Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Calumpang River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Mapua Institute of University (MIT)

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and Mapua Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E. C. Paringit and F. A. Uy (eds.) (2017), LiDAR Surveys and Flood Mapping of Calumpang River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-244pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Aldrine Francis A. Uy Project Leader, PHIL LIDAR 1 Program MAPUA Institute of Technology Intramuros, Philippines 1002 E-mail: faauy@mapua.edu.ph

Enrico C. Paringit, Dr. Eng. Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-046-4

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	х
CHAPTER 1: OVERVIEW OF THE PROGRAM AND SILONGIN RIVER	
1.1 Background of the Phil-LiDAR 1 Program	
1.2 Overview of the Calumpang River Basin	
CHAPTER 2: LIDAR ACQUISITION IN CALUMPANG FLOODPLAIN	1
2.1 Flight Plans	
2.2 Ground Base Stations	
2.3 Flight Missions	
2.4 Survey Coverage	
CHAPTER 3: LIDAR DATA PROCESSING FOR CALUMPANG FLOODPLAIN	
3.1 Overview of the LiDAR Data Pre-Processing	12
3.2 Transmittal of Acquired LiDAR Data	13
3.3 Trajectory Computation	13
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	34
3.12.1 Quality Checking of Digitized Features' Boundary	34
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS IN THE CALUMPANG RIVER BASIN .	
4.1 Summary of Activities	
,	
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-built Survey, and Water Level Marking	
4.6 Validation Points Acquisition Survey	
4.7 River Bathymetric Survey	52
CHAPTER 5: FLOOD MODELING AND MAPPING	56
5.1 Data Used for Hydrologic Modeling	56
5.1.1 Hydrometry and Rating Curves	
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	
5.2 RIDF Station	
5.3 HMS Model	
5.4 Cross-Section Data	
5.4.1 Manning's n	
5.5 Flo 2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated Outflow Hydrographys and Discharge Values for Different Rainfall Return Period	ls 69
5.7.1 Hydrograph Using the Rainfall Runoff Model	69
5.8 River Analysis (RAS) Model Simulation	
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding of Affected Areas	
5.10 filed Validation	
REFERENCES	
ANNEXES	
Annex 1. OPTECH Technical Specification	
Annex 2. NAMRIA Certificates of Reference Points Used in the LiDAR Survey	
Annex 3. Baseline Processing Reports of Reference Points Used in the LiDAR Survey	124

Annex 4. The LiDAR Survey Team Composition	126
Annex 5. Data Transfer Sheet for Calumpang Floodplain	
Annex 6. Flight Logs for the Flight Missions	132
Annex 7. Flight Status Reports	145
Annex 8. Mission Summary Reports	159
Annex 9. Calumpang Model Basin Parameters	219
Annex 10. Calumpang Model Reach Parameters	222
Annex 11. Calumpang Field Validation	224
Annex 12. Educational Institutions Affected by Flooding in Calumpang Floodplain	229
Annex 13. Health Institutions Affected by Flooding in Calumpang Floodplain	233

LIST OF TABLES

Table 1. Flight planning parameters for Gemini LiDAR System Table 2. Flight planning parameters for Pegasus LiDAR System	
Table 3. Details of the recovered NAMRIA horizontal control point BTG-51 used as base	
station for the LiDAR acquisition	5
Table 4. Details of the recovered NAMRIA horizontal control point QZN-21 used as base	
station for the LiDAR acquisition	6
Table 5. Details of the recovered NAMRIA horizontal control point BTG-3343 used as base	_
station for the LiDAR acquisition	/
Table 6. Details of the established reference point BTG-A with processed coordinates used as base station for the LiDAR acquisition	o
Table 7. Details of the established reference point TGT-1 with processed coordinates used as	0
base station for the LiDAR acquisition	8
Table 8. Ground control points used during LiDAR data acquisition	
Table 9. Flight missions for LiDAR data acquisition in Calumpang Floodplain	
Table 10. Actual parameters used during LiDAR data acquisition	
Table 11. List of municipalities/cities surveyed during Calumpang Floodplain LiDAR survey	
Table 12. Self-calibration results values for Calumpang flights	
Table 13. List of LiDAR blocks for Calumpang Floodplain	
Table 14. Calumpang classification results in TerraScan	
Table 15. LiDAR blocks with their corresponding area	
Table 16. Shift values of each LiDAR Block of Calumpang Floodplain	
Table 17. Calibration statistical measures	
Table 18. Validation statistical measures	32
Table 19. Quality checking ratings for Calumpang building features	34
Table 20. Building features extracted for Calumpang Floodplain	35
Table 21. Total length of extracted roads for Calumpang Floodplain	35
Table 22. Number of extracted water bodies for Calumpang Floodplain	35
Table 23. List of reference and control points used in Cavite-Batangas Region survey (Source:	
NAMRIA, UP-TCAGP)	38
Table 24. Baseline processing report for Calumpang River Basin static survey	43
Table 25. Control point constraints	
Table 26. Adjusted grid coordinates	
Table 27. Adjusted geodetic coordinates	
Table 28. Reference and control points and their location (Source: NAMRIA, UP-TCAGP)	
Table 29. RIDF values for Ambulong Rain Gauge computed by PAGASA	
Table 30. Look-up table for Manning's n values (Source: Brunner, 2010)	
Table 31. Range of calibrated values for Calumpang	
Table 32. Summary of the efficiency test of Calumpang HMS Model	
Table 33. Peak values of the Calumpang HEC-HMS Model outflow using the Ambulong RIDF	
Table 34. Municipalities affected in Calumpang Floodplain	
Table 35. Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
Table 36. Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
Table 37. Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
Table 38. Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
Table 39. Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
Table 40. Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
Table 41. Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
Table 42. Affected areas in Rosario, Batangas during a 5-year rainfall return period	85
Table 43. Affected areas in Rosario, Batangas during a 5-year rainfall return period	
Table 44. Affected areas in Ibaan, Batangas during a 5-year rainfall return period	86
Table 45 Affected areas in Ibaan, Batangas during a E year rainfall return period	86 87
Table 45. Affected areas in Ibaan, Batangas during a 5-year rainfall return period	86 87 88
Table 46. Affected areas in Taysan, Batangas during a 5-year rainfall return period	86 87 88 89
Table 46. Affected areas in Taysan, Batangas during a 5-year rainfall return periodTable 47. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	86 87 88 89 91
Table 46. Affected areas in Taysan, Batangas during a 5-year rainfall return periodTable 47. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 48. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	86 87 88 89 91 91
Table 46. Affected areas in Taysan, Batangas during a 5-year rainfall return periodTable 47. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 48. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 49. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 49. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	86 87 88 89 91 91 92
Table 46. Affected areas in Taysan, Batangas during a 5-year rainfall return period.Table 47. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 48. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 49. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 50. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	86 87 88 91 91 92 92
Table 46. Affected areas in Taysan, Batangas during a 5-year rainfall return periodTable 47. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 48. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 49. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 50. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 51. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 51. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	86 87 88 91 91 92 92 93
Table 46. Affected areas in Taysan, Batangas during a 5-year rainfall return periodTable 47. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 48. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 49. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 50. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 51. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 52. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 51. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 52. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	 86 87 88 89 91 91 92 92 93 93
Table 46. Affected areas in Taysan, Batangas during a 5-year rainfall return periodTable 47. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 48. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 49. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 50. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 51. Affected areas in Batangas City, Batangas during a 25-year rainfall return periodTable 51. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	 86 87 88 91 91 92 92 93 93 94

Table 55. Affected areas in Rosario, Batangas during a 25-year rainfall return period
Table 57. Affected areas in Ibaan, Batangas during a 25-year rainfall return period 100
Table 58. Affected areas in Taysan, Batangas during a 25-year rainfall return period
Table 59. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 102
Table 60. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 103
Table 61. Affected areas in Batangas City, Batangas during a 100-year rainfall return period
Table 62. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 104
Table 63. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 104
Table 64. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 105
Table 65. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 105
Table 66. Affected areas in Rosario, Batangas during a 100-year rainfall return period
Table 67. Affected areas in Rosario, Batangas during a 100-year rainfall return period
Table 68. Affected areas in Ibaan, Batangas during a 100-year rainfall return period 111
Table 69. Affected areas in Ibaan, Batangas during a 100-year rainfall return period 112
Table 70. Affected areas in Taysan, Batangas during a 100-year rainfall return period 114
Table 71. Areas covered by each warning level with respect to the rainfall scenarios
Table 72. Actual flood depth vs. simulated flood depth in Calumpang
Table 73. Summary of accuracy assessment in Calumpang River Basin Survey 117

LIST OF FIGURES

Figure 1. Map of the Calumpang River Basin (in brown) Figure 2. Flight plan and base stations for Calumpang Floodplain Figure 3. GPS set-up over BTG-51 inside the vicinity of Mabini Shrine in Brgy, Talaga, Tanuan City,	
Batangas (a) NAMRIA reference point BTG-51 (b) as recovered by the field team Figure 4. GPS set-up over QZN-21 inside Paaralang Elementarya ng Silangang Tiaong of Brgy.	5
Poblacion III, Tiaong, Quezon Province (a) and NAMRIA reference point QZN-21 (b) as recovered by the field team	6
Figure 5. GPS set-up over BTG-3343 near the corner of Rizal and P. Herrera St. of Brgy. Pallocan, Batangas City, Batangas Province (a) and NAMRIA reference point BTG-3343 (b) as	
recovered by the field team	
Figure 6. Actual LiDAR survey coverage for Calumpang Floodplain	
Figure 7. Schematic diagram for Data Pre-Processing Component	
Figure 8. Smoothed Performance Metric Parameters of a Calumpang Flight 3669G	
Figure 9. Solution Status Parameters of Calumpang Flight 3669G Figure 10. Best estimated trajectory of the LiDAR missions conducted over Calumpang Floodplain	
Figure 10. Best estimated trajectory of the LIDAR missions conducted over Calumpang Floodplain	
Figure 12. Image of data overlap for Calumpang Floodplain	
Figure 13. Pulse density map of merged LiDAR data for Calumpang Floodplain	19
Figure 14. Elevation difference map between flight lines for Calumpang Floodplain	
Figure 15. Quality checking for a Calumpang flight 3669G using the Profile Tool of QT Modeler	
Figure 16. Tiles for Calumpang Floodplain (a) and classification results (b) in TerraScan	
Figure 17. Point cloud before (a) and after (b) classification	22
Figure 18. The production of last return DSM (a) and DTM (b); first return DSM (c) and secondary	
DTM (d) in some portion of Calumpang Floodplain	
Figure 19. Calumpang Floodplain with available orthophotographs	
Figure 20. Sample orthophotograph tiles for Calumpang Floodplain Figure 21. Portions in the DTM of Calumpang Floodplain—a bridge before (a) and after (b) manual	24
editing; a paddy field before (c) and after (d) data retrieval; and a building before (e)	
and after (f) manual editing	26
Figure 22. Map of Processed LiDAR Data for Calumpang Floodplain	
Figure 23. Map of Calumpang Floodplain with validation survey points in green	
Figure 24. Correlation plot between calibration survey points and LiDAR data	
Figure 25. Correlation plot between validation survey points and LiDAR data	
Figure 26. Map of Calumpang Floodplain with bathymetric survey points shown in blue	
Figure 27. Blocks (in blue) of Calumpang building features subjected to QC	
Figure 28. Extracted features for Calumpang Floodplain.	36
Figure 29. Extent of the bathymetric survey (in blue) in Calumpang River Basin and the LiDAR data	27
validation survey (in red) Figure 30. GNSS Network of Calumpang River field survey	
Figure 31. GNSS receiver, Trimble [®] SPS 985, set-up at BG-207 at Palico Bridge, Brgy. Luntal,	50
Nasugbu, Batangas	39
Figure 32. GNSS receiver, Trimble [®] SPS 985, set-up at BTG-7 in Dela Paz Lighthouse in Brgy.	55
Dela Paz, Batangas City, Batangas	40
Figure 33. GNSS receiver, Trimble [®] SPS 882, set-up at UP-ASN at San Nicholas Bridge, Brgy.	
Poblacion, San Nicholas, Batangas	40
Figure 34. GNSS base receiver, Trimble [®] SPS 852, set-up at UP-BTN at Bantilan Bridge, Brgy.	
Manggalang Banitilan, Sariaya, Quezon	41
Figure 35. GNSS base receiver, Trimble [®] SPS 852, set-up at UP-CLG1 in Calumpang Bridge, Brgy.	44
Cumintang Ibaba, Batangas City, Batangas Figure 36. GNSS base receiver, Trimble [®] SPS 882, set-up at UP-LOBO, in Lobo Bridge, Brgy.	41
Lagadlarin, Lobo, Batangas	12
Figure 37. GNSS receiver, Trimble [®] SPS 882, set-up at UP-LWY1 at Lawaye Bridge, Brgy. Calitcalit-	
Mabalanoy, San Juan, Batangas Figure 38. Bridge of Promise Panorama	
Figure 39. Calumpang bridge cross-section location map	
Figure 40. Bridge of Promise cross-section diagram	
Figure 41. Bridge of Promise bridge data form	49
Figure 42. Determination of water surface elevation at the river banks of the Bridge of Promise	
Figure 43. Marking of MSL-based elevation on the right side of a pier in Bridge of Promise	
Figure 44. Ground Validation set up in Calumpang Survey	
Figure 45. Calumpang Ground validation survey	52
Figure 46. OHMEX [™] single-beam echo sounder set-up on a rubber for the Calumpang River	
bathymetric survey	53

	. Bathymetric points gathered along Calumpang River	
Figure 48.	. Riverbed profile of Calumpang River	55
	. Location map of rain gauges used for the calibration of the Calumpang HEC-HMS Model	
Figure 50.	. Cross-section plot of Bridge of Promise	57
	. Rating curve at Bridge of Promise, Batangas City, Batangas Province	
	. Rainfall and outflow data at Calumpang used for modeling	
	. Ambulong RIDF location relative to Calumpang River Basin	
Figure 54.	. Synthetic storm generated for a 24-hour period rainfall for various return periods	60
	. Soil map of Calumpang River Basin	
	. Land cover map of Calumpang River Basin	
Figure 57.	. Slope map of Calumpang River Basin	62
Figure 58.	. Stream delineation map of Calumpang River Basin	63
Figure 59.	. Calumpang River Basin Model Domain generated by HEC-HMS	64
	. River cross-section of Calumpang River generated through Arcmap HEC GeoRAS tool	65
Figure 61.	. Screenshot of subcatchment with the computational area to be modeled in FLO-2D	
	GDS Pro	
	. Generated 100-year rain return hazard map from FLO-2D Mapper	
	. Generated 100-year rain return flow depth map from FLO-2D Mapper	67
Figure 64.	. Outflow hydrograph of Calumpang produced by the HEC-HMS model compared with	
	observed outflow	67
Figure 65.	Outflow hydrograph at Bridge of Promise generated using Ambulong RIDF simulated in	
	HEC-HMS.	
	Sample output of Calumpang RAS Model	
Figure 67.	. 100-year flood hazard map for Calumpang Floodplain	/1
	. 100-year flow depth map for Calumpang Floodplain	
	. 25-year flood hazard map for Calumpang Floodplain	
	. 25-year flow depth map for Calumpang Floodplain	
	. 5-year flood hazard map for Calumpang Floodplain	
	. 5-year flow depth map for Calumpang Floodplain	
	Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 5-year rainfall return period	
	. Affected areas in Batangas City, Batangas during a 5-year rainfall return period . Affected areas in Rosario, Batangas during a 5-year rainfall return period	
	. Affected areas in Rosario, Batangas during a 5-year rainfall return period	
	. Affected areas in Ibaan, Batangas during a 5-year rainfall return period	
	. Affected areas in Ibaan, Batangas during a 5-year rainfall return period	
	. Affected Areas in Taysan, Batangas during a 5-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 25-year rainfall return period	
	. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 25-year rainfall return period	
	. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	
	. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 25-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 25-year rainfall return period	
	Affected areas in Rosario, Batangas during a 25-year rainfall return period	
	Affected areas in Rosario, Batangas during a 25-year rainfall return period	
	Affected areas in Ibaan, Batangas during a 25-year rainfall return period	
0	Affected areas in Ibaan, Batangas during a 25-year rainfall return period	
	Affected Areas in Taysan, Batangas during 25-Year Rainfall Return Period 1	
	Affected areas in Batangas City, Batangas during a 100-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 100-year rainfall return period	
	Affected areas in Batangas City, Batangas during a 100-year rainfall return period	
	0. Affected areas in Batangas City, Batangas during a 100-year rainfall return period1	
Figure 10	1. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 1	80
	2. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 1	
	3. Affected areas in Batangas City, Batangas during a 100-year rainfall return period 1	
	4. Affected areas in Rosario, Batangas during a 100-year rainfall return period 1	
	5. Affected areas in Rosario, Batangas during a 100-year rainfall return period 1	
	6. Affected areas in Ibaan, Batangas during a 100-year rainfall return period 1	
	7. Affected areas in Ibaan, Batangas during a 100-year rainfall return period 1	
	8. Affected Areas in Taysan, Batangas during 100-Year Rainfall Return Period1	
Figure 109	9. Flood validation points of Calumpang River Basin1	16

Figure 110. Flood map depth vs. actual flood depth 116
--

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation					
Ab	abutment					
ALTM	Airborne LiDAR Terrain Mapper					
ARG	automatic rain gauge					
ATQ	Antique					
AWLS	Automated Water Level Sensor					
BA	Bridge Approach					
BM	benchmark					
CAD	Computer-Aided Design					
CN	Curve Number					
CSRS	Chief Science Research Specialist					
DAC	Data Acquisition Component					
DEM	Digital Elevation Model					
DENR	Department of Environment and Natural Resources					
DOST	Department of Science and Technology					
DPPC	Data Pre-Processing Component					
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]					
DRRM	Disaster Risk Reduction and Management					
DSM	Digital Surface Model					
DTM	Digital Terrain Model					
DVBC	Data Validation and Bathymetry Component					
FMC	Flood Modeling Component					
FOV	Field of View					
GiA	Grants-in-Aid					
GCP	Ground Control Point					
GNSS	Global Navigation Satellite System					
GPS	Global Positioning System					
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System					
HEC-RAS	Hydrologic Engineering Center - River Analysis System					
НС	High Chord					
IDW	Inverse Distance Weighted [interpolation method]					
IMU	Inertial Measurement Unit					
kts	knots					
LAS	LiDAR Data Exchange File format					
LC	Low Chord					
LGU	local government unit					
Lidar	Light Detection and Ranging					
LMS	LiDAR Mapping Suite					

m AGL	meters Above Ground Level				
MIT	Mapua Institute of Technology				
MMS	Mobile Mapping Suite				
MSL	mean sea level				
NAMRIA	National Mapping and Resource Information Authority				
NSTC	Northern Subtropical Convergence				
PAF	Philippine Air Force				
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration				
PDOP	Positional Dilution of Precision				
РРК	Post-Processed Kinematic [technique]				
PRF	Pulse Repetition Frequency				
PTM	Philippine Transverse Mercator				
QC	Quality Check				
QT	Quick Terrain [Modeler]				
RA	Research Associate				
RIDF	Rainfall-Intensity-Duration- Frequency				
RMSE	Root Mean Square Error				
SAR	Synthetic Aperture Radar				
SCS	Soil Conservation Service				
SRTM	Shuttle Radar Topography Mission				
SRS	Science Research Specialist				
SSG	Special Service Group				
ТВС	Thermal Barrier Coatings				
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry				
UTM	Universal Transverse Mercator				
WGS	World Geodetic System				

CHAPTER 1: OVERVIEW OF THE PROGRAM AND SILONGIN RIVER

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled *Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods* (Paringit et al., 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the Mapua Institute of Technology (MIT). MIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 25 river basins in the Southern Tagalog Region. The university is located in Intramuros in the City of Manila.

1.2 Overview of the Calumpang River Basin

The Calumpang River Basin is a perennial body of water located in Batangas province. It serves as a catchment basin for the areas of Ibaan, San Jose, Taysan, Rosario, Batangas City and a portion of Lipa City. It drains into Batangas Bay, and its mouth is located in Batangas City. The Calumpang River serves as its main channel.

The river basin is often visited by typhoons every year, which causes flood in its low-lying areas. It results in damage to surrounding infrastructures and loss of life among the people living nearby. In 2014, Typhoon Glenda devastated the municipalities and cities covered by the river basin. Batangas City, located at the river basin's mouth, experienced flooding on its barangays situated along the riverbank. Due to the high discharge of the river, Calumpang River swelled up, leading to the collapse of Calumpang Bridge that crosses its mouth. Historically, this is not the first time that Batangas City experienced flash flood. In October 2009, during Typhoon Santi, the Bridge of Promise, which also crosses the Calumpang River, went down due to high volume of water rushing through the river. There was also another incident sometime in the 1920s when 200 people died and major properties damaged due to the Calumpang River overflowing.

These casualties brought by flooding only demonstrate the need of an accurate and reliable flood forecasting system. With the advancement of technology, Light Detection and Ranging (LiDAR), a technology which allows the production of highly accurate digital elevation models (DEMs) of the earth, can be applied in flood modeling to produced high resolution flood hazard maps that for use by the local government units in planning, development, and disaster preparedness.

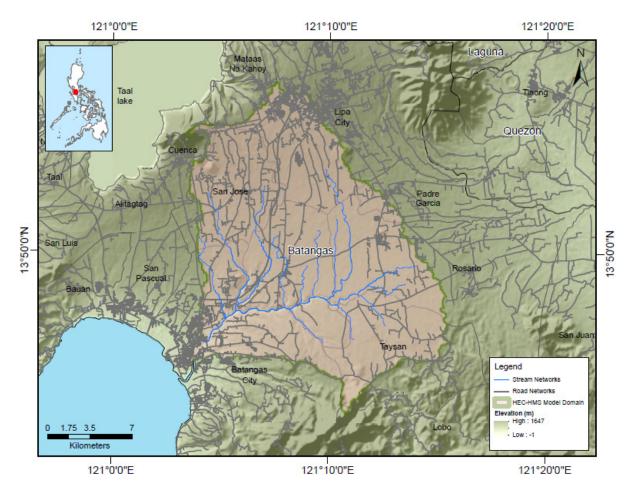


Figure 1. Map of the Calumpang River Basin (in brown)

CHAPTER 2: LIDAR ACQUISITION IN CALUMPANG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Grace B. Sinadjan, Ms. Jonalyn S. Gonzales

The methods applied in this chapter were based on the DREAM methods manual (Sarmiento et al., 2014) and further enhanced and updated in Paringit et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Calumpang floodplain in Batangas .These missions were planned for 12 lines that run for at most three (3) hours including take-off, landing, and turning time. The flight planning parameters for Gemini and Pegasus LiDAR systems are found in Table 1 and Table 2, respectively. Figure 2 shows the flight plan for Calumpang Floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK18KDBEF	1000	30	40	125	50	130	5
BLK18SG	1000	30	40	125	50	130	5
BLK18SF	1000	30	40	125	50	130	5
BLK18SAB	1000	30	40	125	50	130	5
BLK18KLB	850	40	50	125	40	120	5
BLK18SAB	600	40	40	125	20	130	5
BLK18SBC	1000	30	40	125	50	130	5
BLK18SC	850	40	50	125	40	130	5

Table 1. Flight planning parameters for Gemini LiDAR System

Table 2. Flight planning parameters for Pegasus LiDAR System

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK18SAB	1000	15	50	200	30	130	5
BLK18SABEK	1000	15	50	200	30	130	5

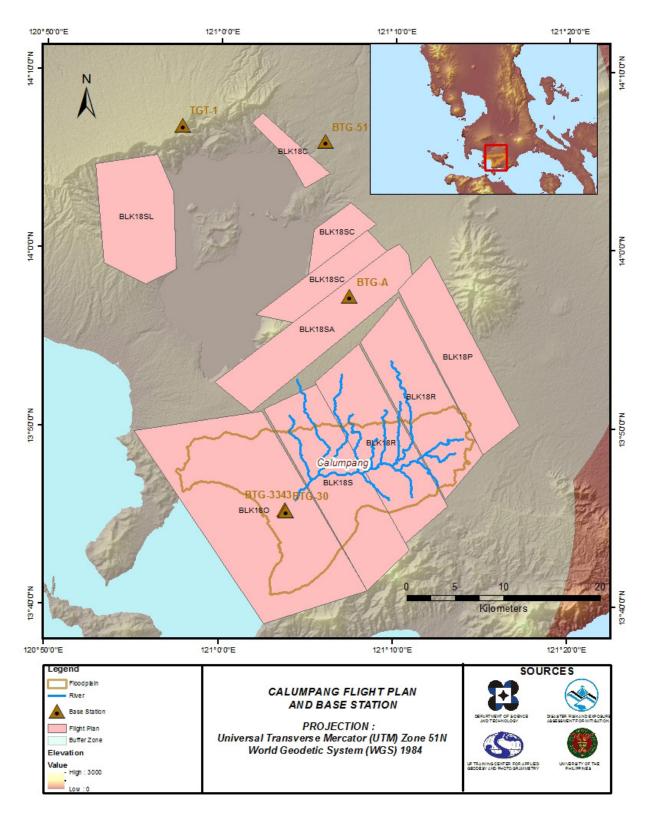


Figure 2. Flight plan and base stations for Calumpang Floodplain

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA reference points, BTG-51 and QZN-21, which are of second (2nd)-order accuracy, and BTG-3343, which is of fourth (4th)-order accuracy. The project team also established two (2) ground control points, BTG-A and TGT-1. The certifications for the base stations are found in ANNEX 2 while the baseline processing reports for the established ground control points are found in ANNEX 3. These points were used as base stations during flight operations for the entire duration of the survey (December 21, 2016–January 16, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and TRIMBLE SPS 882. Flight plans and location of base stations used during the aerial LiDAR acquisition in Calumpang Floodplain are shown in Figure 2.

