LiDAR Surveys and Flood Mapping of Ilang-ilang River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Mapua Institute of Technology

© University of the Philippines Diliman and MAPUA Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and F. A. Uy (eds.) (2017), LiDAR Surveys and Flood Mapping of Ilang-ilang River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-290pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Francis Aldrine A. Uy Project Leader, Phil-LiDAR 1 Program MAPUA Institute of Technology City of Manila, Metro Manila 1002 E-mail: faauy@mapua.edu.ph

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-049-5

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	Х
CHAPTER 1: OVERVIEW OF THE PROGRAM AND ILANG-ILANG RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Ilang-ilang River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE ILANG-ILANG FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	16
2.4 Survey Coverage	19
CHAPTER 3: LIDAR DATA PROCESSING FOR ILANG-ILANG FLOODPLAIN	21
3.1 Overview of the LiDAR Data Pre-Processing	21
3.2 Transmittal of Acquired LiDAR Data	22
3.3 Trajectory Computation	22
3.4 LiDAR Point Cloud Computation	25
3 5 LiDAR Data Quality Checking	26
3 6 LiDAR Point Cloud Classification and Rasterization	31
3.7 LiDAR Image Processing and Orthonhotograph Rectification	22
2.2 DEM Editing and Hydro-Correction	25
2.0 Mossisking of Plocks	
2.10 Calibratian and Validatian of Massieled LiDAR Disital Flougitian Model	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	
3.11 Integration of Bathymetric Data into the LIDAR Digital Terrain Model	42
3.12 Feature Extraction	44
3.12.1 Quality Checking of Digitized Features' Boundary	44
3.12.2 Height Extraction	45
3.12.3 Feature Attribution	45
3.12.4 Final Quality Checking of Extracted Features	46
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS	
OF THE ILANG-ILANG RIVER BASIN	4/
4.1 Summary of Activities	47
4.2 Control Survey	49
4.3 Baseline Processing	54
4.4 Network Adjustment	55
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	57
4.6 Validation Points Acquisition Survey	62
4.7 River Bathymetric Survey	65
CHAPTER 5: FLOOD MODELING AND MAPPING	68
5.1 Data Used for Hydrologic Modeling	68
5.1.1 Hydrometry and Rating Curves	68
5.1.2 Precipitation	68
5.1.3 Rating Curves and River Outflow	69
5.2 RIDF Station	71
5.3 HMS Model	73
5.4 Cross-section Data	78
5.5 Flo 2D Model	79
5.6 Results of HMS Calibration	81
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	83
5.7.1 Hydrograph using the Rainfall Runoff Model	83
5.8 River Analysis (RAS) Model Simulation	84
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding	92
5 11 Flood Validation	.160
REFERENCES	.163
ANNEXES	.164
Annex 1. Technical Specifications of the LIDAR Sensors used in the Ilang-Ilang Floodplain Survey	.164
Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey	.166
Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	.169
Annex 4 The LIDAR Survey Team Composition	179
, and, in the Lib, a bury reall composition	, , ,

Annex 5. Data Transfer Sheet for Ilang-Ilang Floodplain	181
Annex 6. Flight logs for the flight missions.	186
Annex 7. Flight status reports	196
Annex 8. Mission Summary Reports	207
Annex 9. Ilang-Ilang Model Basin Parameters	276
Annex 10. Ilang Ilang Model Reach Parameters	278
Annex 11. Ilang-Ilang Field Validation Points	279
Annex 12. Educational Institutions affected by flooding in Ilang-Ilang Floodplain	284
Annex 13. Health Institutions affected by flooding in Ilang-Ilang Floodplain	285

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system	3
Table 2. Flight planning parameters for Leica ALS-80 HP LiDAR System	3
Table 3. Details of the recovered NAMRIA horizontal control point CVT-199 used as base station for the LiDAR Acquisition	6
Table 4. Details of the recovered NAMRIA horizontal control point CVT-3051 used as base station for the LiDAR acquisition	7
Table 5. Details of the recovered NAMRIA horizontal control point CVT-194 used as base station for the LiDAR Acquisition	8
Table 6. Details of the recovered NAMRIA horizontal control point BTG-45 used as base station for the LiDAR Acquisition	9
Table 7. Details of the established horizontal control point PB-1 with processed coordinates used as base station for the LiDAR Acquisition	10
Table 8. Details of the established horizontal control point BTG-45A with processed coordinates used as base station for the LiDAR Acquisition	11
Table 9. Details of the established control point GC-1 with processed coordinates used as base static for the LiDAR Acquisition	on 11
Table 10. Details of the established control point GC-2 with processed coordinates used as base stati for the LiDAR Acquisition	ion 12
Table 11. Details of the recovered NAMRIA horizontal control point CVT-3123 with processed coordinates used as base station for the LiDAR Acquisition	12
Table 12. Ground control points used during the LiDAR data acquisition	13
Table 13. Flight missions for LiDAR data acquisition in Ilang-Ilang floodplain	14
Table 14. Actual parameters used during LiDAR data acquisition	15
Table 15. List of municipalities and cities surveyed during Ilang-Ilang floodplain LiDAR survey	16
Table 16. Self-calibration Results values for Ilang-Ilang flights	22
Table 17. List of LiDAR blocks for the Ilang-Ilang floodplain	24
Table 18. Ilang-Ilang classification results in TerraScan	28
Table 19. LiDAR blocks with its corresponding areas	32
Table 20. Shift values of each LiDAR block of Ilang-Ilang Floodplain	34
Table 21. Calibration Statistical Measures	38
Table 22. Validation Statistical Measures	39
Table 23. Details of the quality checking ratings for the building features extracted for the Ilang-Ilang River Basin	s 41
Table 24. Building features extracted for Ilang-Ilang Floodplain	42
Table 25. Total Length of Extracted Roads for Silaga Floodplain	43
Table 26. Number of extracted water bodies for Silage Floodplain	43
Table 27. List of reference and control points used during the survey in Ilang-Ilang River	47
Table 28. The Baseline processing report for the Ilang-Ilang River GNSS static observation survey	51
Table 29. Constraints applied to the adjustment of the control points	52
Table 30. Adjusted grid coordinates for control points used in the Ilang-Ilang River floodplain survey.	52
Table 31. Adjusted geodetic coordinates for control points used in the Ilang-Ilang River Floodplain validation	53
Table 32. The reference and control points utilized in the Ilang-Ilang River Static Survey,	

with their corresponding locations (Source: NAMRIA, UP-TCAGP)	53
Table 33. RIDF values for the Ilang-Ilang River Basin based on average RIDF data of Sangley station, as computed by PAGASA	68
Table 34. Range of calibrated values for the Ilang-Ilang River Basin	78
Table 35. Summary of the Efficiency Test of the Ilang-Ilang HMS Model	79
Table 36. The peak values of the Ilang-Ilang HEC-HMS Model outflow using the Sangley RIDF	80
Table 37. Municipalities affected in Ilang-Ilang floodplain	82
Table 38. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	90
Table 39. Affected areas in Kawit, Cavite during a 5-Year Rainfall Return Period	99
Table 40. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period	102
Table 41. Affected areas in Noveleta, Cavite during a 5-Year Rainfall Return Period	107
Table 42. Affected areas in General Trias, Cavite during a 5-Year Rainfall Return Period	110
Table 38. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	113
Table 39. Affected areas in Kawit, Cavite during a 25-Year Rainfall Return Period	122
Table 40. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period	125
Table 46. Affected areas in Noveleta, Cavite during a 25-Year Rainfall Return Period	130
Table 42. Affected areas in General Trias, Cavite during a 25-Year Rainfall Return Period	132
Table 48. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	135
Table 49. Affected areas in Kawit, Cavite during a 100-Year Rainfall Return Period	144
Table 50. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period	147
Table 51. Affected areas in Noveleta, Cavite during a 100-Year Rainfall Return Period	152
Table 52. Affected areas in General Trias, Cavite during a 100-Year Rainfall Return Period	154
Table 53. Area covered by each warning level with respect to the rainfall scenarios	156
Table 54. Actual Flood Depth versus Simulated Flood Depth at different levels in the Ilang-Ilang Rive Basin	er 159
Table 55. Summary of the Accuracy Assessment in the Ilang-Ilang River Basin Survey	159

LIST OF FIGURES

Figure 1. Map of the Ilang-ilang River Basin (in brown)	2
Figure 2. Flight plan and base stations for Ilang-Ilang floodplain.	4
Figure 3. GPS set-up over CVT-199 found near the basketball covered court of Brgy. Calumpang	
Lejos (a) and NAMRIA reference point CVT-199 (b) as recovered by the field team	6
Figure 4. GPS set-up over CVT-3051 in a concrete bridge leading to Manggahan, 70 m SE of Jetti Ga	IS
Station and about 250 m from Gen. Trias Poblacion (a) and NAMRIA reference point	
CVT-3051 (b) as recovered by the field team.	7
Figure 5. GPS set-up over CVT-194 (BLLM NO.1 PSC-94) near the Municipal Hall of Gen. Trias.	
Cavite (a) and NAMRIA reference point CVT-194 (b) as recovered by the field team	8
Figure 6. GPS set-up over BTG-45 inside Santiago De Guzman Elementary School	_
of Brgy. Malibu. Tuy. Batangas Province (a) and NAMRIA reference point BTG-45 (b)	
as recovered by the field team	9
Figure 7. GPS set-up over PB-1 as established in an elevated traffic island in Daang Hari Road.	
Imus. Cavite (a) and reference point PB-1 (b) as established by the field team	10
Figure 8 Actual LiDAR survey coverage for Ilang-Ilang floodplain	
Figure 9. Schematic diagram for the data pre-processing	. 18
Figure 10 Smoothed Performance Metrics of Ilang-Ilang Flight 23462P	20
Figure 11 Solution Status Parameters of Ilang-Ilang Flight 23462P	20
Figure 12 Best estimated trajectory of the LiDAR missions conducted over Ilang-Ilang Eloodhlain	21
Figure 13. Boundary of the processed LiDAR data on ton of the SAR Elevation Data	
over the Ilang-Ilang Floodalain	22
Figure 14 Image of data overlap for Ilang-Ilang floodplain	25
Figure 15. Dulse density man of the merged LiDAP data for llang floodplain.	25 26
Figure 15. Fulse density map of the merged LiDAK data for hang-hang hoodplain.	20
Figure 17. Quality checking for llang flight 22462D using the Brofile Tool of OT Modeler	Z / 20
Figure 17. Quality checking for hang-hang floodplain (a) and classification results (b) in Terra Scan	20
Figure 10. Thes for hang-hang hoodplain (a) and classification	29
Figure 19. Point cloud before (a) and after (b) classification	29
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c)	20
Figure 21. Here fleed along with the queilable orthographs	30
Figure 21. liang-liang hoodplain with the available orthographs.	31
Figure 22. Sample orthophotograph tiles for liang-liang floodplain	31
Figure 23. Portions in the DTM of liang-liang floodplain – a bridge before (a)	
and after (b) manual editing; a paddy field before (c) and after (d) data retrieval;	~~~
and a building before (e) and after (f) manual editing.	33
Figure 26. Correlation plot between calibration survey points and LiDAR data	38
Figure 27. Correlation plot between the validation survey points and the LiDAR data	39
Figure 28. Map of Ilang-Ilang floodplain with bathymetric survey points in blue	40
Figure 29. Block (in blue) of llang-llang building features that was subjected to QC.	41
Figure 30. Extracted features of the Ilang-Ilang Floodplain	43
Figure 31. Ilang-Ilang River Survey Extent	45
Figure 32. Ilang-Ilang River Basin Control Survey Extent.	48
Figure 33. Trimble [®] SPS 882 at MMA-39 in UP Diliman, Quezon City	49
Figure 34. Trimble [®] SPS 852 at CVT-3236 along Ilang Ilang brigde in Brgy. San Antonio I,	
Noveleta, Cavite	49
Figure 35. Trimble [®] SPS 852 at PSC-54 at the town plaza in Brgy. Bagumbayan, Gen. Trias, Cavite	50
Figure 36. Cross-section survey in Ilang-Ilang Bridge in Brgy. San Antonio, Noveleta, Cavite	54

Figure 37. Location map of the Ilang-Ilang Bridge Cross Section	55
Figure 38. The Ilang-Ilang Bridge cross-section diagram.	56
Figure 39. The Ilang-Ilang Bridge as-built survey data	57
Figure 40. GNSS Observation and Digital level setup at the bank of Ilang-Ilang River	58
Figure 41. Existing bridge marking and the corresponding MSL elevation	59
Figure 42. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey	60
Figure 43. The extent of the LiDAR ground validation survey (in red) for Ilang-Ilang River Basin	61
Figure 44. Set up of the bathymetric survey at Ilang-Ilang River using Trimble [®] SPS 882	
in GNSS PPK survey technique.	62
Figure 45. The extent of the Ilang-Ilang River Bathymetry Survey	63
Figure 46. The Ilang-Ilang Riverbed Profile	64
Figure 47. Location Map of the Ilang-Ilang HEC-HMS model used for calibration.	65
Figure 48. Cross-Section Plot of Ilang-Ilang Bridge	66
Figure 49. The rating curve at Ilang-Ilang Bridge, Noveleta, Cavite	67
Figure 50. Rainfall and outflow data at Ilang-Ilang Bridge, which was used for modeling.	67
Figure 51. The location of the Sangley Point RIDF station relative to the Ilang-Ilang River Basin	69
Figure 52. The synthetic storm generated for a 24-hour period rainfall for various return periods	69
Figure 53. Soil Map of Ilang-Ilang River Basin.	70
Figure 54. Land Cover Map of Ilang-Ilang River Basin.	71
Figure 55. Slope Map of the Ilang-Ilang River Basin.	72
Figure 56. Stream Delineation Map of Ilang-Ilang River Basin	73
Figure 57. Ilang-Ilang river basin model generated in HEC-HMS	74
Figure 58. River cross-section of the Ilang-Ilang River through the ArcMap HEC GeoRas tool	75
Figure 59. Generated 100-year Rain Return Hazard Map from FLO-2D Mapper	76
Figure 60. Generated 100-year Rain Return Hazard Map from FLO-2D Mapper	77
Figure 61. Generated 100-year Rain Return Flow Depth Map from FLO-2D Mapper	77
Figure 62. Outflow Hydrograph of Ilang-Ilang produced by the HEC-HMS model	
compared with observed outflow.	78
Figure 63. The Outflow hydrograph at Ilang Ilang generated using Sangley PointRIDF	
simulated in HEC-HMS	80
Figure 64. Sample output map of the Ilnag-ilang RAS Model	81
Figure 65. A 100-year Flood Hazard Map for Ilang-Ilang Floodplain overlaid on Google Earth imager	ry.83
Figure 66. A 100-year Flow Depth Map for Ilang-Ilang Floodplain overlaid on Google Earth imagery.	84
Figure 67. A 25-year Flood Hazard Map for Ilang-Ilang Floodplain overlaid on Google Earth imagery	/. 85
Figure 68. A 25-year Flow Depth Map for Ilang-Ilang Floodplain overlaid on Google Earth imagery	86
Figure 69. A 5-year Flood Hazard Map for Ilang-Ilang Floodplain overlaid on Google Earth imagery.	87
Figure 70. A 5-year Flood Depth Map for Ilang-Ilang Floodplain overlaid on Google Earth imagery	88
Figure 71. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	94
Figure 72. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	94
Figure 73. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	95
Figure 74. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	95
Figure 75. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	96
Figure 76. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	96
Figure 77. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	97
Figure 78. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period	97
Figure 79. Affected areas in Kawit, Cavite during a 5-Year Rainfall Return Period	100
Figure 80. Affected areas in Kawit, Cavite during a 5-Year Rainfall Return Period	100
	104

Figure 82. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period	104
Figure 83. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period	105
Figure 84. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period	105
Figure 85. Affected Areas in Noveleta, Cavite during a 5-Year Rainfall Return Period	108
Figure 86. Affected Areas in General Trias, Cavite during a 5-Year Rainfall Return Period	111
Figure 87. Affected Areas in General Trias, Cavite during a 5-Year Rainfall Return Period	111
Figure 88. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	117
Figure 89. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	117
Figure 90. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	118
Figure 91. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	118
Figure 92. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	119
Figure 93. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	119
Figure 94. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	120
Figure 95. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period	120
Figure 96. Affected areas in Kawit, Cavite during a 25-Year Rainfall Return Period	123
Figure 97. Affected areas in Kawit, Cavite during a 25-Year Rainfall Return Period	123
Figure 98. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period	127
Figure 99. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period	127
Figure 100. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period	128
Figure 101. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period	128
Figure 102. Affected Areas in Noveleta, Cavite during a 25-Year Rainfall Return Period	131
Figure 103. Affected Areas in General Trias, Cavite during a 25-Year Rainfall Return Period	133
Figure 104. Affected Areas in General Trias, Cavite during a 25-Year Rainfall Return Period	133
Figure 105. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	139
Figure 106. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	139
Figure 107. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	140
Figure 108. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	140
Figure 109. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	141
Figure 110. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	141
Figure 111. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	142
Figure 112. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period	142
Figure 113. Affected areas in Kawit, Cavite during a 100-Year Rainfall Return Period	145
Figure 114. Affected areas in Kawit, Cavite during a 100-Year Rainfall Return Period	145
Figure 115. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period	149
Figure 116. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period	149
Figure 117. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period	150
Figure 118. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period	150
Figure 119. Affected Areas in Noveleta, Cavite during a 100-Year Rainfall Return Period	153
Figure 120. Affected Areas in General Trias, Cavite during a 100-Year Rainfall Return Period	155
Figure 121. Affected Areas in General Trias, Cavite during a 100-Year Rainfall Return Period	155
Figure 122. Validation Points for a 5-year Flood Depth Map of the Ilang-Ilang Floodplain	158
Figure 123. Flood Map depth versus Actual Flood Depth	159

AAC	Asian Aerospace Corporation				
Ab	abutment				
ALTM	Airborne LiDAR Terrain Mapper				
ARG	automatic rain gauge				
ATQ	Antique				
AWLS	Automated Water Level Sensor				
BA	Bridge Approach				
BM	benchmark				
CAD	Computer-Aided Design				
CN	Curve Number				
CSRS	Chief Science Research Specialist				
DAC	Data Acquisition Component				
DEM	Digital Elevation Model				
DENR	Department of Environment and Natural Resources				
DOST	Department of Science and Technology				
DPPC	Data Pre-Processing Component				
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]				
DRRM	Disaster Risk Reduction and Management				
DSM	Digital Surface Model				
DTM	Digital Terrain Model				
DVBC	Data Validation and Bathymetry Component				
FMC	Flood Modeling Component				
FOV	Field of View				
GiA	Grants-in-Aid				
GCP	Ground Control Point				
GNSS	Global Navigation Satellite System				
GPS	Global Positioning System				
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System				
HEC-RAS	Hydrologic Engineering Center - River Analysis System				
НС	High Chord				
IDW	Inverse Distance Weighted [interpolation method]				

	IMU	Inertial Measurement Unit
	kts	knots
	LAS	LiDAR Data Exchange File format
	LC	Low Chord
	LGU	local government unit
	Lidar	Light Detection and Ranging
	LMS	LiDAR Mapping Suite
	m AGL	meters Above Ground Level
	MIT	MAPUA Institute of Technology
	MMS	Mobile Mapping Suite
	MSL	mean sea level
	NAMRIA	National Mapping and Resource Information Authority
	NSTC	Northern Subtropical Convergence
al	PAF	Philippine Air Force
/	PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
	PDOP	Positional Dilution of Precision
t for	РРК	Post-Processed Kinematic [technique]
ent	PRF	Pulse Repetition Frequency
	РТМ	Philippine Transverse Mercator
	QC	Quality Check
	QT	Quick Terrain [Modeler]
	RA	Research Associate
	RIDF	Rainfall-Intensity-Duration-Frequency
	RMSE	Root Mean Square Error
	SAR	Synthetic Aperture Radar
	SCS	Soil Conservation Service
	SRTM	Shuttle Radar Topography Mission
	SRS	Science Research Specialist
	SSG	Special Service Group
IUBIC	ТВС	Thermal Barrier Coatings
	UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
on	UTM	Universal Transverse Mercator
	WGS	World Geodetic System

1

LIST OF ACRONYMS AND ABBREVIATIONS

CHAPTER 1: OVERVIEW OF THE PROGRAM AND ILANG-ILANG RIVER

Enrico C. Paringit, Dr. Eng., Dr. Francis Aldrine A. Uy, and Engr. Fibor Tan

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the MAPUA Institute of Technology (MIT). MIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 26 river basins in the CALABARZON and Bicol Region. The university is located in Intramuros, Manila.

1.2 Overview of the Ilang-ilang River Basin

Ilang-Ilang River Watershed covers the municipalities of Imus, General Trias, and Dasmarinas. Its basin has a drainage area of 82 km2 and an estimated 131 million cubic meter (MCM) annual run-off. It is identified by the River Basin Control Office (RBCO) as one of the 140 Critical Watersheds in the Philippines. It supports the Pasong Kastila Dam, Butas Marcelo Dam, San Agustin Dam and Butas Navarro Dam, all located in the province of Cavite which irrigates a total of 2,853 has of agricultural land.

Its main stem, Ilang-Ilang River, is one of the six (6) major rivers in Cavite. Ilang-Ilang River is connected to San Juan (its point of origin) in the Municipality of San Gabriel. It meets San Juan River 4.8 kilometers from the mouth of the river. The river drains at Manila Bay. The HEI in charge of Ilang-Ilang River Basin and 23 other river basins located in Region 4 is Mapua Institue of Technology. The recent and most destructive flooding incident in Cavite was brought by Tropical Storm Maring on August 2013. Rainfall reached 475.4 mm which is more than the average monthly rainfall (457.4 mm) in Cavite. Areas in Cavite is also prone to storm surges because of the swelling of Manila Bay and Bacoor Bay.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE ILANG-ILANG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Grace B. Sinadjan, and Ms. Jonalyn S. Gonzales

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Ilang-Ilang floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Ilang-Ilang Floodplain in Cavite. These flight missions were planned for 8 lines and ran for at most three and a half hours (3.5) including take-off, landing and turning time. The flight planning parameters for Pegasus and Leica ALS-80 HP LiDAR systems are found in Table 1 and Table 2, respectively. Figure 2 shows the flight plan for Ilang-Ilang floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 18A	1000/1100	30	50	200	30	130	5
BLK 18B	1000	30	50	200	30	130	5
BLK 18C	1000/1100	30	50	200	30	130	5
BLK 18D	1000	30	50	200	30	130	5
BLK 18X	1200	30	50	200	30	130	5
BLK18 CF	1100	30	50	200	30	130	5

Table 1. Flight planning parameters for the Pegasus LiDAR system.

Table 2. Flight planning parameters for Leica ALS-80 HP LiDAR System

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK18A	1000/1500	30	50/45	128	30/42	130	5
BLK18B	1500	30	45	128	42	130	5

Figure 2. Flight plan and base stations for Ilang-Ilang floodplain.

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA horizontal ground control points CVT-199, CVT-194, and BTG-45 which are of second (2nd) order accuracy. The project team also established four (4) ground control points PB-1, BTG- 45A, GC-1 and GC-2 and re-processed two (2) NAMRIA reference point CVT-3051 and CVT-3123.

The certifications for the base stations are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey on June 9, 2014. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Ilang-Ilang floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Ilang-Ilang Floodplain LiDAR Survey. Figure 3 to Figure 7 show the recovered NAMRIA reference points within the area of the floodplain, while Table 3 to Table 11 show the details about the following NAMRIA control stations and established points. Table 12, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

(a)

Figure 3. GPS set-up over CVT-199 found near the basketball covered court of Brgy. Calumpang Lejos (a) and NAMRIA reference point CVT-199 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point CVT-199 used as base station for the LiDAR Acquisition.

Station Name	CVT-199	
Order of Accuracy	2nd	
Relative Error (Horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 14' 16.32329" North 120° 50' 40.63536" East 166.20100 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	1574493.218 meters 483231.789 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 14' 10.97763" North 120° 50' 45.56096" East 210.38600 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	267, 428.74 meters 1,575,012.80 meters

(a)

Figure 4. GPS set-up over CVT-3051 in a concrete bridge leading to Manggahan, 70 m SE of Jetti Gas Station and about 250 m from Gen. Trias Poblacion (a) and NAMRIA reference point CVT-3051 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point CVT-3051 used as base station for the LiDAR acquisition

Station Name	CVT-3051			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 22′ 58.33330″ North 120° 52′ 44.06059″East 21.122 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 22'52.95639" North 120° 52' 48.97372 East" 64.983 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992	Easting Northing	271276.565 meters 1591024.612 meters		

Figure 5. GPS set-up over CVT-194 (BLLM NO.1 PSC-94) near the Municipal Hall of Gen. Trias, Cavite (a) and NAMRIA reference point CVT-194 (b) as recovered by the field team.

Station Name	CVT-194			
Order of Accuracy	2nd order			
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 23' 15.01186" North 120° 52' 43.52184" East 18.337 meters		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Easting Northing	486924.253 meters 1591045.311 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14°23 '9.63386" North 120° 52' 48.43458" East 62.184 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	271265.13 meters 1591537.44 meters		

Table 5. Details of the recovered NAMRIA horizontal control point CVT-194 used as base station for the LiDAR Acquisition.

Figure 6. GPS set-up over BTG-45 inside Santiago De Guzman Elementary School of Brgy. Malibu, Tuy, Batangas Province (a) and NAMRIA reference point BTG-45 (b) as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control point BTG-45 used as base station for the LiDAR Acquisition.

Station Name	BTG-45				
Order of Accuracy	2nd order				
Relative Error (horizontal positioning)	1:50,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92	Latitude Longitude Ellipsoidal Height	13° 59' 52.18294" North 120° 42' 18.96476" East 48.43000 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Latitude Longitude Ellipsoidal Height	468159.677 meters 1547952.281 meters			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Easting Northing	13° 59' 46.88216" North 120° 42' 23.91169" East 92.94300 meters			

Figure 7. GPS set-up over PB-1 as established in an elevated traffic island in Daang Hari Road, Imus, Cavite (a) and reference point PB-1 (b) as established by the field team.

Table 7. Details of the established horizontal control point PB-1 with processed coordinates used as base station for the LiDAR Acquisition.

Station Name	PB-1					
Order of Accuracy	2nd order					
Relative Error (horizontal positioning)	1:50,000					
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude 14° 23' 19.56635" North Longitude 120° 58' 04.29835"East Ellipsoidal Height 87.568 meters					
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 23'19.56635" North 120° 58' 04.29835" East 87.568 meters				
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	280881.093 meters 1591688.776 meters				

Table 8. Details of the established horizontal control point BTG-45A with processed coordinates used as base station for the LiDAR Acquisition.

Station Name	BTG-45A				
Order of Accuracy	2nd order				
Relative Error (horizontal positioning)	1:50,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	13° 59' 51.95603" North 120° 42' 18.98286 " East 49.08900 meters			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Easting Northing	252126.100 meters 1548584.818 meters			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	13° 59' 46.65526" North 120° 42' 23.92980" East 93.60200 meters			

Table 9. Details of the established control point GC-1 with processed coordinates used as base station for the LiDAR Acquisition.

