199 m	Height	87.568 m	Height	87.568 m				

Vector							
ΔEosting	9467.249 m	NS Fwd Azimuth	88108291	ΔX	-8 0 91.412 m		
ΔNorthing	220.073 m	Ellipsoid Dist.	9467.724 m	ΔY	-4906.972 m		
ΔElevation	24.843 m	ΔHolght	25.384 m	ΔZ	302.003 m		

Standard Errore

Vector errors:	fector errors:							
σ ΔEnsting	0.001 m	o NS fwd Azimuth	0^00000*	σΔΧ	0.004 m			
σ <u>A</u> Northing	0.001 m (σ Elipsoid Dist.	0.001 m	σΔΥ	0.007 m			
σ ΔElevation	0.009 m	σ ΔHeight	0.009 m	σΔΖ	0.003 m			

Aposteriori Covertance Matrix (Meter*)

	х	Y	z
x	0.0000191800		
Y	-0.0000293093	0.0000523957	
z	-0.0000093650	0.0000161874	0.0000064708

Figure A-3.6 Baseline Processing Report - F

4. BTG-45A

Project Information		Coordinate Syste	MT .
Name:		Name:	UTM
Size:		Datum:	PRS 92
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geoid:	EGMPH
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsold Dist. (Meter)	ΔHeight (Meter)
BTG-45 BTG- 45A (B1)	BTG-45	BTG-45A	Fixed	0.001	0.001	175°32'41"	6.995	0.659

Acceptance Summary

Processed	Passed	Flag	P	Fall	T
1	1	0		0	

BTG-45 - BTG-45A (7:15:33 AM-11:52:39 AM) (S1)

 Baseline observation:
 BTG-45 --- BTG-45A (B1)

 Processed:
 9/2/2015 11:37:56 AM

 Solution type:
 Fixed

 Frequency used:
 Dual Frequency (L1, L2)

Hortzontal precision: 0.001 m

Vertical precision: 0.001 m

RMS: 0.000 m

Maximum PDOP: 2.331

Ephemeris used: Broadcast

Antenna model: Trimble Reletive

 Processing start time:
 9/1/2015 7:15:33 AM (Local: UTC+8hr)

 Processing stop time:
 9/1/2015 11:52:39 AM (Local: UTC+8hr)

Processing duration: 04:37:06
Processing Interval: 1 second

Figure A-3.7 Baseline Processing Report - G

From:	BTG-45	-45							
G	rld	Local		Global					
Easting	252125.624 m	Latitude	N13°59′52.18294°	Latitude	N13°59'46.88216"				
Northing	1548591.799 m	Longitude	E120°42'18.96476"	Longitude	E120°42'23.91169"				
Elevation	49.818 m	Height	48.430 m	Height	92.943 m				

To:	BTG-45A				
	Grid	Local		Global	
Easting	252126.100 m	Latitude	N13°59′51.95603°	Latitude	N13°59′46.65526°
Northing	1548584.818 m	Longitude	E120°42'18.98286"	Longitude	E120°42'23.92980"
Elevation	50.478 m	Height	49.089 m	Height	93.602 m

Vector					
ΔEasting	0.476 m	NS Fwd Azimuth	175°32'41"	ΔX	-1.655 m
ΔNorthing	-6.981 m	Ellipsoid Dist.	6.995 m	ΔΥ	1.723 m
ΔElevetion	0.659 m	ΔHeight	0.659 m	ΔZ	-6.607 m

Standard Errors

Vector errors:	·		1.1		
σ ΔEasting	0.000 m	σ NS fwd Azimuth	0°00'12"	σΔΧ	0.001 m
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔΥ	0.001 m
σ ΔElevation	0.001 m	σ ΔHeight	0.001 m	σ ΔΖ	0.000 m

Aposteriori Covariance Matrix (Meter*)

	x	Y	z
x	0.0000002966		
Y	-0.0000001658	0.0000003931	
z	-0.0000000756	0.0000000861	0.0000001315

Figure A-3.8 Baseline Processing Report - H

Annex 4. The LiDAR Survey Team Composition

Table A-4.1 LiDAR Survey Team Composition

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation
Program Leader	Program Leader –I	ENRICO C. PARINGIT, D. Eng.	UP TCAGP
Data Acquisition Component Leader	Data Component Project Leader –I	ENGR. CZAR JAKIRI S. SARMIENTO	UP TCAGP
Data Acquisition Component Leader	Data Component Project Leader –I	ENGR. LOUIE P. BALICANTA	UP TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP TCAGP
Common Common in an		LOVELY GRACIA ACUNA	UP TCAGP
Survey Supervisor	Supervising Science Research Specialist (Supervising SRS)	ENGR. LOVELYN ASUNCION	UP TCAGP
	(Supervising SNS)	ENGR. GEROME HIPOLITO	UP TCAGP

FIELD TEAM

	Senior Science	JASMINE ALVIAR	UP TCAGP
	Research Specialist (SSRS)	AUBREY MATIRA	UP TCAGP
		ENGR. LARAH PARAGAS	UP TCAGP
		PAULINE JOANNE ARCEO	UP TCAGP
LiDAR Operation	Research Associate	MARY CATHERINE ELIZABETH BALIGUAS	UP TCAGP
		JONALYN GONZALES	UP TCAGP
		FAITH JOY SABLE	UP TCAGP
		KRISTINE JOY ANDAYA	UP TCAGP
Ground Survey,		ENGR. RENAN PUNTO	UP TCAGP
Data Download	Research Associate	MA. VERLINA TONGA	UP TCAGP
and Transfer		ENGR. KENNETH QUISADO	UP TCAGP
LiDAR Operation/	Research Associate	ENGR. RENAN PUNTO	UP TCAGP
Ground Survey	Research Associate	ENGR. DAN ALDOVINO	UP TCAGP
LiDAR Operation	Airborne Security	SSG. RAYMUND DOMINE	PHILIPPINE AIR FORCE
LIDAK Operation	All borne security	TSG. CEBU	(PAF)
		CAPT. MARK TANGONAN]
		CAPT. RAUL SAMAR	
LiDAR Operation	Pilot	CAPT. FRANCO PEPITO	ASIAN AEROSPACE
LiDAR Operation	PIIOL	CAPT. CAESAR ALFONSO II	CORP (AAC)
		CAPT. DANTHONY LOGRONIO	
		CAPT. CEDRIC DE ASIS	

Annex 5. Data Transfer Sheet For Imus Floodplain

SERVER	LOCATION	2:DAC/RAMDATA 1138P				
FLIGHT PLAN	HOMIL	1139				
FUGH	Actual	9.0				
OPERATO	(00100)	90				
BASE STATION(S)	Bose info (101)	133.8				
	BASS STATIONS	6.72 MB				
SM010 B10MZ	8	80				Totalle
2	anwen i	21.07				draws of
NOSSON	FLEICAS	MM				Trong the state of
RAW	43	29.34.08			Received by	Name AC Bongot comp DIPL Position Sign.
900		238.21 MB				2 12 10
600000	foulous	8.88 MB			- 1	
RAW LAS	(sweth)	701.22 KB				
RA.	Output LAB	22.00				droub
SPACO		Paggous				+ 13
DCSNH5		18LK183S3A			Received from	Name R. A. John Postson R. Sgnature
FLIGHT		1139			_	
PLAN.		2014-02-22				

Table A-5.1 Data Transfer Sheet for Imus Floodplain - A

						DATAT	DATA TRANSFER SHEET - Calabarzon 2842-2816	ER SHEET . 2842.2916	Calabarz	8						
MISSION NAME	90	SENSOR	RAW	RAW LAS	LOCS	50	RAW	MISSION	BANDE	DIGHTOR	BASE STATION(S)	(E)WOUL	OPERATOR	FUGH	FLIGHT PLAN	SERVER
			Output	KML (swath)	9			LOSS			BASE STATION(3)	Base into (tet)	laurod	Actual	KML	госалом
1BLK18B028A Po	ã.	Pegasus	2.07 08	76.74 KG	11.84 MB	185.34 MB	9 B 0	NOA	118.11	90	7.43 MB	141.8	242 B	80	1039	Z-IDACIBAMIDATA: 1038P
181K18A025A Pe	g.	Pegasus	1.51 08	7188	27.25	194.22 MB	7.H GB 8	83.96.KB	14.36	80	6.71 MB	112.8	718 B	105.58 KB	1027	Z:/DAC/BAW/DATA/ 1027P
1BLK18B024A Pe	ď.	Pegasus	968.82 MB	246.8	2 68	52.67 MB	11.89 GB 2.68 KB		9.28.GB	39.8 GB	8.04 MB	100 B	245 B	33.37 KB	1023	Z:/DAC:RAWDATA/ 1023P
181K18C026A PA	ď.	Pegasus	1.53 GB	513.37 KB	7.24	183.43 M8	80	NO	14.75 GB	80	8.04 MB	1108	88	0.0	1031	Z:IDACIRAMDATA: 1031P
1BLK1&ASD29A, PA	6.	Pegasus	80	1.16 GB	8 8	251.66 M8	80	NW.	6.11 CB	80	6.79 MB	1418	245 B	9 0	1043	Z:DACIR/MDATA/ 1043P
Roselved from Name R po vuerto Prosten Signature	3 . 1 11 2	484	dhuis (i				Received by Namo 4: 50% 1 Position 5545 Signalure ACE	The state of the s	3	Alashu alashu						

Table A-5.2 Data Transfer Sheet for Imus Floodplain - B

									20000000		ľ						
B. E.	PLICHT	MISSION NAME	SENSOR	RAW	RAW LAS	1003	508	RAW	N LOS N LOS FREDE RANGE		DISTE	BASE ST	BASE STATION(S)	OPERATOR	FLIGH	FLIGHT PLAN	SERVER
	ğ			Output	KORL. (sweath)	9		3	A51 L005		5	STATION	Bess Into (tar)	(OLOG)	Actual	KWI	LOCATION
2014-02-15	11111	MANAGE TALES	Pogasus	1.39 GB	71.57 KB	7.97 MB	194.4 MB	19.72 GB	MW	14.73	80		216.8	358 B		1111	Z:DAC/RAWDATAL
2014-02-05	1071	1BLK13035A	Pogesus	1.62 08	95.65 KB	6.73 MB	157,44 NB	16.02 GB	NOA	15.4	80	2.5 MB 1	198 B	4118	80	1071	ATADAMPACAMONTAL
2014-02-02	1059	1BLK18F033A	Pogesus	1.04 08	421B	6.75 MB	167,09 NB	11.73 GB	NOA	19.15 CB 0	9 80	6 MB 2	2018	4218	1X3.98 KB	1059	Z:DAC/RAMDATAI 1058P
2014-01-31	1661	1BLK18E031A	Aquarius	2.56 GB	1.06 MB	14.17	379.85 NB	14.49 GB	NOA	13.37 GB 0	80	4.55 MB 2	2178	904 B	8 0	1991	Z:DAC/RANDATA 1051P
2014-02-03	1063	18LK18D034A	Pegasus	1.18 GB	29.61 WB	8.01 MB	144.56 NB	19.2 GB	N/A	08 0	0 0	2.95 MB	9 161	3218	80	1083	Z:DAC/RANDATA 1063P
		Received from						Received by	*								
		Name R. Fusher Position B Signature	4	érodó	Loss bass and			Name A. Roman Copports	The Park	190	sup there						

Table A-5.3 Data Transfer Sheet for Imus Floodplain - C

							Calabara	Calabarton artura									
				RADA	RAW LAS				DOTROBAN			BASE ST	BASE STATION(S)	OPERATOR	FLIGHT PLAN	PLAN	-
DATE	FUGHT NO.	MISSION NAME	SENSOR	Outpit LAS	KRL (swath)	LOGS(MB)	50	IMGESICASI	FLLDCASI LDG8	NAMOR	RESTREET	STATION(S)	Sess (eth.)	(00H(02)	Actual	KWI	LOCATION
17-Aug	3307P	1BLK18IS229B	Papasus	88	3780	253	171	2	9	9.50	2	18.4	TKB.	100	260	2	Z/DAC/RAW DATA
18-Aug	3300P	IBLK18AsS230A	Pegason	E	252	3.65	302	2	20	11.9	2	19.4	11/03	1108	82	2	Z/DAC/RAW DATA
3-Sep	3373P	IBLK180S246A	Pepses	5	206	95.50	212	2	8	182	2	7,67	1168	168	-	na	Z:DACRAW DATA
4-Sp	3377P	1BLK18/S247A	Pagasus	9	E	25	180	2	2	13.4	2	643	8	W.	\$19	2	Z/DAC/RAW DATA
5-Sep	338IP	1BLK180S248A	Preparus	Di	27	103	950	2	2	908	2	200	188	11/8	89/88	99	Z/DACRAW DATA
		Received from						Received by									

Table A-5.4 Data Transfer Sheet for Imus Floodplain - D

Name

- CHONE		B Z'ONCRAW DMTA	B ZYCACIBANY DATA	B DATA		
BASE STATONIS	Same into (bot)	D)	110	DI.		
0.455	BASE STATION(S)	ŧ0	8	В		
200000000000000000000000000000000000000	MAGCS IN SECTION AND ADDRESS OF THE SECTION	181	33.4	12.0		
	Mobilan	275/182	380	25		13
	Rantelo	¥	ž	ž	Received by	BOMBE
	Rintoc	464238	623	23	Receiv	Mann AC
	Applacer	25 1251	9739	388		
	TestBols	41.7	40.4	25.6		
	LogFiles	138	191	115		
	Grasina	468	900	907		9
	AZEL (swarts)	22	135	28	al from	1
	8616938	ALS 80	ALS 30	ALS ST	Received from	No.
	NAME	4BLK18B1 24A	48LK18AB 127A	49UCARS1 28A		
	FLOHT NO.	101361	101421	101441		
	1370	3-May-16	6-May-16	7-May-16		