Figure 3 to Figure 5 show the recovered NAMRIA reference points within the area. In addition, Table 3 to Table 7 show the details about the following NAMRIA reference points and established points, while Table 8 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

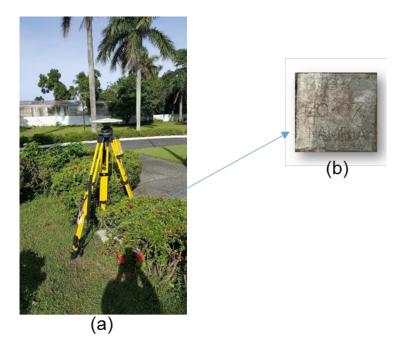


Figure 3. GPS set-up over BTG-51 inside the vicinity of Mabini Shrine in Brgy, Talaga, Tanuan City, Batangas (a) NAMRIA reference point BTG-51 (b) as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point BTG-51 used as base station for the LiDAR acquisition

Station Name	BTG-51	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude E i p s o i d a Height	14° 06' 8.57112" North 121° 05' 52.31002 "East 152.36900 meters
Grid Coordinates Philippine Transverse Mercator Zone 5 (PTM Zone 3 PRS 92)	Easting Northing	510567.544 meters 1559501.067 meters
Geographic Coordinates World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude E i p s o i d a Height	14° 06' 3.27790" North 121° 05' 57.24592" East 197.55100 meters

Grid Coordinates	Easting	1559783.81 meters
Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	294641.94 meters

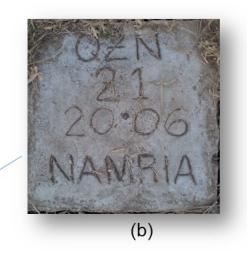


Figure 4. GPS set-up over QZN-21 inside Paaralang Elementarya ng Silangang Tiaong of Brgy. Poblacion III, Tiaong, Quezon Province (a) and NAMRIA reference point QZN-21 (b) as recovered by the field team

Table 4. Details of the recovered NAMRIA horizontal control point QZN-21 used as base station for the LiDAR acquisition

Station Name	QZN-21	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates	Latitude	13° 57' 44.31576" North
Philippine Reference of 1992 Datum (PRS 92)	Longitude	121° 19' 27.34822" East
	Ellipsoidal Height	51.25800 meters
Grid Coordinates	Easting	535036.042 meters
Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1544027.063 meters
Coographic Coordinates	Latitude	13° 57′ 39.07397″ North
Geographic Coordinates	Longitude	121° 19' 32.29499" East
World Geodetic System 1984 Datum (WGS 84)	Ellipsoidal Height	97.38200 meters
Grid Coordinates	Easting	318981.12 meters
Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	1544101.56 meters

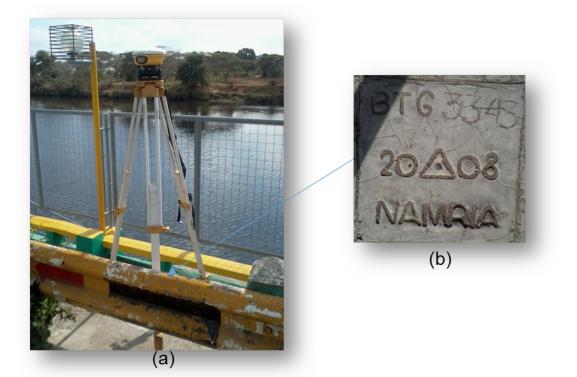


Figure 5. GPS set-up over BTG-3343 near the corner of Rizal and P. Herrera St. of Brgy. Pallocan, Batangas City, Batangas Province (a) and NAMRIA reference point BTG-3343 (b) as recovered by the field team

Table 5. Details of the recovered NAMRIA horizontal control point BTG-3343 used as base station for the LiDAR acquisition

Station Name	BTG-3343			
Order of Accuracy	4 th			
Relative Error (horizontal positioning)	1:10,000			
	Latitude	13° 45' 28.66051" North		
Geographic Coordinates	Longitude	121° 03' 42.01826" East		
Philippine Reference of 1992 Datum (PRS 92)	Ellipsoidal Height	9.01500 meters		
Grid Coordinates	Easting	506669.312 meters		
Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Northing	1521397.691 meters		
	Latitude	13°45 '23.44551" North		
Geographic Coordinates	Longitude	121° 03' 46.98401" East		
World Geodetic System 1984 Datum (WGS 84)	Ellipsoidal Height	55.06100 meters		
Grid Coordinates	Easting	290422.78 meters		
Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	1521707.64 meters		

Table 6. Details of the established reference point BTG-A with processed coordinates used as base station for the LiDAR acquisition

Station Name	BTG-A		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)		1:50,000	
	Latitude	13° 59′ 51.95603″ North	
Geographic Coordinates Philippine Reference of 1992 Datum (PRS 92)	Longitude	120° 42' 18.98286 " East	
	Ellipsoidal Height	49.08900 meters	
Grid Coordinates	Easting	252126.100 meters	
Philippine Transverse Mercator Zone 5 (PTM Zone 3 PRS 92)	Northing	1548584.818 meters	
	Latitude	13° 59′ 46.65526″ North	
Geographic Coordinates World Geodetic System 1984 Datum (WGS 84)	Longitude	120° 42' 23.92980" East	
	Ellipsoidal Height	93.60200 meters	

Table 7. Details of the established reference point TGT-1 with processed coordinates used as base station for the LiDAR acquisition

Station Name	TGT-1		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)		1:50,000	
Geographic Coordinates Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 07' 00.06528" North 120° 57' 38.31871 " East 613.37000 meters	
Grid Coordinates Philippine Transverse Mercator Zone 5 (PTM Zone 3 PRS 92)	Easting Northing	279835.821 meters 1561490.819 meters	
Geographic Coordinates World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 06' 54.75787" North 120° 57' 43.25375" East 93.60200 meters	

Table 8. Ground control points used during LiDAR data acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points
14 Feb 2014	1107P	1BLK18QRS45A	QZN-21 and QZN-21A
15 Feb 2014	1111P	1BLK18QRS46A	QZN-21 and QZN-21A
17 Feb 2014	1119P	1BLK18O48A	BTG-30 and BTG-3433
18 Feb 2014	1123P	1BLK18OS49A	BTG-30 and BTG-3433
18 Feb 2014	1125P	1BLK18S49B	BTG-30 and BTG-3433
21 Dec 2015	3000P	1BLK18SB355A	BTG-51 and BTG-A
21 Dec 2015	3002P	1BLK18S356A	BTG-51 and BTG-A
9 Jan 2016	3689G	2BLK18SV009A	BTG-51 and BTG-A
30 Dec 2015	3673G	2BLK18S363A	BTG-51 and BTG-A
9 Jan 2016	3691G	2BLK18SVV009B	BTG-51 and BTG-A
29 Dec 2015	3669G	2BLK18SBC363A	BTG-51 and BTG-A
29 Dec 2015	3671G	2BLK18BC363B	BTG-51 and BTG-A
16 Jan 2016	3693G	2BLK18SCB016A	BTG-51 and TGT-1

2.3 Flight Missions

Thirteen (13) missions were conducted to complete the LiDAR data acquisition in Calumpang Floodplain, for a total of forty two hours and twenty four minutes (42+24) of flying time for RP-C9022 and RP-C9122. All missions were acquired using the Pegasus and Gemini LiDAR systems. Table 9 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 10 presents the actual parameters used during the LiDAR data acquisition.

	Flight	Flight Plan		Area Surveyed	Area Surveyed	No. of Images (Frames)	Flying Hours	
Date Surveyed	Number	Area (km²)	Area (km²)	within the Floodplain (km²)	Outside the Floodplain (km ²)		Hr	Min
14 Feb 2014	1107P	567.95	161.35	73.11	88.24	300	3	35
15 Feb 2014	1111P	567.95	177.52	56.24	121.28	346	3	47
17 Feb 2014	1119P	567.95	175.38	111.49	63.89	392	4	11
18 Feb 2014	1123P	567.95	181.32	109.93	71.39	NA	3	53
18 Feb 2014	1125P	567.95	63.60	50.16	13.44	NA	3	29
21 Dec 2015	3000P	525.1	69.21	4.32E-04	69.20	173	2	21
21 Dec 2015	3002P	710.1	280.85	2.19	278.66	614	3	21
9 Jan 2016	3689G	358.19	144.36	NA	144.36	NA	3	47
30 Dec 2015	3673G	358.19	149.22	NA	149.22	NA	3	29
9 Jan 2016	3691G	29.10	4.8	NA	4.8	NA	2	23
29 Dec 2015	3669G	342.93	144.41	NA	144.41	NA	2	47
29 Dec 2015	3671G	342.93	68.37	NA	68.37	NA	1	58
16 Jan 2016	3693G	85.40	49.1	NA	49.1	NA	3	23
TOTAL		5591.69	1669.49	403.12	1266.36	1825	42	24

Table 9. Flight missions for LiDAR data acquisition in Calumpang Floodplain

Table 10. Actual parameters used during LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1119P	1000	30	50	200	30	130	5
1123P	1000	30	50	200	30	130	5
1107P	1000	30	50	200	30	130	5
1111P	1000	30	50	200	30	130	5
1125P	1000	30	50	200	30	130	5
3000P	1000	15	50	200	30	130	5
3002P	1000	15	50	200	30	130	5
3689G	1000	30	40	125	50	130	5
3673G	1000	30	40	125	50	130	5
3691G	850	40	50	125	40	120	5
3669G	600	40	40	125	20	130	5
3671G	1000	30	40	125	50	130	5
3693G	850	40	50	125	40	130	5

2.4 Survey Coverage

Calumpang Floodplain is located along the provinces of Batangas, Cavite, Laguna, and Quezon with majority of the floodplain situated within the municipalities of Batangas. The municipality of San Jose in Batangas was fully covered during the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 11. The actual coverage of the LiDAR acquisition for Calumpang Floodplain is presented in Figure 6.

Province	Municipality/City	Area of Municipality/City	Total Area Surveyed	Percentage of Area Surveyed
	San Jose	60.70	60.70	100%
	Lipa City	202.80	179.45	88.49%
	Cuenca	21.91	22.87	81.96%
	Alitagtag	27.03	19.72	72.96%
	Laurel	69.53	49.31	70.91%
	Tanauan City	111.77	72.13	64.53%
Detenses	Batangas City	274.48	175.66	64.00%
Batangas	Bauan	51.31	30.37	59.19%
	Agoncillo	39.54	22.70	57.41%
	Rosario	197.03	86.45	43.88%
	Taysan	91.03	35.26	38.73%
	Santo Tomas	92.08	34.76	37.75%
	Lemery	82.32	16.71	20.29%
	San Luis	42.04	6.21	14.77%
Cavite	Tagaytay City	61.41	7.54	12.28%
Laguna	Calamba City	130.68	18.63	14.26%
Quezon	San Antonio	60.34	12.67	20.99%
Total		1616.00	851.14	50.73%

Table 11. List of municipalities/cities surveyed during Calumpang Floodplain LiDAR survey

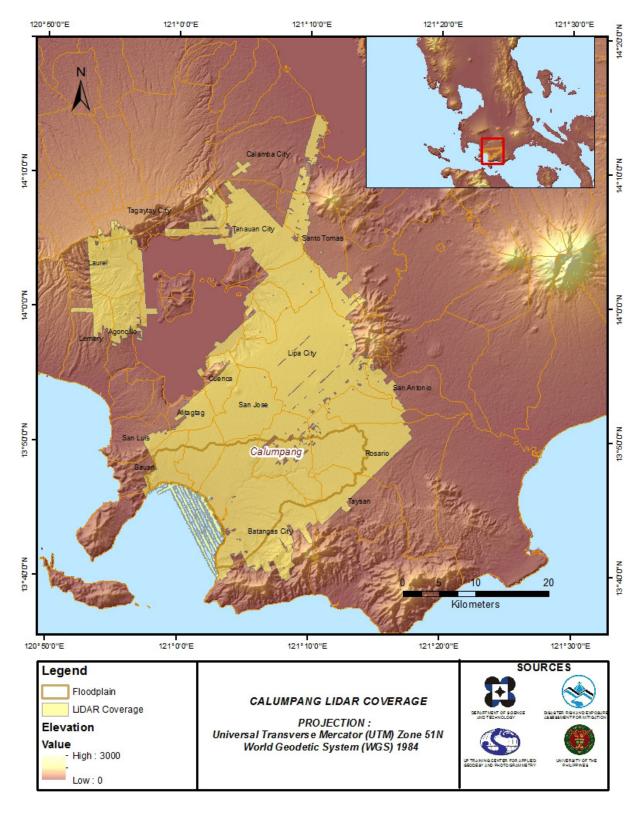


Figure 6. Actual LiDAR survey coverage for Calumpang Floodplain

CHAPTER 3: LIDAR DATA PROCESSING FOR CALUMPANG FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Joida F. Prieto, Engr. Melissa F. Fernandez, Engr. Ma. Ailyn L. Olanda, Engr. Sheila-Maye F. Santillan, Aljon Rie V. Araneta, Engr. Ezzo Marc C. Hibionada, Ziarre Anne P. Mariposa

The methods applied in this chapter were based on the DREAM methods manual (Ang et al., 2014) and further enhanced and updated in Paringit et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which were the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

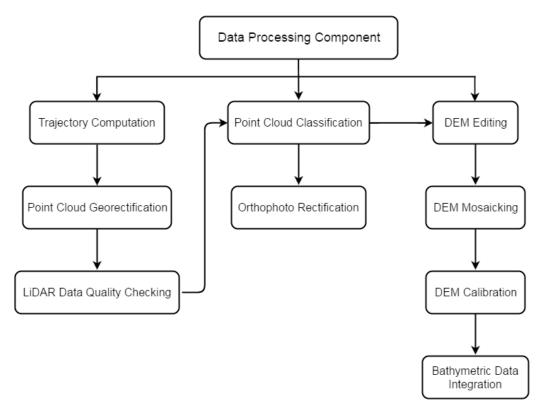


Figure 7. Schematic diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Calumpang Floodplain can be found in ANNEX 5. Missions flown during the first survey conducted on February 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system while missions acquired during the second survey on December 2015 were flown using the Gemini system over Batangas City. The Data Acquisition Component (DAC) transferred a total of 163.68 Gigabytes of Range data, 2.097 Gigabytes of POS data, 158.96 Megabytes of GPS base station data, and 110.76 Gigabytes of raw image data to the data server on April 23, 2014 for the first survey and January15, 2016 for the second survey. The Data Pre-Processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Calumpang was fully transferred on January 20, 2016, as indicated on the data transfer sheets for Calumpang Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 3669G, one of the Calumpang flights, which is the North, East, and Down position RMSE values, are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on December 29, 2015 00:00AM. The y-axis is the RMSE value for that particular position.

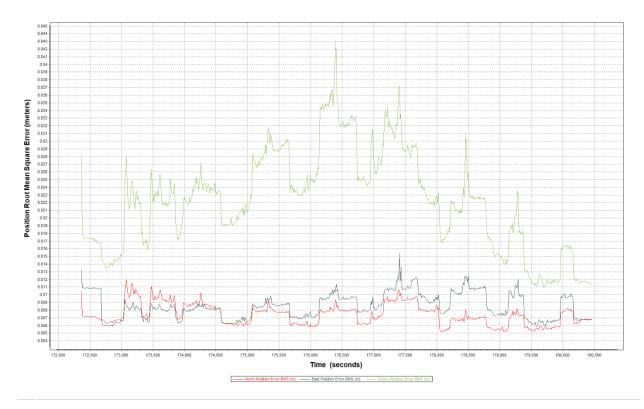


Figure 8. Smoothed Performance Metric Parameters of a Calumpang Flight 3669G.

The time of flight was from 172250 seconds to 180500 seconds, which corresponds to morning of December 29, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the time the POS system started computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 1.06 centimeters, the East position RMSE peaks at 1.55 centimeters, and the Down position RMSE peaks at 4.31 centimeters, which are within the prescribed accuracies described in the methodology.

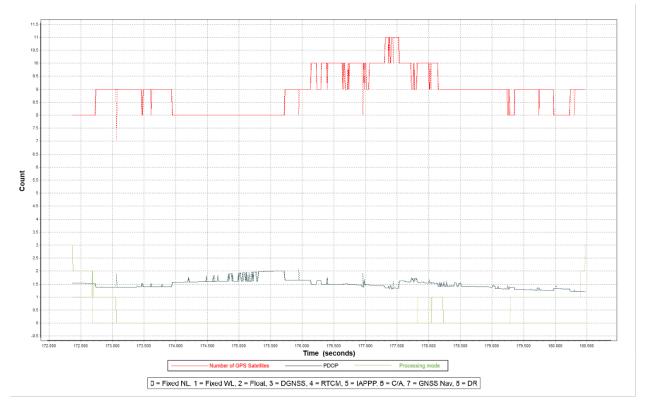


Figure 9. Solution Status Parameters of Calumpang Flight 3669G.

The Solution Status parameters of flight 3669G,one of the Calumpang flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Calumpang flights is shown in Figure 10.

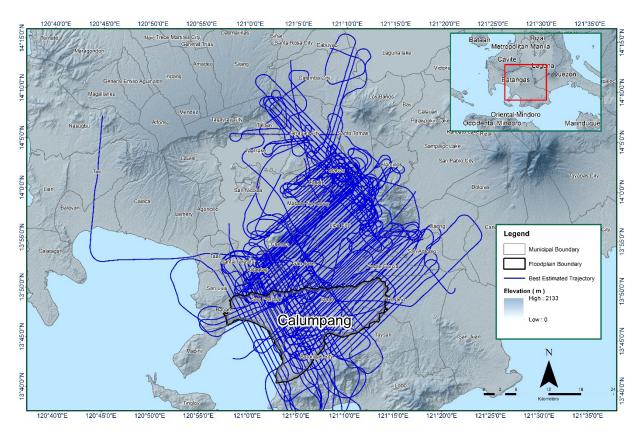


Figure 10. Best estimated trajectory of the LiDAR missions conducted over Calumpang Floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 126 flight lines, with some of the flight lines containing two channels, since the Pegasus system contains two channels while Gemini system contains only one. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Calumpang Floodplain are given in Table 12.

Parameter	Absolute Value	Computed Value
Boresight Correction stdev	(<0.001degrees)	0.000395
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000938
GPS Position Z-correction stdev	(<0.01meters)	0.0017

The optimum accuracy is obtained for all Calumpang flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in ANNEX 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Calumpang Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

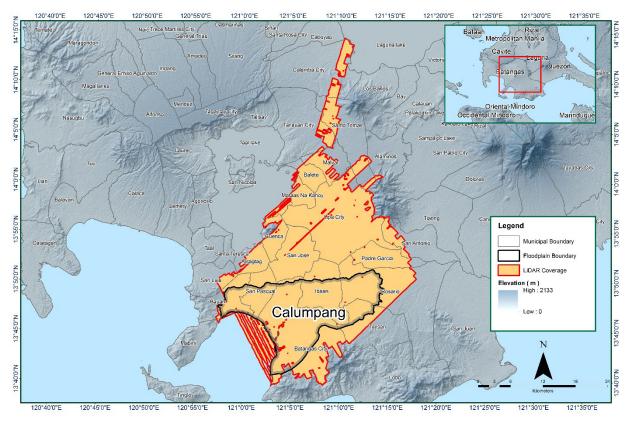


Figure 11. Boundary of the processed LiDAR data over Calumpang Floodplain

The total area covered by the Calumpang missions is 1,317.73 sq km comprised of thirteen (13) flight acquisitions grouped and merged into twelve (12) blocks as shown in Table 13.

LiDAR Blocks	Flight Numbers	Area (sq km)
	3000P	00.24
Batangas_Blk18SA	3002P	88.34
Batangas_Blk18SA_additional	3689G	6.91
	3002P	
Batangas_Blk18SB	3673G	120.42
	3689G	
Batangas_Blk18SB_additional	3691G	4.76
Batangas_Blk18SB_supplement	3669G	139.71
Batangas_Blk18SC	3671G	65.98
Batangas_Blk18SC_supplement	3693G	41.1
Detenges DIV190	1119P	194.96
Batangas_Blk18O	1123P	184.86
Batangas_Blk18O_supplement2	1123P	175.12
Detenges DIk190D	1111P	161 47
Batangas_Blk18QR	1125P	161.47

Table 13. List of LiDAR blocks for Calumpang Floodplain

Batangas_Blk18QR_supplement1	1107P	158.88
Laguna_Blk18EFG_supplement	1111P	170.18
TOTAL		1,317.73 sq km

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Gemini system employs one channel and Pegasus system employs two channels an average value of 1 (blue) would be expected for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

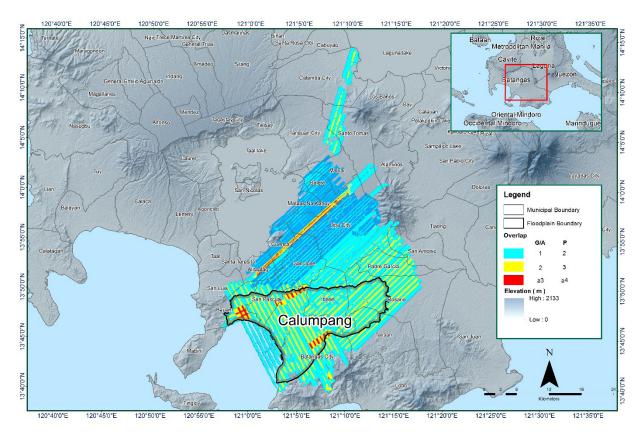


Figure 12. Image of data overlap for Calumpang Floodplain

The overlap statistics per block for the Calumpang Floodplain can be found in ANNEX 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 29.57% and 96.27%, respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion, is shown in Figure 13. It was determined that all LiDAR data for Calumpang Floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.42 points per square meter.

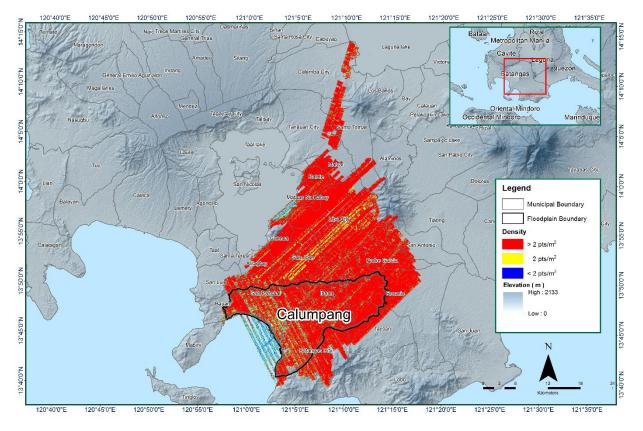


Figure 13. Pulse density map of merged LiDAR data for Calumpang Floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, in which bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.2 Om relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20 m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

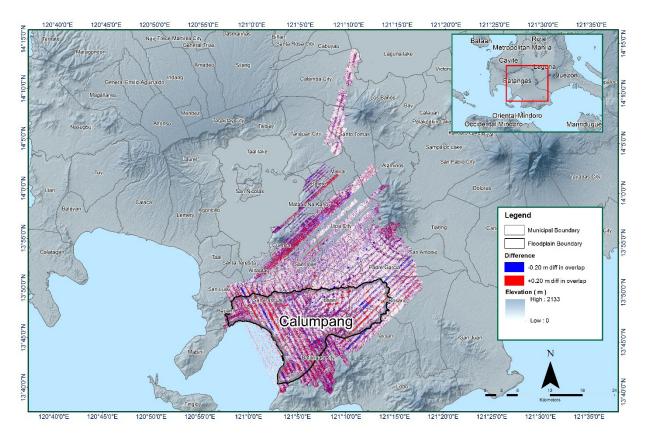


Figure 14. Elevation difference map between flight lines for Calumpang Floodplain

A screen capture of the processed LAS data from a Calumpang flight 3669G loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

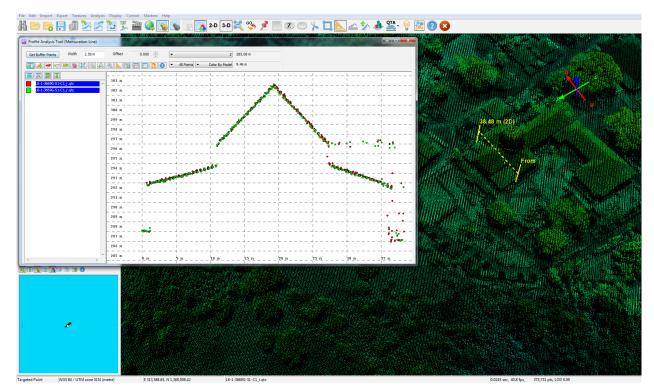


Figure 15. Quality checking for a Calumpang flight 3669G using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	784,972,363	
Low Vegetation	748,520,741	
Medium Vegetation	1,122,996,120	
High Vegetation	1,709,758,858	
Building	156,178,800	

Table 14. Calumpang classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Calumpang Floodplain is shown in Figure 16. A total of 1,707 1 km by 1 km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 14. The point cloud has a maximum and minimum height of 858.77 meters and 28.87 meters, respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

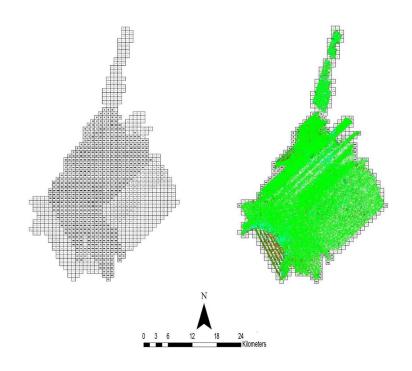


Figure 16. Tiles for Calumpang Floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly due to the density of the LiDAR data.