Station Name	GC-1			
Order of Accuracy	2nd order			
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 22' 02.99339" North 120° 55' 39.25400" East 37.855 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 21'57.62404" North 120° 55' 44.43458"East 81.878 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	276510.990 meters 1589275.842 meters		

Table 10. Details of the established control point GC-2 with processed coordinates used as base station for the LiDAR Acquisition.

Station Name	GC-2				
Order of Accuracy	2nd order				
Relative Error (horizontal positioning)	1:50,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude14° 22' 03.22135" NorLongitude120° 55' 39.22621" EaEllipsoidal Height38.103 meters				
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude14° 21'57.85198" ILongitude120° 55' 44.14039"Ellipsoidal Height82.125 meters				
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	276510.220 meters 1589282.856 meters			

Table 11. Details of the recovered NAMRIA horizontal control point CVT-3123 with processed coordinates used as base station for the LiDAR Acquisition.

Station Name	CVT-3123			
Order of Accuracy	2nd order			
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 14' 15.59521" North 120° 50' 41.86474" East 167.527 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude 14° 14'10.24962" N Longitude 120° 50' 46.79435" Ellipsoidal Height 211.713 meters			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	267465.517 meters 1574990.072 meters		

Date Surveyed	Flight Number	Mission Name	Ground Control Points	
27 January 2014	1027P	1BLK18A025A	PB-1 and CVT-194	
29 January 2014	1043P	1BLK18AS029A	PB-1 and CVT-194	
3 February 2014	1063P	1BLK18D034A	PB-1 and CVT-194	
22 February 2014	1139P	1BLK18X53A	BTG-45 and BTG-45A	
28 February 2014	1039P	1BLK18B028A	PB-1 and CVT-194	
18 Aug 2015	3309P	1BLK18AsS230A	CVT-3051 and CVT-199	
3 May 2016	10136L	4BLK18A124A	CVT-199 and CVT-3123	
6 May 2016	10142L	4BLK18AB127A	CVT-199 and CVT-3123	
7 May 2016	10144L	4BLK18ABS128A	CVT-199 and CVT-3123	
16 June 2016	23462P	1BLK18CFS168A	GC-1 and GC-2	

Table 12. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

A total of ten (10) missions were conducted to complete the LiDAR data acquisition in Ilang-Ilang floodplain, for a total of thirty three hours and thirty three minutes (33+33) of flying time for RP-C9022 and RP-C9522. All missions were acquired using the Pegasus and Leica ALS-80 HP LiDAR systems. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 13, while the actual parameters used during the LiDAR data acquisition are presented in Table 14.

Table 13. Flight missions for LiDAR data acquisition in Ilang-Ilang floodplain.

Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Area Surveyed	Area Surveyed Outside the	No. of Images (Frames)	Flying Hours	
				within the Floodplain (km2)	Floodplain (km2)		노	Min
27 January 2014	1027P	601.14	127.08	12.18	114.9	167	m	23
29 January 2014	1043P	601.14	64.43	5.54	58.89	NA	2	23
3 February 2014	1063P	601.14	33.67	NA	33.67	348	2	59
22 February 2014	1139P	601.14	269.45	NA	269.45	474	m	56
28 February 2014	1039P	601.14	190.01	19.76	170.25	NA	ε	17
18 Aug 2015	3309P	347.2	113.85	17.89	95.96	NA	m	16
3 May 2016	10136L	88.06	77.01	NA	77.01	679	m	18
6 May 2016	10142L	166.75	89.73	21.65	68.08	506	ε	58
7 May 2016	10144L	166.75	53.34	9.28	44.06	195	ε	28
16 June 2016	23462P	1480.4	124.32	NA	124.32	NA	ε	35
		5254.86	1142.89	86.3	1056.59	2369	33	33

Average Turn Time (Minutes)	5	5	2	5	5	5	5	5	5	5	2	5	5
Average Speed (kts)	130	130	130	130	130	130	130	130	130	130	130	130	130
Scan Frequency (Hz)	30	30	30	30	30	30	32	42	42	32	30	30	30
PRF (khz)	200	200	200	200	200	200	200	128	128	200	200	200	200
FOV (θ)	50	50	50	50	50	50	50	45	45	50	50	50	50
Overlap (%)	30	30	30	30	30	30	30	30	30	60	30	30	30
Flying Height (m AGL)	1000	1000	1000	1200	1000	1100	1000	1500	1500	1000	1000/ 1200	1000	1200
Flight Number	1027P	1043P	1063P	1139P	1039P	3309P	10136L	10142L	10144L	23462P	23104P	23128P	23602P

Table 14. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Ilang-Ilang floodplain (See Annex 7). It is located along the provinces of Batangas, Cavite, Laguna and Metro Manila with majority of the floodplain situated within the municipalities of Cavite. Most of the municipalities of Naic and Tanza in Cavite are fully covered during the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 15. Figure 8, on the other hand, shows the actual coverage of the LiDAR acquisition for the Ilang-Ilang floodplain.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed	
Batangas	Taal	29.37	25.22	85.85%	
	Calaca	117.85	53.98	45.80%	
	Lemery	82.32	29.28	35.57%	
	Balayan	94.45	27.77	29.41%	
	Tuy	92.55	17.92	19.36%	
	Lian	91.27	16.49 18.07%		
	San Luis	42.04	1.61	3.83%	
	Nasugbu	266.83 2.10 0		0.77%	
Cavite	Naic	76.11	99.57%		
	Tanza	71.41	71.03	99.46%	
	General Trias	85.98	71.63	83.32%	
	Imus	56.81	44.25	77.89%	
	Trece Martires City	44.35	34.13	76.96%	
	Indang	88.65	57.81	65.22%	
	Maragondon	147.39	94.37	64.03%	
	Dasmariñas	84.01	45.88	54.61%	
	Amadeo	45.90	24.18	52.68%	
	Rosario	4.89	2.54	51.92%	
	Bacoor	47.43	24.16	50.93%	
	General Emilio Aguinaldo	39.39	16.55	42.03%	
	Magallanes	69.07	20.54	29.73%	
	Ternate	44.52	12.72	28.57%	
	Silang	154.00	40.74	26.45%	
	Noveleta	5.72	1.20	21.03%	
Laguna	San Pedro	21.41	1.42	6.62%	
National Capital	Las Piñas	33.19	3.97	11.97%	
Region		38.52	5.19	13.46%	
Total		1975.43	822.46	44.26%	

Table 15. List of municipalities and cities surveyed during Ilang-Ilang floodplain LiDAR survey.

Figure 8. Actual LiDAR survey coverage for Ilang-Ilang floodplain.

CHAPTER 3: LIDAR DATA PROCESSING FOR ILANG-ILANG FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Engr. Melissa F. Fernandez , Engr. Ma. Ailyn L. Olanda, Engr. Sheila-Maye F. Santillan, Engr. Erica Erin E. Elazegui , Engr. Ezzo Marc C. Hibionada, Ziarre Anne P. Mariposa

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

Figure 9. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Ilang-Ilang floodplain can be found in Annex A-5. Data Transfer Sheets. Missions flown during the first and second survey conducted on January 2014 and August 2015 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system and lastly, the third survey was done on May 2016 using the Leica system over CALABARZON.

The Data Acquisition Component (DAC) transferred a total of 116.78 Gigabytes of Range data, 1.44 Gigabytes of POS data, and 369.01 Megabytes of GPS base station data, and 55.65 Gigabytes of Image data to the data server from January 25, 2014 up to August 18, 2015 for Optech LiDAR systems while a total of 19.46 Gigabytes of RawLaser data, 1377 Megabytes of GNSSIMU data, 355 Megabytes of base station data and 89.7 Gigabytes of RCD30 raw image data were transferred on May 3, 2016 for Leica LiDAR system. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Ilang-Ilang was fully transferred on July 14, 2016, as indicated on the Data Transfer Sheets for Ilang-Ilang floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for Flight 23462P, one of the Ilangllang flights, which is the North, East, and Down position RMSE values are shown in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on July 14, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 10. Smoothed Performance Metrics of Ilang-Ilang Flight 23462P.

The time of flight was from 340,000 seconds to 352,500 seconds, which corresponds to morning of July 14, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 shows that the North position RMSE peaks at 2 centimeters, the East position RMSE peaks at 2.5 centimeters, and the Down position RMSE peaks at 5.4 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution Status Parameters of Ilang-Ilang Flight 23462P.

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Ilang-Ilang Flight 23462P are shown in Figure 11. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 5 and 8, not going lower than 6. Similarly, the PDOP value did not go above the value of 3, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Ilang-Ilang flights is shown in Figure 12.

Figure 12. Best estimated trajectory of the LiDAR missions conducted over the Ilang-Ilang Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 115 flight lines, with each flight line containing two channels, since the Pegasus and Leica systems both employ two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over lang-llang floodplain are given in Table 16.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000798
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000357
GPS Position Z-correction stdev)	<0.01meters	0.0010

Table 16. Self-calibration Results values for Ilang-Ilang flights.

The optimum accuracy is obtained for all Ilang-Ilang flights based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are presented in the Mission Summary Reports (Annex 8).

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 13. Boundary of the processed LiDAR data on top of the SAR Elevation Data over the Ilang-Ilang Floodplain.

A total area of 1,136.33 square kilometers (sq. kms.) were covered by the Ilang-Ilang flight missions as a result of twelve (12) flight acquisitions, which were grouped and merged into twelve (12) blocks accordingly, as portrayed in Table 17.

LiDAR Blocks	Flight Numbers	Area (sq. km)
CALABARZON_Blk18B_supplement	3309P	106.91
Cavite_Blk18AB	1035P	127.12
Cavite_Blk18A_supplement	1043P	56.96
Cavite_Blk18A_supplement2	1139P	99.62
Cavite_Blk18C	1039P	117.91
Cavite_Blk18C_additional	1039P	210.76
	1063P	
Cavite_Blk18B_supplement	1027P	125.39
CALABARZON_reflights_Blk18A	10136L	229.66
	10142L	
CALABARZON_reflights_Blk18A_supplement	10144L	53.33
CALABARZON_reflights_Blk18B_supplement1	10321L	5.66
CALABARZON_reflights_Blk18B_supplement2	10321L	1.00
CALABARZON_reflights_Blk18B_supplement5	10321L	2.01
Total	1,136.33 sq.km	

Table 17. List of LiDAR blocks for the Ilang-Ilang floodplain.
The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Pegasus and Leica systems both employ two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 14. Image of data overlap for Ilang-Ilang floodplain.

The overlap statistics per block for the Ilang-Ilang floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the percent overlap is 38.08% and 67.14% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 15. As seen in the figure below, it was determined that all LiDAR data for the Ilang-Ilang. Floodplain Survey satisfied the point density requirement, as the average density for the entire survey area is 4.81points per square meter.

Figure 15. Pulse density map of the merged LiDAR data for Ilang-Ilang floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 16. Elevation difference Map between flight lines for the Ilang-Ilang Floodplain Survey.

A screen capture of the processed LAS data from Ilang-Ilang flight 23462P loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for Ilang-Ilang flight 23462P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	1,039,448,240
Low Vegetation	838,944,668
Medium Vegetation	923,621,916
High Vegetation	738,089,176
Building	220,643,500

Table 18. Ilang-Ilang classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Ilang-Ilang floodplain is shown in Figure 18. A total of 1,346 1km by 1km tiles were produced. Correspondingly, Table 18 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 460.70 meters and 45.20 meters respectively.

Figure 18. Tiles for Ilang-Ilang floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

Figure 19. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 20. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Ilang-Ilang floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 2761km by 1km tiles area covered by Ilang-Ilang floodplain is shown in Figure 21. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Ilang-Ilang floodplain has a total of 179.65 sq.km orthophotogaph coverage comprised of 1,203 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 22.

Figure 21. Ilang-Ilang floodplain with the available orthographs.

Figure 22. Sample orthophotograph tiles for Ilang-Ilang floodplain

3.8 DEM Editing and Hydro-Correction

Twelve (12) mission blocks were processed for Ilang-Ilang flood plain. These blocks are composed of CALABARZON blocks with a total area of 1,136.33 square kilometers. Table 19 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
CALABARZON_Blk18B_supplement	106.91
CALABARZON_Reflights_Blk18A_supplement	53.33
CALABARZON_Reflights_Blk18A	229.66
Cavite_Blk18A_supplement	56.96
CALABARZON_Reflights_Blk18B_supplement1	5.66
CALABARZON_Reflights_Blk18B_supplement2	1.00
CALABARZON_Reflights_Blk18B_supplement5	2.01
Cavite_Blk18A_supplement2	99.62
Cavite_Blk18AB	127.12
Cavite_Blk18C	117.91
Cavite_Blk18C_additional	210.76
Cavite_Blk18B_supplement	125.39
TOTAL	1,136.33 sq.km

Figure 23 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Figure 23a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 23b) in order to hydrologically correct the river. The paddy field (Figure 23c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 23d) to allow the correct flow of water. Another example is a building that is still present in the DTM after classification (Figure 23e) and has to be removed through manual editing (Figure 23f).

Figure 23. Portions in the DTM of Ilang-Ilang floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval; and a building before (e) and after (f) manual editing.

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Calabarzon DEM overlapping with the blocks to be mosaicked. Table 20 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Ilang-Ilang Floodplain is shown in Figure 24. It can be seen that the entire Ilang-Ilang floodplain is 100% covered by LiDAR data.

	Shift Values (meters)			
Mission Blocks	x	у	z	
CALABARZON_Blk18B_supplement	-1.85	1.08	0.10	
CALABARZON_Reflights_Blk18A_supplement	34.04	-20.59	1.40	
CALABARZON_Reflights_Blk18A	-2.81	1.41	0.55	
CALABARZON_Reflights_Blk18B_supplement1	-1.25	0.55	0.05	
CALABARZON_Reflights_Blk18B_supplement2	-3.28	4.06	0.93	
CALABARZON_Reflights_Blk18B_supplement5	-1.52	-0.01	0.20	
Cavite_Blk18A_supplement	-1.55	1.14	-0.20	
Cavite_Blk18A_supplement2	-2.31	1.34	0.00	
Cavite_Blk18AB	-1.80	1.13	-0.50	
Cavite_Blk18C	-1.84	1.54	-0.45	
Cavite_Blk18C_additional	-1.81	1.32	-0.50	
Cavite_Blk18B_supplement	-3.10	1.47	-0.13	

Table 20. Shift values of each LiDAR block of Ilang-Ilang Floodplain.

Figure 24. Map of processed LiDAR data for the Ilang-Ilang Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in llang-llang to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 24,251 survey points were gathered for all the flood plains within the provinces of CALABARZON wherein the llang-llang floodplain is located. Random selection of 80% of the survey points, resulting to 19,401 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 2.97 meters with a standard deviation of 0.20 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 2.97 meters, to the mosaicked LiDAR data. Table 21 shows the statistical values of the compared elevation values between the LiDAR data.

Figure 25. Map of Ilang-Ilang Floodplain with validation survey points in green.

Figure 26. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	2.97
Standard Deviation	0.20
Average	-2.97
Minimum	-3.48
Maximum	-2.40

The remaining 20% of the total survey points that are near Ilang-Ilang flood plain, resulting to 362 points, were used for the validation of calibrated Ilang-Ilang DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.15 meters, as shown in Table 22.

Figure 27. Correlation plot between the validation survey points and the LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.15
Average	0.14
Minimum	-0.44
Maximum	0.31

Table 22. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration only centerline data was available for Ilang-Ilang with 3,307 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 2.09 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Ilang-Ilang integrated with the processed LiDAR DEM is shown in Figure 28.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 28. Map of Ilang-Ilang floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Ilang-Ilang floodplain, including its 200 m buffer, has a total area of 110.36 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 4,645 building features, are considered for QC. Figure 29 shows the QC blocks for Ilang-Ilang floodplain.

Figure 29. Block (in blue) of Ilang-Ilang building features that was subjected to QC.

Quality checking of Ilang-Ilang building features resulted in the ratings shown in Table 23.

Table 23. Details of the qualit	v checking rating	gs for the building features	extracted for the Ilang-Ilang River	Basin
	/			

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
llang-llang	99.57	98.62	90.10	PASSED

3.12.2 Height Extraction

Height extraction was done for 99,096 building features in Ilang-Ilang floodplain. Of these building features, none was filtered out after height extraction, resulting to 99,096 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 17.21 m.

3.12.3 Feature Attribution

The attributes were obtained by field data gathering. GPS devices were used to determine the coordinates of important features. These points are uploaded and overlaid in ArcMap and are then integrated with the shapefiles

Table 24 summarizes the number of building features per type, while Table 25 shows the total length of each road type. Table 26, on the other hand, shows the number of water features extracted per type.

Facility Type	No. of Features			
Residential	97,539			
School	614			
Market	99			
Agricultural/Agro-Industrial Facilities	0			
Medical Institutions	76			
Barangay Hall	98			
Military Institution	168			
Sports Center/Gymnasium/Covered Court	27			
Telecommunication Facilities	2			
Transport Terminal	1			
Warehouse	4			
Power Plant/Substation	0			
NGO/CSO Offices	0			
Police Station	2			
Water Supply/Sewerage	19			
Religious Institutions	106			
Bank	28			
Factory	31			
Gas Station	40			
Fire Station	1			
Other Government Offices	39			
Other Commercial Establishments	202			
Total	99,096			

Table 24. Building features extracted for Ilang-Ilang Floodplain.

Floodplain	Road Network Length (km)					Total
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	
Ilang-Ilang	148.77	117.70	64.45	2.07	0.00	332.99

Table 25. Total Length of Extracted Roads for Silaga Floodplain.

Table 26. Number of extracted water bodies for Silage Floodplain.

Floodplain	n Water Body Type				Total	
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	
Ilang-Ilang	8	0	4	0	87	99

A total of 137 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 30 shows the completed Digital Surface Model (DSM) of the Ilang-Ilang floodplain overlaid with its ground features.

Figure 30. Extracted features of the Ilang-Ilang Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE ILANG-ILANG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted its field survey from February 3 to 6, 2015 for Ilang-Ilang River with the following scope of work: reconnaissance; control survey for the establishment of a control point; cross-section, bridge as-built for Ilang-Ilang Bridge in Brgy. San Antonio I, Noveleta, Cavite; ground validation data acquisition; and bathymetric survey with an estimated length of 4.5 km using Ohmex[™] Single Beam Echo Sounder and GNSS PPK survey technique. The entire survey extent is illustrated in Figure 31.

Figure 31. Ilang-Ilang River Survey Extent

4.2 Control Survey

The GNSS network used for Ilang-Ilang River survey is composed of four (4) loops established on December 10, 2016, occupying the following reference points: SME-18, a 2nd order NAMRIA GCP in Brgy. Canciledes, Municipality of Hernani, Eastern Samar; SMR-41, a 2nd order NAMRIA GCP in Brgy. Fatima, Municipality of Hinabangan, Samar; and, SE-172, a 1st order BM in Brgy. Nato, Municipality of Taft, Eastern Samar.

Three (3) control points were established in the area: UP-BOR located at the approach of Can-Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar; UP-SUL located at the approach of Ilang-Ilang Bridge in Brgy. Maramara, Municipality of Ilang-Ilang, Eastern Samar; and UP-ULO-2 located at the approach of Can-Avid Bridge in Brgy. Canteros, Municipality of Can-Avid, Eastern Samar.

Table 27 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 32 shows the GNSS network established in the Ilang-Ilang River Survey.

Table 27. List of reference and control points used during the survey in Ilang-Ilang River (Source: NAMRIA, UP-TCAGP).

	Date Established		2-3-2015	2-3-2015
	Elevation in MSL (Meter)	52.0289	1	1
	Ellipsoidal Height (Meter)	98.2	-	1
s (WGS 84)	Longitude	121°03'34.94441"	1	1
Geographic Coordinate	Latitude	14°39'18.82950"	1	1
Order of Accuracy		2nd Order GCP	Used as Marker	Used as Marker
Control Point		MMA- 39	СVТ- 3236	PSC-54

Figure 32. Ilang-Ilang River Basin Control Survey Extent.

Figure 33 to Figure 35 depict the setup of the GNSS on recovered reference points and established control points in the Ilang-Ilang River.

Figure 33. Trimble® SPS 882 at MMA-39 in UP Diliman, Quezon City

Figure 34. Trimble® SPS 852 at CVT-3236 along Ilang Ilang brigde in Brgy. San Antonio I, Noveleta, Cavite

Figure 35. Trimble® SPS 852 at PSC-54 at the town plaza in Brgy. Bagumbayan, Gen. Trias, Cavite

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Balili River Basin is summarized in Table 27 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
PSC-54 MMA-39 (B3)	2-3-2015	Fixed	0.004	0.014	7°18'02"	3799.623	-5.661
MMA-39 CVT-3236	2-3-2015	Fixed	0.010	0.023	35°56'00"	32142.850	40.473
PSC-54 CVT- 3236 (B1)	2-3-2015	Fixed	0.006	0.019	32°59'40"	35524.538	34.865

Table 28. The Baseline processing report for the Ilang-Ilang River GNSS static observation survey.

As shown in Table 28, a total of three (3) baselines were used in the fieldwork. The first-order GCP MMA-39 was held fixed and used as a control for the network. All control points have a fixed solution type; PSC-54 to MMA-39 has a horizontal accuracy of 0.4 cm and a vertical accuracy of 1.4 cm. The baseline MMA-39 to CVT-3236 has horizontal and vertical accuracies of 1.0 cm and 2.3 cm, respectively. Lastly, PSC-54 to CVT-3236 has a 0.6 cm horizontal precision and 1.9 cm vertical precision; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

 $\sqrt{((x_e)^2+(y_e)^2)}$ <20cm and $z_e <$ 10 cm

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 29 to Table 31.

Table 29. Constraints applied to the adjustment of the control points.	

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
MMA-39	Global	Fixed	Fixed	Fixed	
Fixed = 0.00000	1(Meter)				

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 30.

Table 30 Adjuster	d grid coordinat	es for the contro	points used in the	Ilang Ilang	Piver flood	nlain curvey
Table 50. Aujustec	i griu coorumat	es for the contro	i points used in the.	mang-mang	g River noou	plain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
PSC-54	271413.914	0.011	1591468.733	0.014	19.507	0.049	
CVT-3236	271931.547	0.011	1595233.868	0.013	13.930	0.052	
MMA-39	291038.456	?	1621088.939	?	54.253	?	LLh

The results of the computation for accuracy are as follows:

a.	PSC-54		
	horizontal accuracy	=	$\sqrt{((1.1)^2 + (1.4)^2)}$
		=	√(1.21 + 1.96)
		=	1.78 cm < 20 cm
	vertical accuracy	=	4.9 cm < 10 cm
b.	CVT-3236		
	horizontal accuracy	=	$V((1.1)^2 + (1.3)^2)$
		=	√(1.21 + 1.69)
		=	1.70 cm < 20 cm
	vertical accuracy	=	5.2 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the three (3) occupied control points are within the required precision.

Table 31. Adjusted geodetic coordinates for control points used in the Ilang-Ilang River Flood Plain validation.

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
PSC-54	N14°23'09.63484"	E120°52'48.43692"	62.336	0.049	
CVT-3236	N14°25'12.26104"	E120°53'04.55579"	56.662	0.052	
MMA-39	N14°39'18.82950"	E121°03'34.94441"	98.200	?	LLh

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 31. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Ilang-Ilang River GNSS Static Survey are seen in Table 32.

 Table 32. The reference and control points utilized in the Ilang-Ilang River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control Order of Ge Point Accuracy Ge		Geographic Coordina	tes (WGS 84)	UTM ZONE 51 N			
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
MMA- 39	1st	14°39'18.82950"	121°03'34.94441"	98.2	1621088.939	291038.456	52.0289
CVT- 3236	Used as Marker	14°25'12.26104"	120°53'04.55579"	56.662	1595233.868	271931.547	11.7059
PSC-54	Used as Marker	14°23'09.63484"	120°52'48.43692"	62.336	1591468.733	271413.914	17.2829

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built surveys were conducted on February 4, 2015, along the downstream side of Ilang Ilang Bridge in Brgy. San Antonio I, Noveleta, Cavite using Trimble® SPS 882 in GNSS PPK survey technique as shown in Figure 36.

Figure 36. Cross-section survey in Ilang-Ilang Bridge in Brgy. San Antonio, Noveleta, Cavite.

The location map, cross-section diagram and the accomplished bridge data form are shown in Figure 37, 38, and 39.

Figure 37. Location map of the Ilang-Ilang Bridge Cross Section

			Bridge D	ata For	m			
Bridge Nan	ne: ILA	NG ILANG Bridge				Date: Fe	bruary 3, 2	2015
River Name	e: Ilang	llang River				Time: 2:	30 PM	
Location (B	Brgy, Ci	ty,Region): Bgy. San Antor	nio II, Novele	eta, Cav	vite			
Survey Tea	m: Ma	rk Lester D. Rojas, Melcho	r Rey Nery,	Dona R	ina Patricia	Tajora, Ed	jie Abalos	
Flow condi	tion:	low ✓ normal	high		Weath	er Conditi	ion: 🗸	fair rain
Latitude: 1	14°25′1	3.99275" N Longitu	de: 120°53′	5.35549	" E			
BAT	-	0	0	4DA2				
BA1			\bigcirc	BAS	BA4	Legend: BA = Bridge /	Approach P	Pier LC = Low Ch
						Ab = Abutme	ent D	Deck HC = High C
	Ab1		~	Ab2				
		P		н				
		Deck (Please start your m	assurament fro	m the left	side of the back	facing unstre	aml	
Elevation: 5	.365.	Width: 8.0	0 m.	Span	(BA3-BA2): 5	1 m.	any	10
		Station		Hig	h Chord Eleva	tion	Low Ch	ord Elevation
1		216.42			11.709			
2								
3								
4								
5								
		Bridge Approach (Please	start your measurer	ment from th	e left side of the bar	k facing upstrea	m)	
	Stati	on(Distance from BA1)	Elevation		Station(Di	istance fr	om BA1)	Elevation
BA1		0	6.4099	099 BA3 238.237 029 BA4 346.826		238.237		5.566
BA2		161.4708542	11.7029				9.369	
Abutment:	ls ti	ne abutment sloping?	Yes ✓No	; If yes	, fill in the fol	lowing info	ormation:	
		Station (Di	stance fror	n BA1)			Elevatio	n
A	b1							
A	b2							
		Pier (Please start your me	asurement from	n the left :	side of the bank	facing upstre	am)	
		Shape: Cylindrical N	lumber of Pie	rs: 1	Height of co	olumn footi	ing: N/A	
		Station (Distance from	n BA1)	l	Elevation		Pier	Width
Pier 1		216.426			11.709		1.8	3 m.
Dior 2								
Dice 2								
Pier 3								
Pier 3 Pier 4 Pier 5								
Pier 3 Pier 4 Pier 5 Pier 6								

Figure 39. The Ilang-Ilang Bridge as-built survey data.

Bridge marking was done in Ilang-Ilang Bridge, San Antonio, Noveleta, Cavite using GNSS point observation and differential levelling. The elevation in MSL of a point on the ground was determined using GPS PPK survey technique. The elevation obtained on the ground was used as a reference to determine the elevation of the bridge markings on the pier of the bridge using a Topcon DL 500 digital level. The pier has an existing bridge marking which was not referred from MSL.Image of the setup for the water bridge marking using GNSS and Digital level is shown in Figure 40.