Table A-5.5 Data Transfer Sheet for Imus Floodplain - E

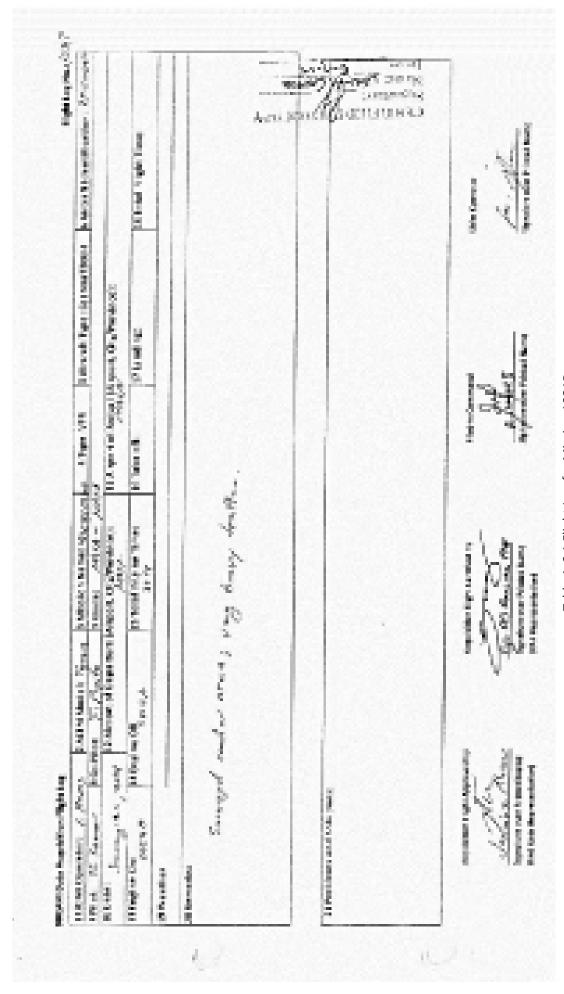


Table A-6.1 Flight Log for Mission 1031P

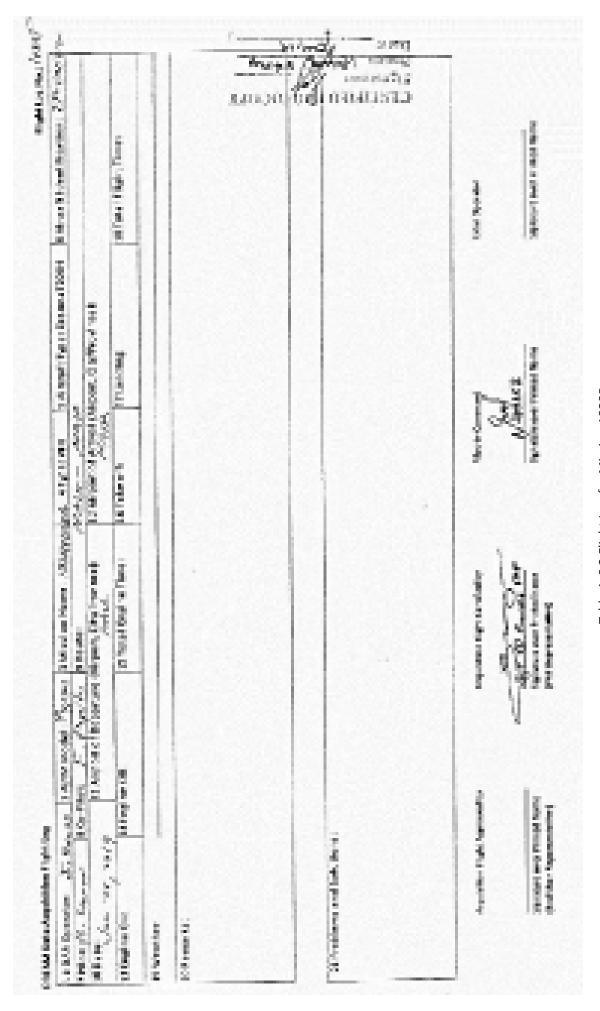


Table A-6.2 Flight Log for Mission 1039P

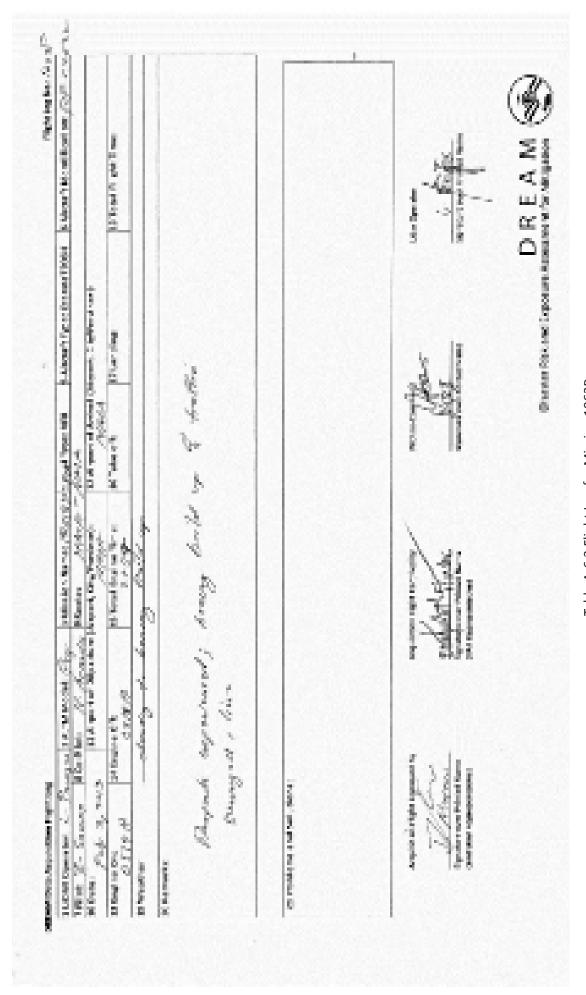


Table A-6.3 Flight Log for Mission 1063P

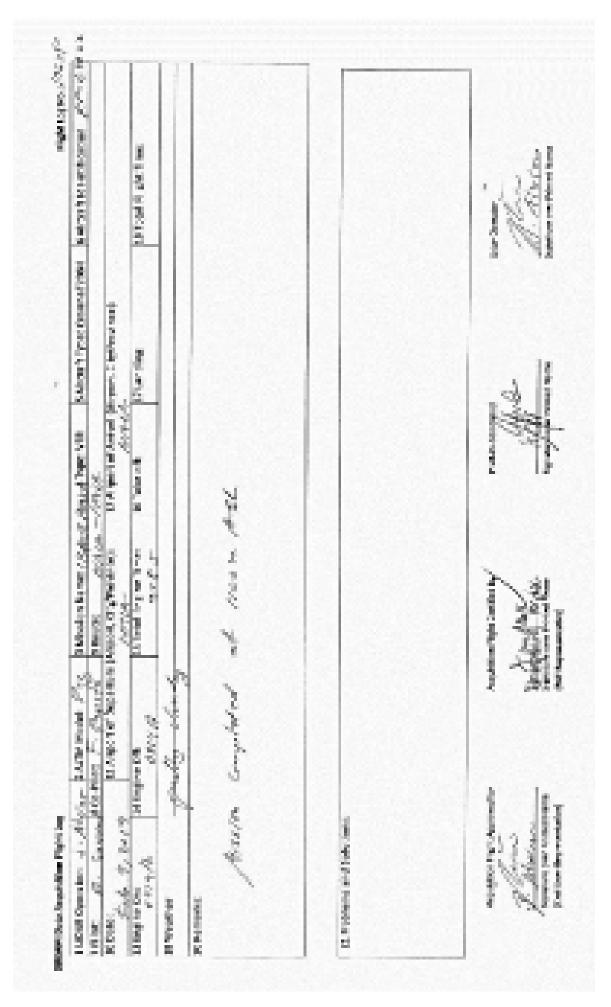


Table A-6.4 Flight Log for Mission 1139P

Data Acquisition Flight Log				1000000	9	
Liban Operator: K.S. ANDA	1 LiDAR Operator: K.S. AND MAR. 2 ALTM Model: Pag. May 3 Mission Name: IBIX 18 ACCOUNT 4 Type: VFR.	9 Mission Name: IBIX IS	KSAZOA 4 Type: VFR	5 Aircraft Type: Cesnina T206H	6 Audait Identification:	2000
O Date: Nuc. 16 .10	10 Date: No 16 .20 C 12 Airport of Departure [Airport, City/Province]:	Airport, Gty/Province):	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):		
13 Engine On: 14	14 Engine Off.	15 Total Engine Time:	16 Take off.	17 Landing: 09 48 H	18 Total Flight Time: 3 ≠ 0 ¢	
19 Weather	Partly cloudy					
20 Fight Classification \$20.a Billable	20.b Non Billable	20.c Others	Z1 Remarks	Successful		
A Acquisition Flight O Ferry Flight O System Test Flight O Calibration Flight	Ancraft Test Flight AAC Admin Flight Others:	LIDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities	tenance cce ctivities			
22 Problems and Solutions						
o Weather Problem o System Problem o Aircraft Problem o Pilot Problem o Others:		. [
Acquisition Hight Approved by Signature over Printed Hame (End User Representative)	Acquisition Flight Certified by Lee 3 pt Punker Lee Signature over Printed Name (Table Recognistical)		Pllot-in-Command M.L. The Central Signature over Printed Name	Lidar Operator K. Javana	Aircraft Mechanic/ Technician	Inician

Table A-6.5 Flight Log for Mission 3309P

UDAN Operator: UK.R.D.	SALTM Model: 14 CCD	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Comma T209H	6 Minust I described on carry or	200
Pilot: No TOPACION CAN	THIST AN TOPICADA CAN BOO-PHOT A. BONYO	9 Route: ATAIA	13			77
10 Date: V	12 Airpert of Departure	12 Airpen of Departure (Airport, Chy/Rownice):	12 Airport of Arrival	12 Airport of Arrival (Airport, OttyProvince):		
B Engine Onl	MEngles Off:	15 Total Engine Time:	16 Take off:	17 Landings	18 Total Flight Time:	
I9 Weather	Goody					
20 Flight Classificacion	*		23 Remarks			
20.a Billable	20 b Non Dilbable	2D.c Others		4	the state of the	
9 Aquistion Flight O ferry Flight O System Test Flight O Calbration Flight	AAC Admin Flight AC Admin Flight Others:	LIDAR System Maintenance Aircraft Maintenance Pril-LIDAR Admin Activities		The time out cone to the		
22 Problems and Solutions						
O Weather Problem						
O System Problem						
O Others:						
Accusication Filette Approximately	Accuse committees Certified by	Per le l'active	200	Section of the sectio		7
Car F		1		Common Common	Arrowth Mediamic/ Ustral Technicism	Amidan
Sprikker over Printed Name (Sed User Representative)	Spatial constitution of the spatial sp		Signature over Printed Name	Sporters only Nobellians	Sepretare over Priheed Some	12
The same of the sa	Anna Maria Maria					

Table A-6.6 Flight Log for Mission 10136L

DAR Operator: U 6.08 2-25					PHENT LOGING TO COLCAC	555
THISE MA PART AND BE	THIS AN THE BOUNDER AND	24	284 Type: VFR	S Averait Type: Cesarra T206H	6 Aircraft Identification:	9526
T.	19 Led Medical Comment of Department Challed and Lands	-	Howard of the Land	Aki manan Palandan and and		
May 64,201,	" NATA		シャンタ	NA14		
13 Engine Ove V 1 14	Mingine Off:	15 Total Ingine Time: 16	16 Take off:	17 Landing	38 Total Flight Time;	
19 Weather	Fair					
20 Flight Classification			21 Remarks	The state of the s		
20a Bibble 2	20.5 Non Billable	20.c Others	_			
A Acquisition Flight O Ferry Flight O System Test Flight O Calibration Flight	o Alexalt Test Flight o AAC/Admin Flight o Others:	O UDAI System Mainteeance O Aircraft Mainterance O Phil-LDMR Admin Activities		Cavit Approach	18 18 A 18 A 19 A 19 A 19 A 19 A 19 A 19	
22 Problems and Solutions						Γ
Weather Problem Spagess Problem Aircraft Problem Aircraft Problem Plot Problem						
Acquains Flight Approved by	Acquisited Fight certified by	Pist-ip-Co	mend	LDMB Operator	Alversit Mechanic/ UDAR Technician	shrieten
Signature over Pointed Names (End User Espensoritation)	Signature deer Served Name (PMF Representative)	*	Supergrave over Printed Name	Saparato over thread have	Apratase over hyada hame	1 8

Table A-6.7 Flight Log for Mission 10144L

Annex 7. Flight Status

FLIGHT STATUS REPORT CALABARZON

(January 26-February 22, 2014, August 18, 2015, May 7, 2016 and June 16, 2016)

Table A-7.1 Flight Status Report

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1031P	BLK 18CD	1BLK18C026A	I.Roxas	26 Jan 2014	Acquired data at 1000m, broken lines and irregular survey pattern due to very heavy traffic and tower restrictions
1039P	BLK 18BC	1BLK18B028A	I.Roxas	28 Jan 2014	Data acquired at 1000m AGL
1063P	BLK 18D	1BLK18D034A	L. Paragas	3 Feb 2014	Dropouts experienced, heavy build up and traffic, surveyed 1 line
1139P	BLK 18X & (ABCY)s	1BLK18X53A	J. Alviar	22 Feb 2014	Surveyed gaps in southern Cavite, voids in BLK 18Z and covered BLK 18X at 1200m flying height
3309P	BLK 18AsS	1BLK18AsS230A	KJ ANDAYA	18 Aug 2015	Voids due to low cloud cover, lines cut due to air traffic Without Digitizer and Camera
10136L	BLK18A	4BLK18B124A	LK Paragas	3 May 2016	Covered some lines of Blk 18 A
10142L	BLK18 AB	4BLK18AB127A	LK Paragas	6 May 2016	Covered some lines of Blk 18 AB

LAS BOUNDARIES PER FLIGHT

Flight No.: 1031P Area: BLK 18BC Mission Name: 1BLK18B028A

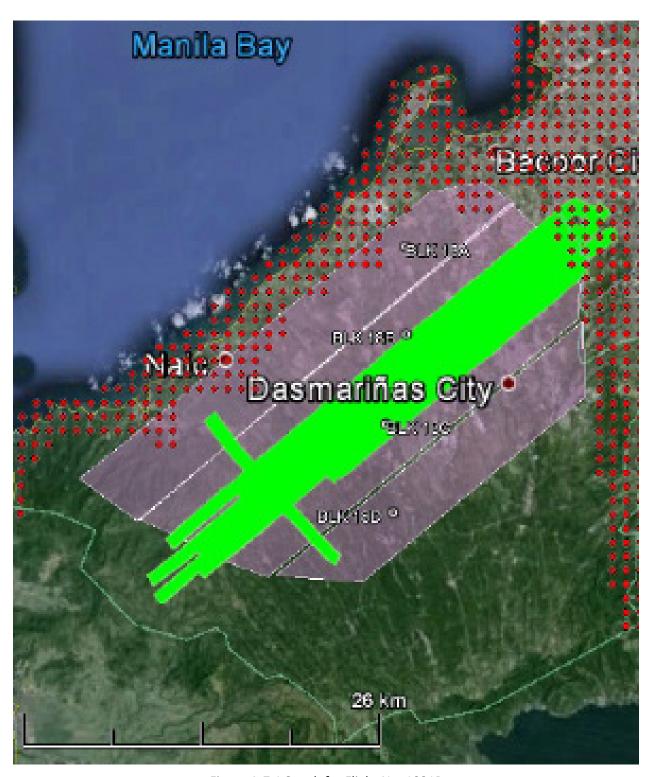


Figure A-7.1 Swath for Flight No. 1031P

Flight No. : 1039P
Area: BLK 18BC
Mission Name: 1BLK18B028A

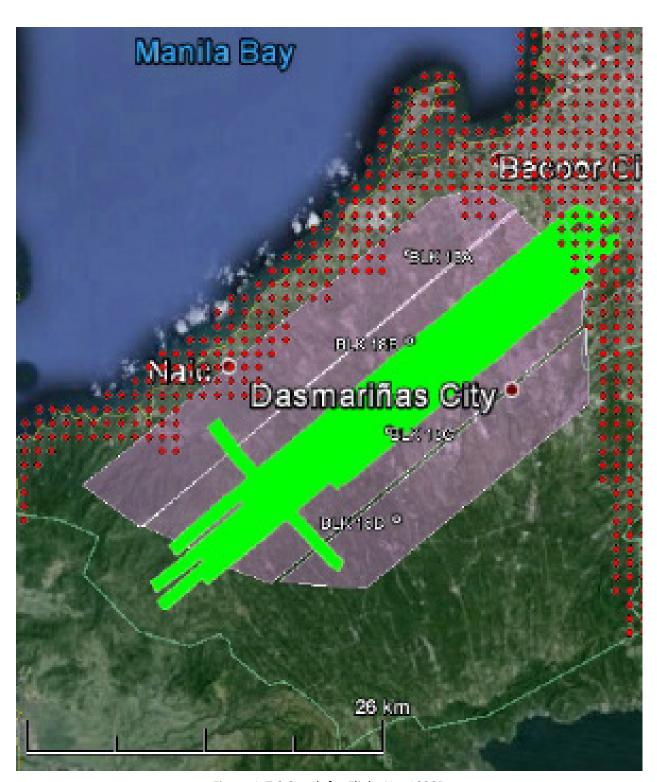


Figure A-7.2 Swath for Flight No. 1039P

Flight No.: 1063P Area: BLK 18D Mission Name: 1BLK18D034A

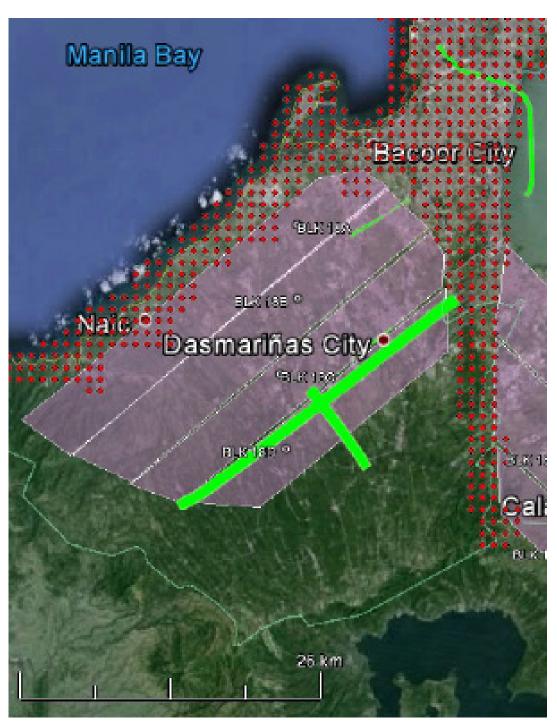


Figure A-7.3 Swath for Flight No. 1063P

Flight No.: 1139P (renamed from 1137P)

Area: BLK 18X & (ABCY)s

Mission Name: 1BLK18S53A

Figure A-7.4 Swath for Flight No. 1139P (renamed from 1137P)

Flight No.: 3309P Area: BLK 18

Mission Name: 1BLK18AsS230A

Figure A-7.5 Swath for Flight No. 3309P

FLIGHT NO.: 10136L AREA: BLK18A MISSION NAME: 2BLK18A124A

SWATH



Figure A-7.6 Swath for Flight No. 10136L

FLIGHT NO.: 10142L AREA: BLK18AB MISSION NAME: 4BLK18AB127A

SWATH

Figure A-7.7 Swath for Flight No. 10142L

Annex 8. Mission Summary Reports

Table A-8.1 Mission Summary Report for Blk18B_supplement

Flight Area	CALABARZON
Mission Name	Blk18B_supplement
Inclusive Flights	3309P
Range data size	11.9GB
POS	202 MB
Image	N/A
Transfer date	09/11/2015
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.3
RMSE for East Position (<4.0 cm)	2.9
RMSE for Down Position (<8.0 cm)	2.9
Boresight correction stdev (<0.001deg)	0.000273
IMU attitude correction stdev (<0.001deg)	0.000737
GPS position stdev (<0.01m)	0.0103
Minimum % overlap (>25)	43.55%
Ave point cloud density per sq.m. (>2.0)	2.82
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	171
Maximum Height	426.11 m
Minimum Height	57.0 m
Classification (# of points)	
Ground	95,328,099
Low vegetation	65,505,303
Medium vegetation	120,204,321
High vegetation	132,825,937
Building	23,238,819
Orthophoto	No
Processed by	Engr. Analyn Naldo, Aljon Rie Araneta, Jovy Ann Narisma