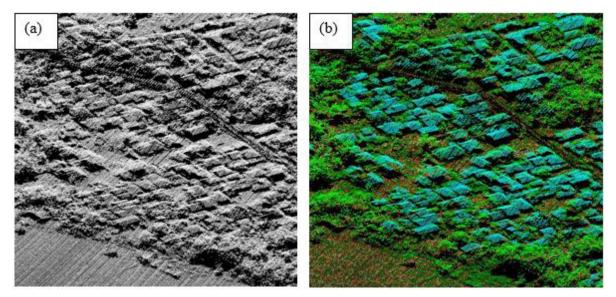


Figure 17. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

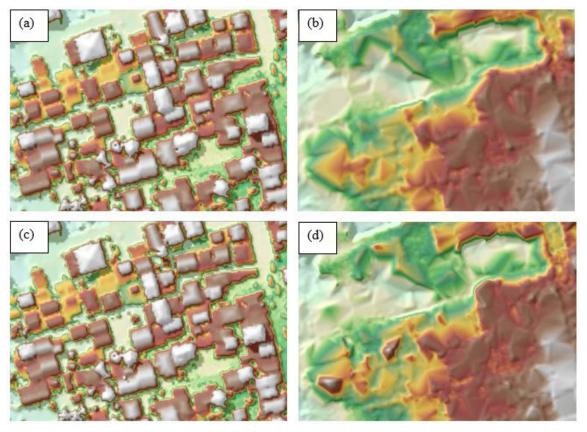


Figure 18. The production of last return DSM (a) and DTM (b); first return DSM (c) and secondary DTM (d) in some portion of Calumpang Floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 915 1 km by 1 km tiles area covered by Calumpang Floodplain is shown in Figure 19. After tie-point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Calumpang Floodplain attained a total of 640.89 sq km in orthophotogaph coverage comprised of 1,354 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 20.

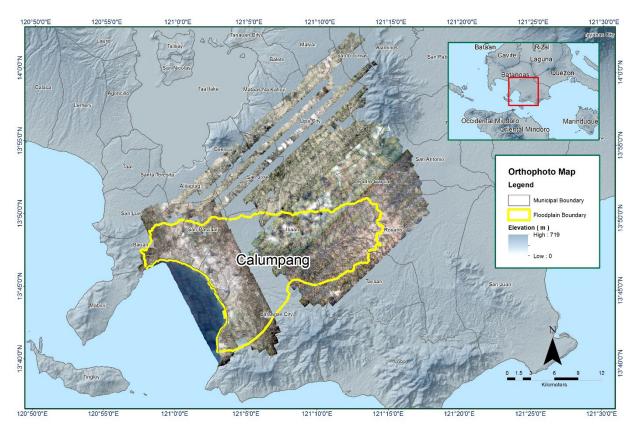


Figure 19. Calumpang Floodplain with available orthophotographs

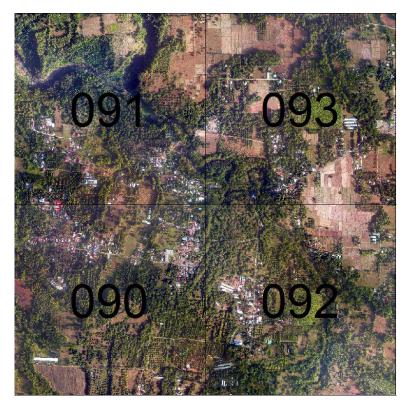


Figure 20. Sample orthophotograph tiles for Calumpang Floodplain

3.8 DEM Editing and Hydro-Correction

Twelve (12) mission blocks were processed for Calumpang Floodplain. These blocks are composed of Batangas and Laguna blocks with a total area of 1,317.73 square kilometers. Table 15 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq km)
Batangas_Blk18SA	88.34
Batangas_Blk18SA_additional	6.91
Batangas_Blk18SB	120.42
Batangas_Blk18SB_additional	4.76
Batangas_Blk18SB_supplement	139.71
Batangas_Blk18SC	65.98
Batangas_Blk18SC_supplement	41.10
Batangas_Blk18O	184.86
Batangas_Blk18O_supplement2	175.12
Batangas_Blk18QR_supplement1	158.88
Batangas_Blk18QR	161.47
Laguna_Blk18EFG_supplement	170.18
TOTAL	1,317.73 sq km

Table 15. LiDAR blocks with the	eir corresponding area
---------------------------------	------------------------

Portions of DTM before and after manual editing are shown in Figure 21. The bridge (Figure 21a) was also considered to be an impedance to the flow of water along the river and had to be removed (Figure 21b) in order to hydrologically correct the river. The river embankment Figure 21c) had been misclassified and removed during classification process and had to be retrieved to complete the surface (Figure 21d) to allow the correct flow of water. Another example is a building that was still present in the DTM after classification (Figure 21e) and had to be removed through manual editing (Figure 21f).

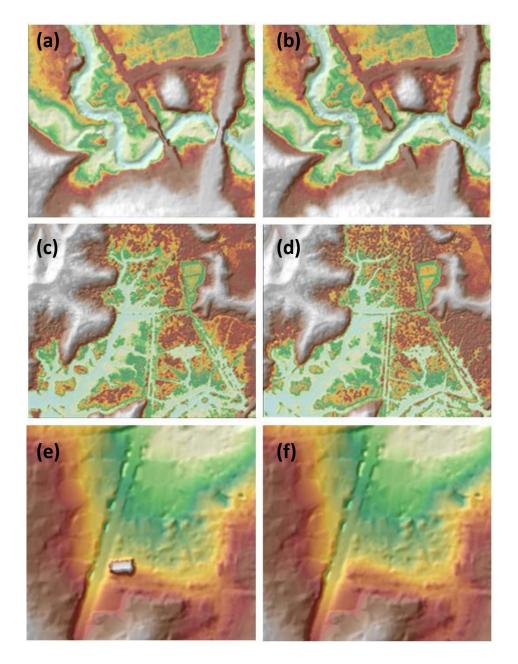


Figure 21. Portions in the DTM of Calumpang Floodplain—a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval; and a building before (e) and after (f) manual editing

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Batangas DEM overlapping with the blocks to be mosaicked. Table 16 shows the shift values applied to each LiDAR block during mosaicking.

Mission Blocks	Shift Values (meters)			
	x	У	z	
Batangas_Blk18SA	0.00	0.00	0.00	
Batangas_Blk18SA_additional	0.00	0.00	0.00	
Batangas_Blk18SB	0.00	0.00	0.00	
Batangas_Blk18SB_additional	Batangas_Blk18SB_additional 0.00			
Batangas_Blk18SB_supplement	0.00	0.00	0.00	
Batangas_Blk18SC	0.00	0.00	0.00	
Batangas_Blk18SC_supplement	0.00	0.00	0.00	
Batangas_Blk18O	0.00	0.00	0.00	
Batangas_Blk18O_supplement2	0.00	0.00	0.02	
Batangas_Blk18QR_supplement1	0.00	0.00	-0.12	
Batangas_Blk18QR	0.00	0.00	-0.05	
Laguna_Blk18EFG_supplement	0.00	0.00	-0.27	

Mosaicked LiDAR DTM for Calumpang Floodplain is shown in Figure 22. It can be seen that the entire Calumpang Floodplain is 100% covered by LiDAR data.

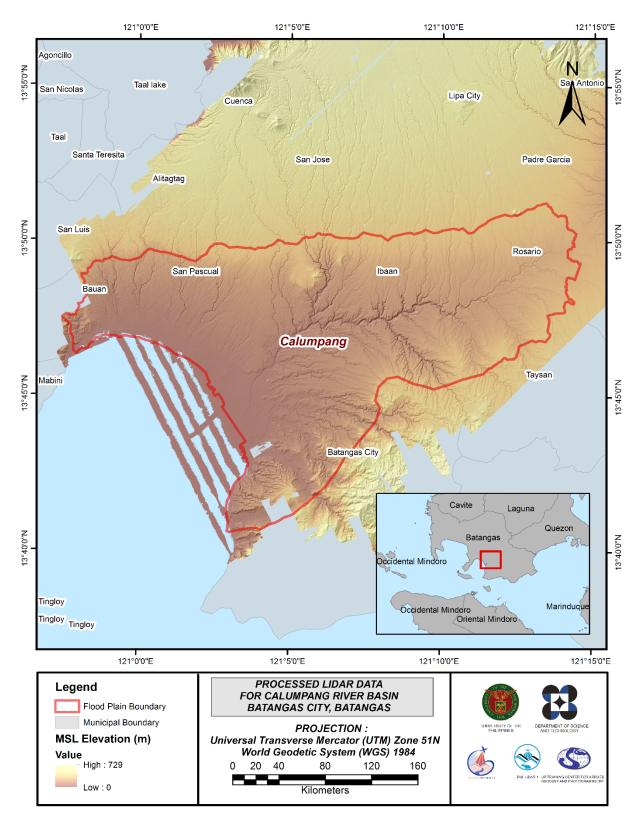


Figure 22. Map of Processed LiDAR Data for Calumpang Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Calumpang to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 24,251 survey points were gathered for all the flood plains within the provinces of CALABARZON wherein the Calumpang floodplain is located. Random selection of 80% of the survey points, resulting to 19,401 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 2.97 meters with a standard deviation of 0.20 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 2.97 meters, to the mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between the LiDAR data and calibration data.

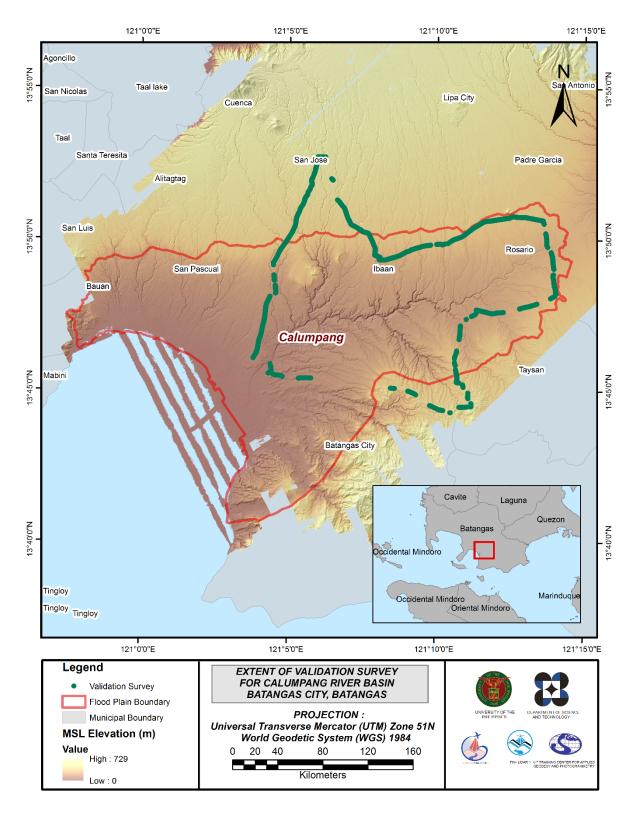


Figure 23. Map of Calumpang Floodplain with validation survey points in green

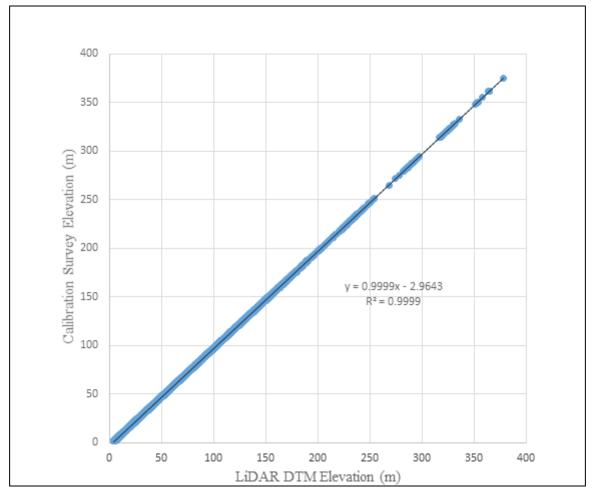


Figure 24. Correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	2.97
Standard Deviation	0.20
Average	-2.97
Minimum	-3.48
Maximum	-2.40

Table 17.	Calibration	statistical	measures
-----------	-------------	-------------	----------

The remaining 20% of the total survey points, resulting in 256 points, were used for the validation of calibrated Calumpang DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.15 meters with a standard deviation of 0.14 meters, as shown in Table 18.

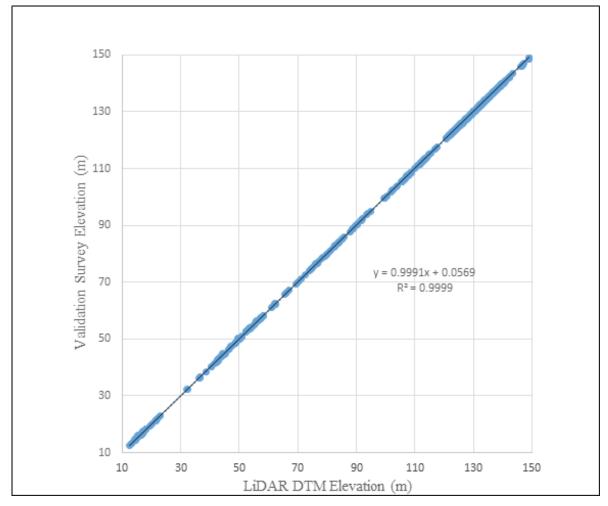


Figure 25. Correlation plot between validation survey points and LiDAR data

Validation Statistical Measures	Value (meters)
RMSE	0.14
Standard Deviation	0.14
Average	-0.03
Minimum	-0.51
Maximum	0.57

Table 18.	Validation	statistical	measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Calumpang with 5,724 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface was represented by the computed RMSE value of 0.80 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Calumpang integrated with the processed LiDAR DEM is shown in Figure 26.

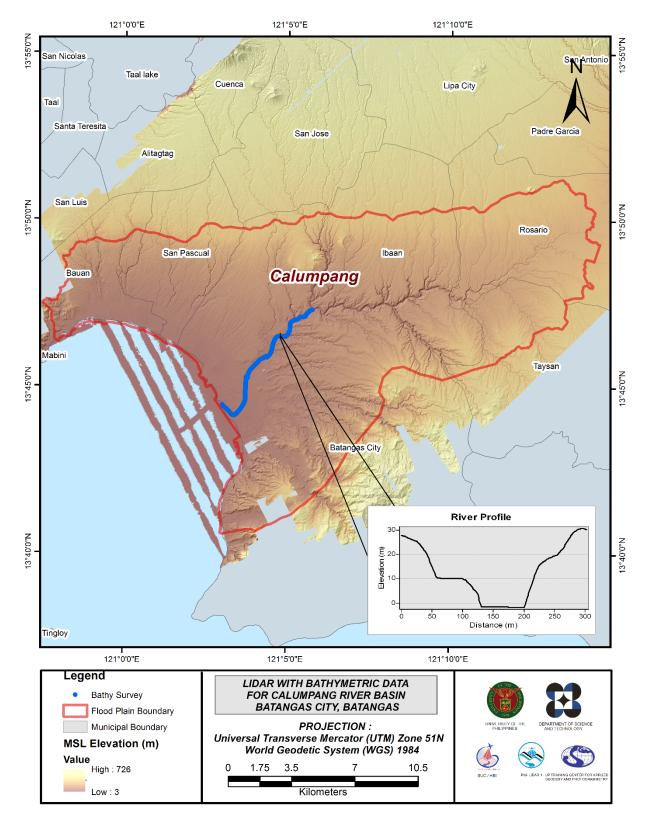


Figure 26. Map of Calumpang Floodplain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Calumpang Floodplain, including its 200 m buffer, has a total area of 297.76 sq km. For this area, a total of 9.0 sq km, corresponding to a total of 4,824 building features, are considered for QC. Figure 27 shows the QC blocks for Calumpang Floodplain.

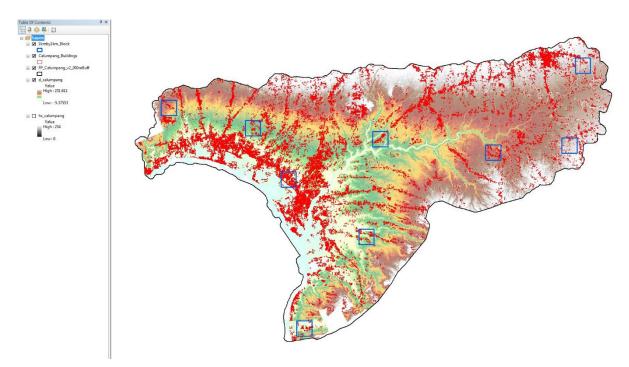


Figure 27. Blocks (in blue) of Calumpang building features subjected to QC

Quality checking of Calumpang building features resulted in the ratings shown in Table 19.

Table 19. Quality checking ratings for Calumpang building features

Floodplain	Completeness	Correctness	Quality	Remarks	
Calumpang	97.09	99.05	89.05	PASSED	

3.12.2 Height Extraction

Height extraction was done for 110,338 building features in Calumpang Floodplain. Of these building features, 7,796 was filtered out after height extraction, resulting in 102.542 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 17.37 m.

3.12.3 Feature Attribution

The attributes were obtained by field data gathering. GPS devices were used to determine the coordinates of important features. These points were uploaded and overlaid in ArcMap and were then integrated with the shapefiles.

Table 20 summarizes the number of building features per type. On the other hand, Table 21 shows the total length of each road type, while Table 22 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	99,264
School	1,180
Market	151
Agricultural/Agro-Industrial Facilities	17
Medical Institutions	116
Barangay Hall	97
Military Institution	0
Sports Center/Gymnasium/Covered Court	31
Telecommunication Facilities	4
Transport Terminal	12
Warehouse	163
Power Plant/Substation	44
NGO/CSO Offices	0
Police Station	2
Water Supply/Sewerage	29
Religious Institutions	194
Bank	46
Factory	381
Gas Station	34
Fire Station	1
Other Government Offices	117
Other Commercial Establishments	659
Total	102,542

Table 20. Building features extracted for Calumpang Floodplain

Table 21. Total length of extracted roads for Calumpang Floodplain

Road Network Length (km)						
Floodplain	Floodplain Barangay City/Municipal Provincial National Others Road Others					Total
Calumpang	68.87	298.32	580.50	35.58	0.00	983.27

Table 22. Number of extracted water bodies for Calumpang Floodplain

Water Body Type							
Floodplain	Rivers/ Streams	· · · · · · · · · · · · · · · · · · ·					
Calumpang	24	0	1	0	0	25	

A total of 148 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

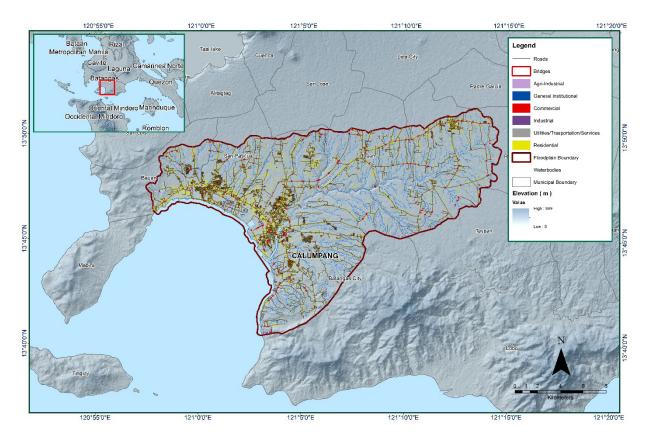


Figure 28 shows the Digital Surface Model (DSM) of Calumpang Floodplain overlaid with its ground features.

Figure 28. Extracted features for Calumpang Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS IN THE CALUMPANG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Balicanta et al., 2014) and further enhanced and updated in Paringit et al. (2017).

4.1 Summary of Activities

In line with this, field surveys were conducted from May 14 to 22, 2014 for control survey and bridge crosssection. On August 26 to 30, 2014, bathymetric survey for 9.11 km, bridge as-built, features determination, and water level elevation marking were done using an Ohmex[™] single-beam echo sounder and a GNSS PPK survey technique.

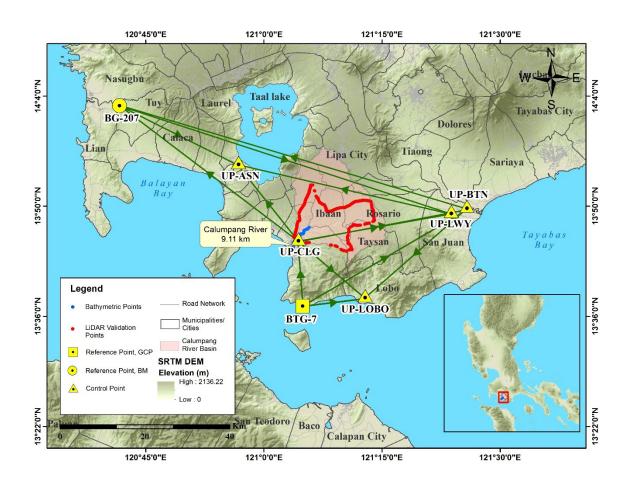


Figure 29. Extent of the bathymetric survey (in blue) in Calumpang River Basin and the LiDAR data validation survey (in red)

4.2 Control Survey

The GNSS network for this survey is composed of six (6) loops established on May 14–22, 2016 occupying the following reference points: BG-207, a first order BM in Brgy. Sabang, Municipality of Tuy; and BTG-7, a first order GCP located in Brgy. Dela Paz, Batangas City.

Five (5) control points were established at the approach of bridges namely UP-BTN at Bantilan Bridge in Brgy. UP-LOBO at Lobo Bridge in Brgy. Lagadlarin, Municipality of Lobo; UP-ASN at San Nicholas Bridge in Brgy. Poblacion, Municipality of San Nicholas; UP-CLG at Calumpang Bridge in Brgy. Kumintang Ibaba, Batangas City; and UP-LWY at Lawaye Bridge in Brgy. Calitcalit, Municipality of San Juan.

The summary of reference and control points and their location is summarized in Table 23 while the GNSS network established is illustrated in Figure 30.

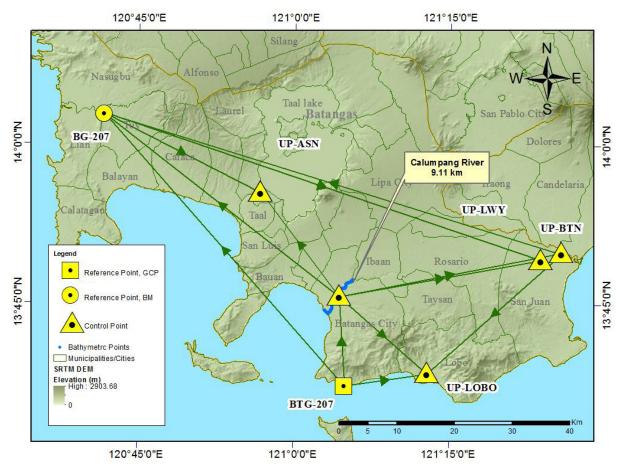


Figure 30. GNSS Network of Calumpang River field survey

 Table 23. List of reference and control points used in Cavite-Batangas Region survey (Source:

 NAMRIA, UP-TCAGP)

Control	Order of	Geographic Coordinates (WGS 84)					
Point	Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established	
BG207	1 st Order	-	-	65.606	22.502	2008	
BTG-7	1 st Order	13°37′19.49611″	121°04′56.32756″	66.192	-	1992	
UP-ASN	UP Established	-	-	-	-	5-22-2014	
UP-BTN	UP Established	-	-	-	-	5-21-2014	

UP-CLG1	UP Established	-	-	-	-	5-21-2014
UP-LOBO	UP Established	-	-	-	-	5-21-2014
UP-LWY1	UP Established					5-22-2014

The GNSS set-up on reference and established control points in Batangas are shown on Figure 31 to Figure 37.