Figure 40. GNSS Observation and Digital level setup at the bank of Ilang-Ilang River.

Topcon DL 500 was used for differential levelling and Trimble[®] SPS 882 was used to get the reference elevation. The existing bridge marking on the pier of the bridge is shown in Figure 41.

Figure 41. Existing bridge marking and the corresponding MSL elevation.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on February 3, 2014 using a survey GNSS rover receiver Trimble[®] SPS 882 mounted on a pole, which was attached in front of the vehicle as shown in Figure 42. It was secured with a steel rod and tied with cable ties to ensure that it was horizontally and vertically balanced. The antenna height of 2.10 m was measured from the ground up to the bottom of notch of the GNSS rover receiver.

Figure 42. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey.

The survey covered municipalities of Bacoor, Imus, Dasmariñas, General Trias, Trece Martires, Tanza and Naic, in the province of Cavite for the entire extent validation points acquisition survey as illustrated in the map in Figure 43.

Figure 43. The extent of the LiDAR ground validation survey (in red) for Ilang-Ilang River Basin.

4.7 River Bathymetric Survey

A bathymetric survey was performed on February 5, 2015 using an Ohmex[™] Single Beam Echo Sounder and Trimble[®] SPS 882 in GNSS PPK survey technique as shown in Figure 44. The survey started in Brgy. San Antonio I, Municipality of General Trias with coordinates 14°25'28.49052" 120°53'02.70645", down to the mouth of the river in Brgy. 3 Cavite City with coordinates 14°27'22.56516" 120°53'08.62131".

Figure 44. Set up of the bathymetric survey at Ilang-Ilang River using Trimble® SPS 882 in GNSS PPK survey technique.

A manual bathymetric survey was executed on February 4, 2015 using Trimble[®] SPS 882 in GNSS PPK survey technique. The survey only covered shallow parts in the upstream in Brgy. San Antonio I with coordinates 14°25'13.36354" 120°53'04.71909", traversed down by foot and ended at the starting point of bathymetric survey using boat.

Overall, the bathymetric survey for the Ilang-Ilang River gathered a total of 3,236 points, covering 4.5 km of the river, using the base station at CVT-3236 (Figure 45). To further illustrate this, a CAD drawing of the riverbed profile of the Silaga River was produced. The change of elevation is gradual from Brgy. San Antonio, Noveleta, Cavite down to in Brgy. Sta. Isabel, Kawit, Cavite as illustrated in Figure 46. The highest elevation observed was 0.72 m in MSL, located at the Brgy. San Antonio I, while the lowest elevation was -5.20 m below MSL, located at the Brgy. San Jose, Noveleta, Cavite.

Figure 45. The extent of the Ilang-Ilang River Bathymetry Survey.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Ilang-Ilang River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from automatic rain gauges (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The ARG was installed at GMA, Cavite as illustrated in in Figure 47.

The total precipitation from this event in GMA rain gauge was 17.2 mm with a peak rainfall rate of 4.2 mm on August 12, 2016 at 11:30 AM. The lag time between the peak rainfall and discharge is 3 hours and 15 minutes.

Figure 47. Location Map of the Ilang-Ilang HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Ilang Ilang Bridge, Noveleta, Cavite (14°25'13.20"N, 120°53'5.54"E) to establish the relationship between the observed water levels (H) at Ilang-Ilang Bridge and outflow (Q) of the watershed at this location.

Figure 48. Cross-Section Plot of Ilang-Ilang Bridge.

For Ilang-Ilang Bridge, the rating curve is expressed as y = 0.2466e2.8775x as shown in Figure 49.

Figure 49. The rating curve at Ilang-Ilang Bridge, Noveleta, Cavite.

This rating curve equation was used to compute the river outflow at Ilang-Ilang Bridge for the calibration of the HEC-HMS model for Ilang-Ilang shown in Figure 50. The peak discharge is 15.4 m3/s at 15:20, August 12, 2016.

Figure 50. Rainfall and outflow data at Ilang-Ilang Bridge, which was used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Sangley Point Gauge (Table 33). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 52). This station was selected based on its proximity to the Ilang-Ilang watershed. The extreme values for this watershed were computed based on a 54-year record.

Table 33. RIDF values for the Ilang-Ilang River Basin based on average RIDF data of Sangley station, as computed by PAGASA.

COMPUT	ED EXTRE	ME VALUE	S (in mm)	OF PRECIP	ITATION				
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	20.3	30	36.6	46.4	63.2	74.6	96.6	119.6	147.9
5	28.3	41.8	50.8	64.6	89.8	106.8	140.3	174	209.4
10	33.6	49.7	60.2	76.7	107.3	128.2	169.2	210	250.1
15	36.6	54.1	65.5	83.5	117.2	140.3	185.6	230.3	273.1
20	38.7	57.2	69.2	88.3	124.2	148.7	197	244.6	289.1
25	40.3	59.6	72.1	91.9	129.5	155.2	205.8	255.5	301.5
50	45.3	66.9	80.9	103.3	146	175.2	233	289.3	339.7
100	50.3	74.2	89.7	114.5	162.3	195.1	259.9	322.8	377.6

Figure 51. The location of the Sangley Point RIDF station relative to the Ilang-Ilang River Basin.

Figure 52. The synthetic storm generated for a 24-hour period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils under the Department of Environment and Natural Resources Management (DENR). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Ilang Ilang River Basin are shown in Figure 53 and Figure 54, respectively.

Figure 53. Soil Map of Ilang-Ilang River Basin.

Figure 54. Land Cover Map of Ilang-Ilang River Basin.

For Ilang-Ilang, the soil classes were identified. These are clay, loam, clay loam, clay, and silt loam. Moreover, the land cover classes were identified. These are built-up, cultivated area and tree plantations

Figure 55. Slope Map of the Ilang-Ilang River Basin.

Figure 56. Stream Delineation Map of Ilang-Ilang River Basin

Using the SAR-based DEM, the Ilang Ilang basin was delineated and further subdivided into subbasins. The model consists of 45 sub basins, 22 reaches, and 22 junctions, as shown in Figure 57 (See Annex 10). The main outlet is outlet 2.

Figure 57. Ilang-Ilang river basin model generated in HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 58).

Figure 58. River cross-section of the Ilang-Ilang River through the ArcMap HEC GeoRas tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 59. Generated 100-year Rain Return Hazard Map from FLO-2D Mapper

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 57.88306 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

Figure 60. Generated 100-year Rain Return Hazard Map from FLO-2D Mapper

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 66 116 800.00 m2.

Figure 61. Generated 100-year Rain Return Flow Depth Map from FLO-2D Mapper

There is a total of 61 682 079.01 m3 of water entering the model. Of this amount, 25 353 505.42 m3 is due to rainfall while 36 328 573.59 m3 is inflow from other areas outside the model. 11 748 913.00 m3 of this water is lost to infiltration and interception, while 14 846 850.67 m3 is stored by the flood plain. The rest, amounting up to 35 086 314.17 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Ilang-Ilang HEC-HMS river basin model (See Annex 9), its accuracy was measured against the observed values. Figure 61 shows the comparison between the two discharge data.

Figure 62. Outflow Hydrograph of Ilang-Ilang produced by the HEC-HMS model compared with observed outflow.

Table 34 shows the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	0.22 - 9.80
			Curve Number	46.69 - 99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.21 - 8.75
			Storage Coefficient (hr)	0.21 - 11.22
	Baseflow	Recession	Recession Constant	0.33 – 0.75
			Ratio to Peak	0.015 - 0.075
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.0015 - 0.88

T 11 24 D	f 1:1 4 1	- 1 f	т1 т1	D' D '
Lanie 34 Rande	of calibrated	values for	Hang-Hang	RIVER RASIN
Tuble J I. Runge	or cumprated	value0 101	mang mang	ICIVEI DUOIII
()			() ()	

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.22mm to 9.80mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of curve numbers for the watershed's subbasins are from 46.69 to 99. For Ilang Ilang, the basin mostly consists built-up, cultivated area and tree plantations and soil consists of clay, loam, clay loam, clay, and silt loam.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.21 hours to 11.22 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Subbasin values for recession constant range from 0.33 to 0.75 while ratio to peak ranges from 0.015 to 0.075. These values contribute to a shallower receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.0015 to 0.88 corresponds to the common roughness in the Ilang-Ilang watershed, which describes the varied combinations of soil and land cover in the basin.

Accuracy measure	Value
RMSE	1.3
r2	0.9443
NSE	0.92
PBIAS	-8.84
RSR	0.28

Table 35. Summary of the Efficiency Test of the Ilang-Ilang HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 1.3 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9443.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.92.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -8.84.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.28.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 63) shows the Ilang Ilang outflow using the Sangley Point Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 63. The Outflow hydrograph at Ilang Ilang generated using Sangley PointRIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Ilang Ilang River discharge using the Sangley Point Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 36.

Table 36. The peak values of the Ilang-Ilang HEC-HMS Model outflow using the Sangley RIDF.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	174.0	28.3	449.5	15 hours, 20 minutes
10-Year	210.0	33.6	573.7	15 hours, 10 minutes
25-Year	255.5	40.3	719.3	15 hours, 10 minutes
50-Year	289.3	45.3	823.0	15 hours
100-Year	322.8	50.3	926.2	15 hours

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the Flood Acquisition and Validation Component (MIT-FAVC) base flow was calibrated. Figure 63 shows a generated sample map of the Ilang-Ilang River using the calibrated HMS base flow.

Figure 64. Sample output map of the Ilnag-ilang RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 65 to Figure 70 shows the 5-, 25-, and 100-year rain return scenarios of the Ilang-Ilang floodplain. shows the percentage of area affected by flooding per municipality.

Municipality/ City	Total Area (sq.km.)	Area Flooded (sq. km.)	% Flooded
Cavite City	11.88	5.95	50%
Kawit	15.97	7.10	44%
Imus	50.40	22.24	44%
Noveleta	5.16	2.64	51%
General Trias	87.50	11.01	13%

Table 37. Municipalities affected in Ilang-Ilang floodplain.

Figure 69. A 5-year Flood Hazard Map for Ilang-Ilang Floodplain overlaid on Google Earth imagery.

5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Ilang Ilang River Basin, grouped accordingly by municipality. For the said basin, five (5) municipalities consisting of 171 barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 40.45% of the municipality of Cavite City with an area of 11.88 sq. km. will experience flood levels of less than 0.20 meters. 9.25% of the area will experience flood levels of 0.21 to 0.50 meters while 0.36%, 0.04%, 0.00%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 38 are the affected areas in square kilometers by flood depth per barangay. Annex 12 and Annex 13 show the educational and health institutions exposed to flooding, respectively.

Table 38. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period

Affected Area (sq. km.) by			A	rea of affe	cted baran	gays in Ca	vite City (ii	ר sq. km.)			
11000 depth (m.)	Barangay 1	Barangay 10	Barangay 10-A	Barangay 10-B	Barangay 11	Barangay 12	Barangay 13	Barangay 14	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.023	0.06	0.022	0.038	0.055	0.017	0.042	0.038	0.028	0.077	0.019
0.21-0.50	0.0054	0.013	0.0016	0.0018	0.0027	0.0077	0.0021	0.0031	0.0076	0.02	0.014
0.51-1.00	0.000017	0.001	0	0	0.000012	0	0	0	0	0	0
1.01-2.00	0	0	0	0	0.000003	0	0.000002	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0
Affected Area (sq. km.) by			A	rea of affe	cted baran	gays in Ca	vite City (ii	ו sq. km.)			
flood depth (m.)	Barangay 18	Barangay 19	Barangay 2	Barangay 20	Barangay 22	Barangay 22-A	Barangay 23	Barangay 24	Barangay 25	Barangay 26	Barangay 27
0.03-0.20	0.023	0.06	0.022	0.038	0.055	0.017	0.042	0.038	0.028	0.077	0.019
0.21-0.50	0.0054	0.013	0.0016	0.0018	0.0027	0.0077	0.0021	0.0031	0.0076	0.02	0.014
0.51-1.00	0.000017	0.001	0	0	0.000012	0	0	0	0	0	0
1.01-2.00	0	0	0	0	0.000003	0	0.000002	0	0	0	0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

2.01-5.00 > 5.00

Affected Area (sq. km.) by flood				Area of afi	fected barar	ıgays in Cav	ite City (in :	sq. km.)			
depth (m.)	Barangay 28	Barangay 29	Barangay 29-A	Barangay 3	Barangay 30	Barangay 31	Barangay 32	Barangay 33	Barangay 34	Barangay 35	Barangay 36
0.03-0.20	0.023	0.06	0.022	0.038	0.055	0.017	0.042	0.038	0.028	0.077	0.019
0.21-0.50	0.0054	0.013	0.0016	0.0018	0.0027	0.0077	0.0021	0.0031	0.0076	0.02	0.014
0.51-1.00	0.000017	0.001	0	0	0.000012	0	0	0	0	0	0
1.01-2.00	0	0	0	0	0.000003	0	0.000002	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0
Affected Area (sq. km.) by flood			A	vrea of affe	cted baran	gays in Cav	/ite City (ii	ר sq. km.)			
depth (m.)	Barangay 36-A	Barangay 37	Barangay 37-A	Barangay 38	Barangay 38-A	Barangay 39	Barangay 4	Barangay 40	Barangay 41	Barangay 42	Barangay 42-A
0.03-0.20	0.023	0.06	0.022	0.038	0.055	0.017	0.042	0.038	0.028	0.077	0.019
0.21-0.50	0.0054	0.013	0.0016	0.0018	0.0027	0.0077	0.0021	0.0031	0.0076	0.02	0.014
0.51-1.00	0.000017	0.001	0	0	0.000012	0	0	0	0	0	0
1.01-2.00	0	0	0	0	0.000003	0	0.000002	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

> 5.00

Affected Area (sa. km.) bv flood			٩	rrea of affe	cted baran	gays in Cav	/ite City (ir	ר sq. km.)			
depth (m.)	Barangay 42-B	Barangay 42-C	Barangay 43	Barangay 44	Barangay 45	Barangay 45-A	Barangay 46	Barangay 47	Barangay 47-A	Barangay 47-B	Barangay 48
0.03-0.20	0.023	0.06	0.022	0.038	0.055	0.017	0.042	0.038	0.028	0.077	0.019
0.21-0.50	0.0054	0.013	0.0016	0.0018	0.0027	0.0077	0.0021	0.0031	0.0076	0.02	0.014
0.51-1.00	0.000017	0.001	0	0	0.000012	0	0	0	0	0	0
1.01-2.00	0	0	0	0	0.000003	0	0.000002	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0
Affected Area (sq. km.) by flood			A	rrea of affe	cted baran	gays in Cav	/ite City (ir	ר sq. km.)			
depth (m.)	Barangay 48-A	Barangay 49	Barangay 49-A	Barangay 5	Barangay 50	Barangay 51	Barangay 52	Barangay 53	Barangay 53-A	Barangay 53-B	Barangay 54
0.03-0.20	0.038	0.037	0.037	0.012	0.036	0.04	0.036	1.35	0.019	0.015	0.043
0.21-0.50	0.0093	0.0029	0.00019	0.00065	0	0	0	0.2	0	0	0.0087

0.0022

0.51-1.00

1.01-2.00

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

2.01-5.00

> 5.00

Affected Area (sq. km.) by			A	rea of affe	cted baran	ıgays in Cav	vite City (ir	(.ms .ps ר			
1000 deptn (m.)	Barangay 54-A	Barangay 55	Barangay 56	Barangay 57	Barangay 58	Barangay 58-A	Barangay 59	Barangay 6	Barangay 60	Barangay 61	Barangay 61-A
0.03-0.20	0.013	0.044	0.045	0.011	0.007	0.012	0.045	0.081	0.028	0.023	0.02
0.21-0.50	0.0077	0.022	9600.0	0.0045	0.0075	0.005	0.0043	0.027	0.007	0.008	0.0021
0.51-1.00	0	0	0	0.00075	0.0008	0.0029	0	0.00048	0.000044	0	0
1.01-2.00	0	0	0	0	0	0.0011	0	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by	A	rea of affect	ted barangay	/s in Cavite C	ity (in sq. kn	u.)
11000 deptn (m.)	Barangay 62	Barangay 62-A	Barangay 62-B	Barangay 7	Barangay 8	Barangay 9
0.03-0.20	0.2	0.059	0.23	0.011	0.23	0.025
0.21-0.50	0.033	0.02	0.015	0.005	0.038	0.019
0.51-1.00	0.00044	0.0002	0	0	0.0046	0.0013
1.01-2.00	0	0	0	0	0.0022	0
2.01-5.00	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0

Figure 71. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period.

Figure 72. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period.

Figure 73. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period.

Figure 74. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period.

Figure 75. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period.

Figure 76. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period.

Figure 77. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period.

Figure 78. Affected areas in Cavite City, Cavite during a 5-Year Rainfall Return Period.

For the 5-year return period, 12.52% of the municipality of Kawit with an area of 15.97 sq. km. will experience flood levels of less than 0.20 meters. 9.33% of the area will experience flood levels of 0.21 to 0.50 meters while 12.31%, 7.91%, 2.36%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 39 are the affected areas in square kilometers by flood depth per barangay.

ng a 5-Year Rainfall Return Period.	
in Kawit, Cavite d	
e 39. Affected areas i	
Tab]	

Affected Area (sq. km.) by flood				Area of	f affected b	arangays i	n Kawit (in s	q. km.)			
depth (m.)	Balsahan- Bisita	Batong Dalig	Gahak	Kaingen	Magdalo	Marulas	Panamitan	Poblacion	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.02	0.21	0.0086	0.033	0.088	0.14	0.12	0.043	0.028	0.077	0.019
0.21-0.50	0.0018	0.069	0.065	0.049	0.059	0.15	0.13	0.056	0.0076	0.02	0.014
0.51-1.00	0.0038	0.086	0.097	0.2	0.049	0.3	0.18	0.14	0	0	0
1.01-2.00	0.016	0.16	0.045	0.034	0.0097	0.14	0.12	0.11	0	0	0
2.01-5.00	0.016	0.025	0.046	0.0034	0.00056	0.046	0.057	0.058	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by flood				Area of a	ffected bar	angays in k	(awit (in s	q. km.)			
depth (m.)	San Sebastian	Santa Isabel	Tabon l	Tabon II	Tabon III	Toclong	Tramo- Bantayan	Wakas I	Wakas II	Barangay 26	Barangay 27
0.03-0.20	0.13	0.81	0.022	0.029	0.0039	0.21	0.02	0.097	0.015	0.077	0.019
0.21-0.50	0.13	0.42	0.039	0.033	0.013	0.17	0.012	0.064	0.029	0.02	0.014
0.51-1.00	0.11	0.18	0.2	0.043	0.039	0.17	0.018	0.073	0.077	0	0
1.01-2.00	0.14	0.072	0.082	0.016	0.0053	0.13	0.036	0.038	0.11	0	0
2.01-5.00	0.0005	0.0029	0.0088	0.026	0.0016	0.079	0.0012	0.0016	0.0037	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Figure 79. Affected areas in Kawit, Cavite during a 5-Year Rainfall Return Period.

Figure 80. Affected areas in Kawit, Cavite during a 5-Year Rainfall Return Period.

For the 5-year return period, 22.29% of the municipality of Imus with an area of 50.4 sq. km. will experience flood levels of less than 0.20 meters. 10.36% of the area will experience flood levels of 0.21 to 0.50 meters while 8.61%, 2.50%, 0.24%, and 0.14% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 40 are the affected areas in square kilometers by flood depth per barangay.

Table 40. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period.

Affected Area (sq. km.) by				Area	of affecteo	l barangays	in Imus (in s	q. km.)			
11000 deptn (m.)	Alapan I-A	Alapan I-B	Alapan I-C	Alapan II-A	Alapan II-B	Anabu II-F	Bucandala I	Bucandala II	Bucandala III	Bucandala IV	Barangay 17
0.03-0.20	0.68	0.43	0.85	0.76	0.31	0.023	0.077	0.24	0.53	1.3	0.019
0.21-0.50	0.46	0.37	0.5	0.69	0.3	0.001	0.012	0.088	0.13	0.35	0.014
0.51-1.00	0.48	0.38	0.45	0.63	0.074	0	0.001	0.017	0.016	0.46	0
1.01-2.00	0.029	0.091	0.13	0.047	0.029	0	0	0	0.0038	0.11	0
2.01-5.00	0.042	0.05	0	0	0.0007	0	0	0	0.0002	0.0015	0
> 5.00	0.038	0.013	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by				Are	ea of affected k	oarangays in l	mus (in sq. kn	(·r			
11000 deptn (m.)	Bucandala V	Carsadang Bago I	Carsadang Bago II	Malagasang I-A	Malagasang I-B	Malagasang I-C	Malagasang I-D	Malagasang I-E	Malagasang I-F	Medicion I-A	Barangay 27
0.03-0.20	1.16	1.13	0.66	0.0098	0.12	0.56	0.23	0.26	0.039	0.038	0.019
0.21-0.50	0.32	0.24	0.18	0.038	0.02	0.098	0.047	0.029	0.0028	0.02	0.014
0.51-1.00	0.4	0.095	0.023	0.053	0.091	0.079	0.014	0	0	0.0026	0
1.01-2.00	0.023	0.036	0.0031	0.023	0.0021	0.021	0.0034	0	0	0.000093	0
2.01-5.00	0	0	0	0.019	0.0014	0	0	0	0	0	0
> 5.00	0	0	0	0.018	0.0012	0	0	0	0	0	0

Affected Area (sq. km.) by				Area of a	ffected bar	angays in	lmus (in so	ł. km.)			
11000 аерти (m.)	Medicion I-B	Medicion I-C	Medicion I-D	Medicion II-A	Medicion II-B	Medicion II-C	Medicion II-D	Medicion II-E	Medicion II-F	Pag-Asa I	Barangay 17
0.03-0.20	0.058	0.046	0.041	0.027	0.032	0.063	0.059	0.052	0.11	0.12	0.019
0.21-0.50	0.016	0.012	0.032	0.037	0.059	0.038	0.026	0.022	0.023	0.27	0.014
0.51-1.00	0.004	0.000024	0.015	0.021	0.02	0.009	0.018	0.007	0.00091	0.55	0
1.01-2.00	0.0019	0	0.00021	0.027	0.0058	0	0.0049	0	0	0.46	0
2.01-5.00	0	0	0	0.0016	0	0	0	0	0	0.0066	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by				Area of a	uffected bar	rangays in	lmus (in so	q. km.)			
11000 deptn (m.)	Pag-Asa II	Pag-Asa III	Poblacion III-A	Poblacoin III-B	Poblacion IV-A	Toclong I-A	Toclong I-B	Toclong I-C	Toclong II-A	Toclong II-B	Barangay 17
0.03-0.20	0.43	0.37	0.023	0	0.02	0.042	0.0092	0.0043	0.13	0.19	0.019
0.21-0.50	0.37	0.29	0.0079	0	760000.0	0.011	0.00021	0	0.05	0.06	0.014
0.51-1.00	0.15	0.2	0.0002	0	0	0.00061	0	0	0.033	0.043	0
1.01-2.00	0.11	0.093	0	0	0	0	0	0	0.0008	0.0054	0
2.01-5.00	0.0002	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Figure 81. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period.

Figure 82. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period.

Figure 83. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period.

Figure 84. Affected areas in Imus, Cavite during a 5-Year Rainfall Return Period.

For the 5-year return period, 29.20% of the municipality of Noveleta with an area of 5.16 sq. km. will experience flood levels of less than 0.20 meters. 8.63% of the area will experience flood levels of 0.21 to 0.50 meters while 7.22%, 5.32%, 0.83%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 41 are the affected areas in square kilometers by flood depth per barangay.

Table 41. Affected areas in Noveleta, Cavite during a 5-Year Rainfall Return Period.

Affected Area			A	rea of affe	cted barange	ıys in Novel	eta (in sq. km	(-		
(sq. km.) by flood depth (m.)	Magdiwang	San Antonio I	San Antonio II	San Jose I	San Jose II	San Juan I	San Juan II	San Rafael II	San Rafael IV	Santa Rosa II
0.03-0.20	0.022	0.33	0.12	0.088	0.032	0.44	0.042	0.32	0.11	0.0029
0.21-0.50	0.00039	0.059	0.085	0.0066	0.0018	0.16	0.011	0.083	0.038	0.00042
0.51-1.00	0.00012	0.06	0.13	0.0035	0.0021	0.096	0.0005	0.067	0.013	0.0004
1.01-2.00	0.00071	0.075	0.18	0.0057	0.0053	0.0041	0.00091	0.0017	0.0003	0.00087
2.01-5.00	0.00076	0.02	0.0048	0.0074	0.0047	0.002	0.002	0	0	0.0012
> 5.00	0	0	0	0	0	0	0	0	0	0

Figure 85. Affected Areas in Noveleta, Cavite during a 5-Year Rainfall Return Period.

For the 5-year return period, 6.43% of the municipality of General Trias with an area of 87.5 sq. km. will experience flood levels of less than 0.20 meters. 2.95% of the area will experience flood levels of 0.21 to 0.50 meters while 2.17%, 0.73%, 0.23%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 42 are the affected areas in square kilometers by flood depth per barangay.

Table 42. Affected areas in General Trias, Cavite during a 5-Year Rainfall Return Period.

A Area lepth).) by lepth).20).20).20).20).20).20).20).20	Arnaldo Poblacion 0.043 0.011 0.0013 0.0013	Bacao I 0.41 0.34 0.34 0.11 0.033	Bacao II 0.21 0.29 0.25 0.12 0.034	Bagumbayan Poblacion 0.034 0.005 0 0 0	Area of affect Dulong Bayan Poblacion 0.028 0.0042 0.0019 0.0032	ted barangays Gov. Ferrer Poblacion 0.0013 0 0 0	in Genera Navarro 2.19 1.01 0.82 0.2 0.039	I Trias (in sq Pasong Camachile 0.55 0.28 0.15 0.037	 . km.) Pasong Pasong Camachile II 0.13 0.019 0.0032 0.0049 0 	Pinagtipunan 0.072 0.048 0.047 0.011 0.0078	Prinza Poblacion 0.032 0.015 0.00062 0 0	Sampalucan Poblacion 0.014 0.035 0 0 0
	0 0014	0 0063	0,000	C	0 00 1	C	0 0 1		C	0 0026	C	C

110

Affected Area (sq. km.) by	Area of affecte Tria	ed barangay s (in sq. km	s in General .)
11000 depth (m.)	San Gabriel Poblacion	Santa Clara	Vibora Poblacion
0.03-0.20	0.026	0.17	0.033
0.21-0.50	0.024	0.23	0.01
0.51-1.00	0.0061	0.14	0.0078
1.01-2.00	0	0.039	0.002
2.01-5.00	0	0.043	0.00068
> 5.00	0	0.02	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 86. Affected Areas in General Trias, Cavite during a 5-Year Rainfall Return Period.

Figure 87. Affected Areas in General Trias, Cavite during a 5-Year Rainfall Return Period.