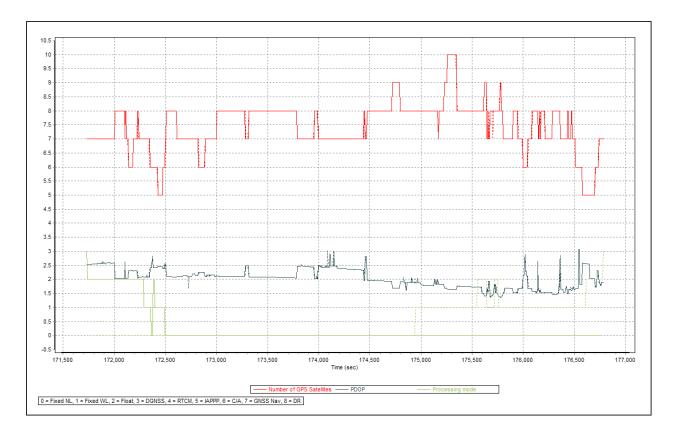


Figure A-8.1. Solution Status

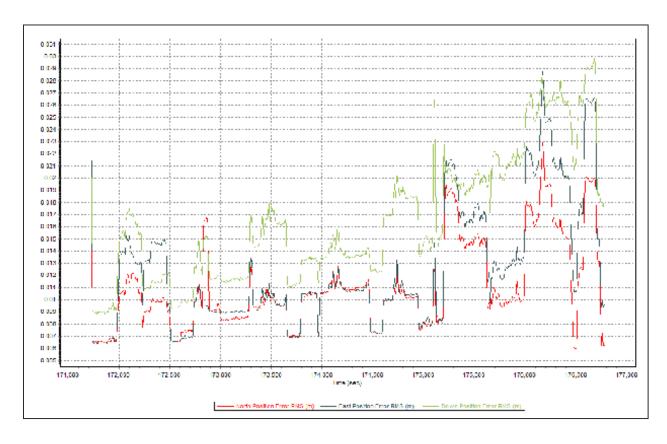


Figure A-8.2. Smoothed Performance Metric Parameters

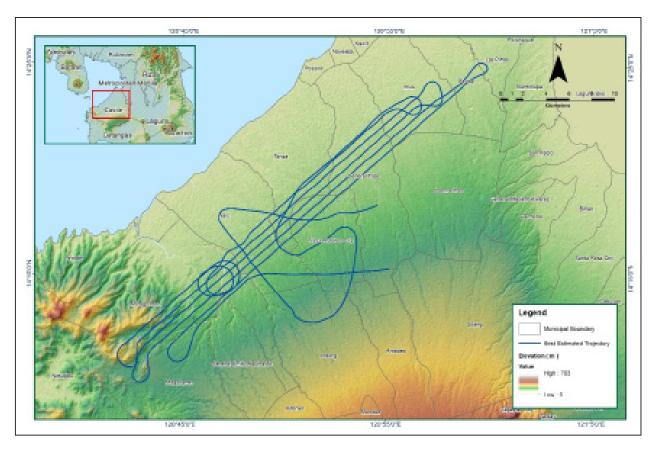


Figure A-8.3. Best Estimated Trajectory

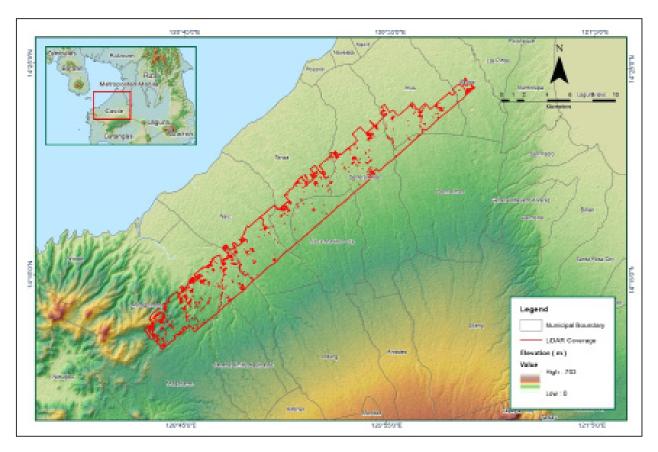


Figure A-8.4. Coverage of LiDAR data

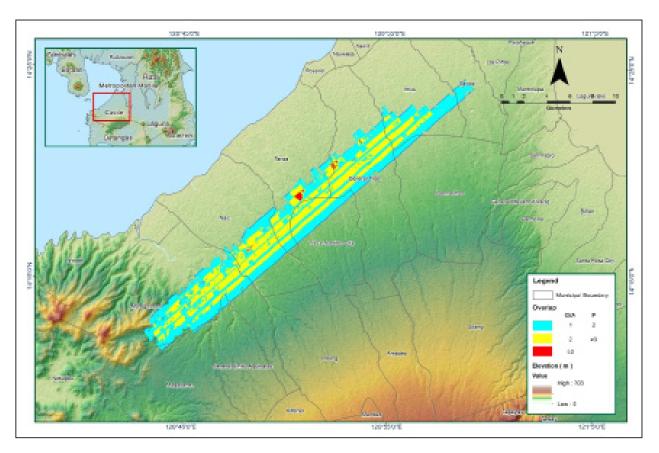


Figure A-8.5. Image of data overlap

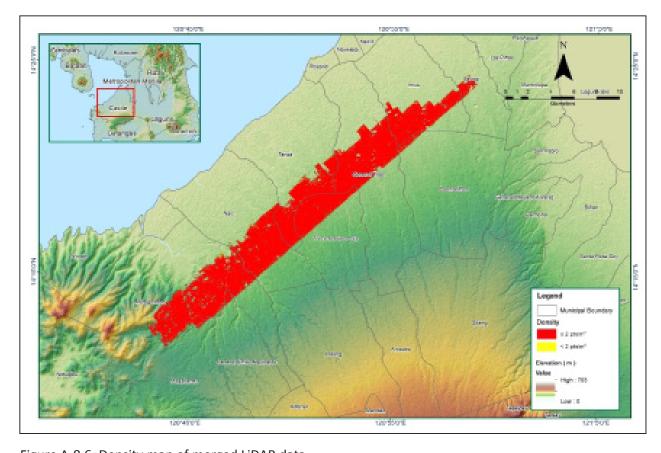


Figure A-8.6. Density map of merged LiDAR data

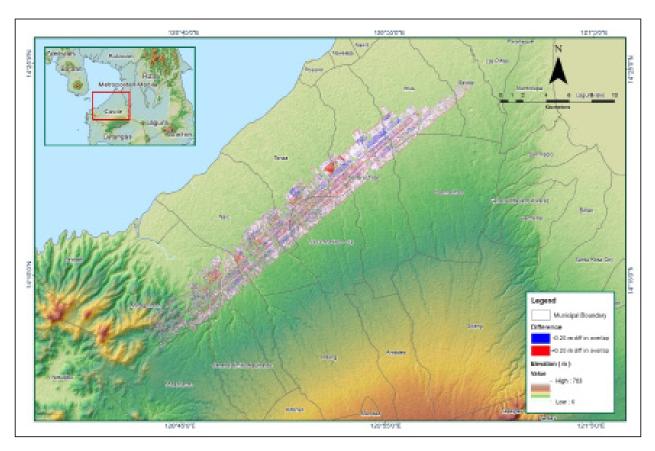


Figure A-8.7. Elevation difference between flight lines

Table A-8.2 Mission Summary Report for Blk18A

Flight Area	Calabarzon Reflights
Mission Name	Blk18A
Inclusive Flights	10136L, 10142L
RawLaser	19.79 GB
GnssImu	969 MB
Image	76.8 GB
Transfer date	6/20/2016
Calletian Status	
Solution Status	V.
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Combined Separation (-0.1 up to 0.1)	Yes
Estimated Position Accuracy (in cm)	
Estimated Standard Devation for North Position (<4.0 cm)	0.65
Estimated Standard Devation for East Position (<4.0 cm)	0.80
Estimated Standard Devation for Height Position (<8.0 cm)	1.80
Minimum % overlap (>25)	47.33%
Ave point cloud density per sq.m. (>2.0)	3.22
Elevation difference between strips (<0.20 m)	
Number of 1km x 1km blocks	245
	215
Maximum Height	354.74 m
Minimum Height	44.59 m
Classification (# of points)	
Ground	258,626,866
Low vegetation	250,593,109
Medium vegetation	204,765,100
High vegetation	216,443,750
Building	62,593,079
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Engr. Melanie Hingpit, Kathryn Claudyn Zarate

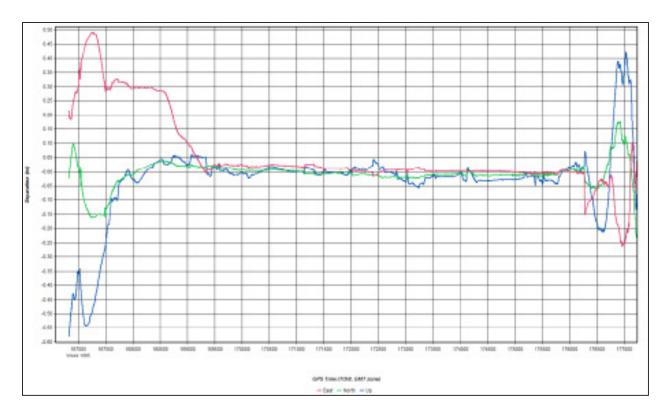


Figure A-8.8. Combined Separation

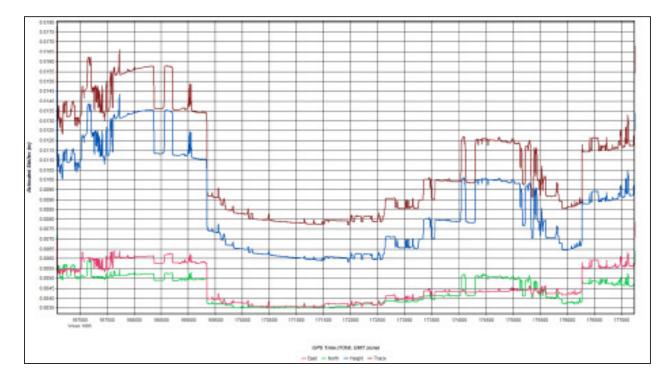


Figure A-8.9. Estimated Position of Accuracy

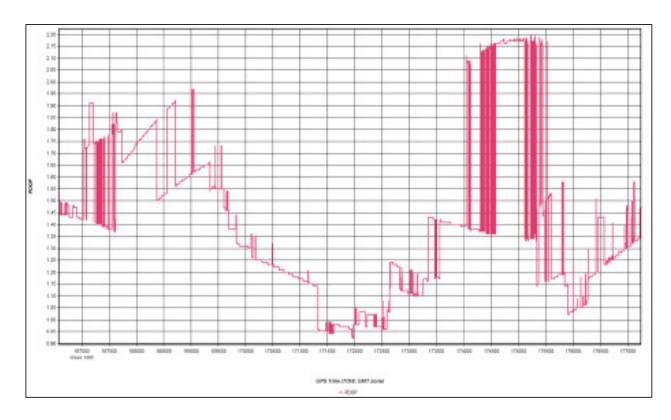


Figure A-8.10. PDOP

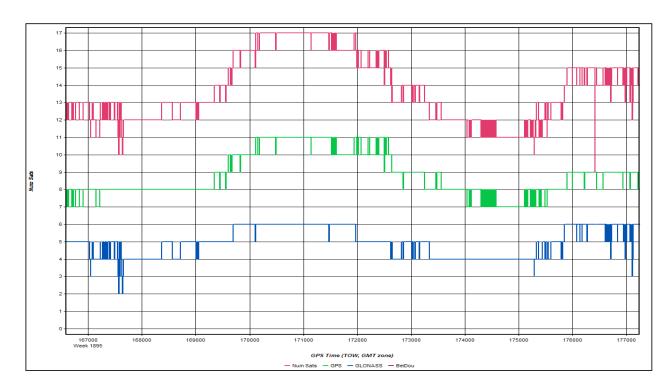


Figure A-8.11. Number of Satellites

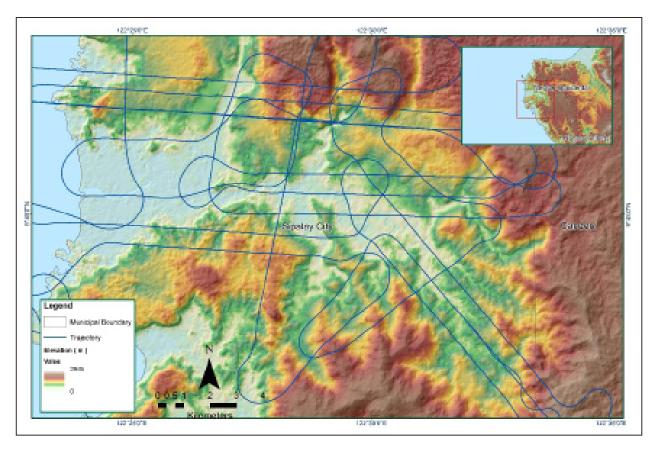


Figure A-8.10. Best Estimated Trajectory

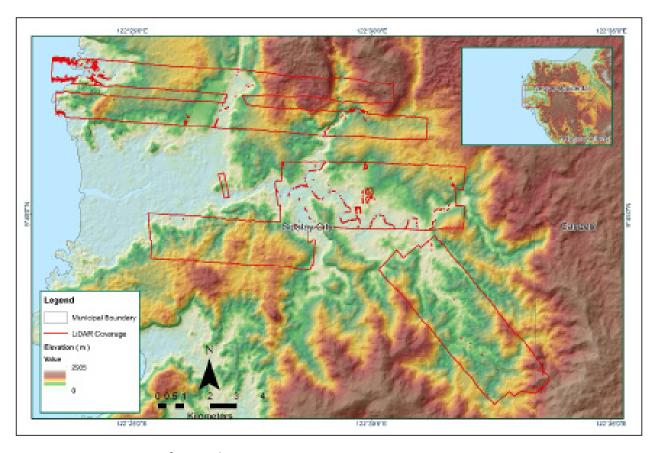


Figure A-8.11. Coverage of LiDAR data

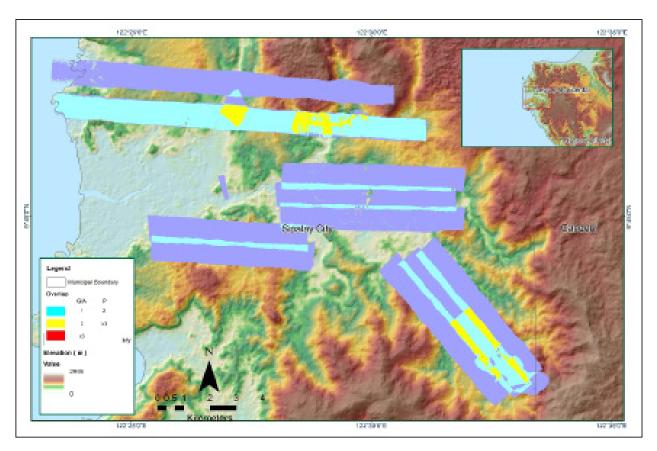


Figure A-8.12. Image of data overlap

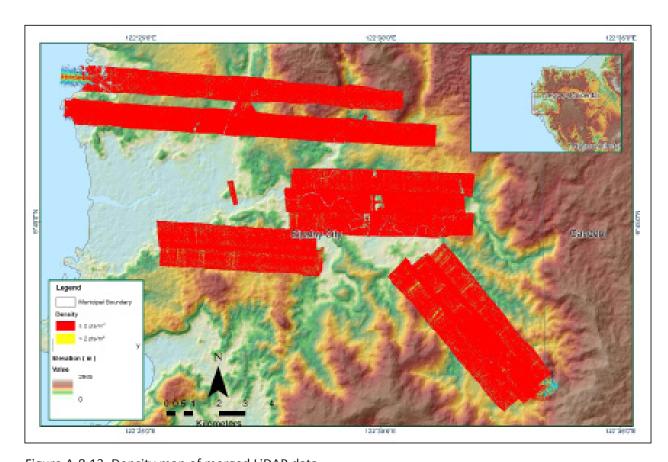


Figure A-8.13. Density map of merged LiDAR data

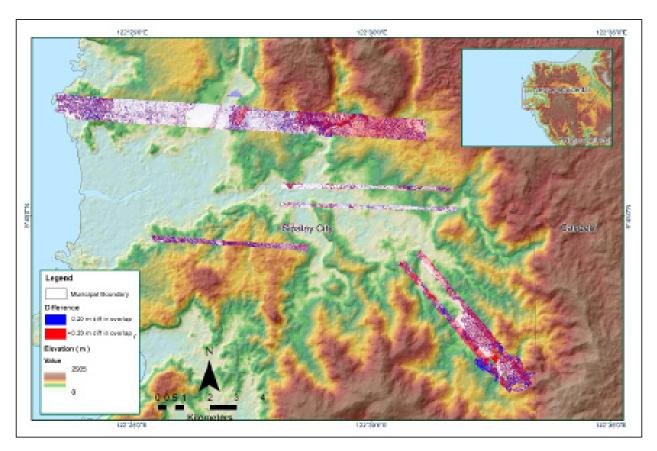


Figure A-8.14. Elevation difference between flight lines

Table A-8.3 Mission Summary Report for Blk18B_Supplement3

Flight Area	Calabarzon Reflights	
Mission Name	Blk18B_Supplement3	
Inclusive Flights	10321L	
RawLaser	6.16 GB	
GnssImu	329 MB	
Image	7.32 GB	
Transfer date	2/13/2017	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	No	
Baseline Length (<30km)	Yes	
Combined Separation (-0.1 up to 0.1)	No	
Estimated Position Accuracy (in cm)		
Estimated Standard Devation for North Position	2.7	
(<4.0 cm)		
Estimated Standard Devation for East Position (<4.0 cm)	3.2	
Estimated Standard Devation for Height Position	3.5	
(<8.0 cm)	3.5	
Minimum % overlap (>25)	22.01%	
Ave point cloud density per sq.m. (>2.0)	1.20	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	18	
Maximum Height	103.706 m	
Minimum Height	45.009 m	
Classification (# of points)		
Ground	5,339,022	
Low vegetation	1,903,203	
Medium vegetation	3,104,416	
High vegetation	4,768,776	
Building	5,270,108	
Orthophoto	No	
	Engr. Regis Guhiting, Engr. Harmond	
Processed by	Santos, Engr. Gladys Mae Apat	