Figure 31. GNSS receiver, Trimble[®] SPS 985, set-up at BG-207 at Palico Bridge, Brgy. Luntal, Nasugbu, Batangas

Figure 32. GNSS receiver, Trimble[®] SPS 985, set-up at BTG-7 in Dela Paz Lighthouse in Brgy. Dela Paz, Batangas City, Batangas

Figure 33. GNSS receiver, Trimble[®] SPS 882, set-up at UP-ASN at San Nicholas Bridge, Brgy. Poblacion, San Nicholas, Batangas

Figure 34. GNSS base receiver, Trimble[®] SPS 852, set-up at UP-BTN at Bantilan Bridge, Brgy. Manggalang Banitilan, Sariaya, Quezon

Figure 35. GNSS base receiver, Trimble[®] SPS 852, set-up at UP-CLG1 in Calumpang Bridge, Brgy. Cumintang Ibaba, Batangas City, Batangas

Figure 36. GNSS base receiver, Trimble[®] SPS 882, set-up at UP-LOBO, in Lobo Bridge, Brgy. Lagadlarin, Lobo, Batangas

Figure 37. GNSS receiver, Trimble[®] SPS 882, set-up at UP-LWY1 at Lawaye Bridge, Brgy. Calitcalit-Mabalanoy, San Juan, Batangas

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Calumpang River Basin is summarized in Table 24 generated by TBC software.

					· · · · ·		
Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
UPCLG BTG7 (B11)	5-22-2014	Fixed	0.003	0.013	356°25′22″	15777.353	-8.962
BTG7 UPLOBO (B14)	5-22-2014	Fixed	0.008	0.037	80°16′20″	14501.810	-9.895
UPCLG UPBTN (B8)	5-21-2014	Fixed	0.004	0.018	78°44'11"	39325.812	-1.938
UPCLG UPBTN (B10)	5-22-2014	Fixed	0.023	0.082	78°44′11″	39325.931	-1.993
UPCLG UPBTN (B9)	5-21-2014	Fixed	0.018	0.032	78°44′11″	39326.011	-1.988
UPCLG BMBG207 (B7)	5-21-2014	Fixed	0.008	0.021	307°20'38″	51500.583	8.348
UPCLG UPLWY (B15)	5-22-2014	Fixed	0.004	0.015	79°31′48″	35577.341	6.690
UPCLG UPASN (B6)	5-21-2014	Fixed	0.005	0.020	322°34'54"	22553.641	-5.613
UPCLG UPLOBO (B12)	5-22-2014	Fixed	0.006	0.026	131°01′52″	20253.372	-0.954
UPBTN BMBG207 (B2)	5-21-2014	Fixed	0.066	0.086	286°35′24″	82928.558	10.191
BTG7 UPBTN (B5)	5-21-2014	Fixed	0.004	0.018	58°03′54″	44287.329	-10.884
BTG7 UPBTN (B3)	5-21-2014	Fixed	0.017	0.070	58°03′54″	44287.367	-10.925
BTG7 UPBTN (B4)	5-21-2014	Fixed	0.011	0.024	58°03′54″	44287.360	-10.823
UPBTN UPLOBO (B13)	5-22-2014	Fixed	0.011	0.045	228°04'35"	31344.157	0.983
BMBG207 UPLWY (B17)	5-22-2014	Fixed	0.015	0.033	107°58'47"	79868.067	-1.689
BMBG207 UPASN (B1)	5-21-2014	Fixed	0.005	0.022	115°58'50"	30324.834	-14.030
UPLWY UPASN (B16)	5-22-2014	Fixed	0.011	0.021	283°18'29"	50016.834	-12.285

Table 24. Baseline processing report for Calumpang River Basin static survey

As shown in Table 24, a total of seventeen (17) baselines were processed with reference elevation of point BG-207 and coordinates of BTG-7 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the Adjusted Grid Coordinates (Table 26) of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
<20cm and $z_e < 10 \ cm$

Where:

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 25 to Table 27 for the complete details.

The seven (7) control points, BG-207, BTG-7, UP-ASN, UP-BTN, UP-CLG, UP-LOBO, and UP-LWY were occupied and observed simultaneously to form a GNSS loop. Coordinates of point BTG-7 and elevation value of BG-207 were held fixed during the processing of the control points as presented in Table 25. Through these reference points, the coordinates and elevation of the unknown control points would be computed.

Table 25. Control	point constraints
-------------------	-------------------

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height o (Meter)	Elevation σ (Meter)
BG-207	Grid				Fixed
BTG-7	Global	Fixed	Fixed		
Fixed = 0.00000	1(Meter)				

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 26. The fixed control points, BG-207 and BTG-7, have no values for standard elevation and coordinates error, respectively.

Table 26. Adjusted grid coordinates

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
MBG207	250979.768	0.014	1554083.399	0.009	22.502	?	е
BTG7	292538.897	?	1506749.028	?	20.801	0.072	LL
UPASN	278117.299	0.013	1540530.569	0.008	7.619	0.060	
UPBTN	330309.700	0.008	1529876.941	0.006	9.361	0.075	
UPCLG	291679.224	0.007	1522505.093	0.005	12.287	0.058	
UPLOBO	306852.492	0.014	1509086.720	0.008	10.498	0.094	
UPLWY	326716.786	0.013	1528689.759	0.008	18.019	0.064	

The network was fixed at reference points BG-207 and BTG-7 for elevation and coordinate values, respectively. With the mentioned equation , for horizontal; and for the vertical; the computation for the accuracy for the controls are as follows:

BG-207

horizontal accuracy	$= \sqrt{((1.4)^2 + (0.9)^2)^2}$
	= √(1.96 + 0.81)
	= 1.66 cm < 20 cm
vertical accuracy	= Fixed

BTG-7

horizontal accuracy	= Fixed
vertical accuracy	= 7.2 cm

UP-ASN

horizontal accuracy	$= \sqrt{((1.3)^2 + (0.8)^2)^2}$
	$= \sqrt{(1.69 + 0.64)}$
	= 1.53 cm < 20 cm
vertical accuracy	= 6.0 cm

UP-BTN

horizontal accuracy	$= \sqrt{((0.8)^2 + (0.6)^2)^2}$
	= v(0.64 + 0.36)
	= 1.0 cm < 20 cm
vertical accuracy	= 7.5 cm

UP-CLG

horizontal accuracy	$= \sqrt{((0.7)^2 + (0.5)^2)}$
	= v(0.49 + 0.25)
	= 0.86 cm < 20 cm
vertical accuracy	= 5.8 cm

UP-LOB

horizontal accuracy	$= \sqrt{((1.4)^2 + (0.8)^2)^2}$
	= v(1.96 + 0.64)
	= 1.48 cm < 20 cm
vertical accuracy	= 9.4 cm

UP-LWY

horizontal accuracy	$= \sqrt{((1.3)^2 + (0.8)^2)^2}$
	= √(1.69 + 0.64)
	= 1.52 cm < 20 cm
vertical accuracy	= 6.4 cm

Following the given formula, the horizontal and vertical accuracy result of the seven occupied control points are within the required precision of the program

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Point ID	Latitude	Longitude	Ellipsoidal Height	Height Error (Meter)	Constraint
BMBG207	N14°02'47.32674"	E120°41'38.93608"	65.606	?	e
BTG7	N13°37'19.49611"	E121°04'56.32756"	66.192	0.072	LL
UPASN	N13°55'34.60792"	E120°56'47.03882"	51.610	0.060	
UPBTN	N13°50'00.87917"	E121°25'47.84870"	55.321	0.075	
UPCLG	N13°45'51.87502"	E121°04'23.55781"	57.236	0.058	
UPLOBO	N13°38'39.10157"	E121°12′51.89916″	56.291	0.094	
UPLWY	N13°49′21.47536″	E121°23'48.47095"	63.917	0.064	

Table 27. Adjusted geodetic coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 27. Based on the result of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 28.

		Geograph	UTM ZONE 51 N				
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Northing (m)	Easting (m)	Elevation in MSL (m)
BG207	1 st Order	14°02′47.32674″	120°41′38.93608″	65.606	1554083	250979.8	22.502
BTG-7	1 st Order	13°37′19.49611″	121°04'56.32756"	66.192	1506749	292538.9	20.801
UP-ASN	UP Established	13°55′34.60792″	120°56′47.03882″	51.61	1540531	278117.3	7.619
UP-BTN	UP Established	13°50'00.87917"	121°25′47.84870″	55.321	1529877	330309.7	9.361
UP-CLG1	UP Established	13°45'51.87502″	121°04'23.55781"	57.236	1522505	291679.2	12.287
UP- LOBO	UP Established	13°38′39.10157″	121°12′51.89916″	56.291	1509087	306852.5	10.498
UP-LWY1	UP Established	13°49'21.47536"	121°23′48.47095″	63.917	1528690	326716.8	18.019

Table 28. Reference and control points and their location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge As-built Survey, and Water Level Marking

Cross-section and as-built survey were done on May 20, 2014 and August 27, 2014, respectively, at the downstream side of Bridge of Promise in Brgy Cumintang Ibaba, Batangas City as shown in Figure 38. A Trimble[®] SPS 882 in GNSS PPK survey technique was used during the survey.

Figure 38. Bridge of Promise Panorama

A total of 72 points with an approximate length of 335.59 m were gathered for Bridge of Promise using the control point UP-CLG as the GNSS base station. The planimetric map, cross-sectional diagram, and bridge as-built form are shown in Figure 39 to Figure 41.

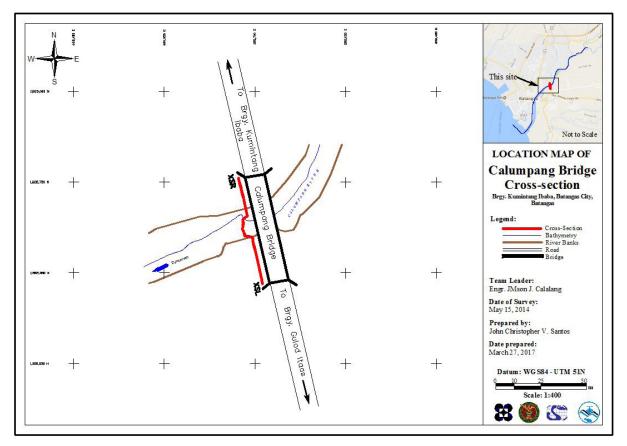


Figure 39. Calumpang bridge cross-section location map

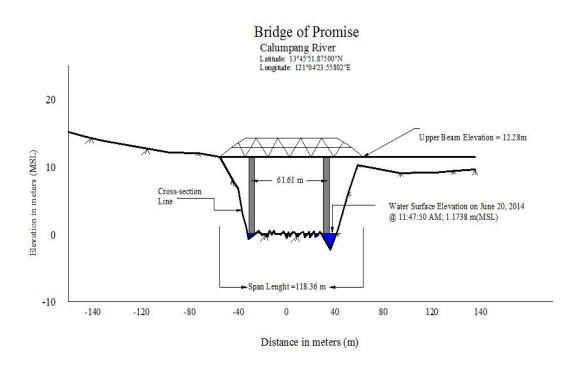
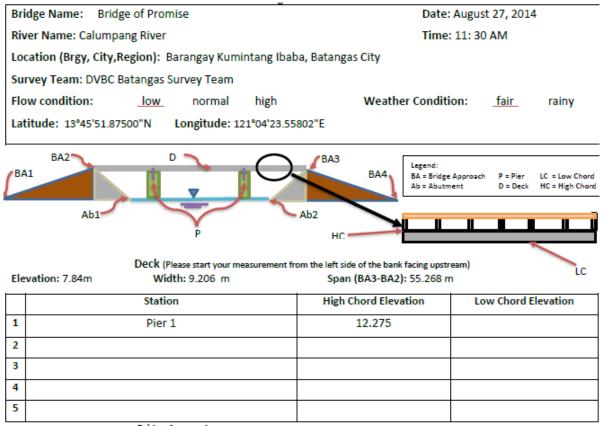



Figure 40. Bridge of Promise cross-section diagram

Bridge Approach (Please start your measurement from the left side of the bank facing downstream)

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	12.271 m	BA3	164.560	12.555 m
BA2	46.203	12.253 m	BA4	249.58 m	12.395 m

Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information:

	Station (Distance from BA1)	Elevation
Ab1		
Ab2		

Pier (Please start your measurement from the left side of the bank facing downsteam)

Shape: c	ylinder Number of Pie	Number of Piers: 2 Height of column footing:		
	Station (Distance from BA	1) Elevation	Pier Width	
Pier 1	74.413	74.413 12.275		
Pier 2	136.025	12.198		
Pier 3				
Pier 4				
Pier 5				
Pier 6				

Figure 41. Bridge of Promise bridge data form

The water marking was done on the pier of the Bridge of Promise in Brgy. Kumintang Ibaba, Batangas City using a Trimble[®] SPS 882 PPK survey technique GNSS point observation. The water surface elevation of Calumpang River was acquired on August 27, 2014 at 2:49 PM. The resulting water surface elevation data is 0.541 m in MSL. This value was translated onto the bridge's pier which would serve as reference for the partner HEI, MIT.

Figure 42. Determination of water surface elevation at the river banks of the Bridge of Promise

Figure 43. Marking of MSL-based elevation on the right side of a pier in Bridge of Promise

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on November 8, 2014 using a survey-grade GNSS rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached to the top of the vehicle as shown in Figure 44. It was secured with cable ties to ensure that it was horizontally and vertically balanced. The antenna height was 2.09 m measured from the ground up to the bottom of notch of the GNSS rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-CLG occupied as the GNSS base station all throughout the conduct of the survey.

Figure 44. Ground Validation set up in Calumpang Survey

The validation points acquisition survey for the Calumpang River Basin traversed the Municipality of San Jose, Ibaan, Rosario, Taysan, and Batangas City. The route of the survey aims to traverse LiDAR flight strips perpendicularly for the basin. A total of 4,470 points with an approximate length of 60 km was acquired for the validation point acquisition survey as shown in the map in Figure 45.

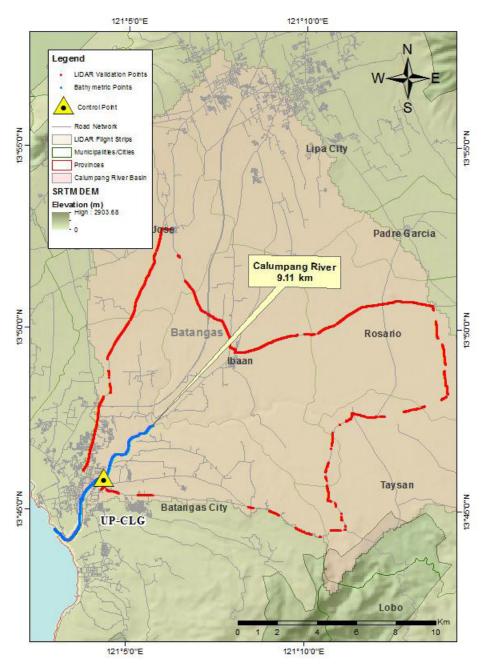


Figure 45. Calumpang Ground validation survey

4.7 River Bathymetric Survey

The bathymetric survey was conducted on August 27, 2014 using an Ohmex[™] single-beam echo sounder and Trimble[®] SPS 882 in GNSS PPK survey technique as shown in Figure 46. The survey started from Brgy. Tinga Itaas, Batangas City with coordinates 13°47′18.44423″121°05′45.18162″, down to the mouth of the river in Brgy. Wawa, Batangas City with coordinates 13°44′27.26237″121°03′01.09411″.

Figure 46. OHMEX[™] single-beam echo sounder set-up on a rubber for the Calumpang River bathymetric survey

Bathymetric line length surveyed is 9.11 km with a total of 5,642 points acquired using UP-CLG. The coverage of the bathymetric survey is shown in the map in Figure 47. A CAD drawing was produced to illustrate the Calumpang Riverbed profile. As shown in Figure 48, the difference in elevation from upstream in Brgy. Tinga Itaas down to Brgy. Wawa (mouth of the river) is 0.17 m. The deepest portion or the lowest elevation recorded is about 11.40 m (MSL) which is located near the Bridge of Promise.

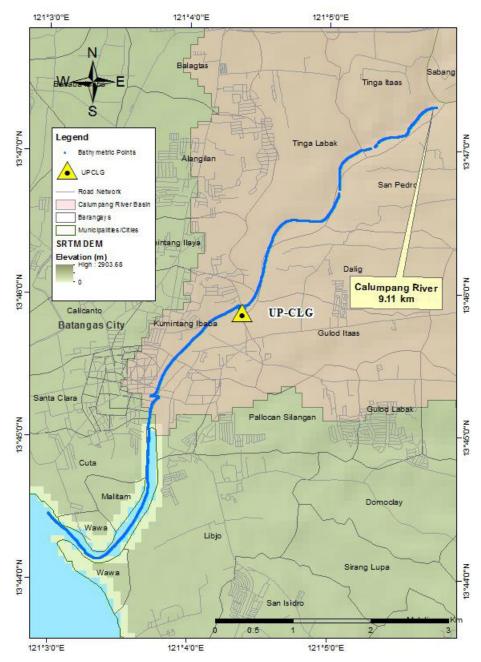
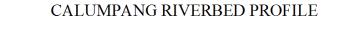



Figure 47. Bathymetric points gathered along Calumpang River

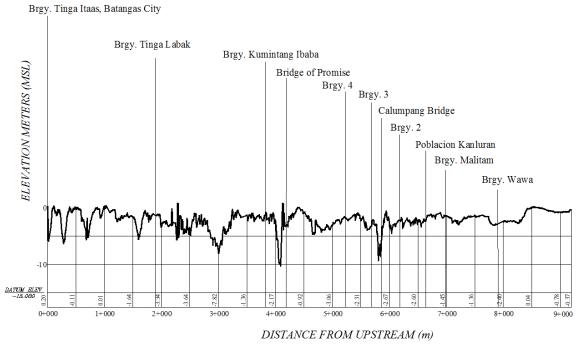


Figure 48. Riverbed profile of Calumpang River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Pauline Racoma

The methods applied in this chapter were based on the DREAM methods manual (Lagmay et al., 2014) and further enhanced and updated in Paringit et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Calumpang River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from two automatic rain gauges (ARGs) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The locations of the ARGs are Padre Garcia and Pina. The Location of the rain gauge is as shown in Figure 49.

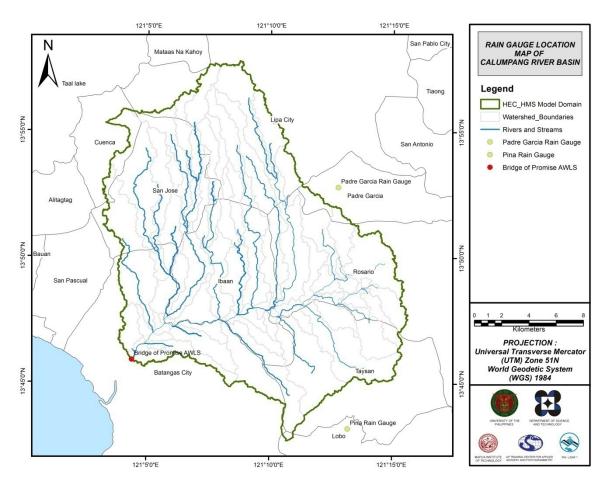
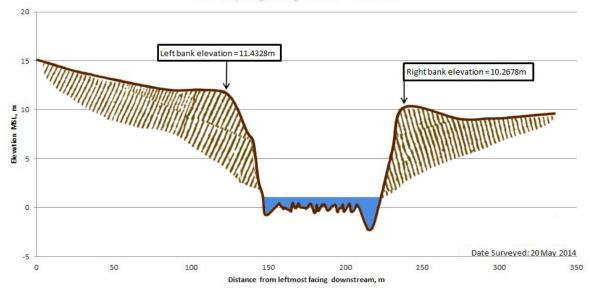


Figure 49. Location map of rain gauges used for the calibration of the Calumpang HEC-HMS Model.

For Pina Rain Gauge, total rain for the event is 6.5 mm. Peak rain of 1.5 mm was recorded on June 26, 2016. The lag time between the peak rainfall and discharge is 1hour and 19 minutes, as seen in Figure 52.

For Padre Garcia, the total recorded rain is 5.8 mm. It peaked at 1.6 mm at 14:30, June 26, 2016. The lag time between the peak rainfall and discharge is 3 hours as seen in Figure 52.

5.1.3 Rating Curves and River Outflow


A rating curve was developed at Bridge of Promise, Batangas City, Batangas (13°45′54.85″N, 121°4′22.93″E). It gives the relationship between the observed water levels and outflow of the watershed at this location. It is expressed in the form of the following equation:

Q=a^{nh}

where, Q : Discharge (m³/s),

h : Gauge height (reading from deployed depth gage at Bridge of Promise), and a and n: Constants.

For Bridge of Promise, the rating curve is expressed $y = 437.27e^{9.0259x}$ as shown in Figure 51.

Calumpang Bridge Cross-Section

Figure 50. Cross-section plot of Bridge of Promise

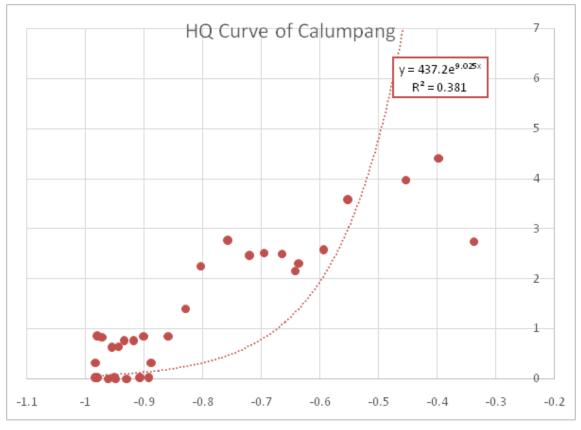


Figure 51. Rating curve at Bridge of Promise, Batangas City, Batangas Province

This rating curve equation was used to compute the river outflow at the Bridge of Promise for the calibration of the HEC-HMS model shown in Figure 52. Peak discharge is 4.409872 m³/s at 17:30, June 26, 2016.

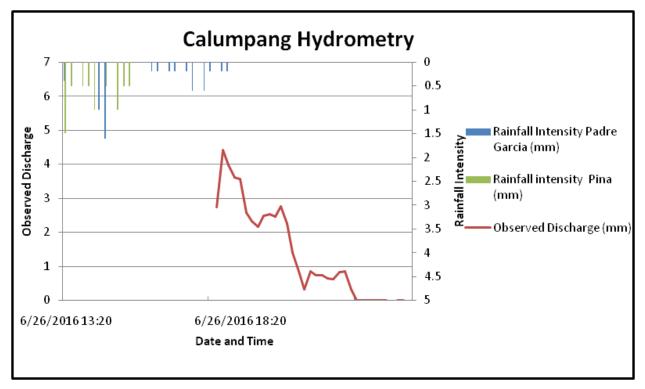


Figure 52. Rainfall and outflow data at Calumpang used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Ambulong Gauge. This station was chosen based on its proximity to the Calumpang watershed. The extreme values for this watershed were computed based on a 54-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.7	35.5	36.3	50.2	68.2	80.1	104.1	125.7	150.8
5	27.9	45.5	53.8	74.2	103.4	122.5	159.7	192.9	226.7
10	34.2	52.1	65.4	90.1	126.7	150.6	196.5	237.3	276.9
15	37.8	57.4	71.9	99	139.8	166.4	217.3	262.4	305.3
20	40.3	61	76.5	105.3	149	177.5	231.9	280	325.1
25	42.2	63.9	80	110.1	156.1	186	243.1	293.5	340.4
50	48.1	72.6	90.9	125	178	212.3	277.6	335.2	387.5
100	54	81.2	101.6	139.8	199.7	238.4	311.8	376.6	434.3

Table 29. RIDF values for Ambulong Rain Gauge computed by PAGASA

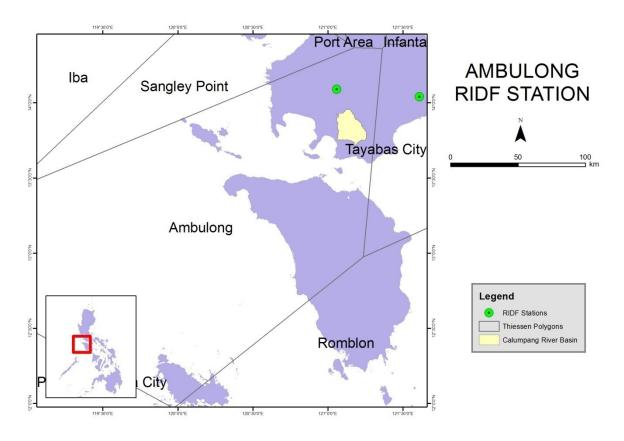


Figure 53. Ambulong RIDF location relative to Calumpang River Basin

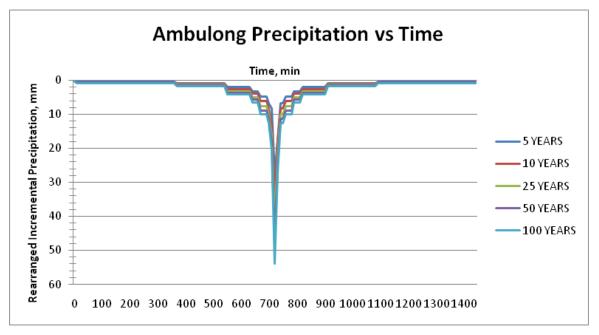


Figure 54. Synthetic storm generated for a 24-hour period rainfall for various return periods

5.3 HMS Model

The soil dataset was taken from and generated by the Bureau of Soils and Water Management (BSWM) under the Department Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Calumpang River Basin are shown in Figure 55 and Figure 56, respectively.