For the 25-year return period, 4.80% of the municipality of Cavite City with an area of 627.97 sq. km. will experience flood levels of less 0.20 meters. 0.16% of the area will experience flood levels of 0.21 to 0.50 meters while 0.15%, 0.21%, 0.14%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometres by flood depth per barangay.

Table 38. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period

Affected Area (sq. km.) by			٩	rrea of affe	cted baran	gays in Cav	/ite City (ir	ı sq. km.)			
11000 aeptn (m.)	Barangay 1	Barangay 10	Barangay 10-A	Barangay 10-B	Barangay 11	Barangay 12	Barangay 13	Barangay 14	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.018	0.053	0.019	0.035	0.051	0.014	0.039	0.033	0.022	0.068	0.011
0.21-0.50	0.01	0.019	0.0041	0.0053	0.0059	0.011	0.0053	0.0088	0.013	0.03	0.022
0.51-1.00	0.00022	0.0021	0.0002	0	0.000068	0	0.000041	0	0.0004	0	0.000058
1.01-2.00	0	0	0	0	0.000015	0	0.000002	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0
Affected Area (sq. km.) by			٩	rea of affe	cted baran	gays in Cav	rite City (in	ı sq. km.)			
flood denth											

Affected Area (sq. km.) by			A	rea of affe	cted baran	gays in Ca	vite City (ir	ı sq. km.)			
11000 deptn (m.)	Barangay 18	Barangay 19	Barangay 2	Barangay 20	Barangay 22	Barangay 22-A	Barangay 23	Barangay 24	Barangay 25	Barangay 26	Barangay 27
0.03-0.20	0.0074	0.025	0.014	0.0061	0.05	0.028	0.016	0.0063	0.0093	0.034	0.031
0.21-0.50	0.02	0.042	0.0059	0.023	0.015	0.01	0.019	0.0092	0.0061	0.015	0.025
0.51-1.00	0.0016	0.00094	0	0.002	0	0	0.00073	0.001	0	0.007	0.0028
1.01-2.00	0	0	0	0	0	0	0	0	0	0	0.0001
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by			٩	rrea of affe	cted baran	gays in Cav	/ite City (ir	ı sq. km.)			
11000 deptn (m.)	Barangay 28	Barangay 29	Barangay 29-A	Barangay 3	Barangay 30	Barangay 31	Barangay 32	Barangay 33	Barangay 34	Barangay 35	Barangay 36
0.03-0.20	0.0069	0.015	0.011	0.4	0.036	0.019	0.025	0.021	0.016	0.0078	0.031
0.21-0.50	0.017	0.0043	0.0088	0.12	0.0053	0.0076	0.016	0.023	0.0077	0.014	0.0029
0.51-1.00	0.00066	0	0	0.12	0	0	0.000037	0.00046	0.0002	0	0
1.01-2.00	0	0	0	0.0034	0	0	0	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0
Affected Area (sq. km.) by			A	vrea of affe	ected baran	ıgays in Ca	vite City (ii	n sq. km.)			
11000 deptn (m.)	Barangay 36-A	Barangay 37	Barangay 37-A	Barangay 38	Barangay 38-A	Barangay 39	Barangay 4	Barangay 40	Barangay 41	Barangay 42	Barangay 42-A
0.03-0.20	0.0059	0.01	0.013	0.025	0.0094	0.019	0.012	0.0089	0.06	0.023	0.0083

_	_	_	-	-	_	-	_	-	-	-	-
Affected Area (sq. km.) by			A	rea of affe	cted baran	gays in Cav	/ite City (i	(.ma, .ps r			
11000 deptn (m.)	Barangay 36-A	Barangay 37	Barangay 37-A	Barangay 38	Barangay 38-A	Barangay 39	Barangay 4	Barangay 40	Barangay 41	Barangay 42	Barangay 42-A
0.03-0.20	0.0059	0.01	0.013	0.025	0.0094	0.019	0.012	0.0089	0.06	0.023	0.0083
0.21-0.50	0.0041	0.011	0.015	0.014	0.024	0.026	0.0034	0.012	0.074	0.014	0.005
0.51-1.00	0	0.0001	0	0	0	0.00021	0	0.0003	0.0026	0	0.0041
1.01-2.00	0	0	0	0	0	0	0	0	0	0	0.0003
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by			٩	rrea of affe	cted baran	gays in Cav	/ite City (ir	ו sq. km.)			
riood deptn (m.)	Barangay 42-B	Barangay 42-C	Barangay 43	Barangay 44	Barangay 45	Barangay 45-A	Barangay 46	Barangay 47	Barangay 47-A	Barangay 47-B	Barangay 48
0.03-0.20	0.018	0.011	0.0035	0.02	0.0081	0.019	0.051	0.016	0.023	0.019	0.045
0.21-0.50	0.003	0.032	0.061	0.039	0.015	0.021	0.012	0.01	0.011	0.011	0.0036
0.51-1.00	0	0	0	0	0	0	0	0	0	0	0
1.01-2.00	0	0	0	0	0	0	0	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0
Affected Area (sq. km.) by			A	rrea of affe	cted baran	gays in Cav	vite City (ii	ר sq. km.)			
пооа аерси (m.)	Barangay 48-A	Barangay 49	Barangay 49-A	Barangay 5	Barangay 50	Barangay 51	Barangay 52	Barangay 53	Barangay 53-A	Barangay 53-B	Barangay 54
0.03-0.20	0.033	0.036	0.036	0.011	0.03	0.04	0.022	1.26	0.019	0.0051	0.037
0.21-0.50	0.014	0.0044	0.0012	0.0011	0.0054	0	0.013	0.28	0	0.0097	0.014
0.51-1.00	0.0002	0	0	0	0	0	0	0.014	0	0	0
1.01-2.00	0	0	0	0	0	0	0	0	0	0	0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

2.01-5.00

> 5.00

Barangay 61-A 0.0066 0.016 0 0 0 0 Barangay 61 0.0091 0.0004 0.022 0 0 0 Barangay Barangay Barangay Barangay 53-A 59 6 60 0.000076 0.015 0.02 0 0 0 Area of affected barangays in Cavite City (in sq. km.) 0.0013 0.069 0.04 0 0 0 0.038 0.011 0 0 0 0 0.0019 0.0024 0.004 0.012 0 0 Barangay Barangay 57 58 0.0012 0.0027 0.011 0 0 0 0.0065 0.0016 0.008 0 0 0 Barangay 56 0.032 0.022 0 0 0 0 Barangay 55 0.035 0.03 0 0 0 0 Barangay 54-A 0.009 0.011 0 0 0 0 Affected Area (sq. km.) by flood depth 0.03-0.20 0.51-1.00 2.01-5.00 0.21-0.50 1.01-2.00 > 5.00 (<u></u>...

Affected Area (sq. km.) by	Area	of affected	barangays ir	n Cavite Cit	ty (in sq. k	Ū
tiood depth (m.)	Barangay 62	Barangay 62-A	Barangay 62-B	Barangay 7	Barangay 8	Barangay 9
0.03-0.20	0.18	0.05	0.22	0.0082	0.22	0.014
0.21-0.50	0.051	0.028	0.026	0.0083	0.043	0.028
0.51-1.00	0.0016	0.002	0	0	0.0085	0.003
1.01-2.00	0	0	0	0	0.0034	0
2.01-5.00	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0

Figure 88. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period.

Figure 89. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period.

Figure 90. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period.

Figure 91. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period.

Figure 92. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period.

Figure 93. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period.

Figure 94. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period.

Figure 95. Affected areas in Cavite City, Cavite during a 25-Year Rainfall Return Period.

For the 25-year return period, 7.57% of the municipality of Kawit with an area of 15.97 sq. km. will experience flood levels of less than 0.20 meters. 6.77% of the area will experience flood levels of 0.21 to 0.50 meters while 13.40%, 13.38%, 3.44%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44 are the affected areas in square kilometers by flood depth per barangay.

Table 39. Affected areas in Kawit, Cavite during a 25-Year Rainfall Return Period.

Affected Area (sq. km.) by				Area c	of affected	barangays	in Kawit (in s	q. km.)			
11000 depth (m.)	Balsahan- Bisita	Batong Dalig	Gahak	Kaingen	Magdalo	Marulas	Panamitan	Poblacion	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.019	0.12	0.00045	0.017	0.048	0.063	0.037	0.024	0.028	0.077	0.019
0.21-0.50	0.0007	0.1	0.0095	0.018	0.047	0.1	0.081	0.021	0.0076	0.02	0.014
0.51-1.00	0.0044	0.093	0.12	0.14	0.078	0.25	0.21	0.1	0	0	0
1.01-2.00	0.0097	0.17	0.083	0.15	0.031	0.31	0.19	0.18	0	0	0
2.01-5.00	0.024	0.058	0.052	0.0056	0.0015	0.058	0.09	0.078	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by				Area of a	ffected bar	angays in l	Kawit (in s	q. km.)			
11000 deptn (m.)	San Sebastian	Santa Isabel	Tabon I	Tabon II	Tabon III	Toclong	Tramo- Bantayan	Wakas I	Wakas II	Barangay 26	Barangay 27
0.03-0.20	0.035	0.55	0.0038	0.0029	0.0001	0.12	0.014	0.015	0.0012	0.077	0.019
0.21-0.50	0.089	0.27	0.02	0.017	0.00058	0.16	0.0073	0.039	0.0034	0.02	0.014
0.51-1.00	0.18	0.43	0.08	0.044	0.021	0.21	0.02	0.087	0.038	0	0
1.01-2.00	0.19	0.24	0.24	0.052	0.038	0.17	0.041	0.12	0.17	0	0
2.01-5.00	0.014	0.0035	0.014	0.032	0.0026	0.11	0.005	0.0076	0.025	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Figure 96. Affected areas in Kawit, Cavite during a 25-Year Rainfall Return Period.

Figure 97. Affected areas in Kawit, Cavite during a 25-Year Rainfall Return Period.

For the 25-year return period, 17.00% of the municipality of Imus with an area of 50.4 sq. km. will experience flood levels of less than 0.20 meters. 10.79% of the area will experience flood levels of 0.21 to 0.50 meters while 10.61%, 5.31%, 0.29%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 are the affected areas in square kilometers by flood depth per barangay.

Períod.	
all Return	
-Year Rainl	
luring a 25	
us, Cavite c	
ureas in Im	
. Affected a	
Table 40.	

Mode deptine Alapan I-A Alapan I-B Alapa	Affected Area (sq. km.) by				Area o	f affected	barangays i	in Imus (in sq	I. km.)			
0.03-0.200.540.340.540.430.170.0220.0720.190.430.21-0.500.330.310.560.630.370.00230.0160.120.220.21-1.000.670.440.580.820.14000.0180.0210.220.51-1.000.110.170.580.820.14000.0180.0210.221.01-2.000.110.170.250.240.0370000.0010.00562.01-5.000.0420.0500000000.0001> 5.000.040.0400000000	11000 deptn (m.)	Alapan I-A	Alapan I-B	Alapan I-C	Alapan II-A	Alapan II-B	Anabu II-F	Bucandala I	Bucandala II	Bucandala III	Bucandala IV	Barangay 17
0.21-0.500.330.310.560.630.370.00230.0160.120.220.51-1.000.670.440.580.820.14000.0180.0310.0291.01-2.000.110.170.250.240.0370000.00160.00562.01-5.000.0420.0500000000.0056> 5.000.040.01400000000	0.03-0.20	0.54	0.34	0.54	0.43	0.17	0.022	0.072	0.19	0.43	1.02	0.019
0.51-1.00 0.67 0.44 0.58 0.82 0.14 0 0.0018 0.031 0.029 1.01-2.00 0.11 0.17 0.25 0.24 0.037 0	0.21-0.50	0.33	0.31	0.56	0.63	0.37	0.0023	0.016	0.12	0.22	0.46	0.014
1.01-2.00 0.11 0.17 0.25 0.24 0.037 0 0 0.0001 0.0056 2.01-5.00 0.042 0.05 0 <t< th=""><th>0.51-1.00</th><th>0.67</th><th>0.44</th><th>0.58</th><th>0.82</th><th>0.14</th><th>0</th><th>0.0018</th><th>0.031</th><th>0.029</th><th>0.36</th><th>0</th></t<>	0.51-1.00	0.67	0.44	0.58	0.82	0.14	0	0.0018	0.031	0.029	0.36	0
2.01-5.00 0.042 0.05 0 0 0016 0 0 0 0005 > 5.00 0.04 0.014 0	1.01-2.00	0.11	0.17	0.25	0.24	0.037	0	0	0.0001	0.0056	0.37	0
>5.00 0.04 0.014 0 0 0 0 0	2.01-5.00	0.042	0.05	0	0	0.0016	0	0	0	0.0005	0.0033	0
	> 5.00	0.04	0.014	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by				Are	a of affected k	barangays in I	mus (in sq. kn	u.)			
11000 deptn (m.)	Bucandala V	Carsadang Bago I	Carsadang Bago II	Malagasang I-A	Malagasang I-B	Malagasang I-C	Malagasang I-D	Malagasang I-E	Malagasang I-F	Medicion I-A	Barangay 27
0.03-0.20	0.98	0.93	0.55	0.0008	0.11	0.47	0.19	0.24	0.037	0.027	0.019
0.21-0.50	0.36	0.39	0.26	0.0083	0.016	0.14	0.082	0.053	0.0046	0.026	0.014
0.51-1.00	0.41	0.13	0.049	0.06	0.043	0.085	0.016	0	0	0.0075	0
1.01-2.00	0.16	0.047	0.0069	0.051	0.07	0.066	0.0065	0	0	0.00015	0
2.01-5.00	0	0	0	0.022	0.0016	0	0	0	0	0	0
> 5.00	0	0	0	0.019	0.0013	0	0	0	0	0	0

Affected Area (sq. km.) by				Area of a	ffected ba	rangays in	lmus (in sc	ł. km.)			
Tiood deptn (m.)	Medicion I-B	Medicion I-C	Medicion I-D	Medicion II-A	Medicion II-B	Medicion II-C	Medicion II-D	Medicion II-E	Medicion II-F	Pag-Asa I	Barangay 17
0.03-0.20	0.049	0.042	0.03	0.0081	0.021	0.049	0.029	0.04	0.098	0.067	0.019
0.21-0.50	0.022	0.016	0.031	0.038	0.039	0.033	0.04	0.027	0.033	0.091	0.014
0.51-1.00	0.0062	0.00021	0.026	0.028	0.045	0.027	0.031	0.013	0.0031	0.54	0
1.01-2.00	0.0033	0	0.001	0.038	0.011	0	0.0081	0	0	0.68	0
2.01-5.00	0	0	0	0.0025	0	0	0	0	0	0.021	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area (sq. km.) by				Area of a	ffected bar	rangays in	lmus (in sc	ł. km.)			
riood deptn (m.)	Pag-Asa II	Pag-Asa III	Poblacion III-A	Poblacoin III-B	Poblacion IV-A	Toclong I-A	Toclong I-B	Toclong I-C	Toclong II-A	Toclong II-B	Barangay 17
0.03-0.20	0.25	0.26	0.021	0	0.02	0.037	600.0	0.0043	0.096	0.15	0.019
0.21-0.50	0.27	0.26	0.01	0	0.00039	0.014	0.00041	0	0.076	0.078	0.014
0.51-1.00	0.37	0.29	0.00039	0	0	0.0023	0	0	0.039	0.055	0
1.01-2.00	0.17	0.16	0	0	0	0.00011	0	0	0.0044	0.011	0
2.01-5.00	0.0022	0.0001	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Figure 98. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period.

Figure 99. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period.

Figure 100. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period.

Figure 101. Affected areas in Imus, Cavite during a 25-Year Rainfall Return Period.

For the 25-year return period, 24.09% of the municipality of Noveleta with an area of 5.16 sq. km. will experience flood levels of less than 0.20 meters. 9.40% of the area will experience flood levels of 0.21 to 0.50 meters while 9.35%, 7.49%, 1.32%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46 are the affected areas in square kilometers by flood depth per barangay.

Table 46. Affected areas in Noveleta, Cavite during a 25-Year Rainfall Return Period.

Affected Area				Area of af	fected baran	gays in Novel	leta (in sq. k=			
(sq. km.) by flood depth (m.)	Magdiwang	San Antonio I	San Antonio II	San Jose I	San Jose II	San Juan I	San Juan II	San Rafael II	San Rafael IV	Santa Rosa II
0.03-0.20	0.022	0.3	0.073	0.083	0.032	0.35	0.037	0.25	0.093	0.0029
0.21-0.50	0.00041	0.077	0.088	0.01	0.002	0.17	0.016	0.097	0.024	0.00042
0.51-1.00	0.0002	0.058	0.12	0.0048	0.0021	0.16	0.0008	0.1	0.036	0.00032
1.01-2.00	0.00071	0.079	0.23	0.0053	0.0053	0.031	0.00091	0.03	0.0032	0.00094
2.01-5.00	0.00076	0.036	0.013	0.008	0.0049	0.002	0.002	0	0	0.0012
> 5.00	0	0	0	0	0	0	0	0	0	0

Figure 102. Affected Areas in Noveleta, Cavite during a 25-Year Rainfall Return Period.

For the 25-year return period, 5.13% of the municipality of General Trias with an area of 87.5 sq. km. will experience flood levels of less than 0.20 meters. 3.05% of the area will experience flood levels of 0.21 to 0.50 meters while 2.92%, 1.15%, 0.26%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 47 are the affected areas in square kilometers by flood depth per barangay.

Table 42. Affected areas in General Trias, Cavite during a 25-Year Rainfall Return Period.

Affected Area (sq. km.) by					Area of affecte	d barangays	in General T	rias (in sq. k	m.)			
flood depth (m.)	Arnaldo Poblacion	Bacao I	Bacao II	Bagumbayan Poblacion	Dulong Bayan Poblacion	Gov. Ferrer Poblacion	Navarro	Pasong Camachile I	Pasong Camachile II	Pinagtipunan	Prinza Poblacion	Sampalucan Poblacion
0.03-0.20	0.038	0.33	0.15	0.031	0.028	0.0012	1.68	1.89	0.12	0.041	0.029	0.013
0.21-0.50	0.015	0.29	0.24	0.0064	0.029	0.00039	1.07	0.68	0.028	0.06	0.016	0.0048
0.51-1.00	0.0031	0.42	0.32	0.0015	0.014	0.000002	1.09	0.38	0.0047	0.057	0.0021	0.0004
1.01-2.00	0.0012	0.16	0.16	0	0.0028	0	0.38	0.22	0.0051	0.019	0	0
2.01-5.00	0.0013	0.037	0.035	0	0.0036	0	0.047	0.047	0.0006	0.0092	0	0
> 5.00	0.0015	0.007	0.0027	0	0.0022	0	0.024	0.0062	0	0.0038	0	0

Affected Area (sq. km.) by	Area of af General	fected bara Trias (in sq	ngays in . km.)
flood depth (m.)	San Gabriel Poblacion	Santa Clara	Vibora Poblacion
0.03-0.20	0.021	60.0	0.029
0.21-0.50	0.019	0.2	0.011
0.51-1.00	0.017	0.23	0.011
1.01-2.00	0	0.057	0.0027
2.01-5.00	0	0.046	0.00072
> 5.00	0	0.021	0

Figure 103. Affected Areas in General Trias, Cavite during a 25-Year Rainfall Return Period.

Figure 104. Affected Areas in General Trias, Cavite during a 25-Year Rainfall Return Period.

For the 100-year return period, 34.34% of the municipality of Cavite City with an area of 11.88 sq. km. will experience flood levels of less than 0.20 meters. 14.13% of the area will experience flood levels of 0.21 to 0.50 meters while 1.55%, 0.08%, 0.00%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 48 are the affected areas in square kilometers by flood depth per barangay.

Table 48. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period

Affected Area			A	rrea of affe	scted baran	gays in Ca	vite City (ir	sq. km.)			
(sq. km.) by flood depth (m.)	Barangay 1	Barangay 10	Barangay 10-A	Barangay 10-B	Barangay 11	Barangay 12	Barangay 13	Barangay 14	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.018	0.053	0.019	0.035	0.051	0.014	0.039	0.033	0.022	0.068	0.011
0.21-0.50	0.01	0.019	0.0041	0.0053	0.0059	0.011	0.0053	0.0088	0.013	0.03	0.022
0.51-1.00	0.00022	0.0021	0.0002	0	0.000068	0	0.000041	0	0.0004	0	0.000058
1.01-2.00	0	0	0	0	0.000015	0	0.000002	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area			¢	rea of affe	cted baran	ıgays in Cav	vite City (ii	n sq. km.)			
(sq. km.) by flood depth (m.)	Barangay 18	Barangay 19	Barangay 2	Barangay 20	Barangay 22	Barangay 22-A	Barangay 23	Barangay 24	Barangay 25	Barangay 26	Barangay 27
0.03-0.20	0.0074	0.025	0.014	0.0061	0.05	0.028	0.016	0.0063	0.0093	0.034	0.031
0.21-0.50	0.02	0.042	0.0059	0.023	0.015	0.01	0.019	0.0092	0.0061	0.015	0.025
0.51-1.00	0.0016	0.00094	0	0.002	0	0	0.00073	0.001	0	0.007	0.0028
1.01-2.00	0	0	0	0	0	0	0	0	0	0	0.0001
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area			A	vrea of affe	cted baran	ıgays in Cav	/ite City (ii	n sq. km.)			
(sq. km.) by flood depth (m.)	Barangay 36-A	Barangay 37	Barangay 37-A	Barangay 38	Barangay 38-A	Barangay 39	Barangay 4	Barangay 40	Barangay 41	Barangay 42	Barangay 42-A
0.03-0.20	0.0059	0.01	0.013	0.025	0.0094	0.019	0.012	600.0	0.06	0.024	0.0083
0.21-0.50	0.0041	0.011	0.015	0.014	0.024	0.026	0.0033	0.012	0.074	0.014	0.005
0.51-1.00	0	0.0001	0	0	0	0.00021	0	0.0003	0.0026	0	0.0041
1.01-2.00	0	0	0	0	0	0	0	0	0	0	0.0003
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area			A	rea of affe	cted baran	gays in Cav	/ite City (in	ı sq. km.)			
(sq. km.) by flood depth (m.)	Barangay 42-B	Barangay 42-C	Barangay 43	Barangay 44	Barangay 45	Barangay 45-A	Barangay 46	Barangay 47	Barangay 47-A	Barangay 47-B	Barangay 48
0.03-0.20	0.018	0.011	0.0035	0.02	0.0081	0.019	0.051	0.016	0.023	0.019	0.045
0.21-0.50	0.003	0.032	0.061	0.039	0.015	0.021	0.012	0.01	0.011	0.011	0.0036
0.51-1.00	0	0	0	0	0	0	0	0	0	0	0
1.01-2.00	0	0	0	0	0	0	0	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0
Affected Area			A	rea of affe	cted baran	gays in Ca	vite City (ir	r sq. km.)			
(sq. km.) by flood depth (m.)	Barangay 48-A	Barangay 49	Barangay 49-A	Barangay 5	Barangay 50	Barangay 51	Barangay 52	Barangay 53	Barangay 53-A	Barangay 53-B	Barangay 54
0.03-0.20	0.033	0.036	0.036	0.011	0.03	0.04	0.022	1.26	0.019	0.0051	0.037
0.21-0.50	0.014	0.0044	0.0012	0.0011	0.0053	0	0.013	0.28	0	0.0097	0.014
0.51-1.00	0.0002	0	0	0	0	0	0	0.014	0	0	0
1.01-2.00	0	0	0	0	0	0	0	0	0	0	0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

2.01-5.00 > 5.00

Affected Area			A	rrea of affe	cted baran	igays in Cav	/ite City (ii	n sq. km.)			
(sq. km.) by flood depth (m.)	Barangay 54-A	Barangay 55	Barangay 56	Barangay 57	Barangay 58	Barangay 58-A	Barangay 59	Barangay 6	Barangay 60	Barangay 61	Barangay 61-A
0.03-0.20	0.009	0.03	0.032	0.0081	0.0027	0.004	0.038	0.069	0.02	0.022	0.016
0.21-0.50	0.011	0.035	0.022	0.0064	0.011	0.012	0.011	0.04	0.015	0.0091	0.0066
0.51-1.00	0	0	0	0.0016	0.0012	0.0024	0	0.0013	0.000076	0.0004	0
1.01-2.00	0	0	0	0	0	0.0019	0	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

-				-	-	_	
Affected Area	Area	of affected	barangays ii	n Cavite Ci	ty (in sq. k	(i	
(sq. km.) by flood depth (m.)	Barangay 62	Barangay 62-A	Barangay 62-B	Barangay 7	Barangay 8	Barangay 9	
0.03-0.20	0.18	0.05	0.22	0.0082	0.22	0.014	
0.21-0.50	0.051	0.028	0.026	0.0083	0.043	0.028	
0.51-1.00	0.0016	0.002	0	0	0.0085	0.003	
1.01-2.00	0	0	0	0	0.0034	0	
2.01-5.00	0	0	0	0	0	0	
> 5.00	0	0	0	0	0	0	

Figure 105. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period.

Figure 106. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period.

Figure 107. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period.

Figure 108. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period.

Figure 109. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period.

Figure 110. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period.

Figure 111. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period.

Figure 112. Affected areas in Cavite City, Cavite during a 100-Year Rainfall Return Period.

For the 100-year return period, 6.09% of the municipality of Kawit with an area of 15.97 sq. km. will experience flood levels of less than 0.20 meters. 5.51% of the area will experience flood levels of 0.21 to 0.50 meters while 12.55%, 16.41%, 4.15%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49 are the affected areas in square kilometers by flood depth per barangay.

Table 49. Affected areas in Kawit, Cavite during a 100-Year Rainfall Return Period.

Affected Area				Area of	affected b	arangays ii	n Kawit (in sq	I. km.)			
(sq. km.) by flood depth (m.)	Balsahan- Bisita	Batong Dalig	Gahak	Kaingen	Magdalo	Marulas	Panamitan	Poblacion	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.019	60.0	0.00019	0.014	0.022	0.049	0.016	0.02	0.028	0.077	0.019
0.21-0.50	0.00066	0.075	0.0066	0.012	0.042	0.076	0.045	0.017	0.0076	0.02	0.014
0.51-1.00	0.0037	0.12	0.091	0.1	0.084	0.22	0.2	0.076	0	0	0
1.01-2.00	0.0069	0.17	0.11	0.19	0.053	0.37	0.25	0.21	0	0	0
2.01-5.00	0.028	0.094	0.055	0.0071	0.0038	0.066	0.11	0.085	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area				Area of a	ffected bar	angays in l	Kawit (in s	q. km.)			
(sq. km.) by flood depth (m.)	San Sebastian	Santa Isabel	Tabon I	Tabon II	Tabon III	Toclong	Tramo- Bantayan	Wakas I	Wakas II	Barangay 26	Barangay 27
0.03-0.20	0.035	0.55	0.0038	0.0029	0.0001	0.12	0.014	0.015	0.0012	0.077	0.019
0.21-0.50	0.089	0.27	0.02	0.017	0.00058	0.16	0.0073	0.039	0.0034	0.02	0.014
0.51-1.00	0.18	0.43	0.08	0.044	0.021	0.21	0.02	0.087	0.038	0	0
1.01-2.00	0.19	0.24	0.24	0.052	0.038	0.17	0.041	0.12	0.17	0	0
2.01-5.00	0.014	0.0035	0.014	0.032	0.0026	0.11	0.005	0.0076	0.025	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Figure 113. Affected areas in Kawit, Cavite during a 100-Year Rainfall Return Period.