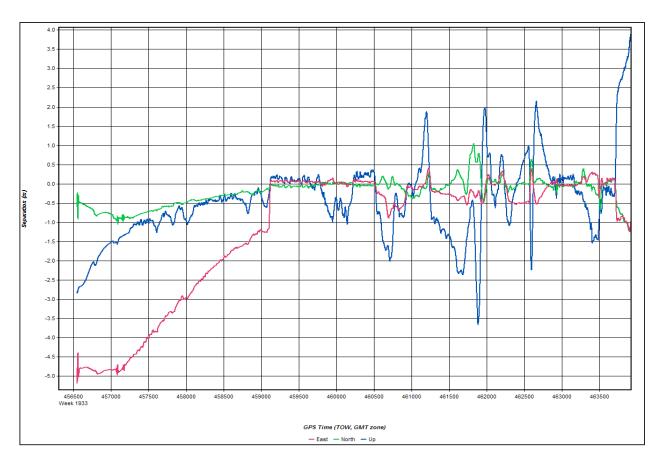


Figure A-8.15. Combined Separation

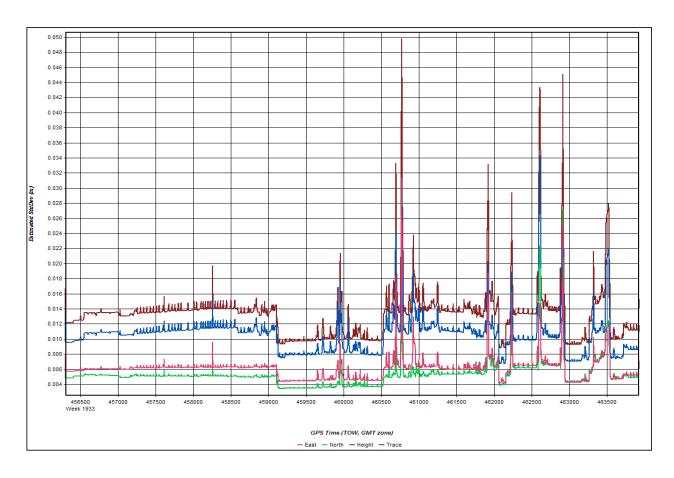


Figure A-8.16. Estimated Position of Accuracy

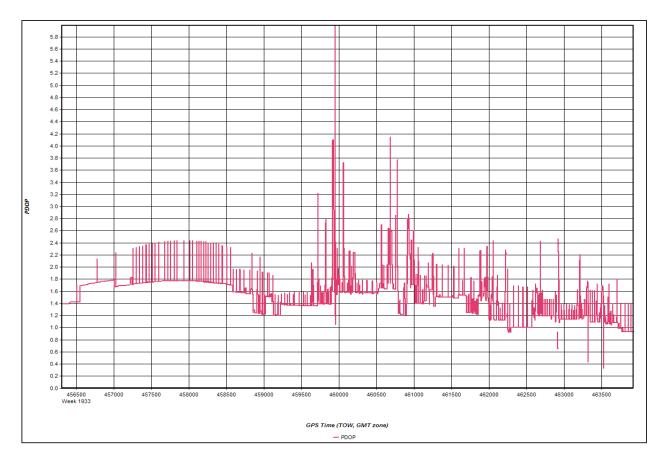


Figure A-8.15. PDOP

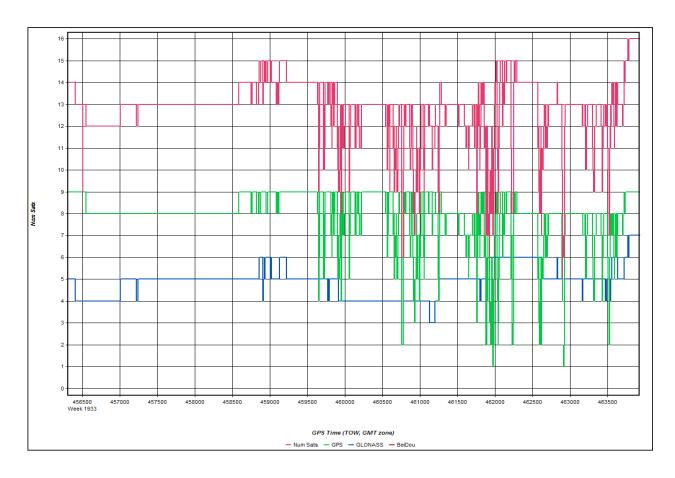


Figure A-8.16. Number of Satellites

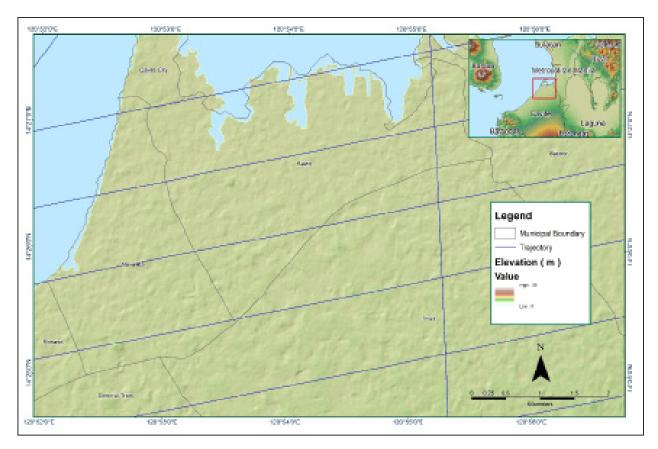


Figure A-8.17. Best Estimated Trajectory

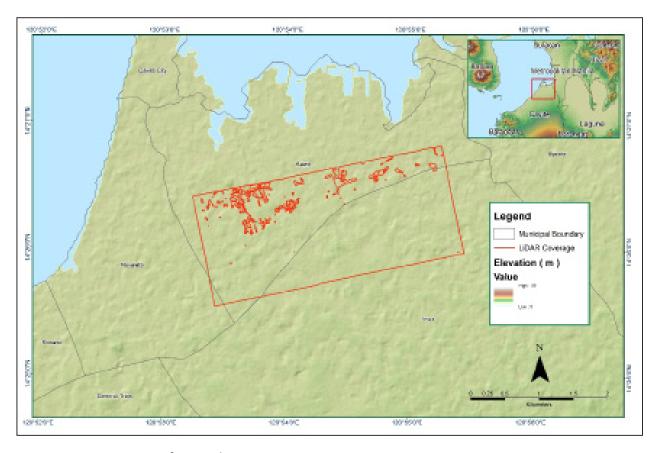


Figure A-8.18. Coverage of LiDAR data

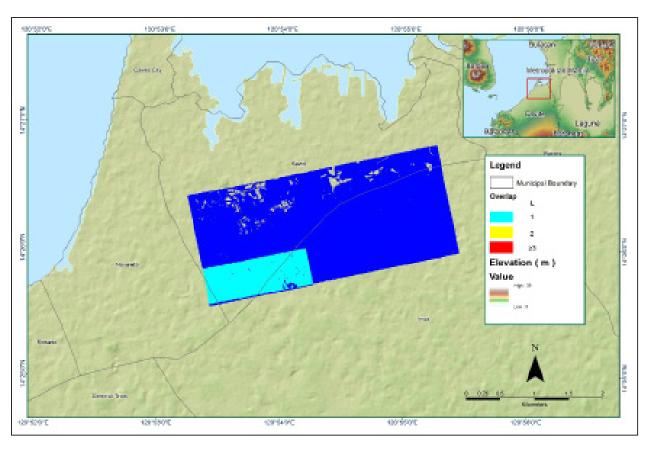


Figure A-8.19. Image of data overlap

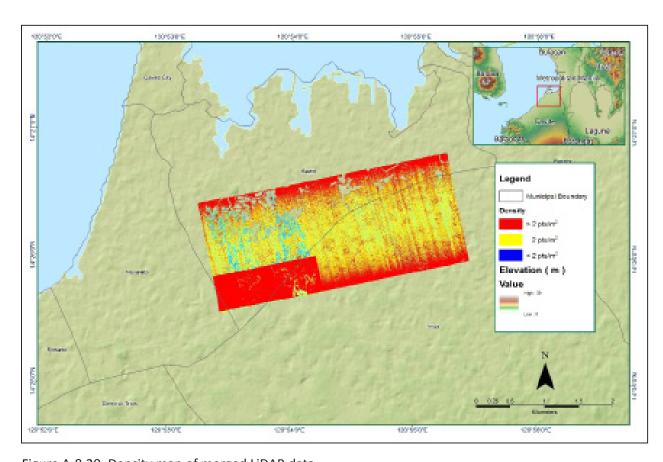


Figure A-8.20. Density map of merged LiDAR data

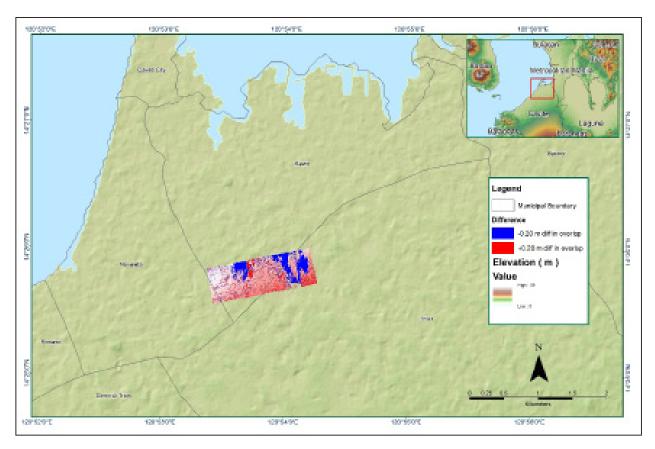


Figure A-8.21. Elevation difference between flight lines

Table A-8.4 Mission Summary Report for Blk18B_Supplement3

Flight Area	Calabarzon Reflights
Mission Name	Blk18B_Supplement3
Inclusive Flights	10321L
RawLaser	6.16 GB
GnssImu	329 MB
Image	7.32 GB
Transfer date	2/13/2017
nanoiei date	2,13,231,
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Combined Separation (-0.1 up to 0.1)	No
Estimated Position Accuracy (in cm)	
Estimated Standard Devation for North Position (<4.0 cm)	2.7
Estimated Standard Devation for East Position (<4.0 cm)	3.2
Estimated Standard Devation for Height Position (<8.0 cm)	3.5
Minimum % overlap (>25)	22.01%
Ave point cloud density per sq.m. (>2.0)	1.20
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	18
Maximum Height	103.706 m
Minimum Height	45.009 m
Classification (# of points)	5 220 222
Ground	5,339,022
Low vegetation	1,903,203
Medium vegetation	3,104,416
High vegetation	4,768,776
Building	5,270,108
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Harmond Santos, Engr. Gladys Mae Apat

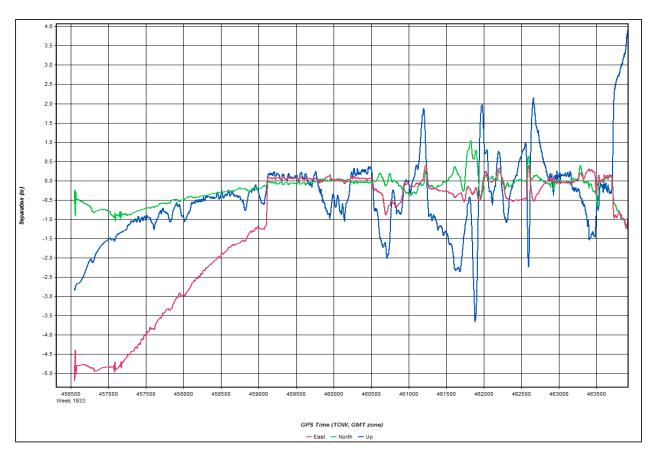


Figure A-8.22. Combined Separation

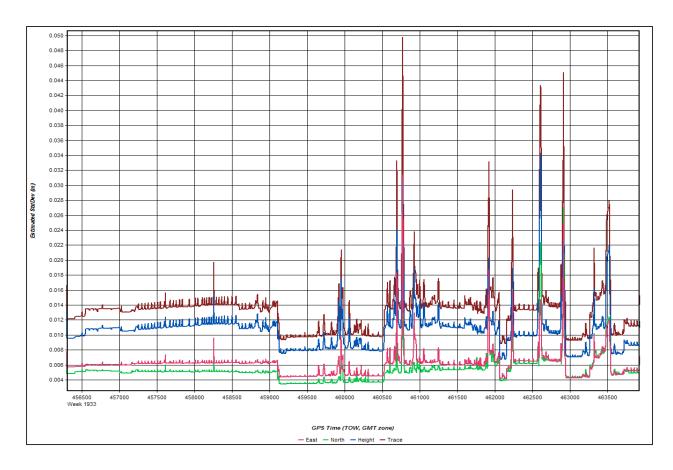


Figure A-8.23. Estimated Position of Accuracy

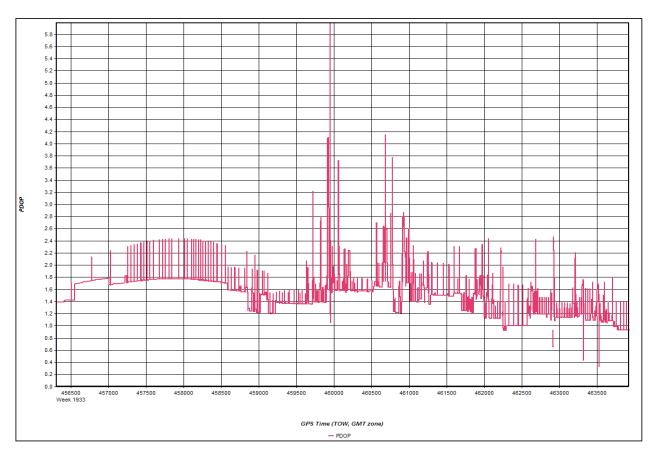


Figure A-8.22. PDOP

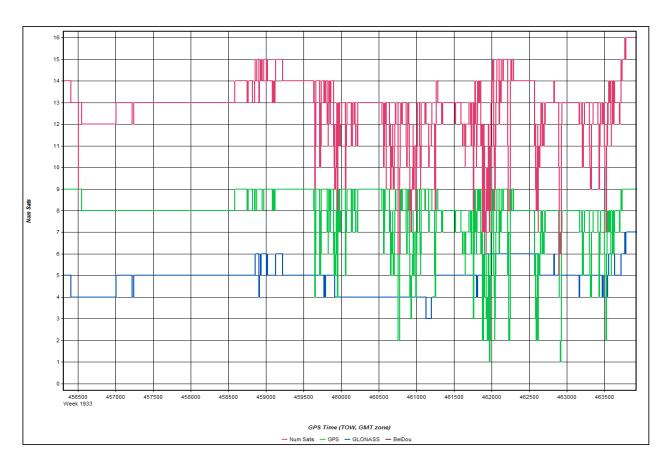


Figure A-8.23. Number of Satellites

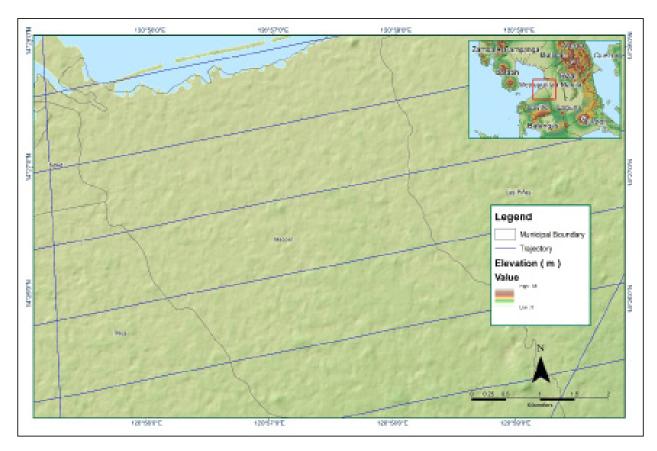


Figure A-8.24. Best Estimated Trajectory

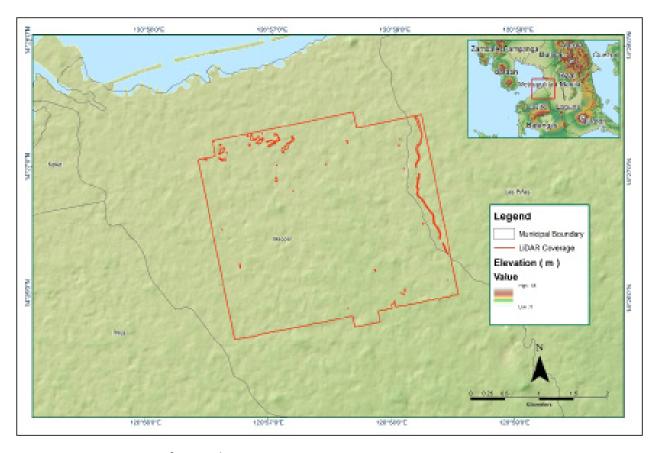


Figure A-8.25. Coverage of LiDAR data

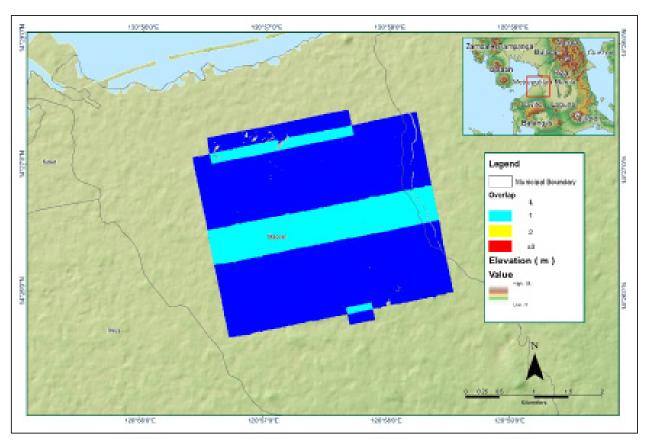


Figure A-8.26. Image of data overlap

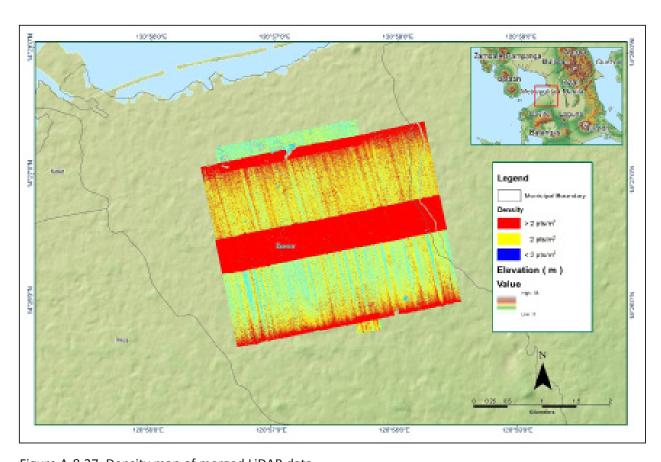


Figure A-8.27. Density map of merged LiDAR data

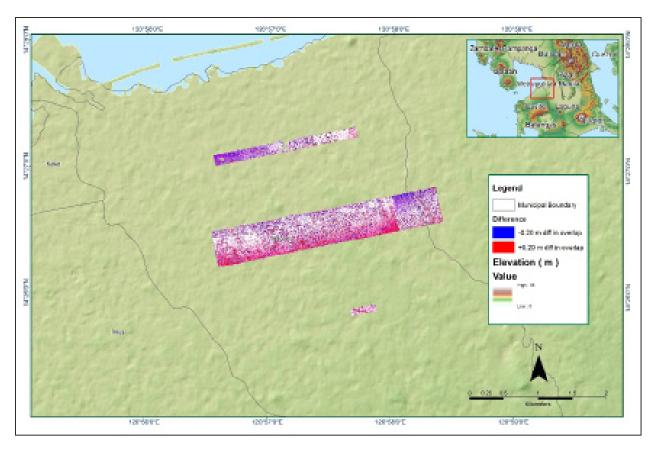


Figure A-8.28. Elevation difference between flight lines

Table A-8.5 Mission Summary Report for Blk18B_Supplement4

Flight Area	Calabarzon Reflights		
Mission Name	Blk18B_Supplement4		
Inclusive Flights	10321L		
RawLaser	6.16 GB		
Gnsslmu	329 MB		
Image	7.32 GB		
Transfer date	2/13/2017		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	No		
Baseline Length (<30km)	Yes		
Combined Separation (-0.1 up to 0.1)	No		
Estimated Position Accuracy (in cm)			
Estimated Standard Devation for North Position (<4.0 cm)	2.7		
Estimated Standard Devation for East Position (<4.0 cm)	3.2		
Estimated Standard Devation for Height Position (<8.0 cm)	3.5		
Minimum % overlap (>25)	17.67%		
Ave point cloud density per sq.m. (>2.0)	1.10		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	21		
Maximum Height	98.84 m		
Minimum Height	51.17 m		
Classification (# of points)			
Ground	5,441,059		
Low vegetation	2,034,291		
Medium vegetation	2,580,434		
High vegetation	4,410,883		
Building	2,943,179		
Orthophoto	No		
Processed by	Engr. Regis Guhiting, Engr. Harmond Santos, Engr. Gladys Mae Apat		