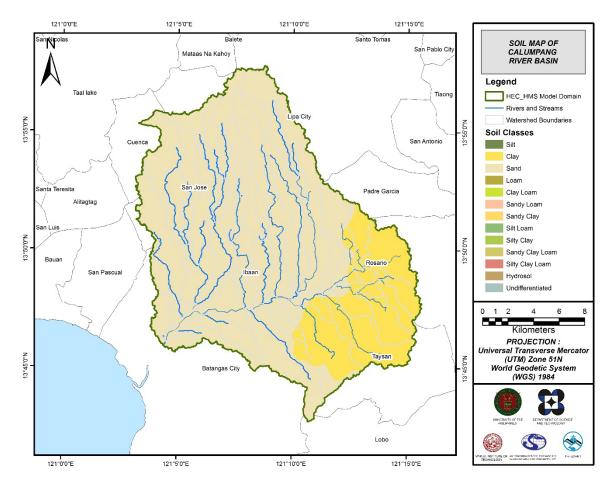


Figure 55. Soil map of Calumpang River Basin

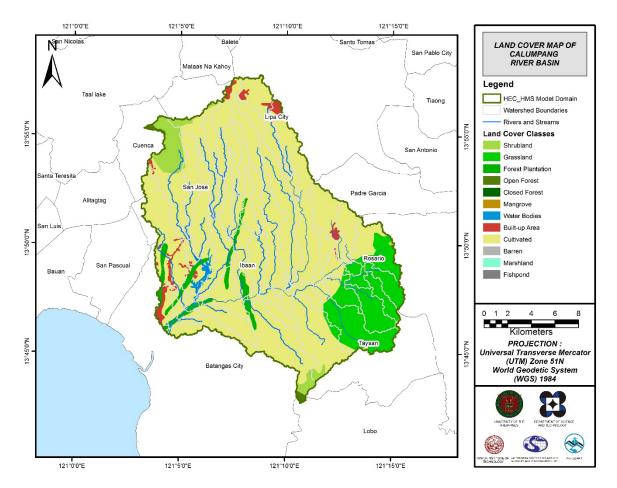


Figure 56. Land cover map of Calumpang River Basin

For Calumpang, the soil classes identified were clay and sand. The land cover types identified were built-up areas, cultivated areas, inland water, shrubland, and grassland.

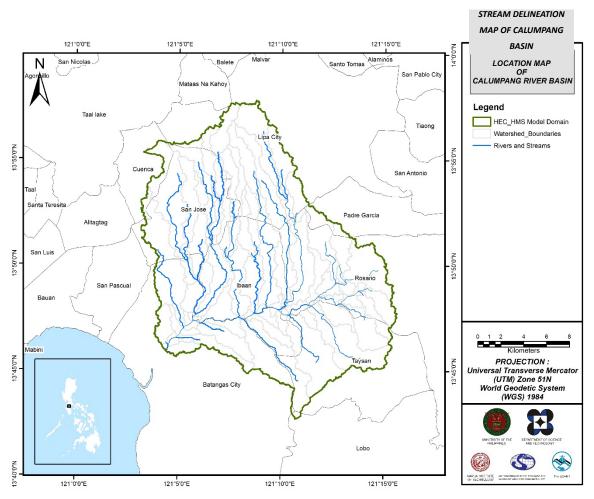


Figure 58. Stream delineation map of Calumpang River Basin

The Calumpang Basin model comprises 57 subbasins, 28 reaches, and 28 junctions. The main outlet is outlet 2. The basins were identified based on soil and land cover characteristic of the area. It was calibrated using the data from actual discharge flow gathered in the Bridge of Promise.

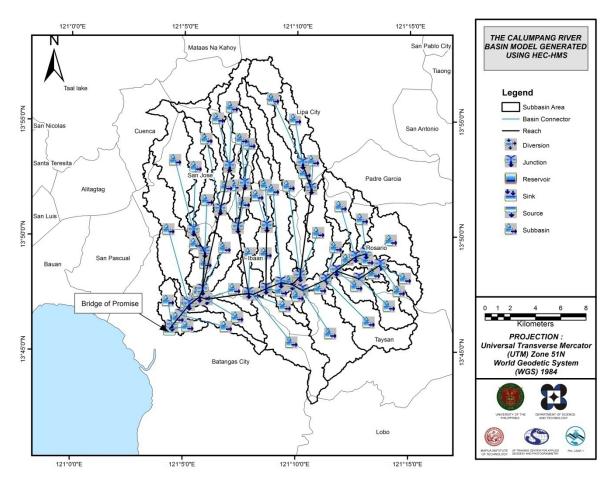


Figure 59. Calumpang River Basin Model Domain generated by HEC-HMS

5.4 Cross-Section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

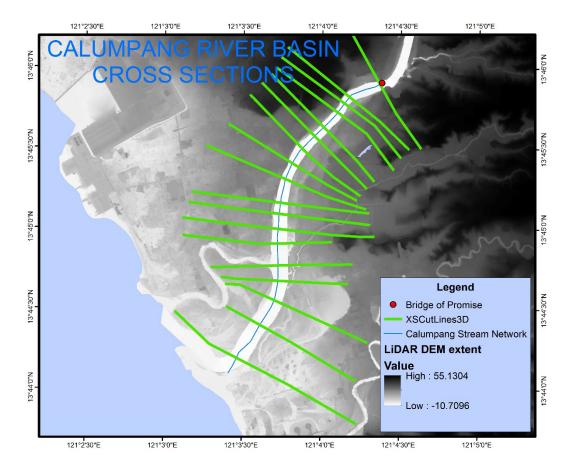


Figure 60. River cross-section of Calumpang River generated through Arcmap HEC GeoRAS tool

5.4.1 Manning's n

The Manning's n is a constant value that depends on the nature of the channel and its surface. Determining the roughness coefficient of the channel is important in determining the water flow. Appropriate selection of Manning's n values is based on the land cover type of the watershed area.

A look-up table was derived to have a standardized Manning's n value for the HEC-RAS model.

Land-cover Class	Corresponding Manning's n Class	Manning's n
Barren Land	Cultivated areas, no crop	0.030
Built-up Area	Concrete, float finished	0.015
Cultivated land, annual crop	Cultivated areas, mature field crops	0.040
Cultivated land, perennial crop	Cultivated areas, mature row crops	0.035
Fishpond	Excavated, earth, straight and uniform	0.018
Inland Water	Main channel, clean, straight, no rifts or deep pools	0.030
Grassland	Pasture, no brush, short grass	0.030
Mangrove Forest	Trees, heavy stand, flow into branches	0.120
Shrub land	Medium to dense brush	0.100

Table 20 Look up table to	or Manning's n values	(Sourco, Druppor 2010)
Table 30. Look-up table fo	JI IVIALILILIES STI VALUES	(JOULCE, DI UIIIIEI, ZUIU)

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

5.5 Flo 2D Model

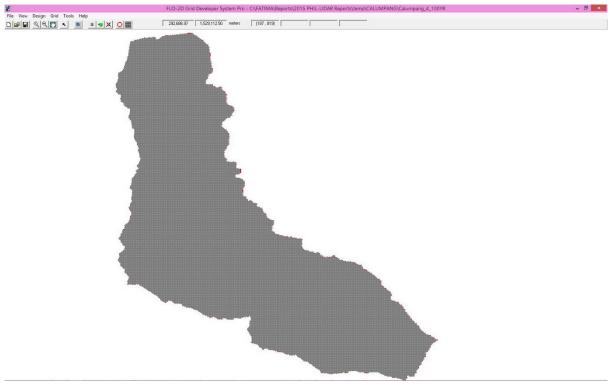


Figure 61. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

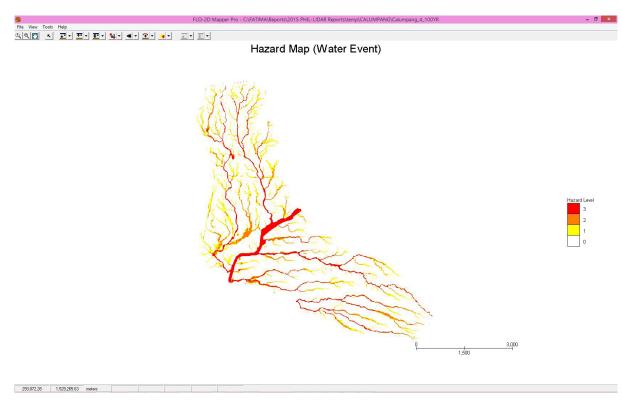


Figure 62. Generated 100-year rain return hazard map from FLO-2D Mapper

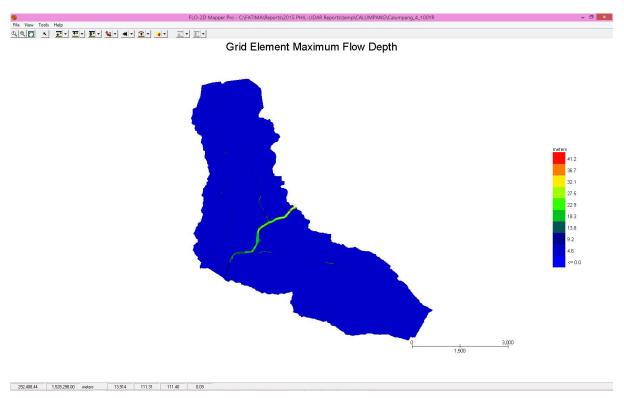
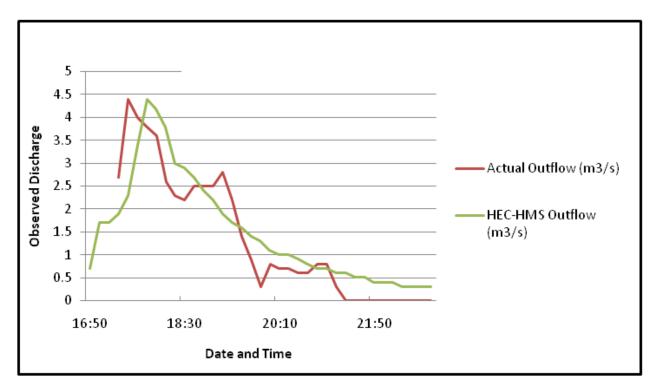
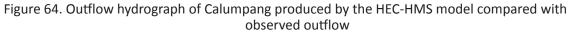




Figure 63. Generated 100-year rain return flow depth map from FLO-2D Mapper

5.6 Results of HMS Calibration

After calibrating the Calumpang HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 64 shows the comparison between the two discharge data.

Enumerated in Table 31 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	0.18 – 12.39
	LUSS	SCS Curve number	Curve Number	35.21 – 99
Desir	Transform	Cloub Linit Lindua ana ah	Time of Concentration (hr)	0.17 – 352.95
Basin		Clark Unit Hydrograph	Storage Coefficient (hr)	0.17 - 995
	Deseflow	Decession	Recession Constant	0.00001 – 0.9
	Baseflow	Recession	Ratio to Peak	0.0055 – 0.75
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.0055 – 0.75

Table 31. Range of calibrated values for Calumpang

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.18 mm to 12.39 mm means that there is a minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of curve number values for the basin range from 35.21 and 99.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.17 hours to 995 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.00001 to 0.9 and Ratio to Peak of 0.0055–0.75 represents a large variation of values among the subbasins of the watershed.

Manning's roughness coefficient of 0.0055 to 0.75 corresponds to the roughness values in Calumpang watershed.

RMSE	0.71
r ²	0.7622
NSE	0.72
PBIAS	-17.845
RSR	0.53

Table 32. Summary of the efficiency test of Calumpang HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at $0.71 \text{ m}^3/\text{s}$.

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.7622.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.72.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -17.845.

The Observation Standard Deviation Ratio (RSR) is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.53.

5.7 Calculated Outflow Hydrographys and Discharge Values for Different Rainfall Return Periods

5.7.1 Hydrograph Using the Rainfall Runoff Model

The summary graph (Figure 65) shows the Calumpang outflow using the Ambulong RIDF in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

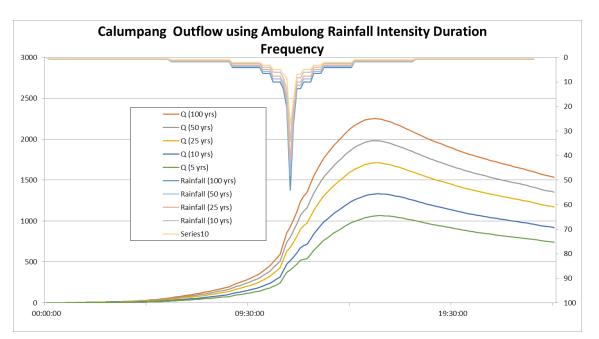


Figure 65. Outflow hydrograph at Bridge of Promise generated using Ambulong RIDF simulated in HEC-HMS

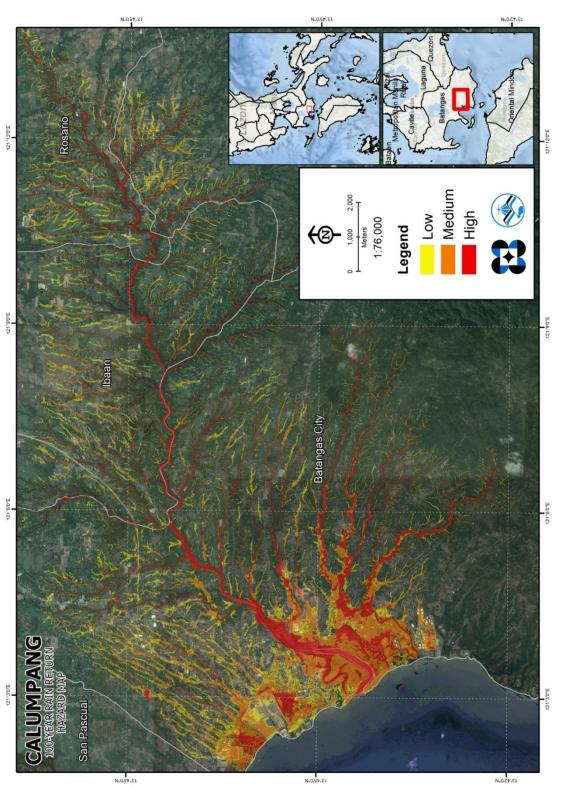
A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Calumpang River discharge using the Ambulong RIDF curves in five different return periods is shown in Table 33.

Table 33. Peak values of the Calumpang HEC-HMS Model outflow u	using the Ambulong RIDF
--	-------------------------

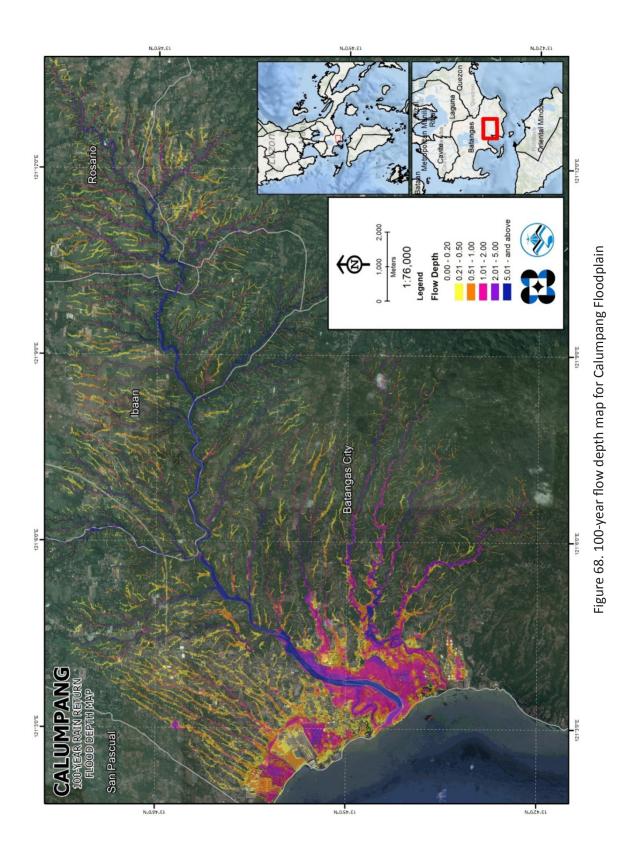
RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³/s)	Time to Peak
5-Year	226.7	27.9	1065.4	16 hours, 30 minutes
10-Year	276.9	34.2	1333.3	16 hours, 20 minutes
25-Year	340.4	42.2	1711.2	16 hours, 10 minutes
50-Year	387.5	48.1	1982.4	16 hours, 10 minutes
100-Year	434.3	54	2252	16 hours, 10 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river will be shown, since only the Flood Acquisition and Validation Component (MIT-FAVC) base flow was calibrated. The sample generated map of Calumpang River using the calibrated HMS base flow is shown in Figure 66.


Figure 66. Sample output of Calumpang RAS Model

5.9 Flow Depth and Flood Hazard


The resulting hazard and flow depth maps have a 10 m resolution. Figure 67 to Figure 72 shows the 100-, 25-, and 5-year rain return scenarios of the Calumpang Floodplain.

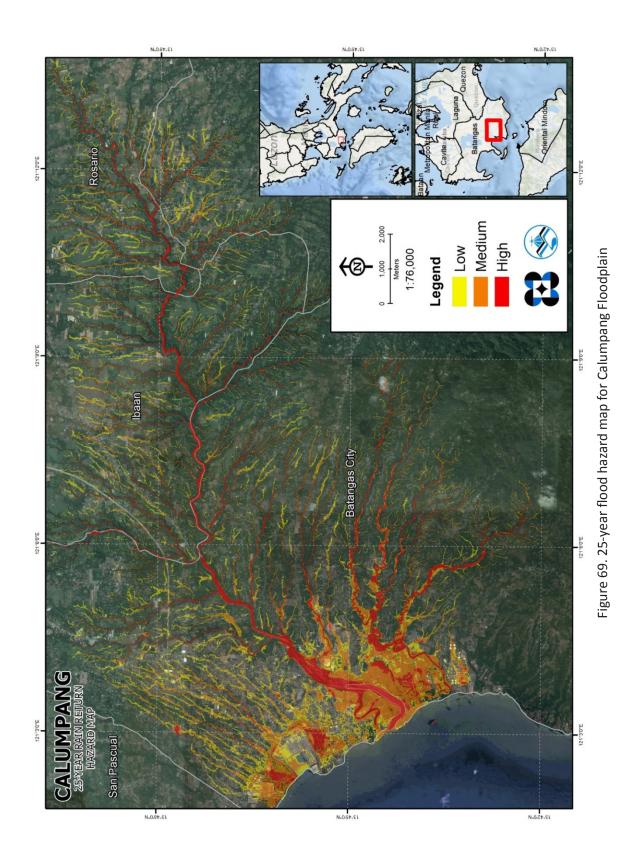

Municipality	Total Area	Area Flooded	% Flooded
Batangas City	274.44	97.44	35.50%
Rosario	199.04	16.85	8.46%
Ibaan	70.33	38.21	54.33%
Taysan	92.55	10.36	11.22%

Table 34. Municipalities affected in Calumpang Floodplain

Figure 67. 100-year flood hazard map for Calumpang Floodplain

73

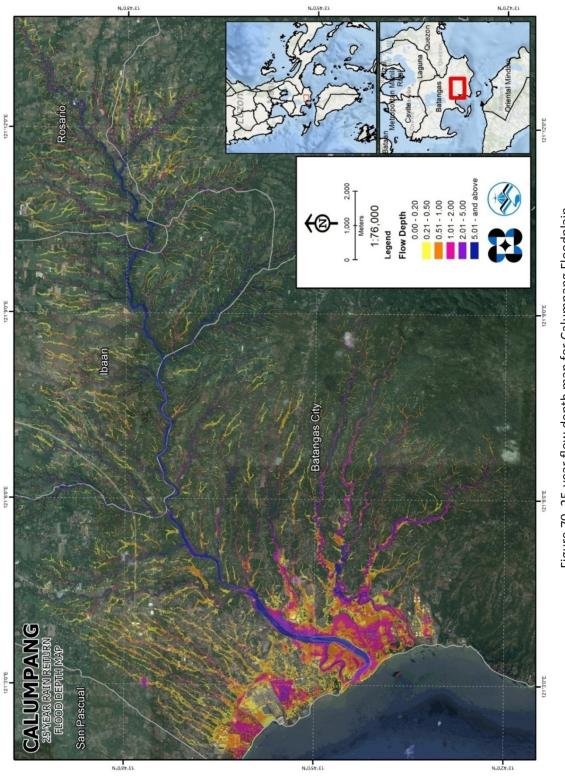
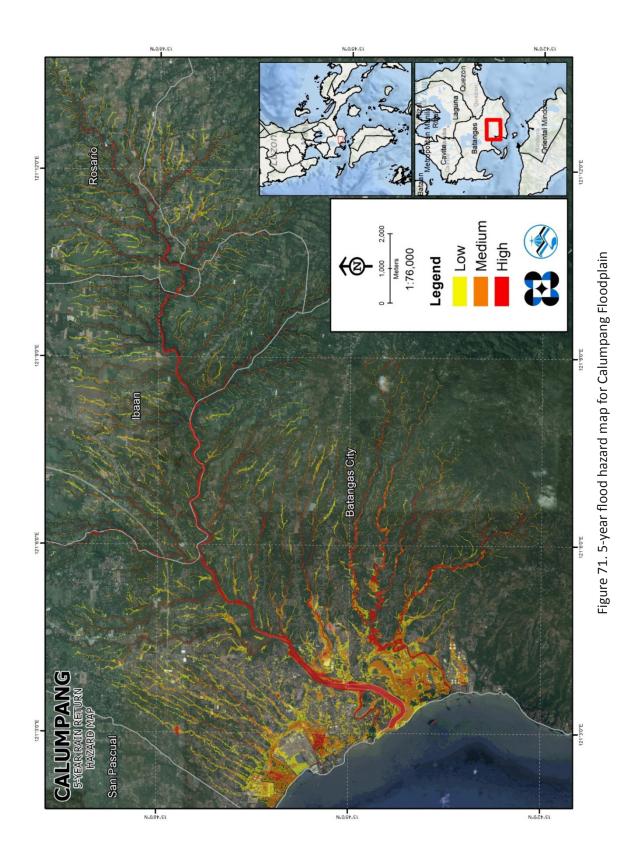



Figure 70. 25-year flow depth map for Calumpang Floodplain

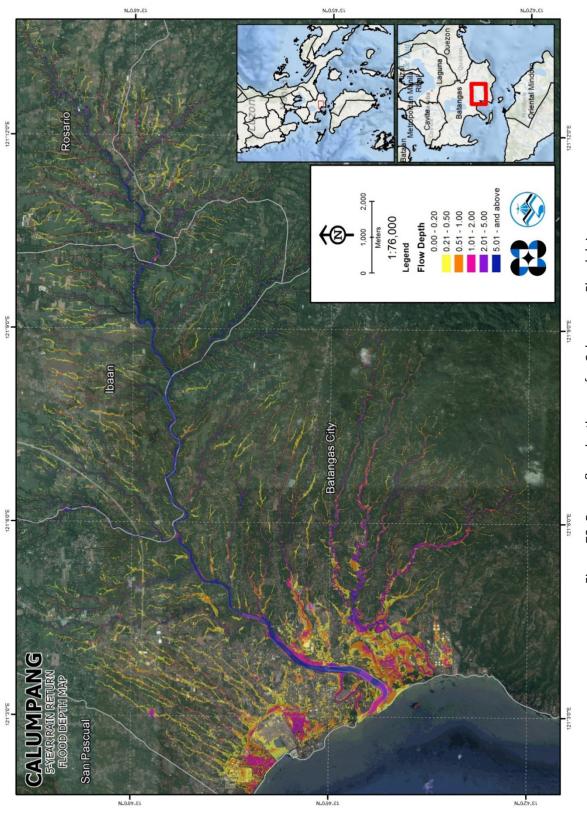


Figure 72. 5-year flow depth map for Calumpang Floodplain

5.10 Inventory of Areas Exposed to Flooding of Affected Areas

Listed below are the barangays affected by the Calumpang River Basin, grouped accordingly by municipality. For the said basin, four (4) municipalities consisting of 117 barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 29.36% of the municipality of Batangas City with an area of 274.44 sq km will experience flood levels of less than 0.20 meters; 2.62% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.60%, 0.99%, 0.61%, and 0.31% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 to Table 41 are the affected areas in square kilometers by flood depth per barangay.