Figure 114. Affected areas in Kawit, Cavite during a 100-Year Rainfall Return Period.

For the 100-year return period, 16.12% of the municipality of Imus with an area of 50.4 sq. km. will experience flood levels of less than 0.20 meters. 10.01% of the area will experience flood levels of 0.21 to 0.50 meters while 10.34%, 7.17%, 0.36%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas in square kilometers by flood depth per barangay.

riod.
Peı
keturn
ΠE
uinfa
Ra
Year
ò
a l(
ng
Juri
teo
Ĵavj
S, C
Imu
IJ.
eas
l ar
ctec
Affe
50.
ble
Ta

Model deprine Alapan I-A Alapan I-B Alap	Affected Area (sq. km.) by				Area of a	ffected ba	rangays in	lmus (in se	q. km.)			
0.03-0.200.490.280.390.390.170.0220.0720.190.430.990.0190.21-0.500.270.250.530.550.370.00230.0160.120.220.450.0140.21-0.500.6680.480.6660.80.14000.0180.0290.27000.21-1.000.6180.480.6660.80.14000.0180.0290.2700.21-1.000.210.250.350.390.0370.03700.0290.2700.21-1.000.210.250.350.390.037000001.01-2.000.210.250.350.390.037000001.01-2.000.210.250.350.390.037000002.01-5.000.0430.0520.001600000002.01-5.000.0410.0150000000002.01-5.000.0410.015000000000	TIOOG GEPTN (m.)	Alapan I-A	Alapan I-B	Alapan I-C	Alapan II-A	Alapan II-B	Anabu II-F			Bucandala III	Bucandala IV	Barangay 17
0.21-0.500.270.250.530.550.370.00230.0160.120.220.450.0140.51-1.000.680.480.660.80.14000.0310.0290.27001.01-2.000.210.250.390.370.0370000002.01-5.000.0430.0520.301000000002.01-5.000.0410.015000000000>.00410.01500000000000>.00410.015000000000000	0.03-0.20	0.49	0.28	0.39	0.39	0.17	0.022	0.072	0.19	0.43	0.99	0.019
0.51-1.00 0.68 0.48 0.66 0.8 0.14 0 0.0018 0.029 0.27 0 1.01-2.00 0.21 0.25 0.39 0.37 0	0.21-0.50	0.27	0.25	0.53	0.55	0.37	0.0023	0.016	0.12	0.22	0.45	0.014
1.01-2.00 0.21 0.25 0.35 0.39 0.037 0 0 0.0056 0.5 0 0 2.01-5.00 0.043 0.052 0.0001 0 0.0016 0	0.51-1.00	0.68	0.48	0.66	0.8	0.14	0	0.0018	0.031	0.029	0.27	0
2.01-5.00 0.043 0.052 0.0001 0 0.0016 0 0 0 0.005 0.005 0 0 > 5.00 0.041 0.015 0	1.01-2.00	0.21	0.25	0.35	0.39	0.037	0	0	0.0001	0.0056	0.5	0
>5.00 0.041 0.015 0 <	2.01-5.00	0.043	0.052	0.0001	0	0.0016	0	0	0	0.0005	0.005	0
	> 5.00	0.041	0.015	0	0	0	0	0	0	0	0	0

Affected Area				Are	ea of affected k	oarangays in I	mus (in sq. kn	('ר			
(sq. km.) by flood depth (m.)	Bucandala V	Carsadang Bago I	Carsadang Bago II	Malagasang I-A	Malagasang I-B	Malagasang I-C	Malagasang I-D	Malagasang I-E	Malagasang I-F	Medicion I-A	Barangay 27
0.03-0.20	0.96	0.93	0.55	0.0001	0.1	0.45	0.19	0.24	0.037	0.027	0.019
0.21-0.50	0.34	0.39	0.26	0.0035	0.016	0.13	0.081	0.053	0.0046	0.026	0.014
0.51-1.00	0.31	0.13	0.049	0.046	0.027	0.081	0.016	0	0	0.0073	0
1.01-2.00	0.29	0.047	0.0069	0.068	0.093	0.091	0.0065	0	0	0.00015	0
2.01-5.00	0	0	0	0.024	0.0015	0.0033	0	0	0	0	0
> 5.00	0	0	0	0.019	0.0014	0	0	0	0	0	0

Affected Area				Area of a	ffected bai	rangays in	lmus (in sc	ł. km.)			
(sq. km.) by flood depth (m.)	Medicion I-B	Medicion I-C	Medicion I-D	Medicion II-A	Medicion II-B	Medicion II-C	Medicion II-D	Medicion II-E	Medicion II-F	Pag-Asa I	Barangay 17
0.03-0.20	0.049	0.042	0.031	0.0059	0.02	0.048	0.024	0.037	0.098	0.057	0.019
0.21-0.50	0.022	0.016	0.031	0.023	0.022	0.03	0.042	0.029	0.033	0.056	0.014
0.51-1.00	0.0062	0.00021	0.026	0.042	0.063	0.032	0.032	0.014	0.0031	0.45	0
1.01-2.00	0.0033	0	0.001	0.035	0.012	0	0.011	0	0	0.81	0
2.01-5.00	0	0	0	0.0088	0.0014	0	0	0	0	0.036	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Affected Area				Area of a	ffected bai	rangays in	lmus (in so	դ. km.)			
(sq. km.) by flood depth (m.)	Pag-Asa II	Pag-Asa III	Poblacion III-A	Poblacoin III-B	Poblacion IV-A	Toclong I-A	Toclong I-B	Toclong I-C	Toclong II-A	Toclong II-B	Barangay 17
0.03-0.20	0.22	0.25	0.021	0	0.02	0.037	600.0	0.0043	0.094	0.15	0.019
0.21-0.50	0.24	0.24	0.01	0	0.00039	0.014	0.00041	0	0.077	0.078	0.014
0.51-1.00	0.41	0.28	0.00039	0	0	0.0023	0	0	0.039	0.055	0
1.01-2.00	0.19	0.19	0	0	0	0.00011	0	0	0.0043	0.011	0
2.01-5.00	0.0044	0.0001	0	0	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Figure 115. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period.

Figure 116. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period.

Figure 117. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period.

Figure 118. Affected areas in Imus, Cavite during a 100-Year Rainfall Return Period.

For the 100-year return period, 23.29% of the municipality of Noveleta with an area of 5.16 sq. km. will experience flood levels of less than 0.20 meters. 9.18% of the area will experience flood levels of 0.21 to 0.50 meters while 9.64%, 7.62%, 2.02%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 51 are the affected areas in square kilometers by flood depth per barangay.

Table 51. Affected areas in Noveleta, Cavite during a 100-Year Rainfall Return Period.

0.0029 0.00037 0.0012 **Rosa II** 0.00027 Santa 0.001 0 San Rafael IV 0.0032 0.036 0.093 0.024 0 0 Rafael II 0.096 San 0.25 0.03 0.1 0 0 Area of affected barangays in Noveleta (in sq. km.) San Juan 0.0008 0.00091 0.016 0.037 0.002 0 = San Jose I San Jose II San Juan I 0.031 0.002 0.16 0.35 0.17 0 0.0022 0.0052 0.032 0.002 0.005 0 0.0052 0.0057 0.0081 0.012 0.08 0 Antonio II 0.045 0.079 0.034 San 0.13 0.24 0 Antonio I 0.0001 0.076 0.074 0.062 0.051 San 0.29 Magdiwang 0.00041 0.0002 0.00071 0.00076 0.022 0 flood depth (m.) (sq. km.) by 0.21-0.50 0.51-1.00 1.01-2.00 0.03-0.20 2.01-5.00 Affected > 5.00 Area

Figure 119. Affected Areas in Noveleta, Cavite during a 100-Year Rainfall Return Period.

For the 100-year return period, 5.13% of the municipality of General Trias with an area of 87.5 sq. km. will experience flood levels of less than 0.20 meters. 3.05% of the area will experience flood levels of 0.21 to 0.50 meters while 2.92%, 1.15%, 0.26%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 52 are the affected areas in square kilometers by flood depth per barangay.

Table 52. Affected areas in General Trias, Cavite during a 100-Year Rainfall Return Period.

Affected Area (sa. km.) bv				Are	a of affect	ed baranga	ys in Genera	ıl Trias (in sq	. km.)			
flood depth (m.)	Arnaldo Poblacion	Bacao I	Bacao II	Bagumbayan Poblacion	Dulong Bayan Poblacion	Gov. Ferrer Poblacion	Navarro	Pasong Camachile I	Pasong Camachile II	Pinagtipunan	Prinza Poblacion	Sampalucan Poblacion
0.03-0.20	0.036	0.27	0.12	0.031	0.025	0.0011	1.57	1.83	0.12	0.026	0.028	0.013
0.21-0.50	0.016	0.27	0.2	0.0065	0.025	0.00049	0.99	0.65	0.029	0.059	0.017	0.0048
0.51-1.00	0.0037	0.43	0.36	0.0015	0.02	0.000002	1.07	0.42	0.005	0.064	0.0027	0.0004
1.01-2.00	0.0013	0.22	0.19	0	0.0032	0	0.58	0.28	0.0045	0.028	0	0
2.01-5.00	0.0014	0.041	0.035	0	0.0036	0	0.054	0.054	0.0016	0.01	0	0
> 5.00	0.0015	0.0075	0.003	0	0.0023	0	0.025	0.007	0	0.0039	0	0

-	_	_	-
Affected	Area of al Genera	fected bara I Trias (in sc	ingays in I. km.)
(sq. km.) by flood depth (m.)	San Gabriel Poblacion	Santa Clara	Vibora Poblacion
0.03-0.20	0.017	0.062	0.028
0.21-0.50	0.018	0.17	0.01
0.51-1.00	0.022	0.27	0.012
1.01-2.00	0.0001	0.072	0.0033
2.01-5.00	0	0.048	0.00082
> 5.00	0	0.021	0

Figure 120. Affected Areas in General Trias, Cavite during a 100-Year Rainfall Return Period.

Figure 121. Affected Areas in General Trias, Cavite during a 100-Year Rainfall Return Period.

Among the barangays in the municipality of San Julian, Nena is projected to have the highest percentage of area that will experience flood levels at 0.81%. Meanwhile, Putong posted the second highest percentage of area that may be affected by flood depths at 0.41%.

Among the barangays in the municipality of Ilang-Ilang, Kandalakit is projected to have the highest percentage of area that will experience flood levels at 6.85%. Meanwhile, San Juan posted the second highest percentage of area that may be affected by flood depths at 4.84%.

Among the barangays in the municipality of Taft, Mantang is projected to have the highest percentage of area that will experience flood levels of at 0.62%. Meanwhile, Malinao posted the percentage of area that may be affected by flood depths of at 0.56%.

Moreover, the generated flood hazard maps for the Ilang-Ilang Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 100-year).

Manning Laura	Area C	Covered in s	q. km.
warning Level	5 year	25 year	100 year
Low	11.34	11.79	10.94
Medium	11.80	16.38	17.61
High	1.64	2.42	3.11
Total	24.78	30.59	31.66

Table 53. Area covered by each warning level with respect to the rainfall scenarios

Of the four (4) identified educational institutions in Ilang-Ilang Flood plain, two schools were discovered exposed to Medium-level flooding for the 5- and 25-year scenarios. For the 100 year scenario, these 2 schools were assessed for High level flooding.

Only one health institution was identified in Ilang-Ilang Floodplain, namely Sto Niño Health Center. The institution was assessed to be exposed to the Medium level flooding during a 5, 25, and 100 year scenario.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 123.

The flood validation consists of 181 points randomly selected all over the Ilang-Ilang floodplain. Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 1.20 m. Table 54 shows a contingency matrix of the comparison. The validation points are found in Annex 11.

Figure 122. Validation Points for a 5-year Flood Depth Map of the Ilang-Ilang Floodplain.

Figure 123. Flood Map depth versus Actual Flood Depth

Actual Flood Depth	Modele	ed Flood De	pth (m)				
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	49	8	1	0	0	0	58
0.21-0.50	34	11	1	0	1	0	47
0.51-1.00	21	7	1	0	0	0	29
1.01-2.00	12	8	11	6	0	0	37
2.01-5.00	2	1	0	1	0	0	4
> 5.00	1	3	0	0	1	0	5
	111	31	19	13	7	0	180

Table 54. Actual Flood Depth versus Simulated Flood Depth at different levels in the Ilang-Ilang River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 37.22%, with 67 points correctly matching the actual flood depths. In addition, there were 56 points estimated one level above and below the correct flood depths while there were 30 points and 20 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 102 points were underestimated in the modelled flood depths of Ilang-Ilang. Table 55 depicts the summary of the Accuracy Assessment in the Ilang-Ilang River Basin Flood Depth Map.

Table 55. Summary of the Accuracy Assessment in the Ilang-Ilang River Basin Survey.

	No. of Points	%
Correct	37.22	37.22
Overestimated	6.11	6.11
Underestimated	56.67	56.67
Total	100.00	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Ilang-Ilang Floodplain Survey

1. PEGASUS SENSOR

Laptop

Control Rack

Parameter	Specification
Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

2. LEICA ALS80 SENSOR

Parameter	Specification
Operational altitude	100 to 3500 m max AGL
Maximum measurement rate	1000 kHz
Maximum scan rate	200 Hz for sine; 158 for triangle;120 for raster
Field of view (degrees, full angle, user-adjustable)	0 to 72
Roll Stabilization(automatic adaptive, degrees)	72 – active FOV
Number of returns	unlimited
Number of intensity measurements	3(first, second and third)
Data Storage	ALS80: removable SSD hard disk (800GB each volume)
Power Consumption	922 W @ 22.0-30.3 VDC
Dimensions and weight	Scanner:37 W x 68 L x 26 H cm; 47 kg;
Control Electronics: 45 W x 47 D x 25 H cm; 33 kg	
Operating temperature	0-40°C

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 26, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: CAVITE	
	Station Name: CVT-199	
Island: LUZON - Municipality: INDANG	Order: 2nd	Barangay: CALUMPANG LEJOS
Latitude: 14º 14º 16.32329"	Longitude: 120° 50' 40.63536"	Ellipsoidal Hgt. 166.20100 m.
	WGS84 Coordinates	
Latitude: 14º 14' 10.97763"	Longitude: 120° 50' 45.56096"	Ellipsoidal Hgt: 210.38600 m.
	PTM Coordinates	
Northing: 1574493.218 m.	Easting: 483231.789 m.	Zone: 3
	UTM Coordinates	
Northing: 1,575,012.80	Easting: 267,428.74	Zone: 51

Location Description

CVT-199 To reach Brgy. Calumpang Lejos, take the nat'l. road from Indang Town Proper towards Naic for about 5 km. Station is located approx. 15 m. NW of the chapel, about 8 m. N of the basketball covered court. Mark is the head of a 4 in. copper nail centered and embedded on a 30 cm. x 30 cm. x 10 cm. concrete block, with inscriptions "CVT-199 2007 NAMRIA".

Requesting Party: UP DREAM Pupose: Reference OR Number: 8795440 A T.N .: 2014-391

the THE RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Main : Lawton Avenue, Fort Banifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Borroce St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

February 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Provin	ce: CAVITE			
		Station Name:	CVT-194 (BLLM-1)			
Island: L	UZON	Order	2nd	Baranga	Y. POB	LACION
Municipali	IV: GENERAL TRIAS	PRS	2 Coordinates			
Latitude:	14° 23' 15.01186"	Longitude:	120° 52' 43.52184"	Ellipsoid	al Hgt:	18.33700 m
		WGS	84 Coordinates			
Latitude:	14° 23' 9.63386"	Longitude:	120° 52' 48.43458"	Ellipsoid	al Hgt	62.18400 m
		PTM	Coordinates			
Northing:	1591045.311 m.	Easting:	486924.253 m.	Zone:	3	
		UTA	/ Coordinates			
Northing:	1,591,537.44	Easting:	271,265.13	Zone:	51	

Location Description

CVT-194 (BLLM-1) Is located inside the mun. park, about 100 m. SE from the Gen. Trias Mun. Hall. Mark is a brass rod centered and embedded on a concrete block, with inscriptions "BLLM No. 1 PSC-54".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795255 A T.N.: 2014-200

For RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch E

NAMRIA OFFICES: Main : Lawton Averain, Fart Ronflocio, 1634 Teguig City, Philippines I Tel. No.: (532) 813-4831 Is 41 Branch : 423 Zerraco St. San Nicoles, 1040 Manile, Philippines, Tel. No. (622) 241-3454 to 98 www.namria.gov.ph

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

March 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Provinc	e: BATANGAS			
	Station	Name: BTG-45			
Island: LUZON	Orde	er: 2nd	Baranga	y: MAL	BU
indineipung. To t	PRS	92 Coordinates			
Latitude: 13º 59' 52.18294"	Longitude	120º 42' 18.96476"	Ellipsoid	al Hgt:	48.43000 m.
	WG	S84 Coordinates			
Latitude: 13º 59' 46.88216"	Longitude	120° 42' 23.91169"	Ellipsoid	al Hgt:	92.94300 m.
	PT	M Coordinates			
Northing: 1547952.281 m.	Easting:	468159.677 m.	Zone:	3	
	UT	M Coordinates			
Northing: 1,548,591.80	Easting:	252,125.62	Zone:	51	

Location Description

BTG-45

From Tuy Town Proper, travel S on the road going to Balayan, then turn right to the road going to Brgy. Malibu. Station is located on the NW side of a fenced garden and about 10 m. W of the school bldg, of Santiago De Guzman Elem. School. Mark is the head of a 4 in. copper nail centered and embedded on a 30 cm. x 30 cm. concrete block, with inscriptions "BTG-45 2007 NAMRIA".

Requesting Party: UP-DREAM Pupose: OR Number: T.N.:

Reference 8795470 A 2014-444

RUEL DM. BELEN, MNSA Director/Mapping And Geodesy Branch 9

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. CVT-3051

Project information		Coordinate System				
Name:		Name:	UTM			
Size:		Datum:	PRS 92			
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)			
Time zone:	Mountain Standard Time	Geoid:	EGMPH			
Reference number:		Vertical datum:				
Description:						

Baseline Processing Report

Processing Summary									
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Eilipsoid Dist. (Meter)	∆Height (Meter)	
CVT-199 CVT- 3051 (B1)	CVT-199	CVT-3051	Fixed	0.073	0.128	12*58'47*	16463.417	-145.079	

Acceptance Summary

Processed	Passed	Flag	P	Fall	Þ	
1	0	1		0		

CVT-199 - CVT-3051 (3:06:13 PM-4:03:02 PM) (S1)

Baseline observation:	CVT-199 CVT-3051 (B1)
Processed:	9/2/2015 11:27:19 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Hortzontal precision:	0.073 m
Vertical precision:	0.128 m
RMS:	0.006 m
Maximum PDOP:	9.772
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	9/1/2015 3:06:41 PM (Local: UTC+8hr)
Processing stop time:	9/1/2015 4:03:02 PM (Local: UTC+8hr)
Processing duration:	00:56:21
Processing Interval:	1 second

1

From:	xm: CVT-199									
	Grid	Local				Global				
Easting	2	67428.741 m	Latt	tude	N14*14'16	6.32329*	Latitude		N14*14'10.97763*	
Northing	15	75012.795 m	Lon	gitude	E120°50'40	0.63536*	Longitude		E120°50'45.56096"	
Elevation		167.120 m	Hek	ght	16	66.201 m	Height		210.386 m	
To: CVT-3051										
	Grid			Lo	cal		Giobal			
Easting	2	271276.565 m	Lat	tude	N14*22'5	8.33330"	Latitude		N14*22'52.95639*	
Northing	15	91024.612 m	Lon	gitude	E120°52'44	4.06059*	Longitude		E120°52'48.97372"	
Elevation		22.137 m	Heij	ght	2	21.122 m	n Height		64.983 m	
Vector										
ΔEasting		3847.8	24 m	NS Fwd Azimuth			12°58'47"	ΔX	-1068.623 m	
ΔNorthing		16011.8	17 m	Ellipsoid Dist.			16463.417 m	ΔY	-5421.802 m	
ΔElevation		-144.9	82 m	∆Height			-145.079 m	ΔZ	15509.176 m	

Vector Components (Mark to Mark)

Standard Errors

Vector errors:					
σ ΔEasting	0.029 m	σ NS fwd Azimuth	0*00'00*	σΔΧ	0.036 m
σΔNorthing	0.020 m	σ Ellipsoid Dist.	0.019 m	σΔY	0.058 m
σ ΔElevation	0.065 m	σΔHeight	0.065 m	σΔZ	0.029 m

Aposteriori Covariance Matrix (Meter^a)

	x	Y	z
x	0.0012710639		
Y	-0.0011111494	0.0033830758	
z	-0.0004897536	0.0012701754	0.0008644866

2. GC-2

CVT-194 - GC-2 (12:30:05 PM-5:29:00 PM) (S3)

Baseline observation:	CVT-194 GC-2 (B3)
Processed:	6/23/2016 4:43:59 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.005 m
Vertical precision:	0.008 m
RMS:	0.008 m
Maximum PDOP:	4.511
Ephemeris used:	Broadcast
Antenna model:	NGS Relative
Proceesing start time:	6/1/2016 12:30:28 PM (Local: UTC+8hr)
Proceesing stop time:	6/1/2016 5:29:00 PM (Local: UTC+8hr)
Proceesing duration:	04:58:32
Proceesing Interval:	1 second

Vector Components (Mark to Mark)

From:	CVT-194	CVT-194						
	Grid		Lo	cal		Global		
Easting	271265.139 m	Latt	ude	N14°23'15	5.01186"	Latitude		N14°23'09.63386"
Northing	1591537.437 m	Long	gitude	E120*52'43	3.52183"	Longitude		E120°52'48.43458"
Elevation	19.356 m	Heig	iht	1	8.337 m	Height		62.184 m
Τα:	GC-2							
	Grid	Local			Global			
Easting	276510.220 m	Lett	obu	N14*22'03	3.22135"	Latitude		N14*21'57.85198*
Northing	1589282.856 m	Long	gitude	E120*55'39	.22621"	Longitude		E120°55'44.14039"
Elevation	38.946 m	Heig	ht	3	8.103 m	Height		82.125 m
Vector								
ΔEasting	5245.08	32 m	NS Fwd Azlmuth			112*44'00*	ΔX	-4808.073 m
ΔNorthing	-2254.58	81 m	Ellipsoid Dist.			5707.790 m	ΔY	-2217.178 m
ΔElevation	19.59	90 m (∆Height			19.766 m	۸Z	-2132.143 m

Standard Errors

/ector errors:								
σ∆Easting	0.002 m	σ NS fwd Azimuth	0*00'00*	σΔΧ	0.003 m			
σΔNorthing	0.001 m	σ Ellipsoid Dist.	0.002 m	σΔY	0.003 m			
σ ΔElevation	0.004 m	σ∆Height	0.004 m	σΔZ	0.002 m			

2
3. GC-1

Vector Components (Mark to Mark)

From:	CVT-194	VT-194						
G	rid		Lo	cal			G	obal
Easting	271265.139 m	Lett	ude	N14°23'1	5.01186"	Latitude		N14*23'09.63386"
Northing	1591537.437 m	Long	ebute	E120°52'43	3.52183"	Longitude		E120*52'48.43458"
Elevation	19.356 m	Helg	ht	1	8.337 m	Height		62.184 m
To: GC-1								
G	rid	Local		cal		Global		obal
Easting	276510.990 m	Lett	ude	N14*22'0	2.99339"	Latitude		N14"21'57.62404"
Northing	1589275.842 m	Long	jtude	E120*55'3	55'39.25400" Longitude			E120*55'44.16819"
Elevation	38.698 m	Helg	ht	3	37.855 m Height			81.878 m
Vector								
ΔEasting	5245.85	52 m	NS Fwd Azlmuth			112*47'42*	ΔX	-4809.557 m
ΔNorthing	-2261.59	95 m	Ellipsoid Dist.			5711.270 m	ΔY	-2216.320 m
∆Elevation	19.34	12 m /	∆Height			19.518 m	۸Z	-2138.991 m

Standard Errors

Vector errors:						
σ ΔEasting	0.008 m	σ NS fwd Azimuth	0*00'00*	σΔΧ	0.009 m	
σΔNorthing	0.002 m	σ Ellipsoid Dist.	0.007 m	σΔY	0.005 m	
σ ΔElevation	0.007 m	σΔHeight	0.007 m	σΔZ	0.003 m	

Aposteriori Covariance Matrix (Meter*)

	x	Y	z
×	0.0000811702		
Y	-0.0000062897	0.0000293977	
z	-0.0000136491	0.0000092066	0.0000091504

4. PB-1

Project information		Coordinate System	
Name:		Name:	UTM
Size:		Datum:	WGS 1984
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geoid:	EGMPH
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodelic Az.	Ellipeoid Dist. (Meter)	∆Height (Meter)
PB-1 CVT-194 (B1)	CVT-194	PB-1	Fixed	0.004	0.017	88°08'29"	9467.724	25.384

Acceptance Summary

Processed	Passed	Fleg	P	Fail	Þ	
1	1	0		0		

PB-1 - CVT-194 (4:15:24 AM-8:06:34 AM) (S1)

Baseline observation:	PB-1 CVT-194 (B1)
Processed:	2/4/2014 9:50:26 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.004 m
Vertical precision:	0.017 m
RMS:	0.005 m
Maximum PDOP:	2.254
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Proceesing start time:	2/3/2014 4:15:24 AM (Local: UTC+8hr)
Proceesing stop time:	2/3/2014 8:06:34 AM (Local: UTC+8hr)
Processing duration:	03:51:10
Processing Interval:	5 seconds

Vector Components (Mark to Mark)

From:	CVT-194	VT-194						
G	rid		Lo	cal			Gk	bal
Easting	271413.844 m	Latit	lude	N14°23'0	9.63386"	Latitude		N14°23'09.63386"
Northing	1591468.703 m	Long	gitude	E120°52'48	8.43458"	Longitude		E120°52'48.43458*
Elevation	19.356 m	Heig	ght	6	52.184 m	Height		62.184 m
To: PB-1								
G	rid	Loc		cal		Giobal		bai
Easting	280881.093 m	Latit	lude	N14°23'19	9.56635*	Latitude		N14°23'19.56635"
Northing	1591688.776 m	Long	gitude	E120°58'04	4.29835*	9835" Longitude		E120°58'04.29835*
Elevation	44.199 m	Helg	ght	8	87.568 m Height			87.568 m
Vector								
ΔEasting	9467.24	9 m	NS Fwd Azimuth			88°08'29"	ΔX	-8091.412 m
ΔNorthing	220.07	'3 m	Ellipsoid Dist.			9467.724 m	ΔY	-4906.972 m
∆Elevation	24.84	13 m	∆Height			25.384 m	۸Z	302.003 m

Standard Errors

Vector errors:						
σΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.004 m	
σΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.007 m	
$\sigma \Delta Elevation$	0.009 m	σ∆Height	0.009 m	σΔΖ	0.003 m	

Aposteriori Covariance Matrix (Meter*)

	x	Y	z
x	0.0000191800		
Y	-0.0000293093	0.0000523957	
z	-0.0000093650	0.0000161874	0.0000064708

5. CVT-3123

Project information		Coordinate System	
Name:	I:\Doc\DAC\2016\Fieldwork\Baseline	Name:	UTM
	Processing Requests\QZ-352 vs QZN-62 CVT-3123 vs CVT-199.vce	Datum:	PRS 92
Size:	665 KB	Zone:	51 North (123E)
Modified:	6/7/2016 9:10:46 PM (UTC:8)	Geoid:	EGMPH
Time zone:	Taipei Standard Time	Vertical datum:	
Reference number:			
Description:			

Baseline Processing Report

Processing	Summary
------------	---------

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CVT-199 CVT- 3123 (B3)	CVT-199	CVT-3123	Fixed	0.001	0.001	121°10'48"	43.218	1.326
CVT-3123 CVT- 199 (B4)	CVT-199	CVT-3123	Fixed	0.002	0.003	121*11'34"	43.216	1.383

Acceptance Summary

Processed	Passed	Flag	Þ	Fail	Þ
2	2	0		0	

CVT-199 - CVT-3123 (6:10:41 AM-2:38:11 PM) (S3)

Baseline observation:	CVT-199 CVT-3123 (B3)
Processed:	6/7/2016 9:18:19 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.001 m
RMS:	0.001 m
Maximum PDOP:	5.311
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	5/3/2016 6:11:22 AM (Local: UTC+8hr)
Processing stop time:	5/3/2016 2:38:11 PM (Local: UTC+8hr)
Processing duration:	08:26:49
Processing interval:	1 second

From:	CVT-199								
G	rid		Loc	al i			Global		
Easting	267428.741 m	Latitude		N14*14'16	8.32329*	Latitude		N14*14'10.97763"	
Northing	1575012.795 m	Longitud	•	E120*50'40	0.63536*	Longitude		E120*50'45.56096"	
Elevation	167.120 m	Height		16	6.201 m	Height		210.386 m	
Te: CVT-3123									
G	fid	Local		Giobal					
Easting	267465.517 m	Latitude		N14*14'18	5.59521*	Latitude		N14*14'10.24962"	
Northing	1574990.072 m	Longitud	•	E120*50'41.86874*		Longitude		E120*50'46.79435"	
Elevation	168.445 m	Height		16	7.527 m	Height		211.713 m	
Vector									
ΔEesting	36.77	6 m NS P	Fwd Azlmuth			121*10'48*	ΔX	-35.227 m	
ΔNorthing	-22.72	3 m Elip	eoid Dist.			43.218 m	ΔY	-13.131 m	
ΔElevetion	1.32	25 m ΔHe	light			1.326 m	ΔZ	-21.362 m	

Vector Components (Mark to Mark)

Standard Errors

Vector errore:										
σ ΔEesting	0.000 m	σ NS fwd Azimuth	0"00"01"	σΔX	0.000 m					
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔY	0.001 m					
σ ΔElevetion	0.001 m	σ ΔHeight	0.001 m	σΔΖ	0.000 m					

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z
x	0.0000001903		
Y	-0.0000001733	0.0000004088	
z	-0.000000653	0.0000001166	0.0000001007

6.