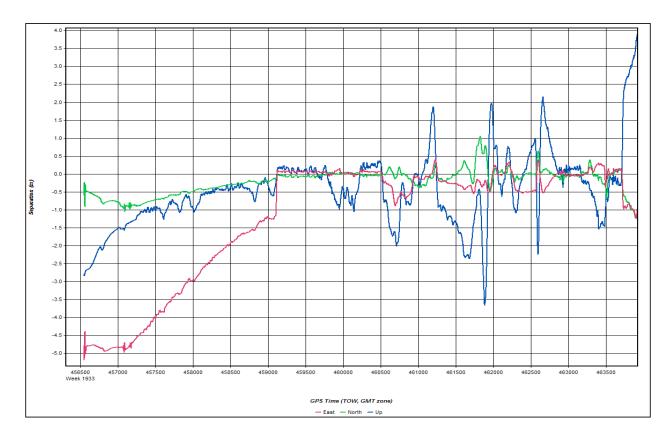


Figure A-8.1. Combined Separation

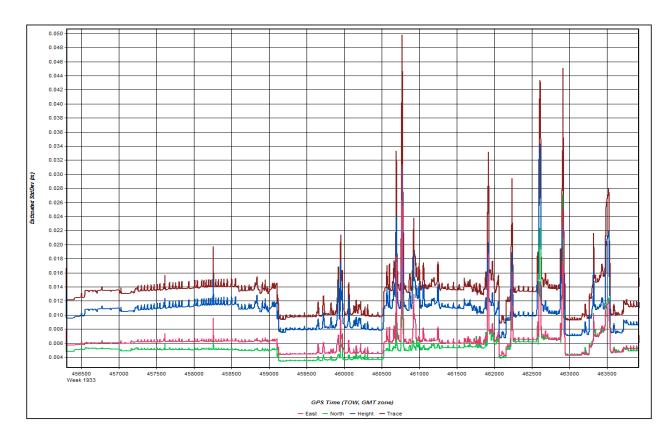


Figure A-8.2. Estimated Position of Accuracy

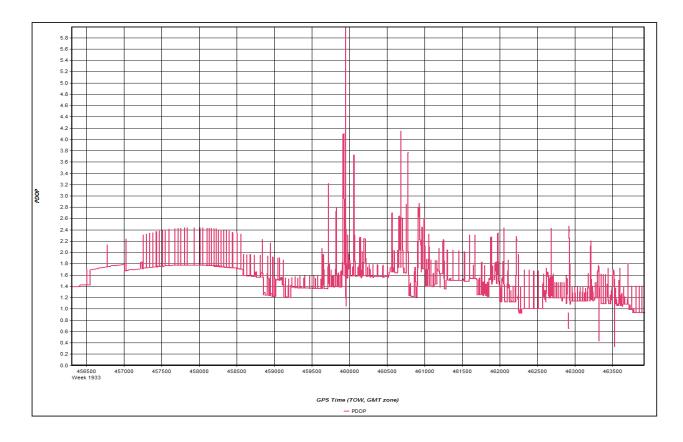


Figure A-8.1. PDOP

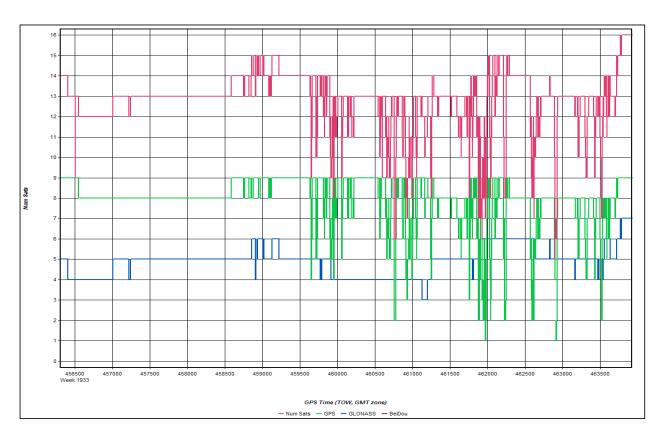


Figure A-8.2. Number of Satellites

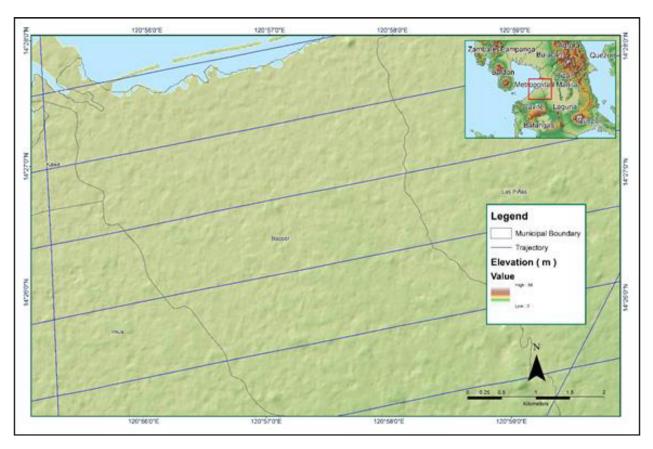


Figure A-8.3. Best Estimated Trajectory

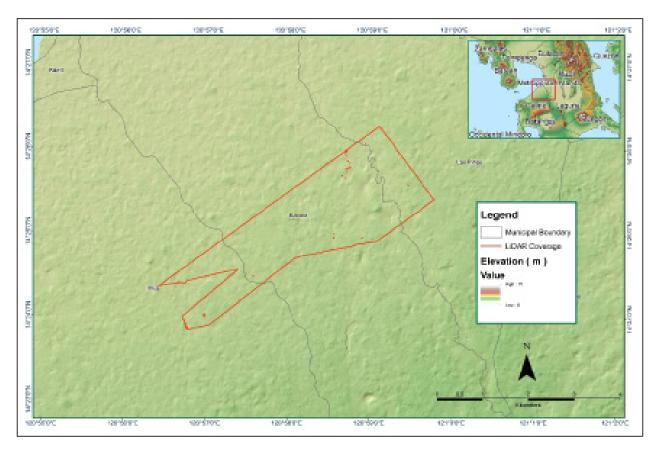


Figure A-8.4. Coverage of LiDAR data

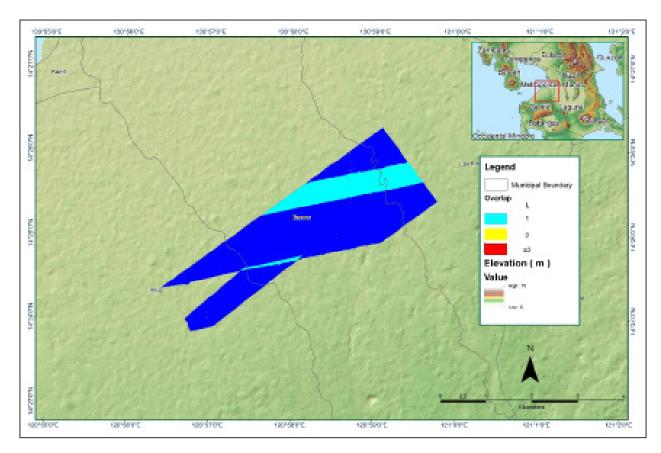


Figure A-8.5. Image of data overlap

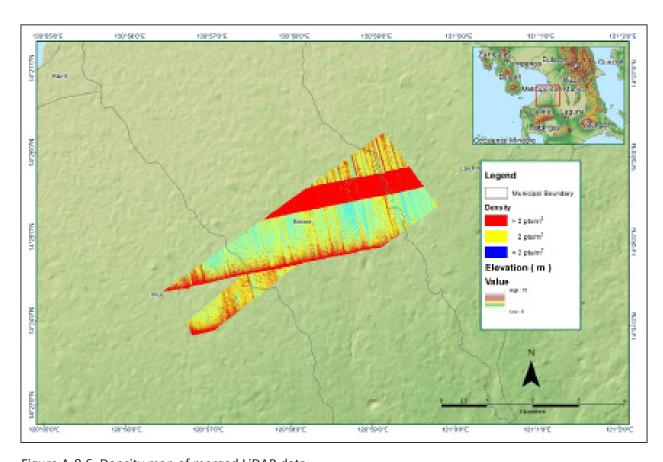


Figure A-8.6. Density map of merged LiDAR data

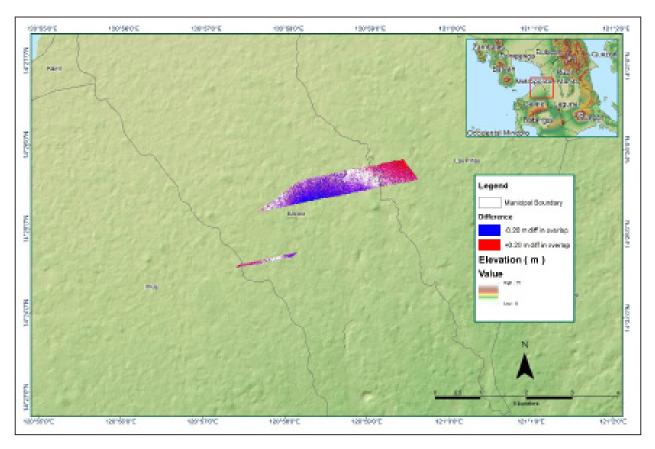


Figure A-8.7. Elevation difference between flight lines

Table A-8.6 Mission Summary Report for Blk18B_Supplement5

Flight Area	Calabarzon Reflights			
Mission Name	Blk18B_Supplement5			
Inclusive Flights	10321L			
RawLaser	6.16 GB			
GnssImu	329 MB			
Image	7.32 GB			
Transfer date	2/13/2017			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	No			
Baseline Length (<30km)	Yes			
Combined Separation (-0.1 up to 0.1)	No			
Estimated Position Accuracy (in cm)				
Estimated Standard Devation for North Position (<4.0 cm)	2.7			
Estimated Standard Devation for East Position (<4.0 cm)	3.2			
Estimated Standard Devation for Height Position (<8.0 cm)	3.5			
Minimum % overlap (>25)	NA 0.00			
Ave point cloud density per sq.m. (>2.0)	0.90			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	10			
Maximum Height	121.96			
Minimum Height	58.37			
Classification (# of points)				
Ground	1296700			
Low vegetation	380063			
Medium vegetation	479130			
High vegetation	703766			
Building	476095			
Orthophoto	Yes			
Processed by	Engr. Regis Guhiting, Engr. Harmond Santos, Engr. Gladys Mae Apat			

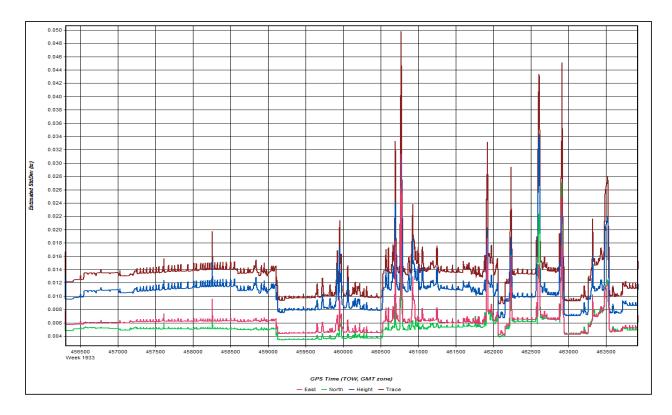


Figure A-8.8. Combined Separation

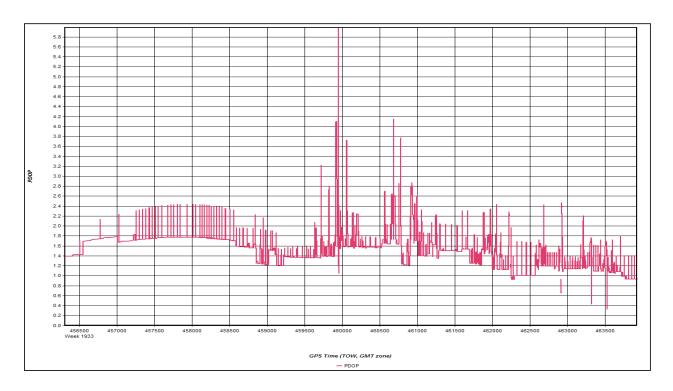


Figure A-8.9. Estimated Position of Accuracy

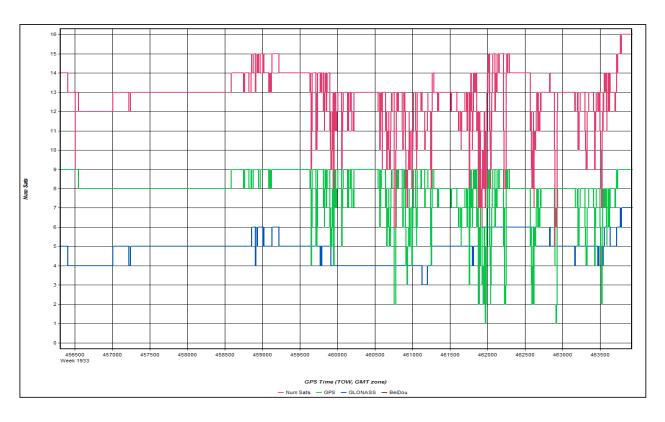


Figure A-8.8. PDOP

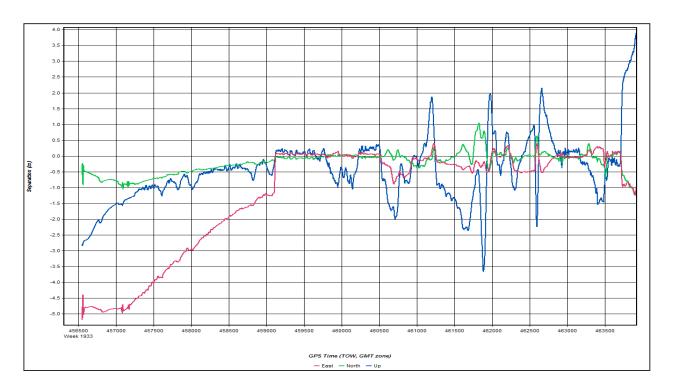


Figure A-8.9. Number of Satellites

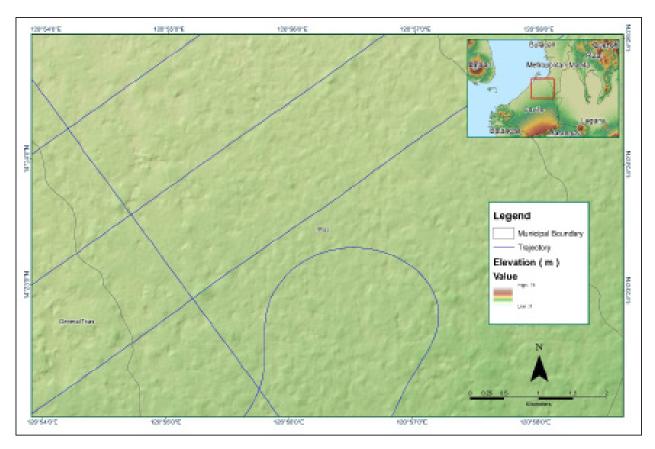


Figure A-8.10. Best Estimated Trajectory

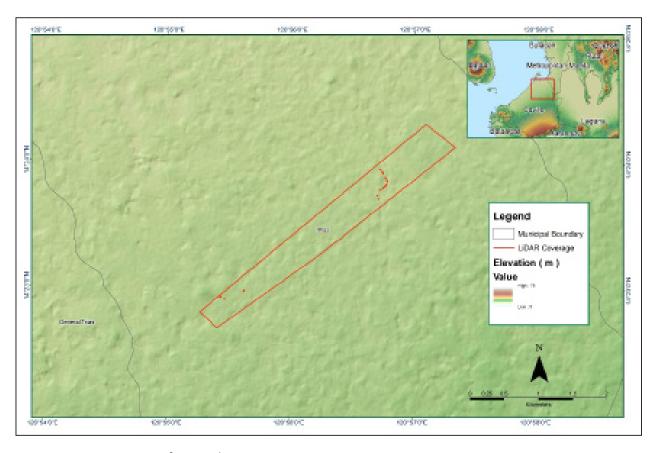


Figure A-8.11. Coverage of LiDAR data

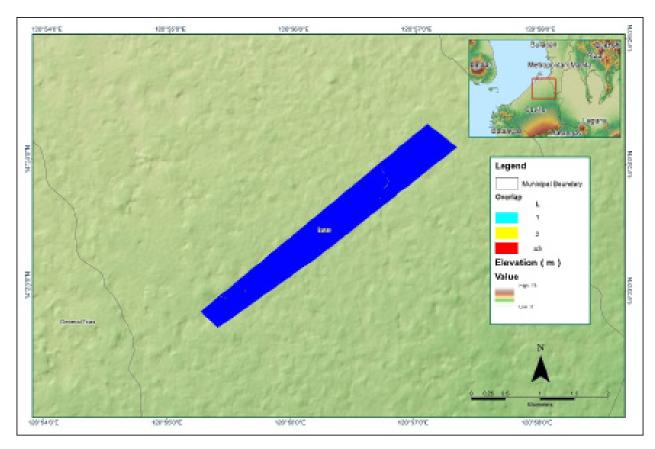


Figure A-8.12. Image of data overlap

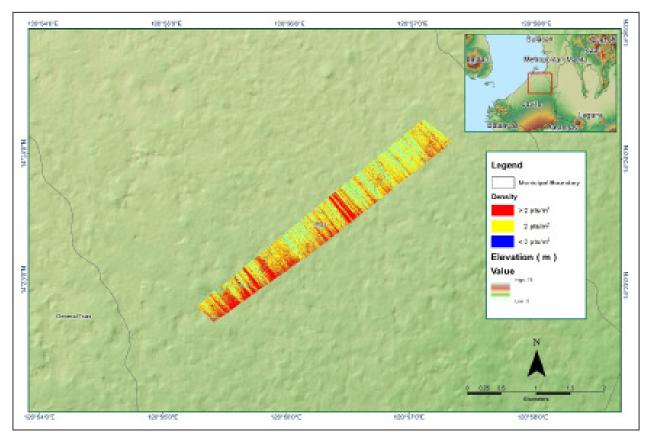


Figure A-8.13. Density map of merged LiDAR data

Table A-8.7 Mission Summary Report for Blk18A_supplement2

Flight Area	CALABARZON			
Mission Name	Blk18A_supplement2			
Inclusive Flights	1141P (formerly 1139P)			
Range data size	15.4 GB			
POS	219 MB			
Image	24 GB			
Transfer date	04/23/2014			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	No			
Processing Mode (<=1)	Yes			
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	1.4			
RMSE for East Position (<4.0 cm)	1.5			
RMSE for Down Position (<8.0 cm)	3.6			
,				
Boresight correction stdev (<0.001deg)	0.000426			
IMU attitude correction stdev (<0.001deg)	0.001019			
GPS position stdev (<0.01m)	0.0155			
Minimum % overlap (>25)	35.84%			
Ave point cloud density per sq.m. (>2.0)	1.90			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	140			
Maximum Height	133.73 m			
Minimum Height	45.56 m			
<u> </u>	133.73 m			
Classification (# of points)				
Ground	104,162,308			
Low vegetation	84,606,924			
Medium vegetation	52,451,573			
High vegetation	28,217,832			
Building	1,102,474			
Orthophoto	No			
Processed by	Engr. Jennifer Saguran, Engr. Melanie Hingpit, Engr. Jeffrey Delica			