ומארכיסט. הוובנונים מוכמי וון המנמוופמי כווץ, המנמוופמי ממוווופ מיס-עכמו ומוווומוו ובנמוון הבוחות	Area of affected barangays in Batangas (in sq. km.)	n Balagtas Balete Banaba Banaba Banaba Banaba Banaba Barangay Barangay Barangay Barangay Barangay Barangay Barangay Dangay Datangay	2.1 0.38 1.1 1.06 1.08 0.31 0.053 0.014 0.011 0.01	0.25 0.019 0.15 0.094 0.046 0.0077 0.0016 0.0014 0.0027	0.061 0.0052 0.054 0.063 0.032 0.021 0.0005 0 0.0006 0	0.0085 0.0026 0.0041 0.013 0.016 0.023 0.0016 0 0 0 0	0.0058 0.0035 0.0001 0.0017 0.0074 0.016 0.0011 0 0 0.0001	0.0033 0.00041 0 0 0.0004 0.0002 0.0036 0 0 0 0	
		Ba						0.0033 0.00041	
		Alangilan	2.36	0.31	0.088	0.023	0.018	0.002	
	Affected Area	(sq. km.) by flood depth (in m.)	1	2	Affected 3	(sa. km.) 4	5	9	

Table 35. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

Table 36. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

		Barangay 22	0.039	0.01	0.000003	0	0	0
		Barangay 21	0.043	0.0098	0.0001	0	0	0
		Barangay 20	0.049	0.0039	0	0	0	0
	q. km.)	Barangay 2	0.022	0.0039	0.0064	0.0045	0.00075	0.0079
	Area of affected barangays in Batangas (in sq. km.)	Barangay 19	0.038	0.0055	0	0	0	0
1	Irangays in B	Barangay 18	0.042	0.017	0.0043	0	0	0
	of affected ba	Barangay 17	0.039	0.0018	0.000002	0	0	0
	Area c	Barangay 16	0.047	0.005	0	0	0	0
		Barangay 15	0.024	0.0027	0.00027	0	0	0
		Barangay 14	0.011	0.0044	0.0012	0.0001	0	0
		Barangay 13	0.0099	0.0031	0.0002	0	0	0
	Affected Area	(sq. km.) by flood depth (in m.)	1	2	3	4	5	9
	Affecte	(sq. km.) depth			Affected	(sg. km.)	-	

	Bolbok	1.83	0.43	0.26	0.076	0.012	0
	Bilogo	1.27	0.031	0.026	0.021	0.015	0.0025
	Barangay 9	0.008	0.0053	0.013	0.00042	0	0
km.)	Barangay 8	0.013	0.0066	0.0065	0.0035	0	0
ngas (in sq. l	Barangay 7	0.021	0.0077	0.0036	0.0001	0	0
gays in Batar	Barangay 6	0.046	0.0076	0.0042	0.00023	0.000001	0
fected barang	Barangay 5	0.039	0.0078	0.00045	0.000013	0	0
Area of af	Barangay 4	0.0096	0.00073	0.00055	0.017	0.0073	0.053
	Barangay 3	0.053	0.014	0.0053	0.0005	0.00053	0.015
	Barangay 24	0.012	0.0027	0.000095	0	0	0
	Barangay 23	0.021	0.0028	0	0	0	0
d Area	by flood (in m.)	1	2	3	4	5	9
Affecte	(sq. km.) depth			Affected	sq. km.)	-	
	Affected Area Affected barangays in Batangas (in sq. km.)	d Barangay 23 Barangay Barangay Barangay 5 Barangay 5 Barangay Barangay Barangay Barangay d 24 3 4 Barangay 5 Barangay Barangay Barangay Barangay Barangay Barangay	Area of affected barangays in Batangas (in sq. km.) Area of affected barangays in Batangas (in sq. km.) Barangay 23 Barangay Barangay	Area of affected barangays in Batangas (in sq. km.) Area of affected barangays in Batangas (in sq. km.) Barangay 23 Barangay 24 Barangay 24 Barangay 34 Barangay 5 Barangay 6 Colspan=10 Colspan=10 <th< td=""><td>Area of affected barangays in Batangas (in sq. km.) by flood (in m.) Barangay 2 24 Barangay Barangay (in sq. km.) Area of affected barangays in Batangay (in sq. km.) 1 0.021 0.012 0.053 0.0096 0.039 0.046 0.013 0.008 1.27 2 0.0028 0.014 0.00073 0.0078 0.0076 0.0076 0.0076 0.0076 0.0073 0.0076 0.0073 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0073 0.0076 0.0073 0.0076 0.0073 0.0076 0.0076 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0073 0.0076 0.0073 0.0073 0.0073 0.0076 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073</td><td>Area Area of affected barangays in Barangay (in sq. im.) by flood (in m.) Barangay 2 Bar</td><td>Area of Area Area of affected barangays in Barangay (in sc) Area of and and a sc) Area of affected barangays in Barangay (in sc) Area of and and a sc) Area of a sc)</td></th<>	Area of affected barangays in Batangas (in sq. km.) by flood (in m.) Barangay 2 24 Barangay Barangay (in sq. km.) Area of affected barangays in Batangay (in sq. km.) 1 0.021 0.012 0.053 0.0096 0.039 0.046 0.013 0.008 1.27 2 0.0028 0.014 0.00073 0.0078 0.0076 0.0076 0.0076 0.0076 0.0073 0.0076 0.0073 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0073 0.0076 0.0073 0.0076 0.0073 0.0076 0.0076 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0076 0.0073 0.0076 0.0073 0.0076 0.0073 0.0073 0.0073 0.0076 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073	Area Area of affected barangays in Barangay (in sq. im.) by flood (in m.) Barangay 2 Bar	Area of Area Area of affected barangays in Barangay (in sc) Area of and and a sc) Area of affected barangays in Barangay (in sc) Area of and and a sc) Area of a sc)

Table 37. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

Table 38. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

Affecte	Affected Area				Area of a	Area of affected barangays in Batangas (in sq. km.)	angays in E	atangas (ir	ı sq. km.)			
(sq. km.) depth	sq. km.) by flood depth (in m.)	Bukal	Calicanto	Catandala	Conde Itaas	Conde Labak	Cuta	Dalig	Domoclay	Gulod Itaas	Gulod Labak	Kumintang Ibaba
	1	0.69	1	4.68	2.98	1.14	0.87	1.88	2.54	1.53	0.97	1.32
	2	0.014	0.3	0.18	0.096	0.025	0.2	0.088	0.16	0.099	0.06	0.19
Affected	3	0.008	0.18	0.065	0.077	0.021	0.13	0.064	0.13	0.12	0.041	0.076
area (sg. km.)	4	0.011	0.17	0.053	0.078	0.015	0.069	0.054	0.11	0.057	0.023	0.074
-	5	0.01	0.033	0.052	0.065	0.0033	0.045	0.058	0.22	0.037	0.025	0.054
	9	0.0015	0	0.057	0.01	0	0.021	0.011	0.028	0.0031	0.0083	0.14

		Sampaga	2.06	0.12	0.047	0.042	0.053	0.0095
		Paharang _{Si}	1.51	0.04	0.027	0.028	0.022	0.0013 0
2		Malitam	0.19	0.047	0.035	0.027	0.019	0.00062
	. km.)	Malalim	1.88	0.081	0.052	0.072	0.065	0.0006
	ngas (in sq.	Mahacot Silangan	1.92	0.068	0.044	0.031	0.037	0.025
מיוויק כי איל	gays in Bata	Mahacot Mahacot Kanluran Silangan	2.32	0.1	0.034	0.032	0.044	0.019
ומאור שלי הוורנינים מורמש ווו שממווצמש כונץ, שמנמווצמש ממווווצ משע ארמו ומוווזמוו ובנמווו שכוושמ	Area of affected barangays in Batangas (in sq. km.)	Mahabang Mahacot Mahacot Parang Kanluran Silangan	1.11	0.05	0.018	0.012	0.0076	0.0019
המנמוופמט כור	Area of af	Mahabang Dahilig	0.43	0.0086	0.0051	0.0017	0.0006	0
		Maapas	1.4	0.035	0.025	0.022	0.026	0.0086
		Libjo	1.62	0.82	0.99	0.5	0.23	0.045
200		Kumintang Ilaya	0.96	0.092	0.02	0.004	0.0052	0.002
	Affected Area	(sq. km.) by flood depth (in m.)	1	2	3	4	5	9
	Affecte	(sq. km.) by floc depth (in m.)			Affected	area (sa. km.)	-	

Table 39. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

Table 40. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

-	Area of affected barangays in Batangas (in sq. km.)	SantaSantaSantaSantoRitaRitaNiñoLupaIbabaAplayaKarsadaNiñoLupa	0.21 2.45 0.55 1.49 1.25 0.64	0.2 0.49 0.014 0.095 0.033 0.014	0.17 0.14 0.0093 0.067 0.016 0.0063	0.17 0.028 0.0059 0.067 0.011 0.0063	0 0.0012 0.0025 0.064 0.0078 0.0093	0 0 0.0057 0.0029 0.0095
	fected barar	Santa Clara	1.03	0.4	0.25	0.22	0.0037	0
þ	Area of af	San Pedro	4.23	0.15	0.095	0.074	0.076	0.14
		San Miguel	4.22	0.12	0.078	0.06	0.042	0.0025
		San Jose Sico	0.62	0.013	0.0089	0.0092	0.011	0.0009
		San Isidro	2.24	0.22	0.13	0.052	0.021	0.0018
		Allected Area (sq. km.) by flood depth (in m.)	1	2	3	4	5	9
	A ff o c t o	Allected Aled (sq. km.) by floo depth (in m.)			Affected	(sq. km.)	-	

g
<u>o</u> .
ð
0
5
1
Ġ
2
=
പ
Ē
-E
2
<u>_</u>
σ
ě
~
ம்
<u> </u>
10
ഉ
⊒.
1
\rightarrow
0
S
g
ğ
Ē
ta
ata
Bata
-
ity, Bata
City, Bata
S City, Bata
as City, Bata
as City
ngas City, Bata
as City
as City
atangas City
atangas City
atangas City
atangas City
atangas City
atangas City
atangas City
areas in Batangas City
areas in Batangas City
ed areas in Batangas City
areas in Batangas City
ected areas in Batangas City
ected areas in Batangas City
ected areas in Batangas City
ected areas in Batangas City
ected areas in Batangas City
ected areas in Batangas City
e 41. Affected areas in Batangas City
e 41. Affected areas in Batangas City
e 41. Affected areas in Batangas City
e 41. Affected areas in Batangas City
ected areas in Batangas City

Affecte	Affected Area		An	ea of affected	Area of affected barangays in Batangas (in sq. km.)	Batangas	(in sq. km.)		
(sq. km.) depth	(sq. km.) by flood depth (in m.)	Sorosoro Karsada	Sorosoro Tabangao Karsada Ambulong	Tabangao Aplaya	Talumpok Kanluran	Tinga Itaas	Tinga Labak	Tulo	Wawa
	1	2.17	0.37	0.063	2.61	2.59	2.54	3.97	0.18
	2	0.091	0.093	0.017	0.072	0.16	0.19	0.16	0.18
Affected	3	0.031	0.065	0.016	0.054	0.048	0.097	0.094	0.15
(sa. km.)	4	0.037	0.033	0.019	0.061	0.033	0.025	0.063	0.054
-	5	0.042	0.0002	0.0019	0.02	0.048	0.046	0.071	0.0081
	9	0.0067	0	0	0.00012	0.095	0.11	0.0047	0.00045

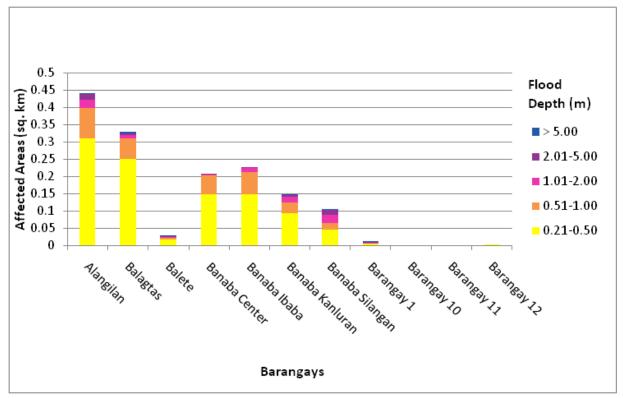


Figure 73. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

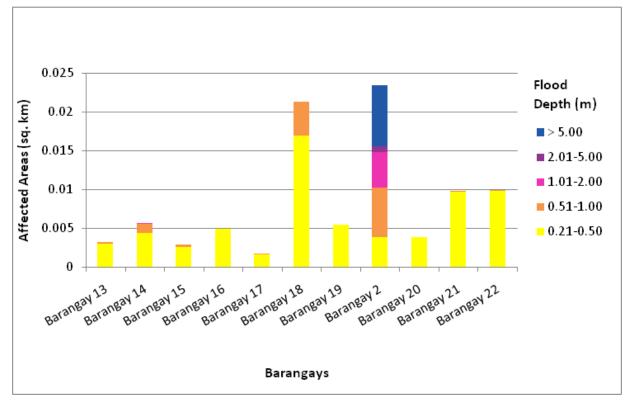


Figure 74. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

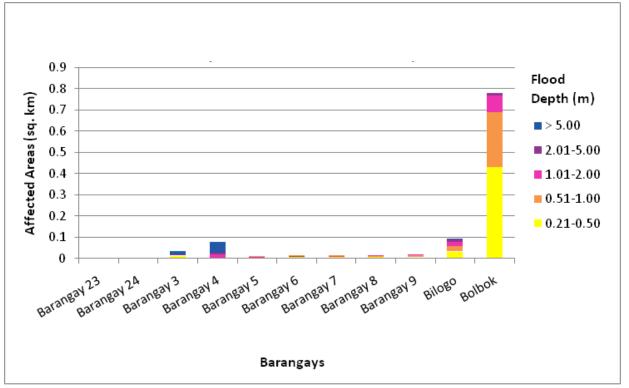


Figure 75. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

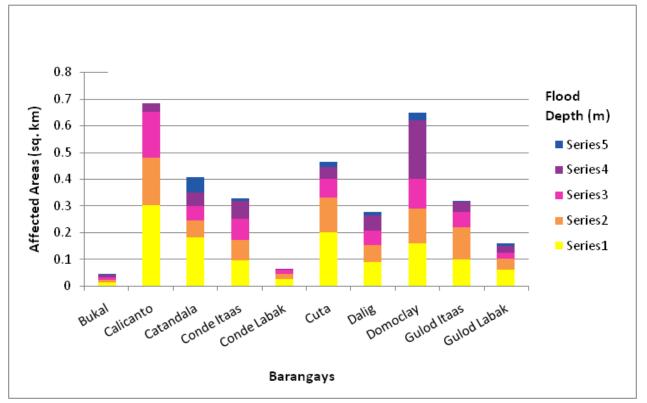


Figure 76. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

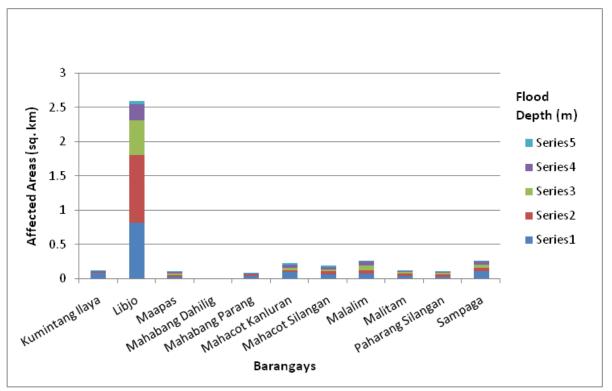


Figure 77. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

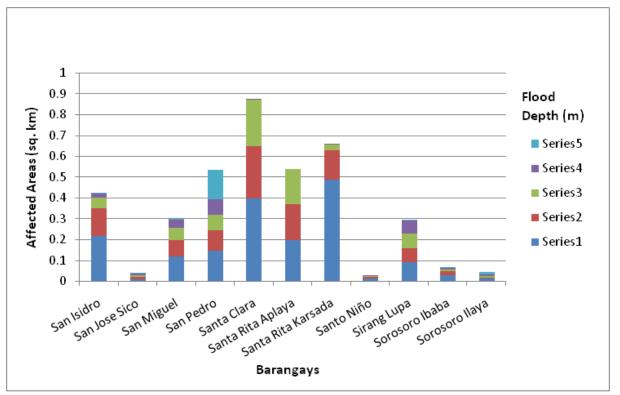


Figure 78. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

Figure 79. Affected areas in Batangas City, Batangas during a 5-year rainfall return period

For the 5-year return period, 7.51% of the municipality of Rosario with an area of 199.037 sq km will experience flood levels of less than 0.20 meters; 0.40% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.21%, 0.17%, 0.10%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 and Table 43 are the affected areas in square kilometers by flood depth per barangay.

Affected			А	rea of affecte	d barangay	vs in Rosario	o (in sq. km	n.)	
(sq. km. flood dep m.)		Bagong Pook	Bulihan	Colongan	Itlugan	Maalas- As	Malaya	Mavalor	Namuco
	1	0.82	0.11	3.7	2.41	2.07	0.67	0.66	0.14
[2	0.049	0.0041	0.23	0.1	0.11	0.04	0.033	0.0054
Affected	3	0.029	0.0013	0.09	0.072	0.06	0.02	0.0093	0.0028
Area (sq. km.)	4	0.017	0.0002	0.075	0.067	0.046	0.0033	0.008	0.00066
	5	0.012	0	0.065	0.062	0.014	0.0001	0.002	0
	6	0	0	0.08	0.024	0.0017	0	0	0

Table 42. Affected areas in Rosario, Batangas during a 5-year rainfall return period

Affecte (sq. km.)		Area of affe	cted barangay (in sq. km.)	rs in Rosario
depth	(in m.)	San Ignacio	Timbugan	Tiquiwan
	1	0.075	4.28	0.013
	2	0.0042	0.22	0.00077
Affected	3	0.00076	0.13	0.0008
Area (sq. km.)	4	0	0.12	0
	5	0	0.051	0
	6	0	0.046	0

Table 43. Affected areas in Rosario, Batangas during a 5-year rainfall return period

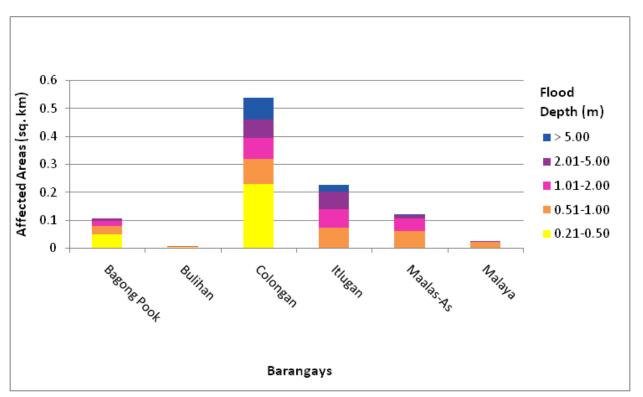


Figure 80. Affected areas in Rosario, Batangas during a 5-year rainfall return period

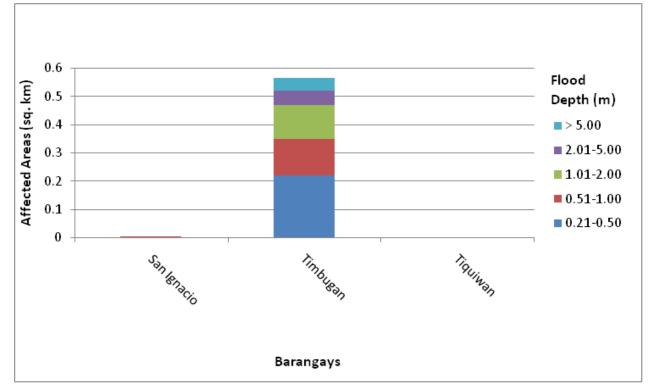


Figure 81. Affected areas in Rosario, Batangas during a 5-year rainfall return period

For the 5-year return period, 49.03% of the municipality of Ibaan with an area of 70.33 sq km will experience flood levels of less than 0.20 meters; 2.34% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.02%, 0.72%, 0.61%, and 0.63% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44 and Table 45 are the affected areas in square kilometers by flood depth per barangay.

Affecte	ed			Area d	of affected	barangays	in Ibaan	(in sq. km	n.)		
Area (sq. km. flood de (in m.) by pth	Bago	Bala- nga	Bunga- han	Catan- dala	Coliat	Daya- pan	Luc- suhin	Maba- lor	Mala- inin	Matala
	1	1.06	2.06	3.38	3.33	1.32	2.24	2.88	4.44	0.49	0.56
Affec-	2	0.079	0.084	0.17	0.12	0.11	0.14	0.12	0.17	0.026	0.032
ted	3	0.034	0.038	0.077	0.069	0.031	0.054	0.071	0.08	0.008	0.0072
Area (sq.	4	0.017	0.028	0.044	0.056	0.02	0.034	0.066	0.061	0.0025	0.0049
km.)	5	0.015	0.034	0.041	0.04	0.0082	0.031	0.051	0.04	0.0017	0.0005
	6	0.0001	0.064	0.077	0.036	0.0005	0.075	0.064	0.024	0.0002	0

Table 44. Affected areas in Ibaan, Batangas during a 5-year rainfall return period

Affecte	ed			Area of affec	ted baranga	ys in Ibaan	(in sq. km.)	
Area (sq. km. flood de (in m) by epth	Palindan	Pangao	Panghayaan	Poblacion	Quilo	Sabang	San Agustin	Sandalan
	1	0.45	1.61	2.07	0.46	2.94	3.58	0.57	1.04
Affec-	2	0.022	0.12	0.075	0.032	0.12	0.14	0.037	0.049
ted	3	0.0076	0.048	0.049	0.018	0.042	0.041	0.0088	0.035
Area (sq.	4	0.0041	0.024	0.029	0.0066	0.038	0.037	0.0038	0.029
km.)	5	0.0006	0.0058	0.019	0.0014	0.055	0.072	0	0.013
	6	0	0	0.0022	0	0.015	0.084	0	0.0006

Table 45. Affected areas in Ibaan, Batangas during a 5-year rainfall return period

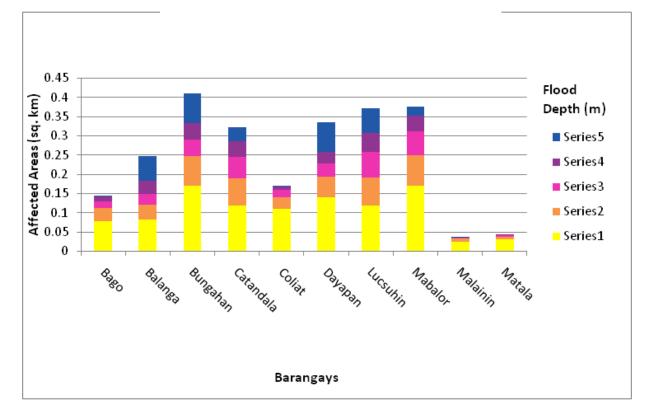


Figure 82. Affected areas in Ibaan, Batangas during a 5-year rainfall return period

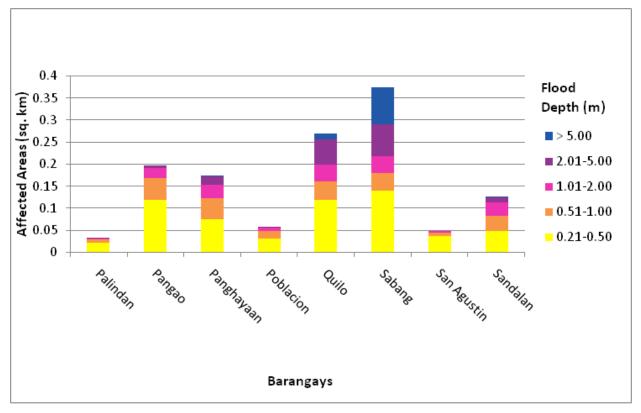


Figure 83. Affected areas in Ibaan, Batangas during a 5-year rainfall return period

For the municipality of Santa Rita, with an area of 250.37 sq km., 45.63% will experience flood levels of less 0.20 meters; 3.44% of the area will experience flood levels of 0.21 to 0.50 meters; while 3.33%, 2.40%, 0.68%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Outlined in Table 46 are the affected areas in square kilometers by flood depth per barangay.