BTG-45A

Project Information		Coordinate System	
Name:		Name:	UTM
Size:		Datum:	PRS 92
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geoid:	EGMPH
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary											
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az	Ellipsoid Dist. (Meter)	∆Height (Meter)			
BTG-45 BTG- 45A (B1)	BTG-45	BTG-45A	Fixed	0.001	0.001	175*32'41*	6.995	0.659			

Acceptance Summary											
Processed Passed Flag 📔 Fall 🚩											
1	1	0		0							

BTG-45 - BTG-45A (7:15:33 AM-11:52:39 AM) (S1)

Baseline observation:	BTG-45 BTG-45A (B1)
Processed:	9/2/2015 11:37:56 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Hortzontal precision:	0.001 m
Vertical precision:	0.001 m
RMS:	0.000 m
Maximum PDOP:	2.331
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	9/1/2015 7:15:33 AM (Local: UTC+8hr)
Processing stop time:	9/1/2015 11:52:39 AM (Local: UTC+8hr)
Processing duration:	04:37:06
Processing interval:	1 second

From:	BTO	3-45								
	Grld			Lo	Local		Glob		obal	
Easting		252125.624 m	Lati	tude	N13*59'53	2.18294"	Latitude		N13°59'46.88216"	
Northing		1548591.799 m	Lon	gitude	E120°42'18	8.96476"	Longitude		E120°42'23.91169"	
Elevation		49.818 m	Heig	ght	4	18.430 m	Height		92.943 m	
To: BTG-45A										
	Grid			Lo	cal	Giobal				
Easting		252126.100 m	Lati	tude	N13*59'5	1.95603"	Latitude		N13°59'46.65526"	
Northing		1548584.818 m	Lon	gitude	E120*42'18	8.98286"	5" Longitude		E120°42'23.92980"	
Elevation		50.478 m	Heig	ght	4	9.089 m	m Height		93.602 m	
Vector			_							
∆Easting		0.47	76 m	NS Fwd Azimuth			175°32'41"	ΔX	-1.655 m	
∆Northing		-6.98	31 m	Ellipsoid Dist.			6.995 m	ΔY	1.723 m	
∆Elevation		0.65	i9 m	∆Height			0.659 m	ΔZ	-6.607 m	

Vector Components (Mark to Mark)

Standard Errors

/ector errors:									
σ ΔEasting	0.000 m	σ NS fwd Azimuth	0°00'12"	σΔX	0.001 m				
σ ΔNorthing	0.000 m	σ Ellipsold Dist.	0.000 m	σΔY	0.001 m				
σ ΔElevation	0.001 m	σ∆Height	0.001 m	σΔΖ	0.000 m				

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z
x	0.000002866		
Y	-0.0000001658	0.0000003931	
z	-0.000000756	0.000000861	0.0000001315

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
	Supervising Science	LOVELYN ASUNCION	UP-TCAGP
	Research Specialist (Supervising SRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP
		ENGR. GEROME HIPOLITO	UP-TCAGP

FIELD TEAM

LiDAR Operation	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP TCAGP
		AUBREY MATIRA	UP TCAGP
	Research Associate (RA)	ENGR. LARAH PARAGAS	UP TCAGP
		PAULINE JOANNE ARCEO	UP TCAGP
		MARY CATHERINE ELIZABETH BALIGUAS	UP TCAGP
		JONALYN GONZALES	UP TCAGP
		FAITH JOY SABLE	UP TCAGP
		KRISTINE JOY ANDAYA	UP TCAGP
Ground Survey, Data Download and Transfer	Research Associate (RA)	ENGR. RENAN PUNTO	UP TCAGP
		MA. VERLINA TONGA	UP TCAGP
		ENGR. KENNETH QUISADO	UP TCAGP
LiDAR Operation/ Ground Survey	Research Associate	ENGR. RENAN PUNTO	UP TCAGP
		ENGR. DAN ALDOVINO	UP TCAGP
LiDAR Operation/ Ground Survey	Airborne Security	SSG. RAYMUND DOMINE	PHILIPPINE AIR FORCE (PAF)
		TSG. CEBU	PAF
		SSG. LEEJAY PUNZALAN	PAF
	Pilot	CAPT. MARK TANGONAN	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. RAUL SAMAR	AAC
		CAPT. FRANCO PEPITO	AAC
		CAPT. CAESAR ALFONSO	AAC
		CAPT. DANTHONY LOGRONIO	AAC
		CAPT. CEDRIC DE ASIS	AAC

Annex 5. Data Transfer Sheet for Ilang-Ilang Floodplain

TATA TOAMO

	SERVER	LOCATION	ZMIDGINE Raw10	Z'Mittorre Prew/10 27P	Z'Nitome Raw10	Z.VArborne_Raw10 45P	Z Wittome, Rawing 61P	Z'Wittome, Familio 56P	Z'Maborne_Ram10 63P	Z'Aidone_Rev10 67P	Z'Mittomo_Haw/10	Z Varteome_Raw/10 709	Z Withome_Rewit0 83P	Z Wittome_Rew/JC 87P	7. Mittome_Rewitc	Z'Mittome Rewit0	Z Virtome Howig	Z Verzorre Raw111	2.Wittorre_Rawit1 069	Z.Wrbcme_Row/11 07P	ZUNIDOTTO RAWIT
	PLAN	KNL	NIA	MA	NN	NN	VIN	YN	M	MA	MA	NW	NIK	MM	NW.	ANA	NIN	MA	NIA	MA	NA
	FUGHT	Actual	33.5KB	105KB	40.6KB	SU 2KB	76.543	123108	23,34(3	63.54(B	05 2V.D	69.948	02 64B	2.640	56.1KB	76.7KB	65 ZKB	191KB	61KB	N	8998
	OPERATOR LOGS	(00140)	2458	7163	528	8033	Sc46	42-8	N2:8	HORE	118	841	Dot B	1208	1258	1 000	438	298	1 17 1 1	EA N	1 801
	Ishou	Base belo (194)	1093	1123	1108	14'B	2178	2018	1918	1368	870.	918	OCB 0	898	1858	2058 2	0 850	800	503B	1.7B	2178
	RASE ATA	EVEE STATION(3)	0.04MD	6.71MB	8 COMB	6.76MB	2.25/48	3MB	SRUB	5,021/10	2 SCMN	3 OTMB	12.4MD	10.7MB	10 1MB	11.4MD	11.446	BAND.	009.	BWZ.	SMB
	Normen		59.8CB	NEA.	N'A	N'A	NA	NA	NA	NA	NX	NA	XX	XIX	NIA	X	VIN	N.	M	3	NH.
	BAUE		9 2808	14 300	14 708	6 1303	13.333	10.133	18.635	11.608	15.438	6.6138	8099.	14.838	20238	14.908	20.768	19838	22 208	10 2 6 8	15 9GB
Apr 4, 2014	WISSION	LOOPLE	111KE	03 9 CD	NUN	NA	1614(8	113408	17468	111168	EX781	55 BKB	187KB	13368	SIGNER	1.61KB	1368	NIA	MA	14948	NUA
	NAW	INAGES	11 808	7.1130	N'A	N'A	14.438	11 738	19 2 3 R	11 638	16.08	4.9768	22 658	16.08	S2 73B	SC DVD	NIA	NA	NN	16.768	NIA
	and a	2	62 6MB	194MD	185MB	125MB	183MB	167MB	144MB	167MB	167MB	132MB	103MB	183MB	171MB	S35MB	234MB	271MB	210MB	215MB	183MB
	200	-	4.74MB	6.69MD	S BOMB	3.52MB	S.47MB	6.61MB	5 17MB	4 90MB	4.91MB	3.17MB	6.50MB	6 19MB	BMCC 0	BW26'1	1.46MB	6 MMR	6.65MB	BWEO 2	5 6 IMB
	VLA3	KML (swell)	1,01MB	0W201	HAMRA :	667950	8409	BWE'''	ACCHE	GMARC.	BMIS.	6001/8	BVES .	BM/L.	2 47MB	DWCS 1	2 33MB	2 MMR	2 67MD	1. SAMB	1.67MB
	RAN	Output	DMD	15100	1 67GB	SAMB	1 2968	1 04GB	1.1638	07-MD	1.62GB	45.MB	14708	1 2868	2.1708	1.15GB	1.7068	2 12GR	2 3000	TGOME	WA
	denous	were a	PECABUS	PEGASUS	PEGASILS	PEGASUS	PEGASUS	PEGASUS	PERABUS	PECABUG	PEGASUS	PEGASUS	PECABUS	PEGASUS	PEGASUS	PEONOUS	PEGASUS	PEGASILS	PECASUS	PEGASUS	PEGASUS
			10UK160C24A	IBLICT BADZSA	IBLET SCOPEA	IBLICIBICSOSH	181121350317.	INCLUSIONAL CONTRACTOR	ISI KI NDONAA	IDUCTORIODEA	VISORITIN	RUKEFSODAA	IBLK18430A	IBLK15K/04	IBLK16WI41A	IBLK18UM2A	IBLK18US43A	IBI K18YAV344A	IBLK18T44B	IBLK18CR5 KA	IBLK16US45B
	FLIGHT	NO.	10630	1027P	1001P	10430	1061P	40001	- dear	10671	1001P	45.001	10650	1067P	1061P	-10050	45301	11CSP	11060	11079	45311
			Jan 24, 2014	Jen 25, 2014	Jan 25, 2014	Jun 29, 23:4	Jan 31, 2314	Feb 2, 2014	Feb 3, 2014	Feb 4, 2014	Feb 5, 2014	#eb 7, 2014	Feb 8, 2014	Feb 3, 2014	Feb 10, 2014	Feb 11, 2014	=eb 12, 2014	⁵ eb 13, 2014	Feb 13,2014	14,2014	"eb 14,2014

Z.Mirtorre_Rawis0	- NA	8	2428	3 1418	7.4	M	19.1	M	X	621	911	Bues					
412	Y	EXIL/1										DAR!	20.0	PEGASUS	18LK1880234	1033P	26-Jan
Publican Barers				1570	6 250/6	MA	15.438	176KB	2408	2- 9MB	7.25648	1.60MB	1.00083	Leviono	Benenium		
Z Mifforna Row11	MN	147KB	80	1308	BALLIS	-							. 0400	DCCARLE	1BLK165eva	11410	00 22 2014
200	1				0.110	NIA	2123	2384CB	29.308	23aMB	7 52MB	2.45MD	2.1968	PEGASUS	IBLA IS/SUDA	4451	P107'77 00
C'Alborne, Ranvill	Y.N	91.9KS	3358	1438	Diane.										ADA MANANA	1100	A 129 901.4
33P				- 400	2 6940	53.900	17.468	117KB	7,4135	235MB	7.96MB	2.0448	1.5408	PEGASUS	PULKIBY574	19211	107 17 001
Z'Matome Rawn'	MIA	SHIENCE	2992	1308	13.2MB	N.M	12.108								A THI ADAMIANA	11260	A POL PC AST
31P	NA.							14140	13 000	10001B	4711/8	1.41MB	1.0038	PECASUS	ELK162518	11330	Feb 20,2014
Z:LAtbome Pawlet	1	01 CAD	3:08	1338	13 2MD	90.4GB	xce	ENP:2	30.308	219/48	7.63148	2.39MB	1.0408	PLCANSUS			
ZVPITOOMe RAWI: 1	12	8X1/28	Boog	2135	Giveoro										A 24 VAGTERS	4440	Patra 12 tota
250						-	10 104	MIN	M	BIMOBL	8792.6	1.54MB	B/IND	PEGASUS	1BL/10030A	112/1	Feb 15, 2014
Z:Mroome Raw11	auto	797.00	2828	2138	12.6MB	NA.	6.57GB	2	Y								
230	¥2	43VB	-	4					-	11111	SUICE	665KB	37448	FEGNOUS	IBUX185468	11250	Teb 18,2014
7 Withoma Davies			evo	138	12.51/8	MA	14.7.08	MIA	MA	103MIS	6.46MB	1.01MB	1.2608	PEGASUS	Valonaluna	-	
C'Arborne, Raw111	1	41KB	5208	SIGMB									1	ana van	181 KIPDEMON	11230	Feb 18. 2014
110	4				14 71.40	M	16.805	5056	215GB	250MD	8.25MB	1 95MB	1.0208	PECKEUS	1RLK18C484	1115P	Fea 11,2014
Z'Altoma Rawit	-	7468	5603	2158	10.9MB	MA	14,708	90221	801.6	Siveral .	0.000	-				l	
											and the second s	A NAME OF TAXABLE IN COLUMN			A DEPARTMENT OF THE OWNER OWNE		BUDZEL OD I

きくん Rame Afran Received from

Received by

PRIETO AdioL Position

	SERVER	ZIDACRAW	Z/DACRAW DATA	Z'DACRAW DATA	Z/DAC/RAW DATA	Z-DACHWW DATA	
	FLAN	2	2	5	2	5	
	Actual	142	99	-	61.6	59/59	
	OPERATOR LOGS (DPLOG)	1KB	1KB	1100	1908	193	
1	(10N(3) Base Info (100)	NB.	. 896	1KB	168	110	
	BASE STA BASE TATION(S)	18.4	19.4	7.67	6.43	8.05	
1	DIGHTIZER	5	ę	ra La	2	2	K
	BONNE	9.59	6.11	18.2	13.4	20.6	6
	LOGS LOG	2	2	2	2	2	
1	NOTING IN	2	2	2	2	2	ann AC Brance by pretton
	a sou	171	202	212	196	52	
	(BM0500)	6.66	7.65	0.50	8.1	10.3	
	AS ML (swath)	756	787	2,06	111	1.54	
	NAW L	872	1.17	1.81	1,29	2.12	
-	BENSOR	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	THE REAL PROPERTY AND A DECEMBER OF A DECEMBER
the second se	IISSION NAME	1BLK18JS229B	1BLK18AsS230A	1BLK180S246A	1BLK18JS247A	1BLK180S248A	tens C . Low
	FUGHT NO. N	3307P	3309P	3373P	3377P	3381P	 False
	DATE	17-Aug	18-Aug	3-Sep	4-Sep	5-Sep	

180

E1	2
HS	1720
FER	N B
ANS	NEZO
A TR	PB
AT	S

000000	LOCATION	ZIDACIRAW DATA	ZIDACIRAW DATA	ZIDACIRAW DATA
ATION(S)	Base Info (.txt)	1909	1KB	1001
BASE ST	BASE STATION(S)	103	87	155
areas name	INAGES	43.4	33.4	12.9
	WebCam	275/182	369	152
	RawWFD	NA	NA	NN
	RawTDC	4.64/2.98	6.39	23
	RawLaser	6.59/3.92	9.28	3.59
	TestData	41.7	40.4	95.6
	LogFiles	136	151	115
	Grastimu	403	808	400
	KMIL (swath)	51	196	88
	SENSOR	ALS 80	ALS 80	ALS 80
NUCCON	NAME	4BLK18B1 24A	4BLK18AB 127A	4BLKABS1 28A
	FLIGHT NO.	10136L	10142L	10144L
	DATE	3-May-16	6-May-16	7-May-16

Received from

\$ q Position Signatu Name

Received by

181

BAS
RCD38 RAW
which and
1

DATA TRANSFER SHEET CALABARZON 7/13/2016

val KML LC	TUGHT PLAN SI	MANN .			PLANK	PLAIN .	RAW	RANN	RANN BUANN	RAWY RAWY	IDIN BANN PANN
. Act		Z'DAO DATA	DATA		ZIDACI	DATA	ZIDACI	DATA DATA DATA DATA Z'IDAGI	ZIDACI DATA ZIDACI DATA ZIDACI	Z:DMCI DATA DATA Z:DMCI DATA DATA DATA	0 LOCAT Z:EMCF DATA DATA Z:EMCF DATA Z:EMCF
100100	CPERATO	tKB	100			1KB	168	1KB	1KB 1KB	1KB 1KB	Base Info (Jb 1KB 1KB
Base Into Lind	ATION(S)	316	663			663	689	649	649	649 649	BASE STATION(S) 649 649 653
BASE	BASE ST	998	W			2007	20.7	39.5	39.5	39.5	22 39.5 54.7
pigruzziek		320	79.3		265			202	262	145 262	vesiCem 145 262
RANGE		NA	NA		¥2		-	MA	MA	NA NA	NA NA
FILENCASI	WISSION LOG	8.85	2.66		72			7,55	7.55	3.89 7.55	5.89 3.89 7.55
RAIN		13.8	3.42		12.7			8.99	8.00	4.05 *	RawLaser 4.05 *
POS		44	124		43.8			315	21.6	79.7	TestData 79.7
LOGS		134	102		130			200.5	80.5	134 96.5	Log ^{Flies} 134 96.5
	VLAS	454	261		472			353	353	362 353	Onssimu 352 353
	RAW	VN	¥2		W		NA I			¥N S	VN VIII
SENSOR		VLS 80	ALS 80		VLS 80		ALS NO		ALS 80		SENSOR
MISSION		48LK18R MNS168A	4BLK18CF 1678	16/A	4BLK18RN	\$165B	4BLK18CF	165A	ABLK18CF		MISSION
PLICHT NO.		10167L	10166L		101651		101631	TOTOT	101611	FUGHT NU.	
TATE		16-Jun-16	15-Jun-16		15-lun-16	ANTING CT	10. hund 61	oT-unr-cT	12 hours	-	DATE

						ſ						RASE ST	ATION(S)	Onvenance.	FUGHT	PLAN	
				RAW	LAS			Children of the second	MISSION LOG					in the second			SERVER
DATE	FLIGHT NO.	NAME	SENSOR	Output LAS	KML (swath)	L0GS	POS	INAGESICASI	FLENCASI LOGIS	HANGE	DIGUTZER	STATION(S)	Base Into (.tot)	(00140)	Actual	KML	LOCATION
																	The statement of the st
June 16, 2016	23462P	1BUK18CF	PEGASUS	2.76	NA	10.4	225	2	NA	25.7	NA	316	1KB	1409	359/364/268/ 464/201/203	MM	DATA
		WOOTC													The second secon		WINNING MAN
	OVEN CO	1BLK18Q1	DECASIIS	1 20	MA	8.87	200	MA	NA	12.7	YN	468	1909	1108	203	NN.	DATA
10107 "77 aunf	10/07	73A	Lucion	-													

Received from

FTURA 7 Name Position

1/4/1 Received by Namo

16-91

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

182

Dilloit P. Gaueri Stanling Control of provinced in the control of provi	1 UDAR Operator: J. Alwar 2 ALTM Model: Presses	a Mission Name: 101	A Tune VED	C Almost B	
Obset Item of the standard of th	7 Pilot: P. Samer & Co. Pilot: 'E 52. 1	o Bouter OF Friday	The super very	S AUTOFIC INPE: CESINGT 205H	5 Aircraft Identification: 52 - C401
Andrew Line of the stand (Algoer O Annel (Alg	() Date:	The strate of	VIEL- VIEN		
Jealine Origin, H. McBrone Offertin Start Start Start Start Start Start Ownsher Profe alterning Is trait Start Is trait Start Is trait Start Ownsher Profe alterning Is trait Start Is trait Start Is trait Start Ownsher Profe alterning Is trait Start Is trait Start Is trait Start Ownsher Profe alterning Is trait Start Is trait Start Is trait Start Ownshei Profe alterning Is trait Start Is trait Start Is trait Start Ownshei Profession Is trait Start Is trait Start Is trait Start Offernahls: Is trait Start Is trait Start Is trait Start Is trait Start It start Is trait Start Is trait Start Is trait Start Is trait Start It start Is trait Start Is trait Start Is trait Start Is trait Start It start Is trait Start Is trait Start Is trait Start Is trait Start It start Is trait Start Is trait Start Is trait Start Is trait Start It start Is trait Start Is trait Start Is trait Start Is trait Start		e (Arport, Uty/Prownce):	12 Airport of Arrivel	(Airport, Gty/Province):	
Overher Porth dends Demarks: Stresschultg nag usivel dark in Chulty broken lines, drue the fanget interest drue the fanget tringen of Solutions: 21 Problems and Solutions: 22 Problems and Solutions: 23 Problems and Solutions: 24 Problems and Solutions: 24 Problems and Solutions: 24 Problems and Solutions: 25 Problems and Solutions: 26 Problems and Solutions: 27 Problems and Solutions: 27 Problems and Solutions: 28 Problems and Problem	3 Engine On: 04/36, ft- 14 Engine Off: 075 - 14	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
Demarks: Secure of the second data in Carthy the fame lives due the second data in Carthy the fame due the second data in Carthy the fame Second data in Carthy the fame due the second data in Carthy the second data in the fame due the second data in the second data	OWEather Print develo				
Secretarily required left is Burken lives for the foreign traffic the foreign traffic to the) Remarks:				
due to being the flore the due to being the flore Signatures Signatures And the formed And the formed An	Successfully agained has	it is auti the	hen line		
I Problems and Solutions: A sumo: Segmentary: A sumo: A sumo:	due to deny traff	\$?'e	•		ذ
Li Problems and Solutions: Li Problems and Solutions: Aquision Fight Approved by Aquision Fight Approved by Aquision Fight Approved by Aquision Fight Centified by Fidelin-Command Aquision Fight Approved by Aquision Fight Centified by Fidelin-Command Aquision Fight Centified by Fidelin-Command Aquision Fight Approved by Aquision Fight Centified by Fidelin-Command Aquision Fight Centified by Fidelin-Command Aquision Fight Approved by Aquision Fight Centified by Aquision Fight Approved by Aquision Fight Approved by Aquision Fight Centified by Aquision Fight Centified by Aquision Fight Approved by Aquision Fight Approved by Aquision Fight Centified by A	2				¥:00
L Problems and Solutions: A reaction fight Approved by Acquisition Fight Central by Strature over Printed Name Strature over Printed Name					010
Acquirition Flight Approved by Acquisition Flight Certified by Acquisition Flight Certified by Acquisition Flight Certified by Priorine Commands Identified by Flot-in-Commands Identified by Acquisition Flight Certified by Strature over Primed Name Strature over Strature over Pr	1 Problems and Solutions:				CERTNETED P
Les Marine Anne Skristure over Printed Name	Acquisition Flight Approved by Acquisi	ution Flight Certified by	P lot-in-Comman	2 Tr	Sar Operator
	Signature guile Perinded Name Signature Signature (End Uner Representative)	L D Raining Apr	A save a splenaks	KT Inted Name	Jere when the All is

Flight Log for 1027P Mission

ij.

		×			
	by Acquisition	s Flight Certified by	Pilot-in-Com	phenu	Udar Operator
by Acquisition Fight Certified by Piloc-in-Command Udar Operator		0 Funder Par	Signature ov	PHARE T PHARE T ver Printed Name	

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

-	1	5
ū,		,
4	c	
4	2	ę
ĩ	ī	5
1		t
1	Ċ)
3		2
3	2	ł
3		i
1		Ţ
ŝ	i	ł
		i
÷		2
è	ŝ	ï
2		2
2	2	ł.
	ļ	í.
ž	5	1
2	ļ	ť
	-	

AM Data Acquisition Flight	Mat	2 AITM Model - T	Mission Name: 12.12	A Time: UFB	6 Alecteds Times Cannon I 20010	6 Aloren Di Identification	The card
AN OPERATOR: 1. And	20	Z ALIM MODEL: TEGANS	J MISSION Name: GuigaSoan	A type: VIII	S Aircraft Type: Ces nna 1 2001	6 AIRCRITICENTICETION:	-42000-12
ot: P. Samon	R Co-Pi	lot: N. ARGUNIA	9 Route: MMA - TYANA				
ale: 29, 2014		12 Alrport of Departure	(Airport, City/Province): 1 NALA-	2 Airport of Arrival	(Airport, City/Province): L		
ngine On: Ó Sig H	14 Lng	ine Off: 0742 H	15 Total Engine Time: 1 72+23	6 Take off:	17 Landing:	18 Total Flight Time:	
/eather							
cmarks:							
Data	acqui	ired at 16004	VSL				
							1-14 010
roblems and Solutions	2		4				-
							9 17
							D"tea Neuro Sister CEBJ
A squistion (1), the	Approved	by Acq	uisition Flight Certified by	Pilot-In-Con	pureu	Udar Operator]
Jasentiner	ALLA Man	J ALE	1- RD Rented Nome	Signature of	the I	Les: Alera	
(End User Represe	Entative)	(LAI)	F Representative)				

З.