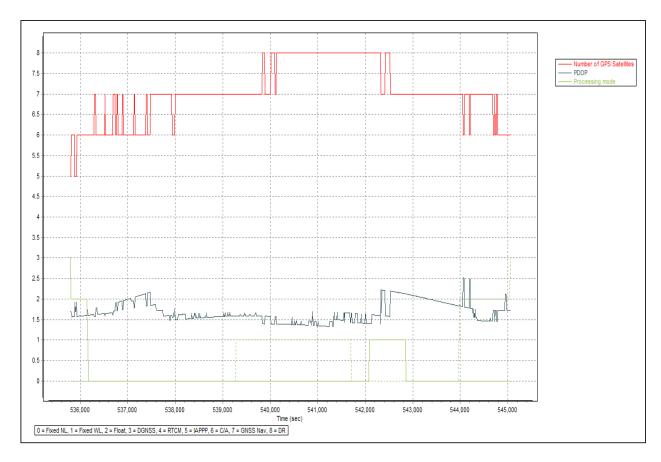


Figure A-8.15. Solution Status

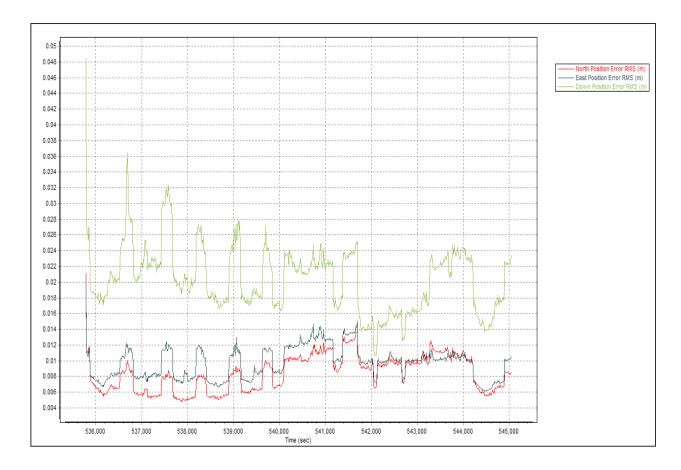


Figure A-8.16. Smoothed Performance Metric Parameters

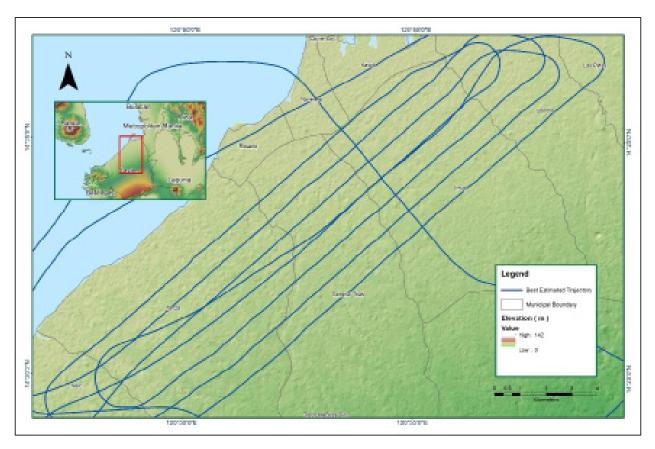


Figure A-8.17. Best Estimated Trajectory

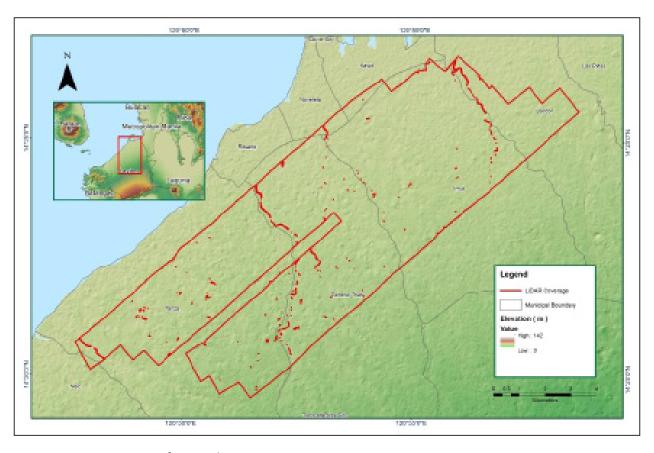


Figure A-8.18. Coverage of LiDAR data

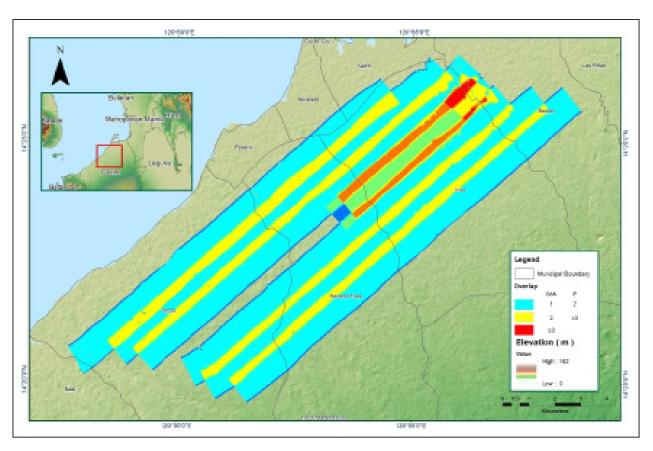


Figure A-8.19. Image of data overlap

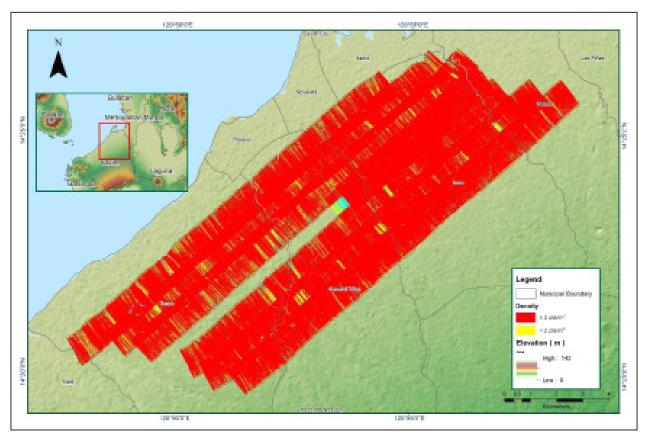


Figure A-8.20. Density map of merged LiDAR data

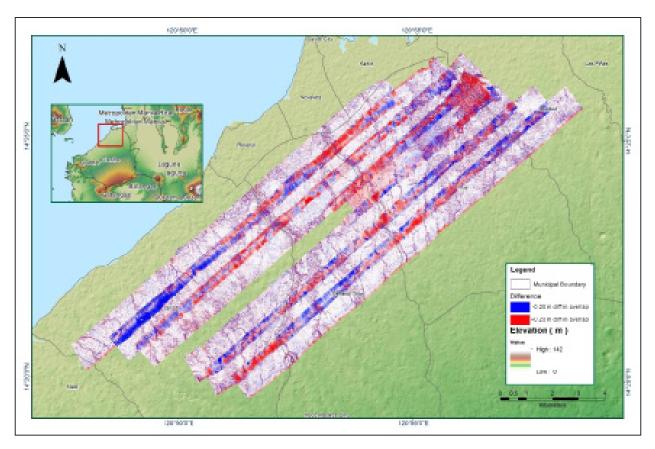


Figure A-8.21. Elevation difference between flight lines

Table A-8.8 Mission Summary Report for Blk18AB

Flight Area	CALABARZON		
Mission Name	Blk18AB		
Inclusive Flights	1031P, 1027P		
Range data size	29.0 GB		
POS	379 MB		
Image	7.11 GB		
Transfer date	04/23/2014		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	No		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.8		
RMSE for East Position (<4.0 cm)	2.0		
· · ·	<u> </u>		
RMSE for Down Position (<8.0 cm)	3.2		
Boresight correction stdev (<0.001deg)	0.000453		
IMU attitude correction stdev (<0.001deg)	0.005473		
GPS position stdev (<0.01m)	0.0019		
Minimum % avarlan (>25)	28.57%		
Minimum % overlap (>25)	1		
Ave point cloud density per sq.m. (>2.0)	3.24		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	204		
Maximum Height	45.76 m		
Minimum Height	603.46 m		
Classification (# of points)	475.046.404		
Ground	175,046,421		
Low vegetation	131,824,752		
Medium vegetation	148,659,196		
High vegetation	95,993,464		
Building	30,587,801		
Orthophoto	No		
Processed by	Engr. Angelo Carlo Bongat, Celina Rosete, Engr. Gladys Mae Apat		

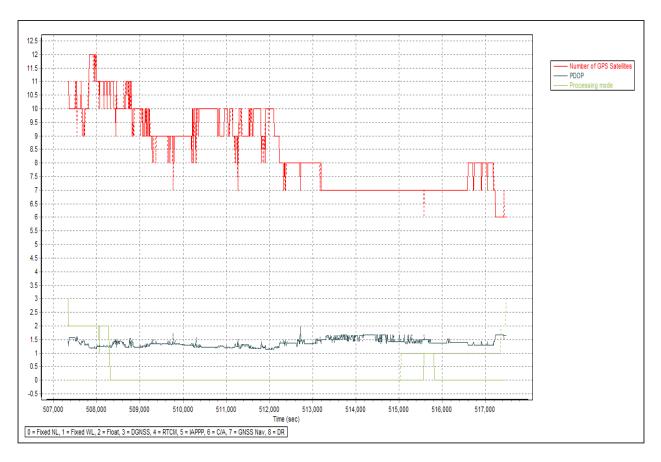


Figure A-8.22. Solution Status

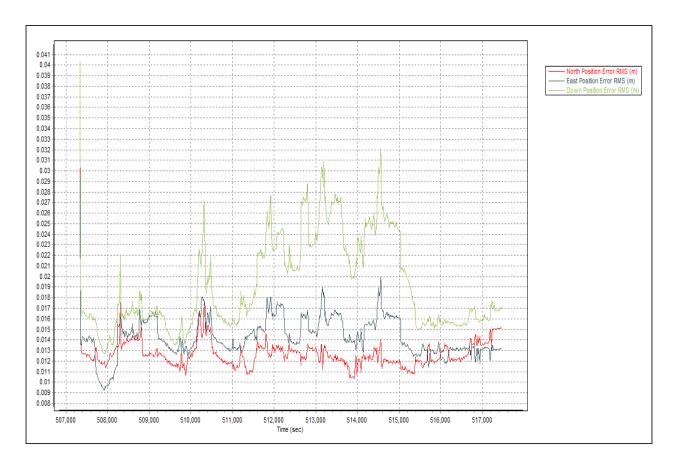


Figure A-8.23. Smoothed Performance Metric Parameters

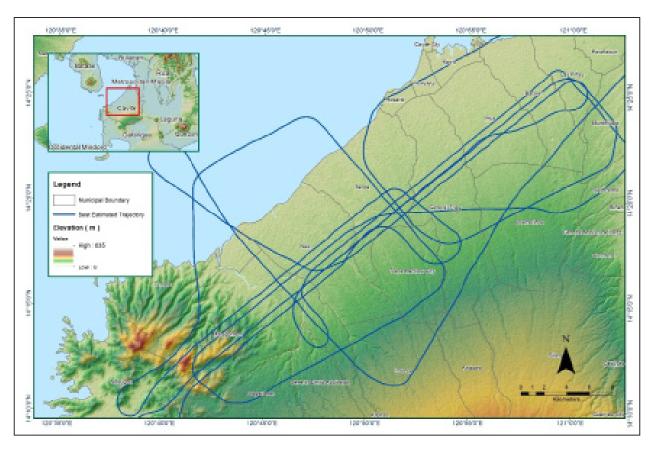


Figure A-8.24. Best Estimated Trajectory

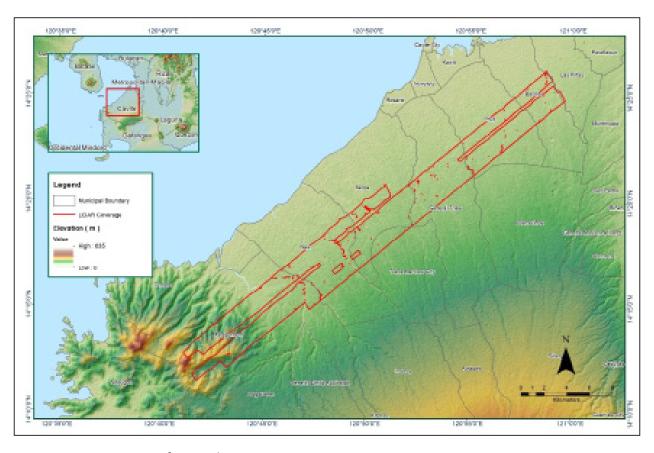


Figure A-8.25. Coverage of LiDAR data

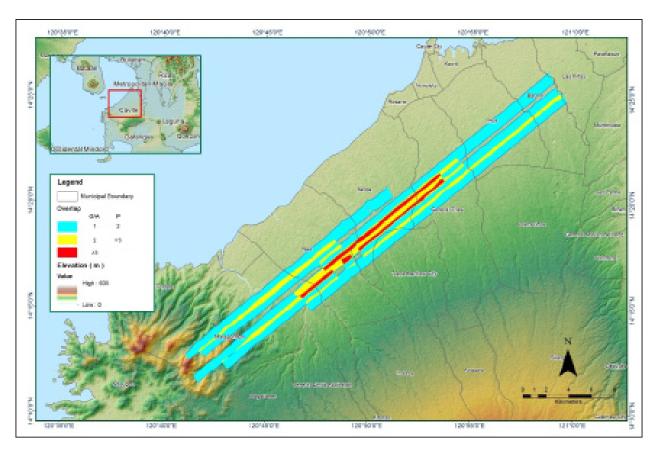


Figure A-8.26. Image of data overlap

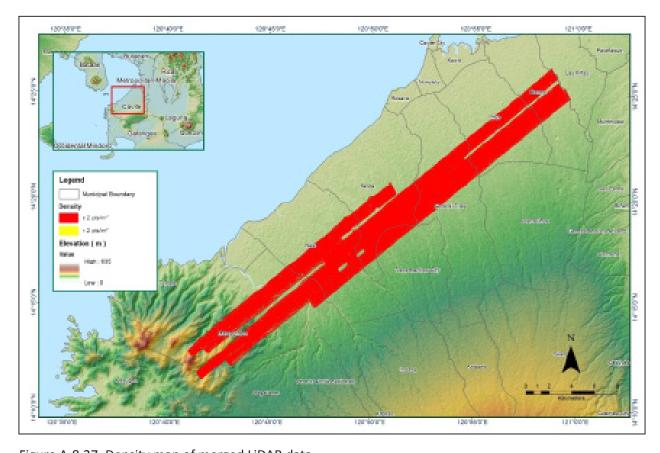


Figure A-8.27. Density map of merged LiDAR data

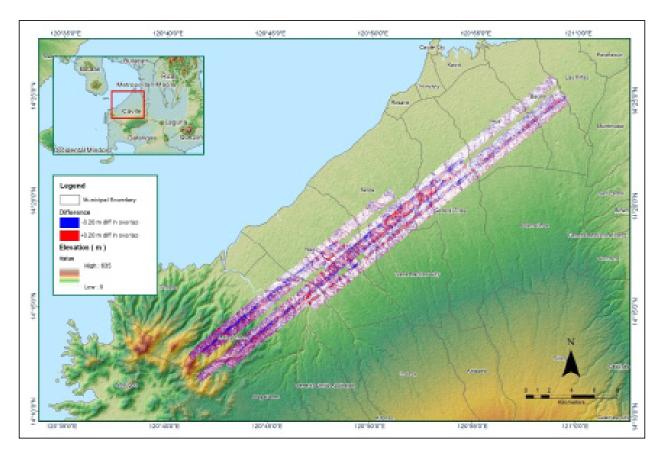


Figure A-8.28. Elevation difference between flight lines

Table A-8.9 Mission Summary Report for Blk18C

Flight Area	CALABARZON		
Mission Name	Blk18C		
Inclusive Flights	1031P		
Range data size	14.7 GB		
POS	185 MB		
Image	N/A		
Transfer date	04/23/2014		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	No		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.0		
RMSE for East Position (<4.0 cm)	1.4		
RMSE for Down Position (<8.0 cm)	2.4		
,			
Boresight correction stdev (<0.001deg)	0.000355		
IMU attitude correction stdev (<0.001deg)	0.000702		
GPS position stdev (<0.01m)	0.0113		
Minimum % overlap (>25)	22.90%		
Ave point cloud density per sq.m. (>2.0)	3.27		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	186		
Maximum Height	404.02 m		
Minimum Height	91.28 m		
Classification (# of points)			
Ground	141,951,450		
Low vegetation	94,479,716		
Medium vegetation	142,100,182		
High vegetation	100,785,000		
Building	35,277,797		
2			
Orthophoto	Yes		
Processed by	Engr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Jeffrey Delica		