Affec-t	ed			Area of	affected bara	ngays in Ta	ysan (in sq.	. km.)		
Area (sq. kr by floo depth m.)	n.) od (in	Bilogo	Bukal	Maba- yabas	Mahana- diong	Mataas Na Lupa	Pag-Asa	Pang- hayaan	Pobla- cion East	Tilam- bo
	1	0.57	0.18	3.42	1.67	0.1	1.76	1.05	0.35	0.08
Affec-	2	0.013	0.0059	0.26	0.14	0.0038	0.089	0.045	0.047	0.001
ted Area	3	0.014	0.0056	0.13	0.049	0.0024	0.032	0.028	0.022	0
(sq.	4	0.012	0.0045	0.098	0.012	0.0015	0.039	0.03	0.009	0
km.)	5	0.0066	0.0019	0.053	0.0007	0.0002	0.041	0.0081	0.0059	0
	6	0.0008	0	0.004	0	0	0.002	0	0	0

Table 46. Affected areas in	n Taysan, Batangas d	during a 5-year rainfal	l return period
-----------------------------	----------------------	-------------------------	-----------------

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

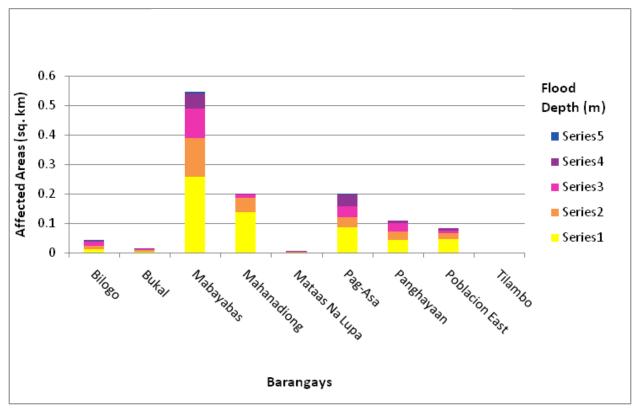


Figure 84. Affected Areas in Taysan, Batangas during a 5-year rainfall return period

For the 25-year return period, 27.48% of the municipality of Batangas City with an area of 274.44 sq km will experience flood levels of less than 0.20 meters; 2.76% of the area will experience flood levels of 0.21 to 0.50 meters; while 2.29%, 1.65%, 0.88%, and 0.46% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 47 to Table 53 are the affected areas in square kilometers by flood depth per barangay.

Table 47. Affected areas in Batangas City, Batangas during a 25-year rainfall return period	Area of affected barangays in Batangas (in sq. km.)	a Barangay Barangay Barangay Barangay 1 10 11 12	0.0024 0.013 0.01 0.0087	0.0092 0.0027 0.002 0.004	0.044 0 0.0006 0.0001	0.0051 0 0 0	0.0028 0 0 0.0001	0.0039 0 0 0 0	Table 48. Affected areas in Batangas City, Batangas during a 25-year rainfall return period
a 25-yea	n Batang	Banaba Silangan	0.29	0.047	0.033	0.024	0.022	0.0007	a 25-yeai
gas during	arangays i	Banaba Kanluran	1.03	0.11	0.044	0.021	0.011	0.0023	gas during
City, Batang	f affected b	Banaba Ibaba	0.99	0.17	0.097	0.028	0.0031	0	City, Batang
Batangas (Area of	Banaba Center	1.04	0.17	0.091	0.0066	0.0004	0	Batangas (
ed areas in		Balete	0.37	0.026	0.0087	0.0025	0.0048	0.00071	ed areas in
e 47. Affecto		Balagtas	1.98	0.32	0.097	0.016	0.0067	0.0051	e 48. Affecto
Table		Alangilan	2.22	0.37	0.15	0.035	0.024	0.0044	Table
	Affected Area	q. km.) by flood depth (in m.)	1	2	3	4	5	9	
	Affecte	(sq. km.) by flood depth (in m.)			Affected	(sg. km.)	-		

	Barangay 22	0.033	0.015	0.00078	0	0	0
	Barangay 21	0.037	0.016	0.0004	0	0	0
	Barangay 20	0.043	0.0087	0.0039	0	0	0
(m.)	Barangay 2	0.0028	0.0027	0.014	0.013	0.0049	0.0083
Area of affected barangays in Batangas (in so km.)	Barangay 19	0.011	0.0043	0.029	0.00041	0	0
angays in Bat	Barangay 18	0.029	0.0069	0.015	0.015	0	0
of affected bar	Barangay 17	0.033	0.003	0.0041	0.00065	0	0
Area c	Barangay 16	0.042	0.0086	0.0011	0	0	0
	Barangay 15	0.022	0.0049	0.00088	0	0	0
	Barangay 14	0.0081	0.0052	0.0029	0.0002	0	0
	Barangay 13	0.0077	0.0047	0.00081	0	0	0
Los L	by flood in m.)	1	2	3	4	5	9
Affacted Area	(sq. km.) by flood depth (in m.)			Affected	(sa. km.)		

LiDAR Surveys and Flood Mapping of Calumpang River

		Bolbok	1.6	0.47	0.37	0.15	0.017	0.0001
		Bilogo	1.26	0.034	0.027	0.026	0.02	0.0037
		Barangay 9	0.0067	0.0029	0.016	0.0018	0	0
	n.)	Barangay 8	0.0087	0.0075	0.0083	0.0048	0	0
	gas (in sq. kn	Barangay 7	0.019	0.0078	0.0053	0.0004	0	0
	ays in Batan	Barangay 6	0.04	0.0094	0.006	0.0015	0.00017	0
	Area of affected barangays in Batangas (in sq. km.)	Barangay 4 Barangay 5	0.034	0.011	0.0014	0.00025	0.000068	0
ימיור דין אוורנורת מורמי וו המנמוסמי הולי המנמוסמי ממוויף מירי לרמו ומווימו ורנמון לרויס	Area of aff	Barangay 4	0.004	0.0017	0.0026	0.0023	0.021	0.057
		Barangay 3	0.025	0.019	0.0076	0.021	0.0011	0.015
		Barangay 24	0.011	0.0036	0.00047	0	0	0
2		Barangay 23	0.017	0.0066	0	0	0	0
	Affected Area	(sq. km.) by flood depth (in m.)	1	2	3	4	5	9
	Affecte	(sq. km.) depth			Affected	sa. km.)	-	

Table 49. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

Table 50. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

					þ		D		-			
Affecte	Affected Area				Area of a	Area of affected barangays in Batangas (in sq. km.)	angays in B	atangas (ir	sq. km.)			
(sq. km.) depth	(sq. km.) by flood depth (in m.)	Bukal	Calicanto	Catandala	Conde Itaas	Conde Labak	Cuta	Dalig	Domoclay	Gulod Itaas	Gulod Labak	Kumintang Ibaba
	1	0.68	0.85	4.58	2.92	1.13	0.39	1.82	2.35	1.47	0.93	1.12
	2	0.017	0.31	0.22	0.11	0.035	0.25	0.1	0.17	0.086	0.057	0.22
Affected	3	0.0093	0.25	0.088	0.075	0.022	0.37	0.072	0.18	0.098	0.055	0.089
area (sa. km.)	4	0.012	0.21	0.063	0.097	0.019	0.2	0.067	0.15	0.12	0.045	0.098
	5	0.013	0.069	0.061	0.093	0.0056	0.1	0.061	0.23	0.062	0.028	0.15
	9	0.0021	0	0.073	0.016	0	0.024	0.029	0.1	0.011	0.014	0.18

	Sampaga	1.98	0.14	0.067	0.048	0.071	0.024
	Paharang Silangan	1.49	0.046	0.032	0.027	0.033	0.003
	Malitam	0.0013	0.012	0.16	0.099	0.041	0.0016
q. km.)	Malalim	1.79	0.1	0.056	0.07	0.12	0.0084
angas (in s	Mahacot Mahacot Kanluran Silangan	1.87	0.082	0.054	0.041	0.046	0.036
igays in Bat	Mahacot Kanluran	2.26	0.12	0.047	0.034	0.056	0.031
Area of affected barangays in Batangas (in sq. km.)	Mahabang Mahabang Mahacot Mahacot Dahilig Parang Kanluran Silangan	1.08	0.075	0.021	0.014	0.01	0.0031
Area of af	Mahabang Dahilig	0.42	0.011	0.0055	0.0025	0.001	0
	Maapas	1.38	0.04	0.029	0.026	0.032	0.012
	Libjo	0.91	0.49	1.18	1.23	0.31	0.084
	Kumintang Ilaya	0.89	0.14	0.033	0.0065	0.0062	0.0042
d Area	d Area by flood in m.)		2	3	4	5	9
Affected Area	(sq. km.) by flood depth (in m.)			Affected	area (sa. km.)	-	

Table 51. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

Table 52. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

-	Area of affected barangays in Batangas (in sq. km.)	a Santa Santa Santo Sirang Sorosoro Sorosoro a Aplaya Karsada Niño Lupa Ibaba Ilaya	3 0.17 2.2 0.55 1.41 1.23 0.63	3 0.079 0.59 0.014 0.1 0.051 0.018	5 0.26 0.27 0.012 0.097 0.018 0.0067	2 0.23 0.05 0.0069 0.087 0.012 0.0057	9 0.0029 0.003 0.0038 0.081 0.011 0.012	0 0 0 0.01 0.01 0.0042 0.013
)	Area of affected b	San Santa Pedro Clara	4.1 0.78	0.18 0.43	0.11 0.36	0.095 0.32	0.11 0.019	0.17 0
		San Jose San Sico Miguel	0.61 4.15	0.015 0.14	0.0097 0.086	0.011 0.073	0.013 0.062	0.0016 0.0049
		San Sa Isidro	2.17	0.22 0	0.17 0	0.083 0	0.026 0	0.0026 0.
	Afficited Assoc	Allected Area (sq. km.) by flood depth (in m.)	1	2	Affected 3	sg. km.) 4	5	9

Affeo	cted	Area of affected barangays in Batangas (in sq. km.)									
Are (sq. kn flood o (in r	n.) by depth	Sorosoro Karsada	Tabangao Ambulong	Tabangao Aplaya	Talumpok Kanluran	Tinga Itaas	Tinga Labak	Tulo	Wawa		
	1	2.1	0.32	0.05	2.57	2.48	2.42	3.88	0.032		
Affec-	2	0.14	0.096	0.019	0.08	0.21	0.22	0.18	0.07		
ted	3	0.034	0.091	0.022	0.06	0.069	0.14	0.12	0.27		
Area (sq.	4	0.039	0.053	0.019	0.071	0.031	0.031	0.073	0.19		
km.)	5	0.055	0.001	0.0064	0.04	0.058	0.064	0.099	0.016		
	6	0.013	0	0	0.00015	0.13	0.14	0.01	0.0035		

Table 53. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

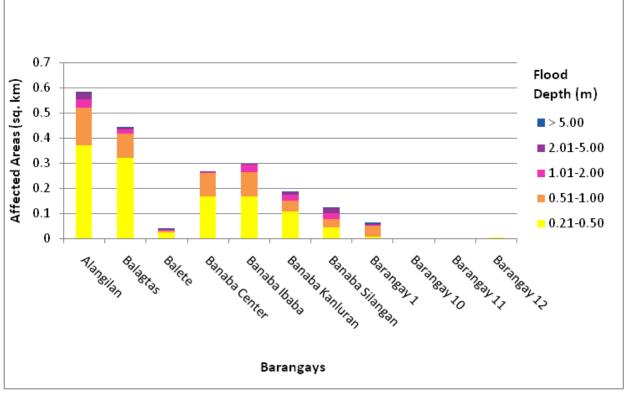


Figure 85. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

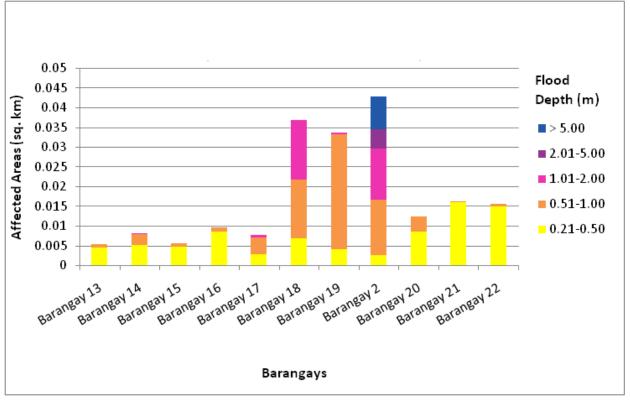


Figure 86. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

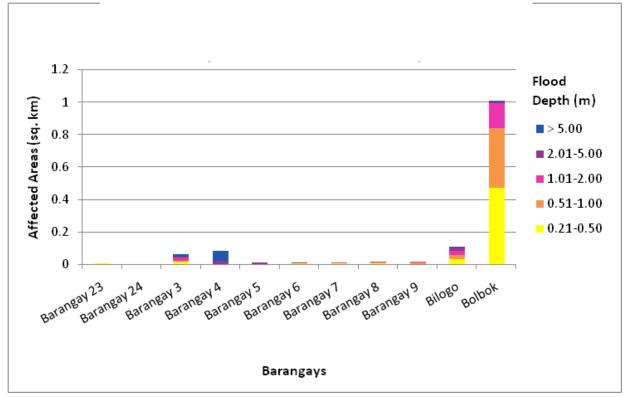


Figure 87. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

Figure 88. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

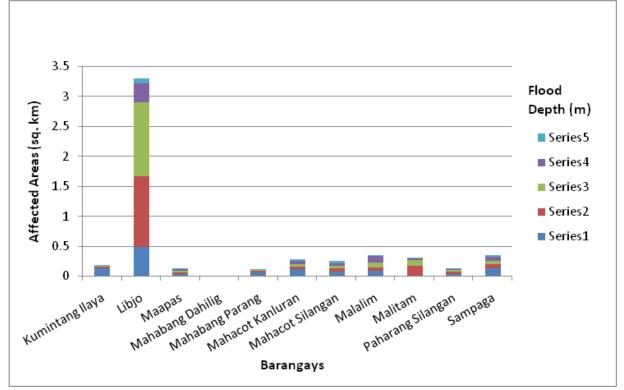


Figure 89. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

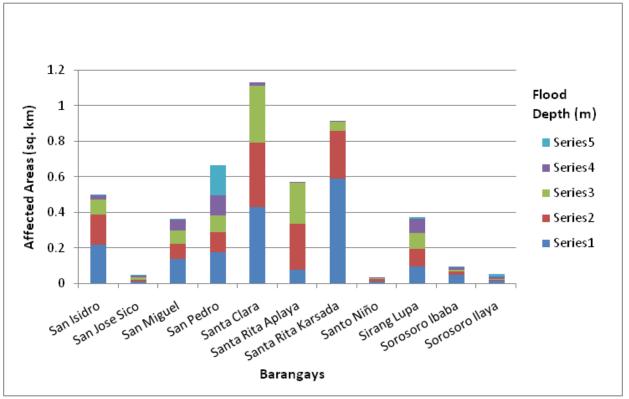


Figure 90. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

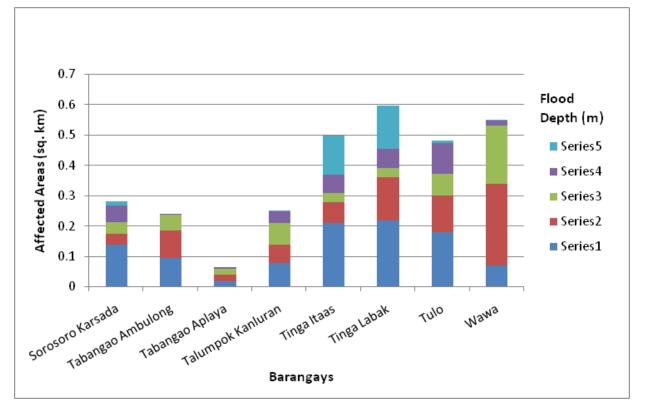


Figure 91. Affected areas in Batangas City, Batangas during a 25-year rainfall return period

For the 25-year return period, 7.21% of the municipality of Rosario with an area of 199.037 sq km will experience flood levels of less than 0.20 meters; 0.52% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.25%, 0.21%, 0.14%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 54 and Table 55 are the affected areas in square kilometers by flood depth per barangay.

Affected			Ar	ea of affecte	ed baranga	ys in Rosari	o (in sq. kn	n.)	
(sq. km. flood dep m.)		Bagong Pook	Bulihan	Colongan	Itlugan	Maalas- As	Malaya	Mavalor	Namuco
	1	0.79	0.1	3.55	2.31	2	0.64	0.65	0.14
	2	0.065	0.007	0.3	0.13	0.13	0.048	0.04	0.0076
Affected	3	0.033	0.0014	0.11	0.083	0.074	0.03	0.014	0.0039
Area (sq. km.)	4	0.023	0.0004	0.088	0.084	0.061	0.0046	0.0096	0.0011
(39. КП.)	5	0.019	0	0.082	0.074	0.021	0.0011	0.0042	0
	6	0	0	0.12	0.047	0.0067	0	0	0

Table 54. Affected areas in Rosario, Batangas during a 25-year rainfall return period

Table 55. Affected areas in Rosario, Batangas during a 25-year rainfall return period

Affecte			affected bar sario (in sq.	U ,
(sq. km.) depth		San Ignacio	Timbugan	Tiquiwan
	1	0.073	4.08	0.013
Affected Area (sq. km.)	2	0.0062	0.3	0.00082
	3	0.0011	0.15	0.0011
	4	0	0.15	0
	5	0	0.08	0
	6	0	0.087	0

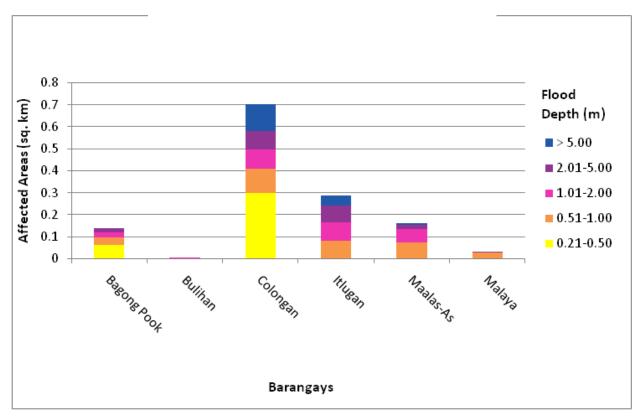


Figure 92. Affected areas in Rosario, Batangas during a 25-year rainfall return period

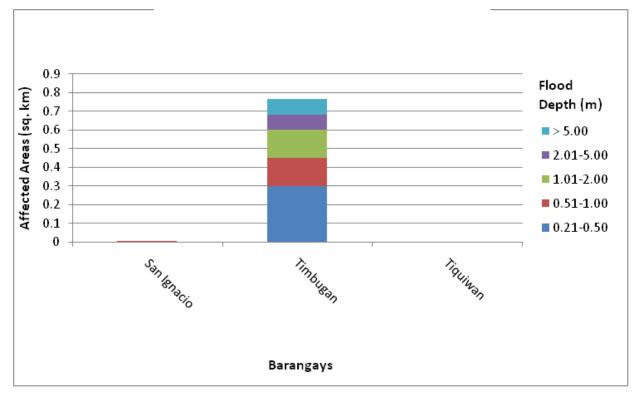


Figure 93. Affected areas in Rosario, Batangas during a 25-year rainfall return period

For the municipality of Ibaan, with an area of 130.22 sq km, 3.02% will experience flood levels of less 0.20 meters; 0.10% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.13%, 0.16%, and 0.014% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters respectively. Listed in Table 56 and Table 57 are the affected areas in square kilometers by flood depth per barangay.

Affect	ed			Area	of affecte	d baranga	ys in Ibaa	n (in sq.	km.)		
Area (sq. kı by flo depth m.)	m.) od (in	Bago	Bala- nga	Bunga- han	Catan- dala	Coliat	Daya- pan	Lucsu- hin	Maba- Ior	Mala- inin	Mata- la
	1	1.02	2	3.28	3.25	1.26	2.16	2.8	4.33	0.47	0.55
Affec-	2	0.094	0.11	0.21	0.15	0.14	0.16	0.15	0.23	0.034	0.04
ted	3	0.047	0.042	0.11	0.086	0.045	0.083	0.079	0.095	0.012	0.012
Area (sq.	4	0.025	0.034	0.051	0.065	0.027	0.037	0.077	0.076	0.0041	0.0068
(sq. km.)	5	0.022	0.041	0.053	0.056	0.014	0.039	0.066	0.054	0.0024	0.0008
	6	0.0004	0.083	0.095	0.053	0.0009	0.095	0.091	0.035	0.0002	0

Table 56. Affected areas in Ibaan, Batangas during a 25-year rainfall return period

Affecte	d Area		Ar	ea of affect	ed baranga	ays in Ibaar	n (in sq. km	.)	
	by flood (in m.)	Palindan	Pangao	Pangha- yaan	Pobla- cion	Quilo	Sabang	San Agustin	Sanda- lan
	1	0.44	1.55	2.03	0.44	2.86	3.47	0.56	1.01
	2	0.031	0.14	0.085	0.036	0.17	0.18	0.048	0.059
Affected	3	0.01	0.069	0.063	0.023	0.051	0.059	0.012	0.04
Area (sq. km.)	4	0.0054	0.031	0.035	0.012	0.041	0.042	0.005	0.035
	5	0.001	0.012	0.027	0.0019	0.066	0.08	0.0004	0.02
	6	0	0	0.0037	0	0.027	0.11	0	0.0014

Table 57. Affected areas in Ibaan, Batangas during a 25-year rainfall return period

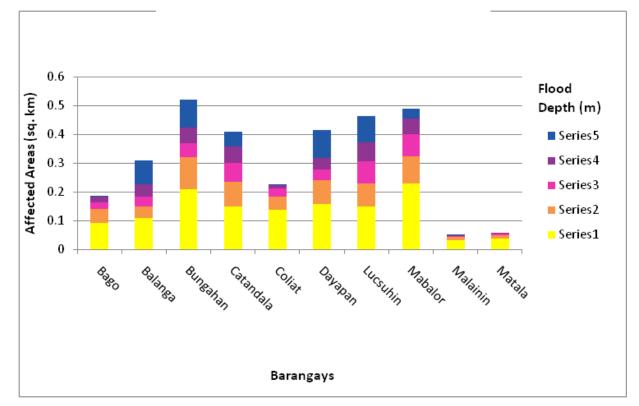


Figure 94. Affected areas in Ibaan, Batangas during a 25-year rainfall return period

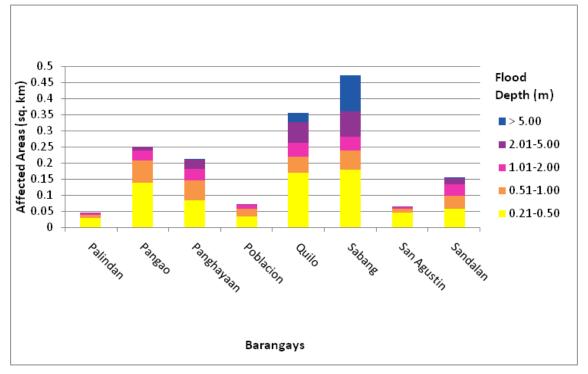


Figure 95. Affected areas in Ibaan, Batangas during a 25-year rainfall return period

For the 25-year return period, 9.52% of the municipality of Taysan with an area of 92.55 sq km will experience flood levels of less than 0.20 meters; 0.78% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.42%, 0.27%, 0.22%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 58 are the affected areas in square kilometers by flood depth per barangay.