ы.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Image: Market - Market Chyfroutincel: 12 Aurorga/ Antival (Airport, City/Produce): I fragtine Time: 16 alge off: 2 3 4 0c 3 4 0c 3 4 0c 2 1 Remarks 2 1 Re
al Engline Time: 16 Take off. 17 Landing: 03 48 H 18 Total Flight Time: 3740 3740 21 Remarks 21 Remarks 3740 thes 1 21 Remarks Seccreted M 10 total Flight Time: thes 1 21 Remarks Seccreted M 10 total Flight Time: thes 1 21 Remarks Seccreted M 10 total Flight Time: thes 1 21 Remarks Seccreted M 10 total Flight Time: thes 1 1 Seccreted M 10 total Flight Time: Mathematics 1 1 Seccreted M 10 total Flight Time: Mathematics 1 1 Seccreted M 10 total Flight Time: Mathematics 1 1 1 Accretered M Paid-UDAR Admin Activities 1 Seccreted M 10 total Flight Time: Paid-UDAR Admin Activities 1 1 Accretered M Paide 1 1 1 Accretered M Signature coort Prunch Tume Secontered M
Image: Second System Maintenance 21 marks Image: Second System Maintenance Second System Maintenance Image: Second System Maintenance Maintenance
Image: Second System Maintenance 21 terraris Second System Maintenance Image:
LIDAR System Maintenance Aircraft Maintenance Pisit-LIDAR Admin Activities An Loberator Admin Activities Signature over Printed Name Signature over Printed Name
Pilot in Command Pilot in Command M.L. Cherner Signature over Printed Name Signature over Printed Name
Pilot-in Command M.L. Command
Pilot-in-Command Lidar Operator Aircraft Mechanic/ Redu M.L. Command Signature over Planted Name Signature over Printed Name

٦.

L

10 Provided and the second of the second second second second second second second and second sec	3 Mission Name: 9 Route: <u>M.9.19</u> (Miport, City/Province): 15 Total Engine Time: 20.c Others 20.c Others 0 LIDAR System Mainten 0 Aincraft Maintenance 0 Phil-LDAR Admin Activ	4 Type: VFR N 01 0 12 Airport of Arrival (N 01/0 16 Take off: 21 Remarks ance vities	5 Aircraft Type: Cesnia 7206H Airport, Gity/Province): 17 Landing: me (ines cut du	6 Aircraft Identification: ALV2 18 Total Flight Time:
20.6 8 Co-Pilot: A. Dayo Parts 12 Airport of Departure (14 Engine Off: Condy 20.5 Non Billable	9 Route: N.910 (Airport, City/Prowince): 15 Total Engine Time: 20.c Others 20.c Others 0 LIDAR System Mainten 0 Aircraft Maintenance 0 Phil-LIDAR Admin Activ	12 Airport of Arrival (J 16 Take off: 21 Remarks ance	Arport, Gty/Province): 17 Landing: free (rnee cut du	18 Total Flight Time:
14 Engine Off: A Engine Off: A Dardy 20.b Non Billable	15 Total Engine Time: 20.c Others 0 LIDAR System Mainten 0 Aincraft Maintenance 0 Phil-LIDAR Admin Activ	16 Take off: 21 Remarks ance dite	17 Landing:	18 Total Flight Time:
Clondy 20.6 Non Billable	20.c Others O LIDAR System Mainten O Aircraft Maintenance O Phil-LIDAR Admin Activ	21 Remarks ance C	me lines cut du	
20.b Non Billable	20.c Others O LIDAR System Mainten O Aircraft Maintenance O Phil-LIDAR Admin Activ	21 Remarks iance vities	me lines cut dw	
20.b Non Billable	20.c Others O LIDAR System Mainten O Aircraft Maintenance O Phil-LIDAR Admin Activ	ance vities	me lines cut dw	
	 UDAR System Mainten Aircraft Maintenance Phil-UDAR Admin Activ 	vities	me line out on	
 Alrcraft Test Flight AAC Admin Flight O Others: 				o the distantion of 2
12				
Ε.				
Acquisitings Flight Certil Acquisitings Flight Certil SSC MDTHL Signature over Prinad D How Representative	lifed by Profit in Contract in	onmand Ar (2018) Wer Printed Name	LEONI Operator L.U. Mitt (Const.	Aircraft Mechanic/ UDAR Technician Signature over Printed Name

189

Flight Log No.: /Cltr2 5 Aircraft Type: Cesnna T206H 6 Aircraft Identification: Qr22 al (Airport, City/Province): 13 Total Flight Time: 11 Landing:	covered some lines in RIK 1885 s cut due to air haffic (approach)		UDAR Operator UDAR Operator UDAR Technician UDAR Technician UDAR Technician UDAR Technician Signature over Printed Name
Name: $\frac{4B4\mathcal{L}(Bh)}{12}$ 1200 Type: VFR NProvince): $\frac{NP10}{12}$ NProvince): $\frac{NP10}{12}$ NProvince): $\frac{NP10}{12}$ ngine Time: 16 Take off:	s DAR System Maintenance Incraft Maintenance Incraft Maintenance hil-UDAR Admin Activities		Pliot-in-Command M.C. Handward Signature over Printed Name
ag2 ALTM Model: ALS So 3 Mission Prilot: N. Ag Chwin 9 Route: 12 Airport of Departure (Airport, C) NAIA: A ngine Off: 15 Total E	0.b Non Billable 20.c Other 0 Aircraft Test Flight 0 U 0 AAC Admin Flight 0 A		Acquisition fight Cartified by So Monthled Signature over Printed Name (PM Representative)
1 UDAR Operator: L/C Parag 7 Riot: M Toke Drien 806 10 Date: Nory 4, 2016 13 Engine On: 1 19 Weather	20 Flight Classification 20. 20.a Billable 20.	22 Problems and Solutions O Weather Problem O System Problem O Plict Problem O Others: O Others:	Acquisition Flight Approved by Acquisition Flight Approved by A. A. A

Storption: M. Adjaw: ID 9 Route: M. Al. ID 12 Airport of Departure (Airport, City/Province): 12 Airport of M. 14 Engline Off: 15 Total Engline Time: 15 Total Engline Off: 14 Engline Off: 15 Total Engline Off: 15 Total Engline Off: 15 Ob Non Billable 20.6 Others 20.6 Others 20.1 Non Billable 20.6 Others 20.6 Others 20.6 Non Billable 20.6 Others 20.6 Others 0 Aircraft Test Flight 0 LIDAR System Maintenance 0 Others: 0 Phil-LIDAR Admin Activities 0 Others: 0 Phil-LIDAR Admin Activities	D AlfGalt Ivbe: Cesnna I 205H IS AlfGalt Identification.
A Engine Off: Fall- Fall- 20.b Non Billable 20.c Others 20.b Non Billable 20.c Others 20.c Others 0 Aircraft Test Flight 0 LIDAR System Maintenance 0 Aircraft Maintenance 0 Others: 0 Fhil-UDAR Admin Activities 0 Others: 0 Phil-UDAR Admin Activities 15 Take off: 21 Re- 21 Re	al (Arport, Gty/Province):
Fall- 20.b Non Billiable 20.c Others 20.c Others 20.hon Billiable 20.c Others 20.c Others 0 Aircraft Test Flight 0 0 Aircraft Maintenance 0 Others: 0 Phil-UDAR Admin Activities Arguisting 0 Arguisting 0	17 Landing: 18 Total Flight Time:
20.b Non Billable 20.c Others O Aircraft Test Flight O LiDAR System Maintenance O Ac Admin Flight O Aircraft Maintenance O Others: O Phil-UDAR Admin Activities O Others: Prior ip Command	
20.b Non Billiable 20.c Others O Aircraft Test Flight O LIDAR System Maintenance O Aircraft Test Flight O Bill-UIDAR Admin Activities O Others: O Fhil-UIDAR Admin Activities Anountier O Fhil-UIDAR Admin Activities Anountier O Fhile Others	rts
Acquisition Part Certified by Pilot, ip Command	COVEREd Some livies of BIK 18A (Cavite Approach)
Acquisition with certified by Place ip Command	
Acquisition Fight Certified by Fight in Command	
Signature over Printed Name Signature over Printed Name (PAF Representative)	LIDAN Operator Aircraft Mechanic/ UDAN Technician Aircraft Mechanic/ UDAN Technician Aircraft Mechanic/ UDAN Technician Signature over Printed Name

9.

LIDAR Operator: M. og Bavi Lui Pilot: c. ALFo NSo III 8 (0 Date: June (L, 2+)	Box willing .				Flight Log No.: 2341.3
Dilate: June (4, 24)	5 2 ALTM Model: PEG	3 Mission Name: \$BLK N2.0	LIG3A 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 445.5
0 Date: June (4, 2016	Co-Piloti c. W ASIS	9 Route:			37 1
1 2	12 Airport of Departure	Airport, Gity/Province):	12 Airport of Arrival (urport, City/Province):	
3 Engine On: 0424 14	Engine Off: On 5-9	15 Total Engine Time: 3435	16 Take off:	17 Landing:	18 Total Flight Time:
9 Weather	Cloudy				
0 Flight Classification 0.a Billable	O.b Non Billable	20.c Others	-1 21 Remarks		
Q/ Acquisition Flight O Ferry Flight O System Test Flight O Calibration Flight	 Aircraft Test Flight AAC Admin Flight Others: 	 LIDAR System Maint Alrcraft Maintenanc Phil-LibAR Admin Ac 	enance Sarve e shitles	red the lines in Desman	ins, laik
Problems and Solutions					
Weather Problem System Problem Aircraft Problem Pilot Problem Others:					
Acquisition Flight Approved by	Acquisition Flight Certif	fel by Pilot-in	Command	Lidar Operator	Alrcraft Mechanic/ Technician
A. The Representative)	TS C C So	PAPE C	A DONSA C	M. E. BALLANKS	Signature over Printed Name

Annex 7. Flight status reports

Ilang-Ilang Mission January 27- February 28, 2014, August 18, 2015 and June 16, 2016

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1027P	BLK 18AB	1BLK18A025A	J. Alviar	25 Jan 2014	Acquired data at 1000m, broken lines and irregular survey pattern due to very heavy traffic and tower restrictions
1039P	BLK 18BC	1BLK18B028A	I.Roxas	28 Jan 2014	Data acquired at 1000m AGL
1043P	BLK 18AS	1BLK18AS029A	P.J.Arceo	29 Jan 2014	Data acquired at 1000m AGL
1063P	BLK 18D	1BLK18D034A	L. Paragas	3 Feb 2014	Dropouts experienced, heavy build up and traffic, surveyed 1 line
1139P	BLK 18X & (ABCY) s	1BLK18X53A	J. Alviar	22 Feb 2014	Surveyed gaps in southern Cavite, voids in BLK 18Z and covered BLK 18X at 1200m flying height
3309P	BLK 18AsS	1BLK18AsS230A	KJ ANDAYA	18 AUG 2015	Voids due to low cloud ceiling
3309P	BLK 18AsS	1BLK18AsS230A	kj andaya	18 AUG 2015	Voids due to low cloud ceiling, laser off due to clouds, experienced POSAV error, without Digitizer and Camera
10136L	BLK18A	4BLK18B124A	LK Paragas	3 May 2016	Covered some lines of Blk 18 A
10142L	BLK18 AB	4BLK18AB127A	LK Paragas	6 May 2016	Covered some lines of Blk 18 AB
10144L	BLK18 AB	4BLK18ABS128A	J. Gonzales	7May 2016	Covered some lines of Blk 18 AB
23462P	BLK18 CF	1BLK18CFS168A	MCE Baliguas	16 JUN 2016	Covered 25 lines over Dasmarinas
10144L	BLK18 AB	4BLK18ABS128A	J. Gonzales	7May 2016	Covered some lines of Blk 18 AB
23462P	BLK18 CF	1BLK18CFS168A	MCE Baliguas	16 JUN 2016	Covered 25 lines over Dasmarinas

SWATH PER FLIGHT MISSION

Flight No. :1027PArea:BLK 18AB.Mission Name:1BLK18B025A

Flight No. :1039PArea:BLK 18BCMission Name:1BLK18B028A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :1043PArea:BLK 18ASMission Name:1BLK18AS029A

Flight No. :1063PArea:BLK 18DMission Name:1BLK18D034A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :1139P (renamed from 1137P)Area:BLK 18X & (ABCY)Mission Name:1BLK18S53A

Flight No. :3309PArea:BLK 18ASSMission Name:1BLK18AsS230A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

FLIGHT NO.: 10136L AREA: BLK18A MISSION NAME: 2BLK18A124A

FLIGHT NO.:10142LAREA:BLK18ABMISSION NAME:4BLK18AB127A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

FLIGHT NO.: 10144L AREA: BLK18AB MISSION NAME: 4BLK18ABS128A

FLIGHT NO.:23462PAREA:BLK18RM, BLK18RNMISSION NAME:4BLK18RMNS168A

Annex 8	. Mission	Summary	Reports
---------	-----------	---------	---------

Flight Area	Pagadian
Mission Name	Blk18B_supplement
Inclusive Flights	3309P
Range data size	11.9GB
POS data size	202 MB
Base data size	19.4 MB
Image	N/A
Transfer date	September 11, 2015
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.3
RMSE for East Position (<4.0 cm)	2.9
RMSE for Down Position (<8.0 cm)	2.9
Boresight correction stdev (<0.001deg)	0.000273
IMU attitude correction stdev (<0.001deg)	0.000737
GPS position stdev (<0.01m)	0.0103
Minimum % overlap (>25)	43.55%
Ave point cloud density per sq.m. (>2.0)	2.82
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	171
Maximum Height	426.11 m
Minimum Height	57.0 m
Classification (# of points)	
Ground	95,328,099
Low vegetation	65,505,303
Medium vegetation	120,204,321
High vegetation	132,825,937
Building	23,238,819
Orthophoto	No
Processed By	Engr. Analyn Naldo, Aljon Rie Araneta, Jovy Narisma

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Best Estimated Trajectory

Flight Area	CALABARZON
Mission Name	Blk18AB
Inclusive Flights	1031P, 1027P
Range data size	29.0 GB
Base data size	14.75 MB
POS	379 MB
Image	7.11 GB
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.8
RMSE for East Position (<4.0 cm)	2.0
RMSE for Down Position (<8.0 cm)	3.2
Boresight correction stdev (<0.001deg)	0.000453
IMU attitude correction stdev (<0.001deg)	0.005473
GPS position stdev (<0.01m)	0.0019
Minimum % overlap (>25)	28.57%
Ave point cloud density per sq.m. (>2.0)	3.24
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	204
Maximum Height	45.76 m
Minimum Height	603.46 m
Classification (# of points)	
Ground	175,046,421
Low vegetation	131,824,752
Medium vegetation	148,659,196
High vegetation	95,993,464
Building	30,587,801
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Celina Rosete, Engr. Gladys Mae Apat

Solution Status Parameters

Smoothed Performance Metrics Parameters

Flight Area	CALABARZON
Mission Name	Blk18A_supplement
Inclusive Flights	1043P
Range data size	6.13 GB
Base data size	6.79 MB
POS	125 MB
Image	N/A
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	2.6
Boresight correction stdev (<0.001deg)	0.000829
IMU attitude correction stdev (<0.001deg)	0.001021
GPS position stdev (<0.01m)	0.0013
Minimum % overlap (>25)	11.00%
Ave point cloud density per sq.m. (>2.0)	2.31
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	103
Maximum Height	157.83 m
Minimum Height	45.2 m
Classification (# of points)	
Ground	76,835,956
Low vegetation	48,258,042
Medium vegetation	42,822,105
High vegetation	19,332,576
Building	7,920,574
Orthophoto	
Processed by	Engr. Angelo Carlo Bongat, Celina, Engr. Gladys Mae Apat

Flight Area	CALABARZON
Mission Name	Blk18As2
Inclusive Flights	1141P (formerly 1139P)
Range data size	15.4 GB
Base data size	6.25 MB
POS	219 MB
Image	24 GB
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.5
RMSE for Down Position (<8.0 cm)	3.6
Boresight correction stdev (<0.001deg)	0.000426
IMU attitude correction stdev (<0.001deg)	0.001019
GPS position stdev (<0.01m)	0.0155
Minimum % overlap (>25)	35.84%
Ave point cloud density per sq.m. (>2.0)	1.90
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	140
Maximum Height	133.73 m
Minimum Height	45.56 m
	133.73 m
Classification (# of points)	
Ground	104,162,308
Low vegetation	84,606,924
Medium vegetation	52,451,573
High vegetation	28,217,832
Building	1,102,474
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Melanie Hingpit, Engr. Jeffrey Delica

Flight Area	CALABARZON
Mission Name	Blk18C
Inclusive Flights	1031P
Range data size	14.7 GB
Base data size	8.04 MB
POS	185 MB
Image	N/A
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	2.4
Boresight correction stdev (<0.001deg)	0.000355
IMU attitude correction stdev (<0.001deg)	0.000702
GPS position stdev (<0.01m)	0.0113
Minimum % overlap (>25)	22.90%
Ave point cloud density per sq.m. (>2.0)	3.27
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	186
Maximum Height	404.02 m
Minimum Height	91.28 m
Classification (# of points)	
Ground	141,951,450
Low vegetation	94,479,716
Medium vegetation	142,100,182
High vegetation	100,785,000
Building	35,277,797
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Jeffrey Delica

Flight Area	CALABARZON
Mission Name	Blk18C_additional
Inclusive Flights	1031P; 1063P
Range data size	33.2 GB
Base data size	14.00 MB
POS	329 MB
Image	19.2 GB
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.9
RMSE for Down Position (<8.0 cm)	3.2
Boresight correction stdev (<0.001deg)	0.000508
IMU attitude correction stdev (<0.001deg)	0.001492
GPS position stdev (<0.01m)	0.0092
Minimum % overlap (>25)	29.92%
Ave point cloud density per sq.m. (>2.0)	2.78
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	327
Maximum Height	460.70 m
Minimum Height	60.39 m
Classification (# of points)	
Ground	187,497,140
Low vegetation	163,676,822
Medium vegetation	212,619,439
High vegetation	144,490,617
Building	59,922,956
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Merven Matthew Natino, Celina Rosete

Flight Area	CALABARZON
Mission Name	Blk18Bs
Inclusive Flights	1023P; 1027P
Range data size	23.58 GB
Base data size	14.75 MB
POS	246.6 MB
Image	18.91 GB
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	2.9
Boresight correction stdev (<0.001deg)	0.000547
IMU attitude correction stdev (<0.001deg)	0.001564
GPS position stdev (<0.01m)	0.0077
Minimum % overlap (>25)	28.57%
Ave point cloud density per sq.m. (>2.0)	3.24
Elevation difference between strips (<0.20 m)	Yessss
Number of 1km x 1km blocks	202
Maximum Height	593.69 m
Minimum Height	45.52 m
Classification (# of points)	
Ground	111,841,053
Low vegetation	50,974,483
Medium vegetation	64,960,681
High vegetation	47,229,609
Building	14,200,178
Orthophoto	No
Processed by	Engr. Benjamin Jonah Magallon, Celina Rosete, Ryan Nicholai Dizon

Flight Area	Calabarzon Reflights
Mission Name	Blk18A
Inclusive Flights	10136L, 10142L
RawLaser	19.79 GB
Base data size	200 MB
GnssImu	969 MB
Image	76.8 GB
Transfer date	6/20/2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Combined Separation (-0.1 up to 0.1)	Yes
Estimated Position Accuracy (in cm)	
Estimated Standard Devation for North Position (<4.0 cm)	0.65
Estimated Standard Devation for East Position (<4.0 cm)	0.80
Estimated Standard Devation for Height Position (<8.0 cm)	1.80
Minimum % overlap (>25)	47.33%
Ave point cloud density per sq.m. (>2.0)	3.22
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	215
Maximum Height	354.74 m
Minimum Height	44.59 m
Classification (# of points)	
Ground	258,626,866
Low vegetation	250,593,109
Medium vegetation	204,765,100
High vegetation	216,443,750
Building	62,593,079
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Engr. Melanie Hingpit, Kathryn Claudine Zarate

Combined Separation

Estimated Position of Accuracy

Image of Data Overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Calabarzon Reflights
Mission Name	Blk18A_supplement
Inclusive Flights	10144L
RawLaser	3.59 GB
Base data size	155 MB
GnssImu	408 MB
Image	12.9 GB
Transfer date	6/20/2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Combined Separation (-0.1 up to 0.1)	Yes
Estimated Position Accuracy (in cm)	
Estimated Standard Devation for North Position (<4.0 cm)	0.55
Estimated Standard Devation for East Position (<4.0 cm)	0.45
Estimated Standard Devation for Height Position (<8.0 cm)	1.00
Minimum % overlap (>25)	43.07
Ave point cloud density per sq.m. (>2.0)	4.60
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	92
Maximum Height	106.83 m
Minimum Height	41.14 m
Classification (# of points)	
Ground	65,752,105
Low vegetation	34,201,252
Medium vegetation	22,488,691
High vegetation	24,727,914
Building	20,212,718
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Engr. Melanie Hingpit, Engr. Elainne Lopez

Combined Separation

Estimated Position of Accuracy

Image of Data Overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Calabarzon Reflights
Mission Name	Blk18A_supplement
Inclusive Flights	10144L
RawLaser	3.59 GB
Base data size	155 MB
Gnsslmu	408 MB
Image	12.9 GB
Transfer date	6/20/2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Combined Separation (-0.1 up to 0.1)	Yes
Estimated Position Accuracy (in cm)	
Estimated Standard Devation for North Position (<4.0 cm)	0.55
Estimated Standard Devation for East Position (<4.0 cm)	0.45
Estimated Standard Devation for Height Position (<8.0 cm)	1.00
Minimum % overlap (>25)	43.07
Ave point cloud density per sq.m. (>2.0)	4.60
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	92
Maximum Height	106.83 m
Minimum Height	41.14 m
Classification (# of points)	
Ground	65,752,105
Low vegetation	34,201,252
Medium vegetation	22,488,691
High vegetation	24,727,914
Building	20,212,718
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Engr. Melanie Hingpit, Engr. Elainne Lopez

Combined Separation

Estimated Position of Accuracy

Image of Data Overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Calabarzon Reflights
Mission Name	Blk18B_Supplement1
Inclusive Flights	10321L
RawLaser	6.16 GB
GnssImu	329 MB
Image	7.32 GB
Transfer date	2/13/2017
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Combined Separation (-0.1 up to 0.1)	No
Estimated Position Accuracy (in cm)	
Estimated Standard Devation for North Position (<4.0 cm)	2.7
Estimated Standard Devation for East Position (<4.0 cm)	3.2
Estimated Standard Devation for Height Position (<8.0 cm)	3.5
Minimum % overlap (>25)	13.61
Ave point cloud density per sq.m. (>2.0)	1.22
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	14
Maximum Height	127.96
Minimum Height	3.47
Classification (# of points)	
Ground	3,367,084
Low vegetation	1,666,746
Medium vegetation	2,222,402
High vegetation	2,629,746
Building	1,491,047
Orthophoto	Yes
Processed by	Engr. Regis Guhiting

Combined Separation

Estimated Position of Accuracy

Image of Data Overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Calabarzon Reflights
Mission Name	Blk18B_Supplement2
Inclusive Flights	10321L
RawLaser	6.16 GB
Gnsslmu	329 MB
Image	7.32 GB
Transfer date	2/13/2017
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Combined Separation (-0.1 up to 0.1)	No
Estimated Position Accuracy (in cm)	
Estimated Standard Devation for North Position (<4.0 cm)	2.7
Estimated Standard Devation for East Position (<4.0 cm)	3.2
Estimated Standard Devation for Height Position (<8.0 cm)	3.5
Minimum % overlap (>25)	NA
Ave point cloud density per sq.m. (>2.0)	0.36
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	4
Maximum Height	80.78
Minimum Height	44.26
Classification (# of points)	
Ground	567,120
Low vegetation	71,493
Medium vegetation	207,551
High vegetation	367,049
Building	812,227
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Engr. Harmond Santos, Engr. Gladys Mae Apat

Combined Separation

Estimated Position of Accuracy

Image of Data Overlap

Density map of merged LiDAR data

Flight Area	Calabarzon Reflights
Mission Name	Blk18B_Supplement5
Inclusive Flights	10321L
RawLaser	6.16 GB
GnssImu	329 MB
Image	7.32 GB
Transfer date	2/13/2017
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Combined Separation (-0.1 up to 0.1)	No
Estimated Position Accuracy (in cm)	
Estimated Standard Devation for North Position (<4.0 cm)	2.7
Estimated Standard Devation for East Position (<4.0 cm)	3.2
Estimated Standard Devation for Height Position (<8.0 cm)	3.5
Minimum % overlap (>25)	NA
Ave point cloud density per sq.m. (>2.0)	0.90
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	10
Maximum Height	121.96
Minimum Height	58.37
Classification (# of points)	
Ground	1,296,700
Low vegetation	380,063
Medium vegetation	479,130
High vegetation	703,766
Building	476,095
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Engr. Harmond Santos, Engr. Gladys Mae Apat

Combined Separation

Estimated Position of Accuracy

Density map of merged LiDAR data

Parameters
Basin
Model
Ilang-Ilang
6
ANNEX

Basin Number	SCS Curve Nun	nber Loss		Clark Unit Hydr Transform	ograph	Recession E	3aseflow			
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W460	9.79545	89.219	0.0	0.21492	0.31488	Discharge	0.0027503	0.33333	Ratio to Peak	0.05255
W470	3.349415	80.263	0.0	0.227864	0.20757	Discharge	0.0011524	0.33333	Ratio to Peak	
W480	6.80238	90.247	0.0	1.8844	0.64798	Discharge	0.0081771	0.33333	Ratio to Peak	
W490	3.084365	84.774	0.0	0.86704	3.4989	Discharge	0.0067252	0.33333	Ratio to Peak	0.05
W500	1.463665	97.098	0.0	8.7496	9.6975	Discharge	0.0541181	0.33333	Ratio to Peak	0.05
W510	2.92809	90.735	0.0	0.87528	1.7691	Discharge	0.0168304	0.33333	Ratio to Peak	0.05
W520	2.121065	88.341	0.0	0.607088	1.6892	Discharge	0.008338	0.33333	Ratio to Peak	
W530	1.8107	92.831	0.0	0.93208	1.5902	Discharge	0.0340538	0.33333	Ratio to Peak	0.05
W540	5.10986	91.779	0.0	1.44328	0.42011	Discharge	0.0069874	0.33333	Ratio to Peak	
W550	1.613955	66	0.0	3.68464	10.603	Discharge	0.0067373	0.33333	Ratio to Peak	0.05
W560	0.8618685	98.001	0.0	3.09944	3.2867	Discharge	0.0125249	0.33333	Ratio to Peak	0.05
W570	2.352675	90.479	0.0	1.86776	0.68036	Discharge	0.0111548	0.33333	Ratio to Peak	
W580	2.29311	93.332	0.0	0.267272	0.76269	Discharge	0.0091107	0.33333	Ratio to Peak	
W590	2.315245	66	0.0	5.3784	7.2951	Discharge	0.0477175	0.33333	Ratio to Peak	0.05
W600	1.486845	93.796	0.0	5.11544	3.978	Discharge	0.0070055	0.33333	Ratio to Peak	0.05
W610	1.38149	91.926	0.0	3.29952	4.0162	Discharge	0.0120022	0.33333	Ratio to Peak	0.05
W620	0.600305	66	0.0	4.46176	5.9141	Discharge	0.013822	0.33333	Ratio to Peak	0.05
W630	3.94725	92.818	0.0	0.52804	0.47707	Discharge	0.008167	0.33333	Ratio to Peak	
W640	4.54879	93.832	0.0	1.35448	1.2622	Discharge	0.0135715	0.33333	Ratio to Peak	0.05
W650	0.711094	60.123	0.0	0.594776	0.46205	Discharge	0.0015284	0.50244	Ratio to Peak	