Figure A-8.1. Solution Status

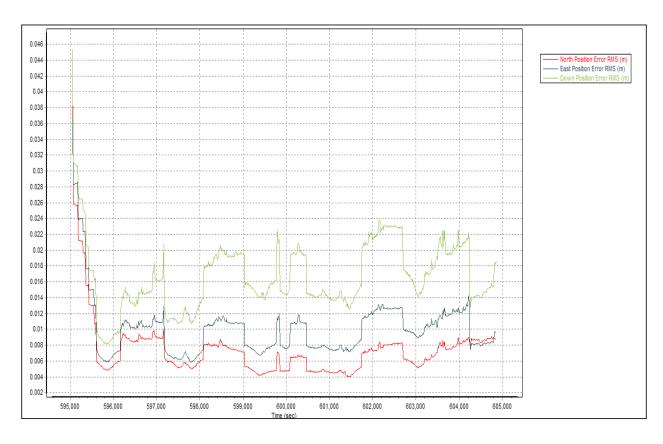


Figure A-8.2. Smoothed Performance Metric Parameters

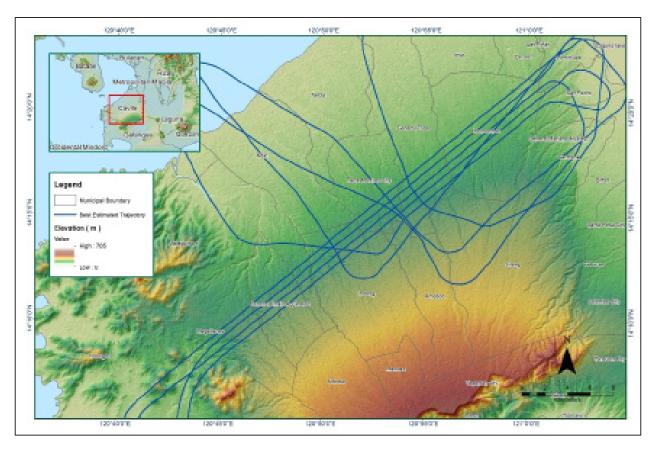


Figure A-8.3. Best Estimated Trajectory

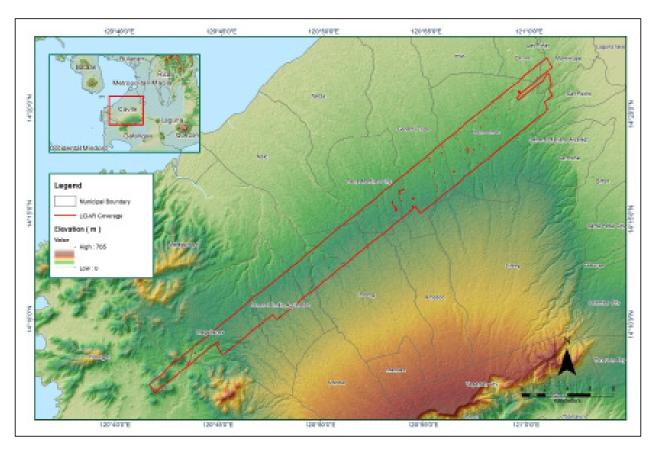


Figure A-8.4. Coverage of LiDAR data

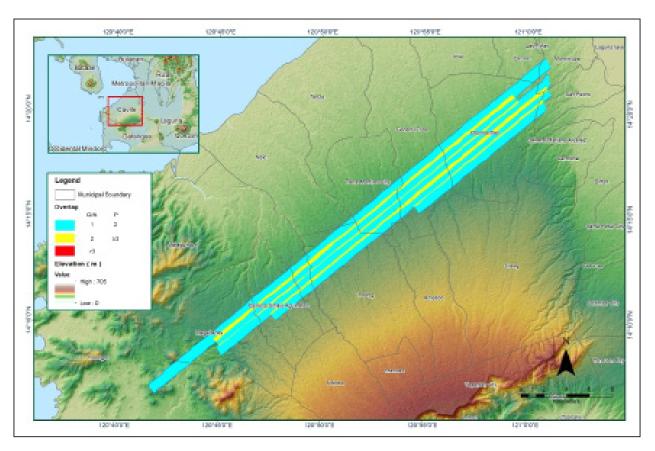


Figure A-8.5. Image of data overlap

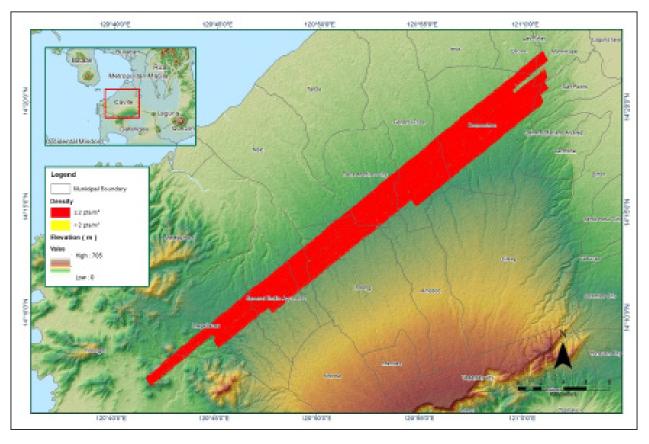


Figure A-8.6. Density map of merged LiDAR data

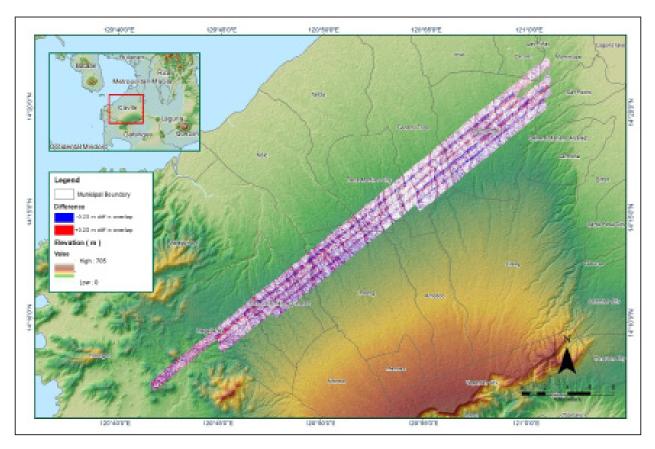


Figure A-8.7. Elevation difference between flight lines

Table A-8.10 Mission Summary Report for Blk18C_additional

· ·				
Flight Area	CALABARZON			
Mission Name	Blk18C_additional			
Inclusive Flights	1031P; 1063P			
Range data size	33.2 GB			
POS	329 MB			
Image	19.2 GB			
Transfer date	04/23/2014			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	No			
Processing Mode (<=1)	Yes			
Connectional Proofs were as Matrice (in our)				
Smoothed Performance Metrics (in cm)	1.5			
RMSE for North Position (<4.0 cm)	1.5			
RMSE for East Position (<4.0 cm)	1.9			
RMSE for Down Position (<8.0 cm)	3.2			
Boresight correction stdev (<0.001deg)	0.000508			
IMU attitude correction stdev (<0.001deg)	0.001492			
GPS position stdev (<0.01m)	0.0092			
Minimum % overlap (>25)	29.92%			
Ave point cloud density per sq.m. (>2.0)	2.78			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	227			
	327			
Maximum Height	460.70 m 60.39 m			
Minimum Height	60.39 m			
Classification (# of points)				
Ground	187,497,140			
Low vegetation	163,676,822			
Medium vegetation	212,619,439			
High vegetation	144,490,617			
Building	59,922,956			
Orthophoto	Yes			
Processed by	Engr. Kenneth Solidum, Engr. Merven Matthew Natino, Marie Joyce Ilagan			



Figure A-8.8. Solution Status

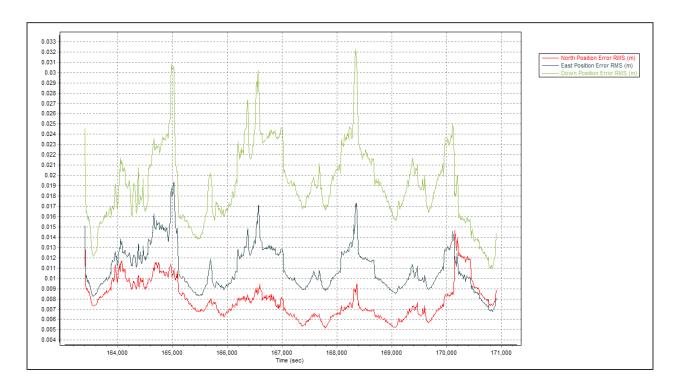


Figure A-8.9. Smoothed Performance Metric Parameters

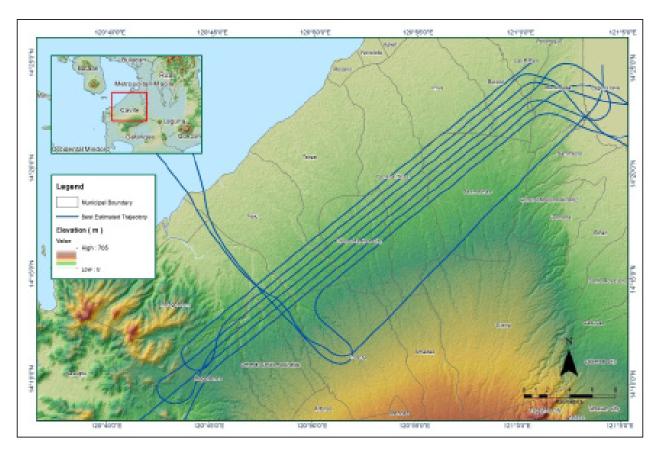


Figure A-8.10. Best Estimated Trajectory

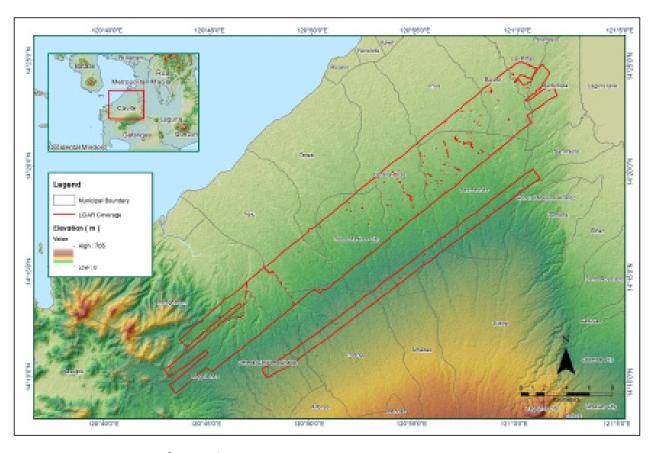


Figure A-8.11. Coverage of LiDAR data

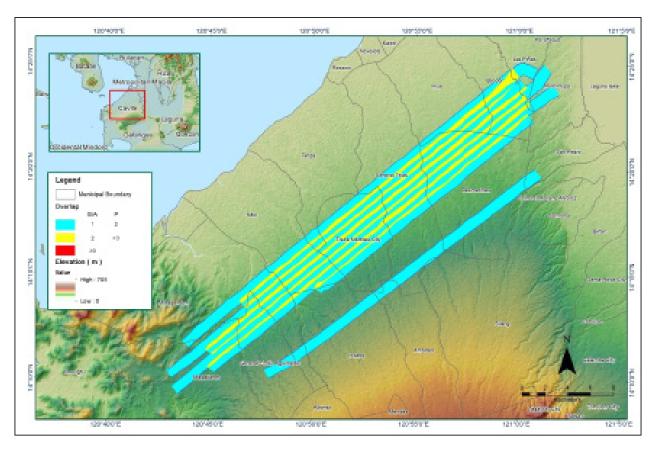


Figure A-8.12. Image of data overlap

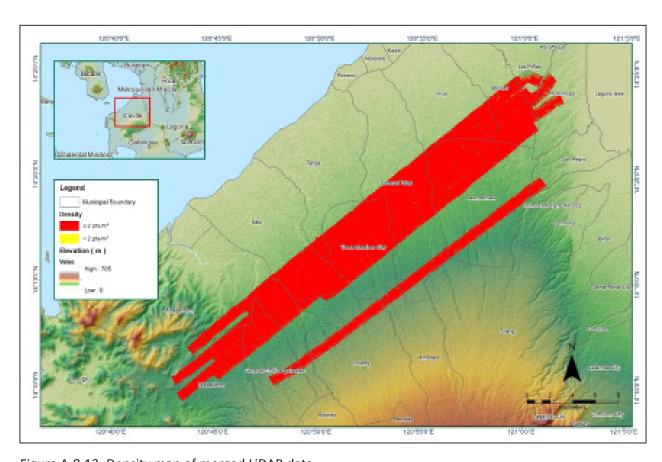


Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Annex 9. Imus Model Basin Parameters

Table A-9.1 Imus Model Basin Parameters

	SCS Cur	SCS Curve Number Loss	Loss	Clark Unit Hydro Transform	k Unit Hydrograph Transform		E	Recession Baseflow	eflow	
Sub-basin	Initial Abstraction (mm)	Curve	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W380	5.1922	82.368	0	4.3318	3.0937	Discharge	0	0.05	Ratio to Peak	0.05
W370	5.5584	79.095	0	12.501	10.201	Discharge	0	0.02	Ratio to Peak	0.05
W360	1.2773	66	0	2.4762	2.2603	Discharge	0	0.02	Ratio to Peak	0.05
W350	5.2938	66	0	1.9461	3.8678	Discharge	0	0.02	Ratio to Peak	0.05
W340	9.2112	66	0	30.551	7.3666	Discharge	0	0.02	Ratio to Peak	0.05
W330	1.3138	66	0	1.7546	2.078	Discharge	0	0.02	Ratio to Peak	0.05
W320	1.0359	66	0	3.739	2.5033	Discharge	0	0.02	Ratio to Peak	0.05
W310	1.4441	66	0	2.1065	3.1147	Discharge	0	0.02	Ratio to Peak	0.05
W300	0.83785	89.907	0	2.7528	1.6315	Discharge	0	0.02	Ratio to Peak	0.05
W290	1.659	66	0	2.6727	2.1477	Discharge	0	0.02	Ratio to Peak	0.05
W280	0.86581	66	0	2.7499	2.2582	Discharge	0	0.05	Ratio to Peak	0.05
W270	1.205	79.395	0	0.77722	0.25918	Discharge	0	0.046118	Ratio to Peak	0.046118
W260	1.0544	94.105	0	0.31272	0.51276	Discharge	0	0.02646	Ratio to Peak	0.04954
W250	0.87916	60.038	0	2.832	3.5524	Discharge	0	0.02	Ratio to Peak	0.05
W240	1.4871	93.863	0	0.32016	0.37479	Discharge	0	0.046118	Ratio to Peak	0.049531
W230	0.72678	98.249	0	2.6286	2.2549	Discharge	0	0.05	Ratio to Peak	0.05
W220	1.0612	85.937	0	0.6532	0.5068	Discharge	0	0.046118	Ratio to Peak	0.047288
W210	1.0894	86.872	0	0.87505	0.43534	Discharge	0	0.045196	Ratio to Peak	0.045196

Annex 10. Imus Model Reach Parameters

Table A-10.1 Imus Model Reach Parameters

Reach			Muskingum Cunge	Channel Rou	ıting		
Number	Time Step method	Length	Slope	Manning's n	Shape	Width	Side Slope
R10	Automatic Fixed Interval	37.071	0.026975	0.73993	Trapezoid	45	1
R20	Automatic Fixed Interval	1445.1	0.011072	0.089635	Trapezoid	45	1
R30	Automatic Fixed Interval	1637.1	0.006108	0.05777	Trapezoid	45	1
R40	Automatic Fixed Interval	1950.7	0.004101	0.050187	Trapezoid	45	1
R70	Automatic Fixed Interval	5158	0.008337	0.044827	Trapezoid	45	1
R90	Automatic Fixed Interval	6902.8	0.15433	0.013753	Trapezoid	45	1
R110	Automatic Fixed Interval	2540.5	0.40862	0.086487	Trapezoid	45	1
R130	Automatic Fixed Interval	3825.3	0.014065	0.034552	Trapezoid	45	1
R170	Automatic Fixed Interval	11311	0.01747	0.02	Trapezoid	45	1

Annex 11. Imus Field Validation Data

Table A-11.1 Imus Field Validation Data

Point	Validation	Coordinates	Model	Validation Points	Error	Event/Date	Rain Return
Number	Lat	Long	Var (m)	(m)	EIIOI	Event/Date	/Scenario
	I .	l .		ı			

Point	Validation Coordinates		Model	Validation Points	Error	Event/Date	Rain Return
Number	Lat	Long	Var (m)	(m)	Error	Event/Date	/Scenario
		1	<u> </u>	<u> </u>	<u> </u>		l

Annex 12. Educational Institutions Affected in Imus Floodplain

Table A-12.1 Educational Institutions in Bacoor, Cavite Affected by Flooding in the Imus Floodplain

Cavite								
	acoor							
Do	1001	Pai	infall Scena	rio				
Building Name	Barangay	5-year	25-year	100-year				
BACOOR EVANGELICAL SCHOOL	Alima	Medium	Medium	Medium				
RUTHER E. ESCONDE SCHOOL OF MULTIPLE INTELLIGENCES	Alima	Low	Medium	Medium				
ST. PEREGRINE INSTITUTE	Banalo	Medium	Medium	Medium				
BACOOR COMPUTER CENTER	Campo Santo	Low	Medium	Medium				
BACOOR ELEMENTARY SCHOOL	Campo Santo	Medium	Medium	Medium				
POBLACION ELEMENTARY SCHOOL	Campo Santo	Low	Medium	Medium				
RUTHER E. ESCONDE SCHOOL OF MULTIPLE INTELLIGENCES	Campo Santo	Low	Medium	Medium				
ST. MICHAEL'S INSTITUTE	Campo Santo		Low	Medium				
DAY CARE CENTER	Daang Bukid	Low	Medium	Medium				
BACOOR PAROCHIAL SCHOOL OF ST. MICHAEL	Digman		Medium	Medium				
ST. MICHAEL'S INSTITUTE	Digman			Low				
TABING DAGAT DAY CARE CENTER	Digman	Low	Medium	Medium				
THE PRECIOUS JEWELS MONTESSORI SCHOOL	Digman	Low	Medium	Medium				
DULONG BAYAN ELEMENTARY SCHOOL	Dulong Bayan	Medium	High	High				
RUTHER E. ESCONDE SCHOOL OF MULTIPLE INTELLIGENCES	Dulong Bayan	Medium	Medium	Medium				
RUTHER E. ESONCDE SCHOOL OF MULTIPLE INTELLIGENCES	Dulong Bayan	Medium	Medium	High				
HABAY ELEMENTARY SCHOOL	Habay I	Medium	Medium	High				
ISHRM	Habay I		Low	Medium				
ROCHEPOL ACADEMY	Habay I	Low	Medium	Medium				
ST. MICHAEL SCHOOL	Habay II	Low	Medium	Medium				
BACOOR PAROCHIAL SCHOOL OF ST. MICHAEL	Kaingin	Low	Medium	Medium				
DIGMAN ELEMENTARY SCHOOL	Kaingin	Low	Medium	High				
ERIKA MOHR ACADEMY	Kaingin	Low	Medium	Medium				
ESCUELA LA MADRID OF CAVITE	Mabolo I	Medium	High	High				
MARIA CORINNE COLLEGE	Mabolo I	Medium	Medium	Medium				
OUR LADY OF FATIMA ACADEMY OF BINAKAYAN	Mabolo I	Medium	High	High				
MALIKSI ELEMENTARY SCHOOL	Maliksi II	Low	Medium	Medium				
KING JAMES ACADEMY	Mambog I		Low	Medium				
MACASA LEARNING CENTER	Mambog I		Low	Low				
BAHAY BULILIT	Mambog II	Low	Low	Low				
MAMBOG ELEMENTARY SCHOOL	Mambog II							
MARVELOUS FAITH ACADEMY	Mambog II		Low	Low				
JESUS GOOD SHEPHERD SCHOOL	Mambog V	Low	Low	Medium				
UNIVERSITY OF PERPETUAL HELP SYSTEM DALTA	Molino IV							
DAY CARE CENTER	P.F. Espiritu III	Low	Low	Low				

Cavite							
Ва	acoor						
Puilding Name	Parangay	Rai	infall Scena	ario			
Building Name	Barangay	5-year	25-year	100-year			
ACTEC	P.F. Espiritu IV		Medium	Medium			
HARRELL HORNE INTEGRATED SCHOOL	Queens Row East	Low	Low	Low			
SAINT JEROME EMILIANI INSTITUTE	Queens Row East						
SAINT MICHAEL SCHOOL OF CAVITE	Queens Row East						
SAINT THOMAS MORE SCHOOL	Queens Row East						
UNIVERSITY OF PERPETUAL HELP SYSTEM DALTA	Queens Row East						
BRETON SCHOOL	Real I	Medium	Medium	Medium			
ISHRM	Real I		Medium	Medium			
JESUS GOOD SHEPHERD SCHOOL	Real I	Medium	Medium	Medium			
LA CAMELLA SCHOOL	Real I	Low	Low	Medium			
MILLENIUM CHRISTIAN SCHOOL			Medium				
BACOOR NATINAL HIGH SCHOOL	Real II Low Low		Low				
OUR LADY OF THE PILLAR CATHOLIC SCHOOL	ATHOLIC SCHOOL Real II		Low				
REAL ELEMENTARY SCHOOL	Real II						
SALINAS I ELEMENTARY SCHOOL	Real II			Low			
DAY CARE CENTER	Salinas II	High	High	High			
SALINAS I ELEMENTARY SCHOOL	Salinas III	Low	Low	Low			
SALINAS I ELEMENTARY SCHOOL	Salinas IV			Low			
BACOOR NATIONAL HIGH SCHOOL	Tabing Dagat		Medium	Medium			
BACOOR PARISH SCHOOL	Tabing Dagat		Medium	Medium			

Table A-12.2 Educational Institutions in Dasmariñas, Cavite Affected by Flooding in the Imus Floodplain

Cavite					
Dasmariñas					
Puilding Name	Parangov	Ra	infall Scena	ario	
Building Name	Barangay	5-year	25-year	100-year	
ASIAN TRINITY SCHOOL	Burol				
COLEGIO DE LA ESTRELLA	Burol				
DAY CARE CENTER	Burol				
EMILIO AGUINALDO COLLEGE	Burol				
ST. NICHOLAS DE MAYRA SCHOOL	Burol				
DASMARIAGAS (DBB) ELEMENTARY SCHOOL	Burol I				
DASMARIL AS (DBB) ELEMENTARY SCHOOL	Burol I				
DE LA SALLE UNIVERSITY	Burol I				
DASMARI	Burol II		Low	Low	
DASMARIL AS (DBB) ELEMENTARY SCHOOL	Burol II	Low	Medium	Medium	
DE LA SALLE UNIVERSITY	Burol II				
CORINTHIAN INSTITUTE OF CAVITE	Burol III				
DASMARI	Burol III				
DASMARIL AS (DBB) ELEMENTARY SCHOOL	Burol III				

Cavite				
Dasmariñas				
Duilding Name	Воможаем	Rai	infall Scena	ario
Building Name	Barangay	5-year	25-year	100-year
BREESE CHRISTIAN ACADEMY OF DASMARI	Emmanuel Bergado I			
BREESE CHRISTIAN ACADEMY OF DASMARI	Emmanuel Bergado II			
ANGEL OF PEACE LEARNING CENTER	Salawag			
ANGEL OF THE BLESSED CHRISTIAN SCHOOL	Salawag			
BEULAH LAND INTEGRATED SCIENCE SCHOOL	Salawag			
DANHILL ACADEMY	Salawag			
FIDES SALDE SCHOOL	Salawag			
GRACE HORIZON SCHOOL	Salawag			
ICC SALAWAG	Salawag			
JESUS THE HEART OF GOD CHRISTIAN ACADEMY	Salawag			
MIDLAND SCHOOL OF CAVITE	Salawag			
OXFORDIAN COLLEGES	Salawag			
SALAWAG DAY CARE CENTER	Salawag			
SALAWAG ELEMENTARY SCHOOL	Salawag			
SALAWAG MERRYHILLS SCHOOL	Salawag			
SONS OF HOLY MARY IMMACULATE MONTESSORI	Salawag			
ST. ANTHONY MONTESSORI INTEGRATED SCHOOL	Salawag			
ST. JOHN FISHER SCHOOL	Salawag			
ST. LAZARO SCHOOL	Salawag			
BLESSED MARY ACADEMY	Salitran II			
CORNERSTONE INTERNATIONAL COLLEGE	Salitran II		Low	Low
IMMACULATE CONCEPTION ACADEMY	Salitran II			
SALITRAN ELEMENTARY SCHOOL	Salitran II			Low
DIVINE COLLEGE SCHOOL	Salitran III	Medium	Medium	Medium
GLENRIDGE'S SCHOOL	Salitran III		Low	Medium
HOLY BLESSING MONTESSORI INTERNATIONAL SCHOOL	Salitran III	Medium	Medium	Medium
DAYCARE CENTER	Salitran IV			
GOLDEN WISDOM SCHOOL	Salitran IV			
ST. BEATRIZ ACADEMY	Salitran IV			
WARNER CHRISTIAN ACADEMY	Salitran IV			
MAGSAYSAY INSITUTE OF SHIPPING	San Agustin I			
CONGRESSIONAL NATIONAL HIGH SCHOOL	San Agustin II			
BREESE CHRISTIAN ACADEMY OF DASMARI	San Antonio de Padua I			
DAY CARE CENTER	San Dionisio			
DR. JOSE P. RIZAL ELEMENTARY SCHOOL	San Dionisio			
DAY CARE CENTER	San Isidro Labrador I			
DASMARIE AS NORTH NATIONAL HIGH SCHOOL	San Juan			

Cavite				
Dasmariñas				
Puilding Name	Parangay	Ra	infall Scena	ario
Building Name	Barangay	5-year	25-year	100-year
DASMARIESAS NORTH NATIONAL HIGH SCHOOL	San Juan			
DAY CARE CENTER	San Juan	Low	Low	Low
JESUS SON OF MARY ACADEMY	San Manuel II	High	High	High
SAN MIGUEL ELEMENTARY SCHOOL	Santa Lucia			
DE LA SALLE UNIVERSITY	Santa Maria		Low	High
DR. JOSE P. RIZAL ELEMENTARY SCHOOL	Santo Cristo			

Table A-12.3 Educational Institutions in Imus, Cavite Affected by Flooding in the Imus Floodplain

Cavite					
Imus					
5 11 11 21	_ Rain		_	infall Scena	ario
Building Name	Barangay	5-year	25-year	100-year	
TIERRA SANTA MONTESSORI INC.	Anabu I-D	Medium	Medium	Medium	
TIERRA SANTA MONTESSORI INC.	Anabu I-E	Medium	Medium	Medium	
PASONG SANTOL ELEMENTARY SCHOOL	Anabu II-A	Medium	Medium	Medium	
ELIZABETH SETON SCHOOL-SOUTH	Anabu II-D	Medium	Medium	Medium	
INTERNATIONA BRITISH ACADEMY	Anabu II-D	Low	Medium	Medium	
STRAIGHT A'S TUTORIAL CENTER	Anabu II-D	Low	Low	Medium	
ACADEMIA PRIMERA SCHOOL	Anabu II-E		Low	Low	
ANABU 2 ELEMENTARY SCHOOL	Anabu II-F		Low	Medium	
UCCP ANABU CHRISTIAN SCHOOL	Anabu II-F	Low	Medium	Medium	
UNIDA CHRISTIAN COLLEGES	Anabu II-F	Low	Low	Medium	
BAYAN LUMA I ELEMENTARY SCHOOL	Bayan Luma V	Medium	Medium	Medium	
ABBEY DE SAINT AUGUSTINE SCHOOL	Bucandala V	Low	Medium	Medium	
CARSADANG BAGO ELEMENTARY SCHOOL	Carsadang Bago II		Low	Low	
MALAGASANG 1 ELEMENTARY SCHOOL	Malagasang I-E	Low	Medium	Medium	
MONTESSORI SCHOOL	Malagasang I-G	Low	Medium	Medium	
GOV. D. M. CAMERINO ELEMENTARY SCHOOL	Medicion II-E	Low	Medium	Medium	
OUR LADY OF THE PILLAR CATHOLIC SCHOOL	Palico I			Low	
DAY CARE CENTER	Palico II	Medium	Medium	Medium	
ACADEMIA DE JULIA VICTORIA	Pasong Buaya II				
BUHAY NA TUBIG ELEMENTARY SCHOOL	Pasong Buaya II				
DAY CARE CENTER	Pasong Buaya II	Medium	Medium	Medium	
GENERAL LICERIO TOPACIO NATIONAL HIGH SCHOOL	Pasong Buaya II				
MAHARLIKA ELEMENTARY SCHOOL	Pasong Buaya II				
PASONG BUAYA 2 ELEMENTARY SCHOOL	Pasong Buaya II				
SAINT FRANCIS INSTITUTE LEARNING AND BUSINESS HS	Pasong Buaya II				
SV MONTESSORI	Pasong Buaya II	Low	Low	Low	

Cavite				
Imus				
Puilding Name	Parangay	Rai	infall Scena	ario
Building Name	Barangay	5-year	25-year	100-year
DEL PILAR ACADEMY	Poblacion I-A	Medium	Medium	Medium
OUR LADY OF THE PILLAR CATHOLIC SCHOOL	Poblacion II-B	Medium	Medium	Medium
BENEDICTINE INSTITUTE OF LEARNING	Poblacion III-A	Medium	Medium	Medium
ST. HILARY SCHOOL	Poblacion III-A	Medium	Medium	Medium
IMUS INSTITUTE - DIMASALANG CAMPUS	Poblacion IV-A	Medium	Medium	Medium
CAYETANO TOPACIO ELEMENTARY SCHOOL	Poblacion IV-B	Medium	High	High
IMUS INSTITUTE - DIMASALANG CAMPUS	Poblacion IV-B	Low	Medium	Medium
CAYETANO TOPACIO ELEMENTARY SCHOOL	Poblacion IV-C	High	High	High
imus lumber & hardware	Poblacion IV-C	Medium	Medium	High
QUEEN OF ANGELS LEARNING CENTER	Tanzang Luma VI	Medium	Medium	Medium
TOCLONG 1-C ELEMENTARY SCHOOL	Toclong I-B	Medium	Medium	Medium
ST. HILARY SCHOOL	Toclong I-C	Medium	Medium	Medium
GOD'S VISION CHRISTIAN SCHOOL	Toclong II-A	Medium	Medium	Medium
GOV. D. M. CAMERINO ELEMENTARY SCHOOL	Toclong II-A	Medium	Medium	Medium
DAY CARE CENTER	Toclong II-B	Medium	High	High
LIGHTHOUSE SCIENCE HIGH SCHOOL	Toclong II-B	Low	Medium	Medium
ST. HILARY SCHOOL	Toclong II-B	Medium	Medium	Medium

Table A-12.4 Educational Institutions in Kawit, Cavite Affected by Flooding in the Imus Floodplain

Cavite				
Kawit Rainfall Scenario				ario
Building Name	Barangay	5-year	25-year	100-year
BINAKAYAN ELEMENTARY SCHOOL	Binakayan-Kanluran	Medium	Medium	Medium
DAY CARE CENTER	Manggahan-Lawin	High	High	High
BINAKAYAN ELEMENTARY SCHOOL	Samala-Marquez	Medium	Medium	Medium
BINAKAYAN ELEMENTARY SCHOOL	Toclong	Medium	Medium	High
TRAMO ELEMENTARY SCHOOL	Toclong	Medium	Medium	Medium

Annex 13. Health Institutions Affected in Imus Floodplain

Table A-13.1 Health Institutions in Bacoor, Cavite Affected by Flooding in the Imus Floodplain

Cavite				
Bacoor				
Duilding Name	Parangay	Rainfall Scenario		
Building Name	Barangay	5-year	25-year	100-year
CRISOSTOMO GENERAL HOSPITAL	Dulong Bayan	Medium	Medium	Medium
ANIMAL CLINIC	Habay I	Low	Medium	Medium
ST. CLAIR MATERNITY AND PEDIATRIC CLINIC	Habay I		Low	Medium
DENTAL CLINIC	Kaingin		Medium	Medium
MNS CLINIC	Kaingin		Medium	Medium
OB-GYN CLINIC	Maliksi I	Medium	Medium	High
HOSPITAL	Mambog I			
IMUS MEDICAL CENTER	Mambog I		Low	Low
METRO SOUTH MEDICAL CENTER	Molino II			
IMUS FAMILY HOSPITAL	Real I	Low	Medium	Medium
HEALTH CENTER	Salinas III	Low	Low	Medium

Table A-13.2 Health Institutions in Dasmariñas, Cavite Affected by Flooding in the Imus Floodplain

Cavite				
Dasmariñas				
D. Heliu - No.	B	Rai	nfall Scena	rio
Building Name	Barangay	5-year	25-year	100-year
WELLCARE CLINIC AND LABORATORY	Burol			
DENTAL CLINIC	Salawag			
OPTICAL CLINIC	Salawag			
PARANAQUE ULTRASOUND DIAGNOSTIC CENTER, INC.	Salawag			
THE GENERICS PHARMACY	Salawag	Low	Low	Low
VIRATA MEDICAL CLINIC	Salawag			
MULTISPECIALTY AND DIAGNOSTIC CENTER	Salitran II			
HEALTH CENTER	Salitran III		Low	Low
ST. PAUL HOSPITAL	San Andres II			
BAHAY PAANAKAN	San Dionisio			
ST. PAUL HOSPITAL	San Francisco I			
DENTAL CLINIC	San Juan			
ST. PAUL HOSPITAL	Santa Cristina II			
OPTICAL	Santa Cruz I		Low	Low
RENTOSA MATERNITY AND LYING-IN CLINIC	Santo Niño I			

Table A-13.3 Health Institutions in Imus, Cavite Affected by Flooding in the Imus Floodplain

Cavite					
li li	Imus				
Duilding None	Rainfall Scenario		rio		
Building Name	Barangay	5-year	25-year	100-year	
OUR LADY OF GUADALUPE HOSPITAL	Anabu I-A	Low	Low	Medium	
ASIA MEDIC	Anabu II-D			Low	
DENTAL CLINIC	Anabu II-F	Low	Low	Medium	
DENTAL CLINIC	Bayan Luma IX	Low	Medium	Medium	
OUR LADY OF THE PILLAR MEDICAL CENTER	Bayan Luma IX	Low	Medium	Medium	
DENTAL CLINIC	Bayan Luma VI		Low	Low	
DENTAL CLINIC	Bayan Luma VII		Low	Low	
ORTHODENTAL CLINIC	Maharlika	Medium	Medium	Medium	
OUR LADY OF THE PILLAR MEDICAL CENTER	Mariano Espeleta I	Low	Medium	Medium	
E.B. ARGUELLES PHARMACY & GENERAL MERCHANDISE	Mariano Espeleta II	Medium	Medium	Medium	
OUR LADY OF THE PILLAR MEDICAL CENTER	Mariano Espeleta II	Low	Medium	Medium	
HEALTH CENTER	Medicion II-D	Low	Medium	Medium	
HEALTH CENTER	Medicion II-E				
ORTHODENTAL CLINIC	Palico III	Medium	Medium	Medium	
DENTAL CLINIC	Poblacion I-A	Medium	Medium	Medium	
ASSISI VETERINARIAN CLINIC	Poblacion I-C	Medium	Medium	Medium	
HEALTH CENTER	Poblacion II-B	Medium	Medium	Medium	
VIRATA MEDICAL CLINCI	Poblacion III-B	Medium	High	High	
SAGRADA FAMILIA MEDICAL CLINIC	Poblacion IV-B	Medium	High	High	
VIRATA MEDICAL CLINIC	Poblacion IV-B	Medium	Medium	Medium	
MEDS	Toclong I-C	Medium	Medium	Medium	
VELARDE HEALTH CENTER	Toclong II-B	Low	Medium	Medium	

Table A-13.4 Health Institutions in Kawit, Cavite Affected by Flooding in the Imus Floodplain

Cavite				
Ka	awit			
Ruilding Namo	Barangay	Rainfall Scenario		
Building Name	Barangay	5-year	25-year	100-year
HEALTH CENTER	Manggahan- Lawin	Medium	High	High
HEALTH 88	Toclong	Medium	Medium	High
SURGEON CLINIC	Toclong	Medium	High	High