Basin Number	SCS Curve Nun	nber Loss		Clark Unit Hydr Transform	ograph	Recession I	3aseflow			
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	lnitial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W660	2.530515	93.594	0.0	0.440512	0.52146	Discharge	0.013491	0.33333	Ratio to Peak	0.046099
W670	3.687615	94.631	0.0	5.08072	6.5847	Discharge	0.0302056	0.33333	Ratio to Peak	0.05
W680	0.216068	92.08	0.0	0.9968	0.83342	Discharge	0.0054452	0.33333	Ratio to Peak	
W690	2.31591	89.168	0.0	3.698	4.0162	Discharge	0.0084351	0.33333	Ratio to Peak	0.05
W700	3.680775	92.968	0.0	1.36176	3.9304	Discharge	0.0184468	0.45	Ratio to Peak	0.05
W710	4.58375	92.948	0.0	0.92864	1.2368	Discharge	0.0122222	0.49	Ratio to Peak	0.05
W720	5.03025	94.622	0.0	3.92176	3.3687	Discharge	0.031193	0.33333	Ratio to Peak	0.05
W730	3.115335	95.45	0.0	6.9916	8.82	Discharge	0.0159802	0.33333	Ratio to Peak	0.05
W740	2.664465	66	0.0	5.7692	6.3444	Discharge	0.0186619	0.49	Ratio to Peak	0.05
W750	3.22582	85.457	0.0	2.35832	4.2266	Discharge	0.0228956	0.49	Ratio to Peak	0.05
W760	2.823115	88.758	0.0	3.81536	4.0831	Discharge	0.0300912	0.33333	Ratio to Peak	0.05
W770	3.737015	89.078	0.0	0.520888	0.63416	Discharge	0.00452	0.33333	Ratio to Peak	
W780	5.55598	89.354	0.0	1.50016	2.0391	Discharge	0.0116061	0.33333	Ratio to Peak	0.05
W790	0.8073955	88.941	0.0	3.74496	4.75	Discharge	0.0411971	0.49	Ratio to Peak	0.05
W800	0.3271515	93.551	0.0	4.16328	5.3168	Discharge	0.008255	0.33333	Ratio to Peak	0.05
W810	2.52282	88.188	0.0	0.255544	0.46507	Discharge	0.005464	0.49	Ratio to Peak	0.071084
W820	5.39581	95.628	0.0	0.94728	2.6804	Discharge	0.0073307	0.49	Ratio to Peak	0.05
W830	0.99579	85.948	0.0	1.51472	3.9178	Discharge	0.0171437	0.33333	Ratio to Peak	0.05
W840	2.97749	85.822	0.0	3.30168	4.0872	Discharge	0.017003	0.49	Ratio to Peak	0.05
W850	4.344255	88.364	0.0	2.12904	2.6079	Discharge	0.0398795	0.5	Ratio to Peak	0.05
W860	0.893817	96.591	0.0	7.87512	11.215	Discharge	0.0739255	0.575	Ratio to Peak	0.05
W870	5.71976	46.689	0.0	1.29496	2.3444	Discharge	0.0314017	0.33333	Ratio to Peak	0.05
W880	3.0498	58.532	0.0	3.0822	4.8855	Discharge	0.0256979	0.33333	Ratio to Peak	0.05
W890	6.1245	93.579	0.0	1.9194	2.8627	Discharge	0.0077483	0.75	Ratio to Peak	0.05
006M	4.8632	76.145	0.0	2.3595	3.0451	Discharge	0.0163694	0.5	Ratio to Peak	0.05

Reach	Muskingum Cunge Channel	Routing					
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side
							Slope
R10	Automatic Fixed Interval	278.49	0.004	0.21489	Trapezoid	45	45
R100	Automatic Fixed Interval	2832.1	0.36085	0.32939	Trapezoid	45	45
R120	Automatic Fixed Interval	2456.5	0.41386	0.88361	Trapezoid	45	45
R150	Automatic Fixed Interval	8927.3	0.0031364	0.0224661	Trapezoid	45	45
R170	Automatic Fixed Interval	427.99	0.0140190	0.073667	Trapezoid	45	45
R180	Automatic Fixed Interval	14013	0.0770761	0.0195678	Trapezoid	45	45
R20	Automatic Fixed Interval	1283.0	0.0007794	0.12006	Trapezoid	45	45
R200	Automatic Fixed Interval	1270.8	0.0052349	0.0050991	Trapezoid	45	45
R210	Automatic Fixed Interval	2576.9	0.40089	0.0020341	Trapezoid	45	45
R230	Automatic Fixed Interval	2402.1	0.0101930	0.0150236	Trapezoid	45	45
R250	Automatic Fixed Interval	3314.2	0.0132675	0.0044526	Trapezoid	45	45
R270	Automatic Fixed Interval	6950.1	0.0102578	0.0606979	Trapezoid	45	45
R280	Automatic Fixed Interval	4204.3	0.0169461	0.0151842	Trapezoid	45	45
R290	Automatic Fixed Interval	1680.2	0.0091833	0.0419209	Trapezoid	45	45
R300	Automatic Fixed Interval	3180.1	0.0123744	0.0014773	Trapezoid	45	45
R350	Automatic Fixed Interval	1603.6	0.0233076	0.0014821	Trapezoid	45	45
R370	Automatic Fixed Interval	6524.0	0.0133162	0.0023142	Trapezoid	45	45
R40	Automatic Fixed Interval	1453.7	0.68792	0.50102	Trapezoid	45	45
R420	Automatic Fixed Interval	7032.1	0.0186313	0.0016204	Trapezoid	45	45
R50	Automatic Fixed Interval	1743.4	0.56902	0.0573445	Trapezoid	45	45
R60	Automatic Fixed Interval	3424.2	0.0061404	0.16473	Trapezoid	45	45
R90	Automatic Fixed Interval	2357.6	0.0038174	0.12328	Trapezoid	45	45

Annex 10. Ilang Ilang Model Reach Parameters

Point Number	Validation Coo (in WGS84)	ordinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long	1				
1	14.410560	120.884749	0.103	0.5	0.397	Milenyo / September 28, 2006	5 -Year
2	14.411674	120.884279	0.181	0.5	0.319	Milenyo / September 28, 2006	5 -Year
3	14.412941	120.883892	0.03	0.5	0.470	Milenyo / September 28, 2006	5 -Year
4	14.417687	120.884427	0.03	0.5	0.470	Milenyo / September 28, 2006	5 -Year
5	14.409722	120.884174	0.03	0.5	0.470	Milenyo / September 28, 2006	5 -Year
6	14.414473	120.884967	0.291	2	1.709	Milenyo / September 28, 2006	5 -Year
7	14.415879	120.884006	0.375	2	1.625	Milenyo / September 28, 2006	5 -Year
8	14.416715	120.884041	0.03	2	1.970	Milenyo / September 28, 2006	5 -Year
9	14.415124	120.884702	0.034	2	1.966	Milenyo / September 28, 2006	5 -Year
10	14.414889	120.884871	0.03	2	1.970	Milenyo / September 28, 2006	5 -Year
11	14.414619	120.884931	0.092	2	1.908	Milenyo / September 28, 2006	5 -Year
12	14.415426	120.884404	0.338	2	1.662	Milenyo / September 28, 2006	5 -Year
13	14.411737	120.879109	0.16	5.4	5.240	Milenyo / September 28, 2006	5 -Year
14	14.417096	120.884186	0.245	5.6	5.355	Milenyo / September 28, 2006	5 -Year
15	14.419050	120.883759	0.395	5	4.605	Milenyo / September 28, 2006	5 -Year
16	14.407914	120.877951	1.554	5	3.446	Milenyo / September 28, 2006	5 -Year
17	14.440910	120.911089	0.303	6.3	5.997	Milenyo / September 28, 2006	5 -Year
18	14.432761	120.898750	0.385	6.4	6.015	Milenyo / September 28, 2006	5 -Year
19	14.419848	120.884229		6.4	3.455	Milenyo / September 28, 2006	5 -Year
20	14.431303	120.897558	2.408	0.3	-2.108	Milenyo / September 28, 2006	5 -Year
21	14.431158	120.897814	0.382	0.3	-0.082	Milenyo / September 28, 2006	5 -Year
22	14.433762	120.900120	0.069	0.3	0.231	Milenyo / September 28, 2006	5 -Year
23	14.430628	120.896409	0.203	0.3	0.097	Milenyo / September 28, 2006	5 -Year
24	14.445906	120.908863	0.316	0.3	-0.016	Milenyo / September 28, 2006	5 -Year
25	14.434743	120.901719	0.063	0.4	0.337	Milenyo / September 28, 2006	5 -Year
26	14.438930	120.903987	0.071	0.5	0.429	Milenyo / September 28, 2006	5 -Year
27	14.446135	120.909423	0.123	0.5	0.377	Milenyo / September 28, 2006	5 -Year
28	14.446430	120.910430	0.903	0.5	-0.403	Milenyo / September 28, 2006	5 -Year
29	14.443699	120.909567	0.843	1.5	0.657	Milenyo / September 28, 2006	5 -Year
30	14.444198	120.909188	0.859	1.5	0.641	Milenyo / September 28, 2006	5 -Year
31	14.444384	120.907574		1.5	0.445	Milenyo / September 28, 2006	5 -Year
32	14.444273	120.907798	0.866	1.5	0.634	Milenyo / September 28, 2006	5 -Year
33	14.444260	120.908136	1.104	1.5	0.396	Milenyo / September 28, 2006	5 -Year
34	14.446638	120.912541	1.064	1.5	0.436	Milenyo / September 28, 2006	5 -Year
35	14.445923	120.912761	1.049	1.5	0.451	Milenyo / September 28, 2006	5 -Year
36	14.435844	120.901333	0.987	1.5	0.513	Milenyo / September 28, 2006	5 -Year
37	14.436029	120.901148	0.927	1.5	0.573	Milenyo / September 28, 2006	5 -Year
38	14.435896	120.900939	0.904	1.5	0.596	Milenyo / September 28, 2006	5 -Year
39	14.439682	120.903375	0.967	1.5	0.533	Milenyo / September 28, 2006	5 -Year
40	14.439470	120.903114	1.148	1.5	0.352	Milenyo / September 28, 2006	5 -Year
41	14.440187	120.906795	0.97	1.5	0.530	Milenyo / September 28, 2006	5 -Year
42	14.441759	120.908971	0.832	1.5	0.668	Milenyo / September 28, 2006	5 -Year

Annex 11. Ilang-Ilang Field Validation Points
Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
43	14.442050	120.909414		1.5	0.440	Milenyo / September 28, 2006	5 -Year
44	14.435556	120.901368	0.151	1.5	1.349	Milenyo / September 28, 2006	5 -Year
45	14.465277	120.884646	0.061	0	-0.061	Milenyo / September 28, 2006	5 -Year
46	14.470518	120.887061	0.195	0	-0.195	Milenyo / September 28, 2006	5 -Year
47	14.471946	120.889167	0.377	0	-0.377	Milenyo / September 28, 2006	5 -Year
48	14.472730	120.889901	0.187	0	-0.187	Milenyo / September 28, 2006	5 -Year
49	14.472101	120.890178	0.093	0	-0.093	Milenyo / September 28, 2006	5 -Year
50	14.474737	120.888524	0.159	0	-0.159	Milenyo / September 28, 2006	5 -Year
51	14.475056	120.888468	0.03	0	-0.030	Milenyo / September 28, 2006	5 -Year
52	14.431762	120.885164	0.03	0	-0.030	Milenyo / September 28, 2006	5 -Year
53	14.453528	120.878878	0.03	0	-0.030	Milenyo / September 28, 2006	5 -Year
54	14.433678	120.887963	0.03	0	-0.030	Milenyo / September 28, 2006	5 -Year
55	14.453168	120.878763	0.383	0	-0.383	Milenyo / September 28, 2006	5 -Year
56	14.432489	120.887479	0.03	0	-0.030	Milenyo / September 28, 2006	5-Year
57	14.451/2/	120.878328	0.03	0	-0.030	Milenyo / September 28, 2006	5-Year
58	14.450968	120.878169	0.082	0	-0.082	Milenyo / September 28, 2006	5-Year
59 60	14.404520	120.885500	0.03	0	-0.030	Milenyo / September 28, 2006	5 -Year
61	14.470344	120.887343	0.03	0	-0.030	Milenyo / September 28, 2000	5 -Vear
62	14.4701091	120.888200	0.145	0	-0.145	Milenvo / September 28, 2000	5 -Vear
63	14 431063	120.884424	0.03	0	-0.129	Milenvo / September 28, 2006	5 -Year
64	14,455333	120.879709	0.07	0	-0.070	Milenvo / September 28, 2006	5 -Year
65	14.470372	120.887470	0.123	0.1	-0.023	Milenyo / September 28, 2006	5 -Year
66	14.470329	120.886669	0.175	0.1	-0.075	Milenyo / September 28, 2006	5 -Year
67	14.465088	120.883395	0.03	0.1	0.070	Milenyo / September 28, 2006	5 -Year
68	14.470894	120.892457	0.233	0.1	-0.133	Milenyo / September 28, 2006	5 -Year
69	14.473543	120.893395	0.069	0.1	0.031	Milenyo / September 28, 2006	5 -Year
70	14.473898	120.888596	0.041	0.1	0.059	Milenyo / September 28, 2006	5 -Year
71	14.474085	120.888130	0.257	0.1	-0.157	Milenyo / September 28, 2006	5 -Year
72	14.471991	120.888505	0.03	0.1	0.070	Milenyo / September 28, 2006	5 -Year
73	14.448875	120.880054	0.113	0.1	-0.013	Milenyo / September 28, 2006	5 -Year
74	14.469268	120.886097	0.03	0.12	0.090	Milenyo / September 28, 2006	5 -Year
75	14.473808	120.890079	0.136	0.12	-0.016	Milenyo / September 28, 2006	5 -Year
76	14.475416	120.890185	0.112	0.12	0.008	Milenyo / September 28, 2006	5 -Year
77	14.475548	120.896006	0.197	0.12	-0.077	Milenyo / September 28, 2006	5 -Year
78	14.473628	120.888330	0.113	0.12	0.007	Milenyo / September 28, 2006	5 -Year
79	14.471420	120.888917	0.093	0.12	0.027	Milenyo / September 28, 2006	5 -Year
80	14.470183	120.887950	0.111	0.13	0.019	Milenyo / September 28, 2006	5 -Year
81	14.470873	120.890121	0.12	0.14	0.020	Milenyo / September 28, 2006	5 -Year
82	14.475275	120.895140	0.136	0.14	0.004	Milenyo / September 28, 2006	5 -Year
83	14.469484	120.886529	0.084	0.14	0.056	Milenyo / September 28, 2006	5 -Year
84	14.466057	120.885486	0.201	0.15	-0.051	Milenyo / September 28, 2006	5 -Year
85	14.465518	120.884959	0.124	0.15	0.026	Milenyo / September 28, 2006	5 -Year
86	14.473113	120.890623	0.194	0.15	-0.044	Milenyo / September 28, 2006	5 -Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
87	14.476426	120.894001	0.253	0.15	-0.103	Milenyo / September 28, 2006	5 -Year
88	14.474025	120.894742	0.157	0.15	-0.007	Milenyo / September 28, 2006	5 -Year
89	14.470358	120.887705	0.369	0.15	-0.219	Milenyo / September 28, 2006	5 -Year
90	14.474694	120.889711	0.071	0.16	0.089	Milenyo / September 28, 2006	5 -Year
91	14.469256	120.887463	0.03	0.2	0.170	Milenyo / September 28, 2006	5 -Year
92	14.440111	120.878566	0.088	0.2	0.112	Milenyo / September 28, 2006	5 -Year
93	14.437069	120.880500	0.03	0.2	0.170	Milenyo / September 28, 2006	5 -Year
94	14.443122	120.879420	0.03	0.2	0.170	Milenyo / September 28, 2006	5 -Year
95	14.435604	120.885450	0.161	0.25	0.089	Milenyo / September 28, 2006	5 -Year
96	14.463563	120.884138	0.081	0.25	0.169	Milenyo / September 28, 2006	5 -Year
97	14.463851	120.884475	0.03	0.3	0.270	Milenyo / September 28, 2006	5 -Year
98	14.464211	120.886011	0.03	0.3	0.270	Milenyo / September 28, 2006	5 -Year
99	14.418696	120.885617	0.074	0.3	0.226	Milenyo / September 28, 2006	5 -Year
100	14.465385	120.886116	0.03	0.3	0.270	Milenyo / September 28, 2006	5 -Year
101	14.464614	120.883067	0.06	0.3	0.240	Milenyo / September 28, 2006	5 -Year
102	14.481509	120.911479	0.218	0.3	0.082	Milenyo / September 28, 2006	5 -Year
103	14.464919	120.885933	0.296	0.35	0.054	Milenyo / September 28, 2006	5 -Year
104	14.474387	120.891266	0.03	0.35	0.320	Milenyo / September 28, 2006	5 -Year
105	14.461103	120.881377	0.234	0.35	0.116	Milenyo / September 28, 2006	5 -Year
106	14.482932	120.910591	0.04	0.35	0.310	Milenyo / September 28, 2006	5 -Year
107	14.465765	120.886231	0.03	0.4	0.370	Milenyo / September 28, 2006	5 -Year
108	14.423408	120.884362	0.158	0.5	0.342	Milenyo / September 28, 2006	5 -Year
109	14.426444	120.882183	0.239	0.5	0.261	Milenyo / September 28, 2006	5 -Year
110	14.430862	120.885785	0.03	0.5	0.470	Milenyo / September 28, 2006	5 -Year
111	14.475157	120.888379	0.087	0.5	0.413	Milenyo / September 28, 2006	5 -Year
112	14.420286	120.884444	0.03	0.55	0.520	Milenyo / September 28, 2006	5 -Year
113	14.426062	120.882651	0.03	0.55	0.520	Milenyo / September 28, 2006	5 -Year
114	14.424869	120.884227	0.03	0.55	0.520	Milenyo / September 28, 2006	5 -Year
115	14.425232	120.883837	0.331	0.55	0.219	Milenyo / September 28, 2006	5 -Year
116	14.426845	120.882136	0.03	0.6	0.570	Milenyo / September 28, 2006	5 -Year
117	14.418885	120.884816	0.063	0.6	0.537	Milenyo / September 28, 2006	5 -Year
118	14.433646	120.883334	0.04	0.6	0.560	Milenyo / September 28, 2006	5 -Year
119	14.418902	120.885694	0.451	0.6	0.149	Milenyo / September 28, 2006	5 -Year
120	14.479058	120.901867	0.042	0.6	0.558	Milenyo / September 28, 2006	5 -Year
121	14.484956	120.902365	0.03	0.6	0.570	Milenyo / September 28, 2006	5 -Year
122	14.420727	120.884175	0.03	0.65	0.620	Milenyo / September 28, 2006	5 -Year
123	14.434962	120.885681	0.204	0.65	0.446	Milenyo / September 28, 2006	5 -Year
124	14.428266	120.883564	0.25	0.65	0.400	Milenyo / September 28, 2006	5 -Year
125	14.486506	120.901487	0.146	0.65	0.504	Milenyo / September 28, 2006	5 -Year
126	14.487690	120.903389	0.118	0.67	0.552	Milenyo / September 28, 2006	5 -Year
127	14.482985	120.897869	0.158	0.7	0.542	Milenyo / September 28, 2006	5 -Year
128	14.480420	120.896597	0.03	0.75	0.720	Milenyo / September 28, 2006	5 -Year
129	14.433462	120.884451	0.07	0.8	0.730	Milenyo / September 28, 2006	5 -Year
130	14.469239	120.890772	0.163	0.8	0.637	Milenyo / September 28, 2006	5 -Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
131	14.479598	120.895568	0.03	0.8	0.770	Milenyo / September 28, 2006	5 -Year
132	14.433328	120.885202	0.03	0.85	0.820	Milenyo / September 28, 2006	5 -Year
133	14.478844	120.897394	0.03	0.85	0.820	Milenyo / September 28, 2006	5 -Year
134	14.437624	120.885366	0.03	0.9	0.870	Milenyo / September 28, 2006	5 -Year
135	14.433935	120.885948	0.507	0.95	0.443	Milenyo / September 28, 2006	5 -Year
136	14.436996	120.901982	0.03	1	0.970	Milenyo / September 28, 2006	5 -Year
137	14.435915	120.885334	0.244	1.1	0.856	Milenyo / September 28, 2006	5 -Year
138	14.485580	120.899858	0.031	1.13	1.099	Milenyo / September 28, 2006	5 -Year
139	14.446449	120.906315	0.03	1.15	1.120	Milenyo / September 28, 2006	5 -Year
140	14.438579	120.885517	0.608	1.2	0.592	Milenyo / September 28, 2006	5 -Year
141	14.445236	120.903135	0.512	1.2	0.688	Milenyo / September 28, 2006	5 -Year
142	14.444008	120.903056	0.114	1.25	1.136	Milenyo / September 28, 2006	5 -Year
143	14.426841	120.880579	0.331	1.3	0.969	Milenyo / September 28, 2006	5 -Year
144	14.415414	120.918057	0.064	1.5	1.436	Milenyo / September 28, 2006	5 -Year
145	14.400959	120.907594	0.03	1.55	1.520	Milenyo / September 28, 2006	5 -Year
146	14.440341	120.878667	0.36	1.6	1.240	Milenyo / September 28, 2006	5 -Year
147	14.408581	120.896778	0.03	1.6	1.570	Milenyo / September 28, 2006	5 -Year
148	14.443471	120.879555	0.03	1.65	1.620	Milenyo / September 28, 2006	5 -Year
149	14.406144	120.925223	0.256	1.65	1.394	Milenyo / September 28, 2006	5 -Year
150	14.397844	120.887190	0.791	0	-0.791	Milenyo / September 28, 2006	5 -Year
151	14.390722	120.883812	0.052	0.3	0.248	Milenyo / September 28, 2006	5 -Year
152	14.385740	120.880585	0.213	0.7	0.487	Milenyo / September 28, 2006	5 -Year
153	14.432269	120.916212	0.03	0	-0.030	Milenyo / September 28, 2006	5 -Year
154	14.414177	120.884987	0.317	1.8	1.483	Milenyo / September 28, 2006	5 -Year
155	14.387116	120.883288	0.233	1	0.767	Milenyo / September 28, 2006	5 -Year
156	14.378742	120.879425	0.157	1	0.843	Milenyo / September 28, 2006	5 -Year
157	14.488130	120.901010	0.118	0.23	0.112	Milenyo / September 28, 2006	5 -Year
158	14.488864	120.899776	0.104	0.25	0.146	Milenyo / September 28, 2006	5 -Year
159	14.485710	120.898675	0.255	0.25	-0.005	Milenyo / September 28, 2006	5 -Year
160	14.483926	120.897440	0.087	0.3	0.213	Milenyo / September 28, 2006	5 -Year
161	14.490662	120.901247	0.107	0.36	0.253	Milenyo / September 28, 2006	5 -Year
162	14.490314	120.898190	0.212	0.38	0.168	Milenyo / September 28, 2006	5 -Year
163	14.486858	120.899563	0.073	0.4	0.327	Milenyo / September 28, 2006	5 -Year
164	14.490661	120.899134	0.131	0.43	0.299	Milenyo / September 28, 2006	5 -Year
165	14.488553	120.900762	0.218	0.45	0.232	Milenyo / September 28, 2006	5 -Year
166	14.485332	120.898689	0.276	0.53	0.254	Milenyo / September 28, 2006	5 -Year
167	14.480692	120.894847	0.073	2.8	2.727	Milenyo / September 28, 2006	5 -Year
168	14.481304	120.893173	0.139	3	2.861	Milenyo / September 28, 2006	5 -Year
169	14.487337	120.896291	0.2	0.1	-0.100	Milenyo / September 28, 2006	5 -Year
170	14.479308	120.891164	0.03	0.15	0.120	Milenyo / September 28, 2006	5 -Year
171	14.488020	120.892228	0.125	0.15	0.025	Milenyo / September 28, 2006	5 -Year
172	14.476476	120.890564	0.108	0.2	0.092	Milenyo / September 28, 2006	5 -Year
173	14.488735	120.897927	0.194	0.25	0.056	Milenyo / September 28, 2006	5 -Year
174	14.483543	120.901823	0.174	0.3	0.126	Milenyo / September 28, 2006	5 -Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return
	Lat	Long					
175	14.476812	120.888722	0.334	0.35	0.016	Milenyo / September 28, 2006	5 -Year
176	14.483798	120.901107	0.089	0.35	0.261	Milenyo / September 28, 2006	5 -Year
177	14.484665	120.896122	0.072	0.4	0.328	Milenyo / September 28, 2006	5 -Year
178	14.490027	120.897447	0.03	0.45	0.420	Milenyo / September 28, 2006	5 -Year
179	14.482627	120.890984	0.287	0.1	-0.187	Milenyo / September 28, 2006	5 -Year
180	14.482187	120.894945	0.068	0.2	0.132	Milenyo / September 28, 2006	5 -Year
148	14.443471	120.879555	0.03	1.65	1.620	Milenyo / September 28, 2006	5 -Year
149	14.406144	120.925223	0.256	1.65	1.394	Milenyo / September 28, 2006	5 -Year
150	14.397844	120.887190	0.791	0	-0.791	Milenyo / September 28, 2006	5 -Year

Annex 12. Educational Institutions affected by flooding in Ilang-Ilang Floodplain

CAVITE								
ILANG-ILANG								
Building Name	Barangay	Rainfall Scenario						
		5-year	25-year	100-year				
Hamorawon Day Care Center	San Juan	Medium	Medium	High				
Hamorawon Elementary School	San Juan	Medium	Medium	High				
Sto. Niño Elementary School	Santo Niño							
Sto. Niño National High School	Santo Niño							

Annex 13. Health Institutions affected by flooding in Ilang-Ilang Floodplain

	CAVITE						
ILANG-ILANG							
Building Name	Barangay	Rainfall Scenario					
		5-year	25-year	100-year			
Sto. Niño Health Center	Santo Niño	Medium	Medium	Medium			
Rural Health Unit	San Juan						