Affected	Area			Area o	f affected ba	arangays in	Taysan (in	sq. km.)		
(sq. km.) flood de (in m.	pth	Bilogo	Bukal	Maba- yabas	Mahana- diong	Mataas Na Lupa	Pag-Asa	Pang- hayaan	Pobla- cion East	Tilam- bo
	1	0.56	0.17	3.26	1.6	0.1	1.69	1.02	0.33	0.079
Affec- ted Area	2	0.016	0.0048	0.31	0.16	0.0036	0.12	0.056	0.052	0.0025
	3	0.014	0.0068	0.17	0.082	0.0035	0.048	0.032	0.034	0
(sq.	4	0.013	0.0059	0.12	0.02	0.0016	0.04	0.033	0.014	0
km.)	5	0.011	0.0031	0.096	0.002	0.0003	0.059	0.02	0.0093	0
	6	0.0011	0	0.013	0	0	0.0088	0	0	0

Table 58. Affected areas in Taysan, Batangas during a 25-year rainfall return period

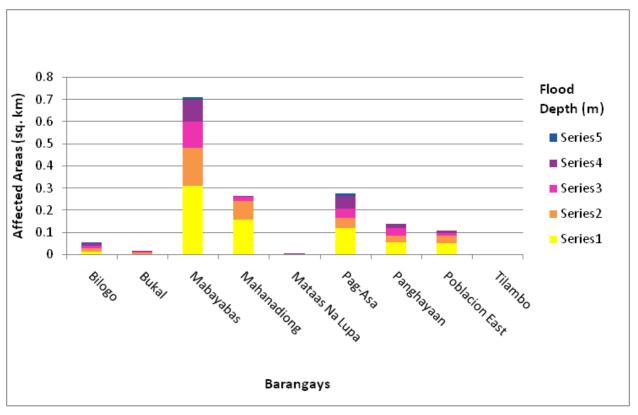


Figure 96. Affected Areas in Taysan, Batangas during 25-Year Rainfall Return Period

For the 100-year return period, 26.54% of the municipality of Batangas City with an area of 274.44 sq km will experience flood levels of less than 0.20 meters; 2.85% of the area will experience flood levels of 0.21 to 0.50 meters; while 2.30%, 2.13%, 1.13%, and 0.55% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 59 to Table 65 are the affected areas in square kilometers by flood depth per barangay.

Affect	ted			Ar	ea of affe	ected bara	angays ir	n Batanga	ıs (in sq. k	.m.)		
Are (sq. ki by flo depth m.)	m.) ood (in	Alangi- lan	Balag- tas	Balete	Bana- ba Center	Bana- ba Ibaba	Bana- ba Kan- Iuran	Bana- ba Sila- ngan	Bara- ngay 1	Bara- ngay 10	Bara- ngay 11	Bara- ngay 12
	1	2.12	1.9	0.36	1	0.95	1	0.27	0.0005	0.012	0.0095	0.0077
Affec-	2	0.41	0.36	0.031	0.18	0.18	0.13	0.047	0.0017	0.0037	0.0026	0.0047
ted	3	0.19	0.12	0.011	0.11	0.12	0.055	0.041	0.019	0.00024	0.00076	0.00048
Area (sq.	4	0.044	0.025	0.0031	0.012	0.042	0.026	0.024	0.039	0	0	0
km.)	5	0.028	0.0074	0.0053	0.0007	0.0041	0.013	0.027	0.0028	0	0	0.0001
	6	0.0064	0.0063	0.00078	0	0	0.003	0.0009	0.004	0	0	0

Table 59. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

	22						
	Barangay 22	0.028	0.02	0.0014	0	0	0
	Barangay 21	0.028	0.022	0.0028	0	0	0
	Barangay 20	0.041	0.0089	0.0047	0.0016	0	0
. km.)	Barangay 2	0.0011	0.0015	0.0056	0.02	0.0088	0.0084
Area of affected barangays in Batangas (in sq. km.)	Barangay 19	0.011	0.00085	0.01	0.023	0	0
barangays in	Barangay 18	0.026	0.005	0.0074	0.027	0	0
ea of affected	Barangay 17	0.027	0.0046	0.0048	0.004	0	0
Are	Barangay 16	0.031	0.014	0.0058	0.00022	0	0
	Barangay 15	0.019	0.0069	0.001	0.00013	0	0
	Barangay 14	0.0061	0.0063	0.0037	0.00033	0	0
	Barangay 13	0.0061	0.0061	0.001	0	0	0
Affected Area	(sq. km.) by flood depth (in m.)	1	2	3	4	5	9
Affecte	(sq. km.) depth			Affected	(sa. km.)	-	

σ
õ
. <u></u>
5
Ř
ing a 100-year rainfall return pe
بہ
ω
_
Juring a 100-year rainfall
σ,
f
.∟
b
2
<u>ب</u>
σ
Ū
<u> </u>
ĺ.
õ
0
-
Ē
10
ള
. <u> </u>
s duri
Ĭ
0
S
σ
60
σ
ata
sata
Bata
', Bata
ty, Bata
ity, Batan
City, Bata
s City, Bata
as City, Bata
as C
ngas City, Bata
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Ē
Table 60. Affected areas in Batangas City, Bata

Table 61. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

	~						5
	Bolbok	1.46	0.46	0.46	0.2	0.025	0.0005
	Bilogo	1.24	0.036	0.029	0.029	0.025	0.005
	Barangay 9	0.0062	0.0021	0.016	0.0029	0	0
m.)	Barangay 3 Barangay 4 Barangay 5 Barangay 6 Barangay 7 Barangay 8	0.0071	0.0068	0.01	0.0053	0	0
Area of affected barangays in Batangas (in sq. km.)	Barangay 7	0.018	0.0067	0.0069	0.00086	0	0
ingays in Bata	Barangay 6	0.036	0.012	0.0067	0.0025	0.00056	0
affected bara	Barangay 5	0.029	0.013	0.0054	0.00076	0.00014	0
Area of	Barangay 4	0.003	0.0011	0.0027	0.0039	0.02	0.059
	Barangay 3	0.012	0.012	0.024	0.02	0.0057	0.015
	Barangay 24	0.01	0.0038	0.001	0	0	0
	Barangay 23	0.012	0.011	0.0006	0	0	0
d Area	by flood in m.)	1	2	3	4	5	9
Affected Area	(sq. km.) by flood depth (in m.)			Affected	(sa. km.)	-	

iable oz. Anecied areas in patangas city, patangas during a too year rannan return penou	Area of affected barangays in Batangas (in sq. km.)	Bukal Calicanto Catandala Conde Conde Cuta Dalig Domoclay Gulod Gulod Kumintang Itaas Labak Ibaba	0.67 0.75 4.51 2.88 1.11 0.31 1.78 2.25 1.43 0.9 1.05	0.022 0.32 0.25 0.12 0.041 0.23 0.11 0.18 0.083 0.059 0.22	0.0087 0.29 0.11 0.078 0.022 0.27 0.078 0.18 0.072 0.057 0.11	0.012 0.21 0.068 0.1 0.021 0.39 0.08 0.21 0.15 0.065 0.082	0.015 0.11 0.071 0.12 0.009 0.13 0.057 0.24 0.089 0.032 0.19	0.0028 0 0.076 0.021 0 0.025 0.049 0.13 0.016 0.015 0.21	
								0.0028	c
	Affected Area	(sq. km.) by flood depth (in m.)	1	2	Affected 3	(sg. km.) 4	5	9	-

Table 62. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

Table 63. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

Affecte	Affected Area				Area of at	Area of affected barangays in Batangas (in sq. km.)	gays in Bata	angas (in so	q. km.)			
(sq. km.) depth	(sq. km.) by flood depth (in m.)	Kumintang Ilaya	Libjo	Maapas	Mahabang Dahilig	Mahabang Mahabang Mahacot Mahacot Dahilig Parang Kanluran Silangan	Mahacot Mahacot Kanluran Silangan	Mahacot Silangan	Malalim	Malitam	Paharang Silangan	Sampaga
	1	0.85	0.72	1.36	0.42	1.05	2.23	1.85	1.77	0.0003	1.47	1.93
	2	0.16	0.34	0.041	0.012	0.089	0.13	0.092	0.12	0.001	0.049	0.15
Affected	3	0.05	0.91	0.031	0.0062	0.024	0.057	0.056	0.06	0.05	0.032	0.079
area (sa. km.)	4	0.01	1.64	0.028	0.0029	0.014	0.035	0.047	0.061	0.21	0.03	0.053
	5	0.0065	0.49	0.037	0.0011	0.013	0.065	0.052	0.14	0.058	0.04	0.085
	9	0.0056	0.1	0.019	0	0.0042	0.035	0.038	0.0068	0.0033	0.0055	0.032

		2			6	1		(2)	1
		Sorosoro Ilaya	0.62	0.022	0.0079	0.0051	0.012	0.016	
		Sorosoro Ibaba	1.2	0.07	0.018	0.014	0.012	0.0061	
		Sirang Lupa	1.36	0.087	0.11	0.11	0.099	0.014	
	າ sq. km.)	Santo Niño	0.54	0.014	0.013	0.0078	0.0052	0	
	Area of affected barangays in Batangas (in sq. km.)	Santa Rita Karsada	2.06	0.62	0.36	0.071	0.0077	0	
	angays in E	Santa Rita Aplaya	0.15	0.051	0.27	0.23	0.043	0	
	ffected bar	Santa Clara	0.6	0.45	0.43	0.38	0.052	0	
,	Area of a	San Pedro	4.02	0.2	0.13	0.1	0.13	0.19	
		San Miguel	4.11	0.15	0.092	0.079	0.077	0.0076	
		San Jose Sico	0.6	0.016	0.011	0.011	0.015	0.0024	
		San Isidro	2.11	0.22	0.18	0.12	0.034	0.0029	
		by flood (in m.)	1	2	3	4	5	9	
	V ff o ct o	Affected Area (sq. km.) by flood depth (in m.)			Affected	(sa. km.)	-		

urn period
l returr
r rainfal
a 100-year r
ing a 10
gas duri
y, Batangas duri
s City,
n Batangas City, B
l areas i
e 64. Affected
Table 64. Af

Table 65. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

Affected Area	Ar	ea of affected	Area of affected barangays in Batangas (in sq. km.)	n Batangas	(in sq. km.)		
(sq. km.) by flood Sorosoro depth (in m.) Karsada	Sorosoro Tabangao Karsada Ambulong	Tabangao Aplaya	Talumpok Kanluran	Tinga Itaas	Tinga Labak	Tulo	Wawa
2.04	0.28	0.044	2.54	2.4	2.34	3.83	0.011
0.16	0.11	0.019	0.087	0.24	0.24	0.18	0.046
0.048	 0.098	0.023	0.061	0.084	0.15	0.14	0.19
0.038	 0.068	0.022	0.074	0.034	0.045	0.08	0.29
0.065	 0.0016	0.0086	0.059	0.061	0.064	0.11	0.027
0.02	 0	0	0.00049	0.15	0.17	0.017	0.004

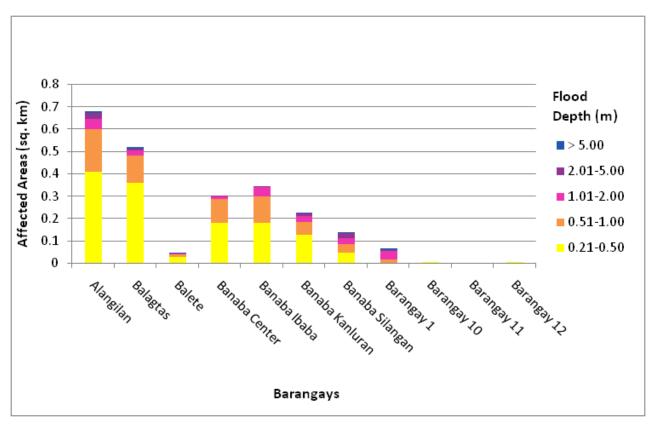


Figure 97. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

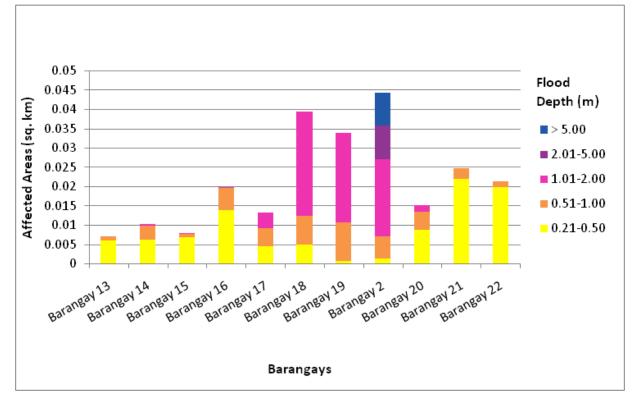


Figure 98. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

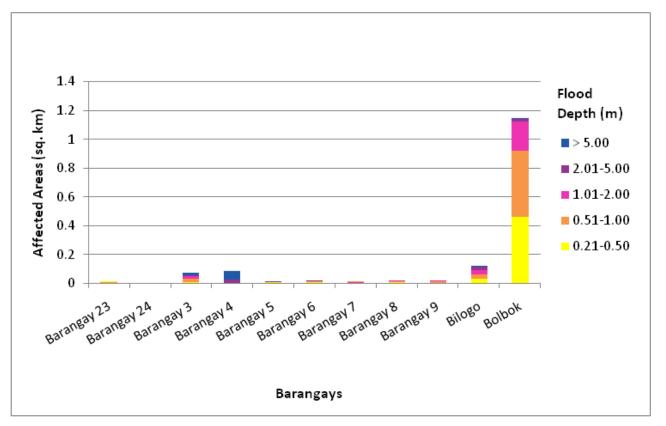


Figure 99. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

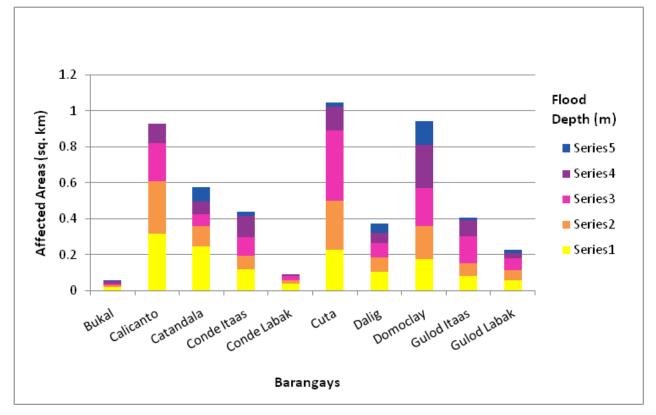


Figure 100. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

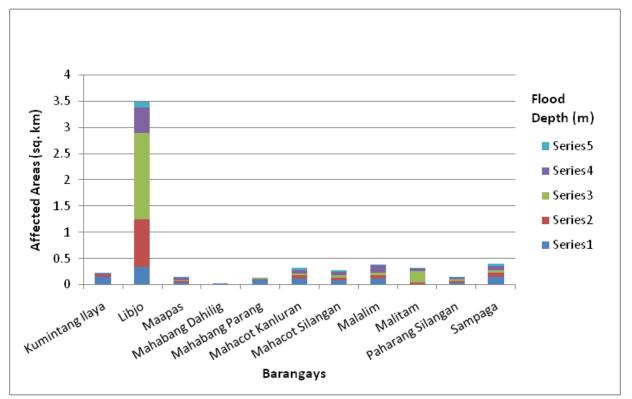


Figure 101. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

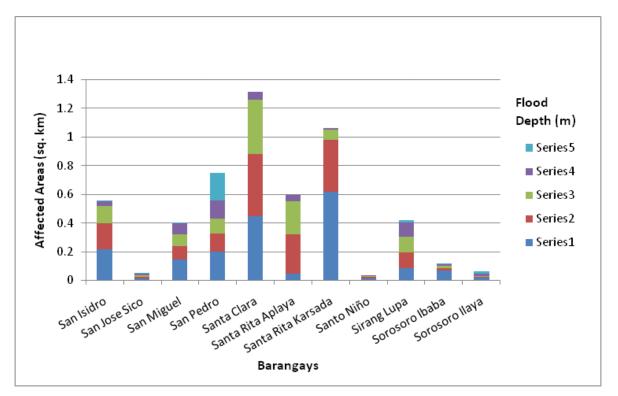


Figure 102. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

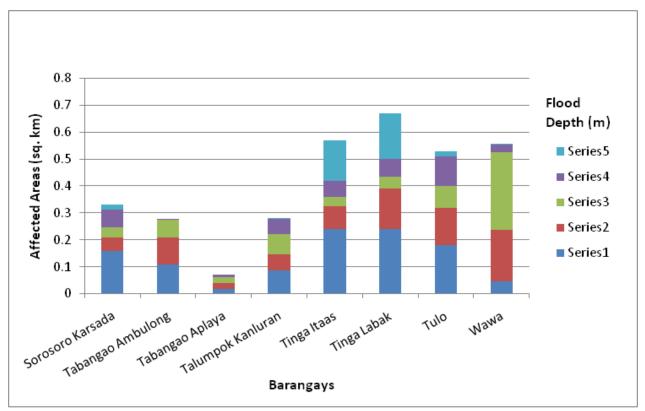


Figure 103. Affected areas in Batangas City, Batangas during a 100-year rainfall return period

For the 100-year return period, 7.00% of the municipality of Rosario with an area of 199.037 sq km will experience flood levels of less than 0.20 meters; 0.60% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.29%, 0.23%, 0.18%, and 0.16% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 66 and Table 67 are the affected areas in square kilometers by flood depth per barangay.

Affected			Ar	ea of affecte	ed baranga	ys in Rosari	o (in sq. kn	n.)	
(sq. km. flood dep m.)		Bagong Pook	Bulihan	Colongan	Itlugan	Maalas- As	Malaya	Mavalor	Namuco
	1	0.77	0.1	3.44	2.24	1.95	0.63	0.63	0.14
	2	0.073	0.0079	0.34	0.15	0.16	0.057	0.047	0.0087
Affected	3	0.038	0.0017	0.14	0.093	0.082	0.036	0.018	0.0046
Area (sq. km.)	4	0.027	0.0009	0.096	0.093	0.071	0.0069	0.011	0.0015
	5	0.023	0	0.098	0.088	0.029	0.0019	0.0059	0
	6	0	0	0.13	0.064	0.0091	0	0	0

Table 66. Affected areas in Rosario, Batangas during a 100-year rainfall return period

Affecte			affected bara sario (in sq. k	U ,
(sq. km.) depth		San Ignacio	Timbugan	Tiquiwan
	1	0.072	3.94	0.012
	2	0.0068	0.35	0.0013
Affected Area	3	0.0019	0.17	0.0013
(sq. km.)	4	0	0.16	0
	5	0	0.11	0
	6	0	0.11	0

Table 67. Affected areas in Rosario, Batangas during a 100-year rainfall return period

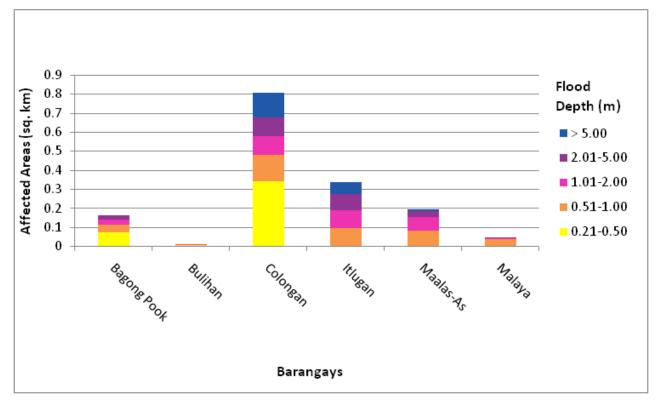


Figure 104. Affected areas in Rosario, Batangas during a 100-year rainfall return period

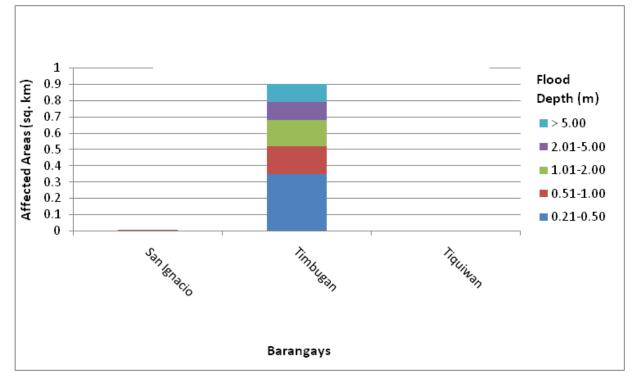


Figure 105. Affected areas in Rosario, Batangas during a 100-year rainfall return period

For the 100-year return period, 46.58% of the municipality of Ibaan with an area of 70.33 sq km will experience flood levels of less than 0.20 meters; 3.34% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.54%, 0.99%, 0.91%, and 0.97% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 68 and Table 69 are the affected areas in square kilometers by flood depth per barangay.

Affec	ted			Area	of affecte	d baranga	ys in Ibaa	n (in sq. k	m.)		
Are (sq. km flood d (in n	n.) by lepth	Bago	Bala- nga	Bunga- han	Catan- dala	Coliat	Daya- pan	Lucsu- hin	Maba- lor	Mala- inin	Mata- la
	1	0.98	1.96	3.22	3.19	1.22	2.11	2.73	4.25	0.46	0.54
Affec-	2	0.11	0.13	0.24	0.17	0.15	0.17	0.17	0.27	0.039	0.045
ted	3	0.056	0.048	0.13	0.097	0.059	0.099	0.081	0.1	0.015	0.016
Area (sq.	4	0.031	0.038	0.058	0.073	0.033	0.045	0.085	0.087	0.0049	0.0072
km.)	5	0.025	0.044	0.063	0.066	0.017	0.045	0.08	0.067	0.0028	0.0016
	6	0.0021	0.089	0.092	0.063	0.0013	0.11	0.1	0.041	0.0002	0

Table 68. Affected areas in Ibaan, Batangas during a 100-year rainfall return period

Affecte	d Area		Ar	ea of affect	ted barang	ays in Ibaaı	n (in sq. km	n.)	
(sq. km.) depth (Palindan	Pangao	Pangha- yaan	Pobla- cion	Quilo	Sabang	San Agustin	Sanda- lan
	1	0.43	1.51	2	0.43	2.8	3.4	0.55	0.98
	2	0.037	0.15	0.097	0.038	0.2	0.21	0.053	0.067
Affected	3	0.011	0.084	0.068	0.026	0.061	0.072	0.016	0.045
Area (sq. km.)	4	0.0066	0.038	0.043	0.015	0.047	0.043	0.0058	0.036
	5	0.0013	0.016	0.032	0.0025	0.068	0.083	0.0008	0.028
	6	0	0	0.0045	0	0.037	0.14	0	0.0029

Table 69. Affected areas in Ibaan, Batangas during a 100-year rainfall return period

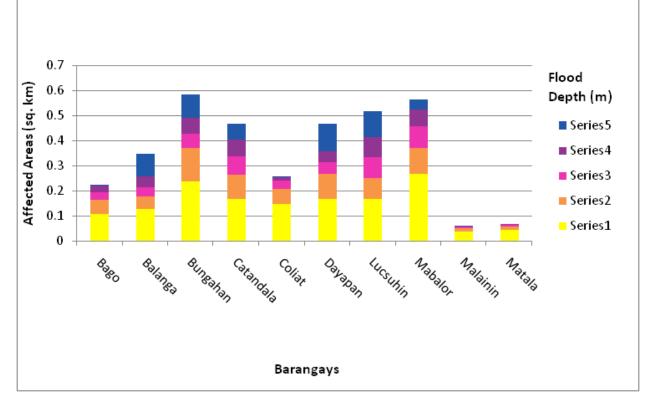


Figure 106. Affected areas in Ibaan, Batangas during a 100-year rainfall return period

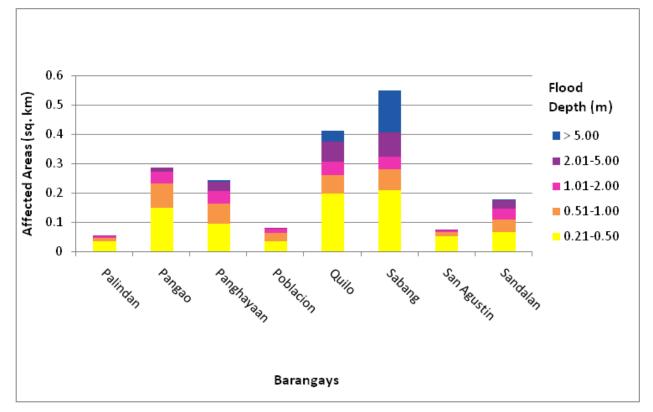


Figure 107. Affected areas in Ibaan, Batangas during a 100-year rainfall return period

For the 100-year return period, 9.22% of the municipality of Taysan with an area of 92.55 sq km will experience flood levels of less than 0.20 meters; 0.88% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.51%, 0.30%, 0.27%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 70 are the affected areas in square kilometers by flood depth per barangay.

Affec	ted			Area	of affected	barangays	in Taysan (i	n sq. km.)		
Are (sq. km flood d (in n	n.) by lepth	Bilo- go	Bukal	Maba- yabas	Mahana- diong	Mataas Na Lupa	Pag-Asa	Pangha- yaan	Pobla- cion East	Tilam- bo
	1	0.56	0.17	3.13	1.55	0.1	1.64	1	0.31	0.077
Affec-	2	0.017	0.0064	0.35	0.18	0.0043	0.13	0.065	0.055	0.0039
ted	3	0.016	0.0073	0.2	0.11	0.0036	0.061	0.035	0.042	0
Area (sq.	4	0.013	0.0058	0.13	0.027	0.0017	0.046	0.034	0.018	0
km.)	5	0.013	0.004	0.12	0.0031	0.0005	0.066	0.027	0.012	0
	6	0.0014	0	0.022	0	0	0.017	0.00079	0	0

Table 70. Affected areas in Taysan, Batangas during a 100-year rainfall return period

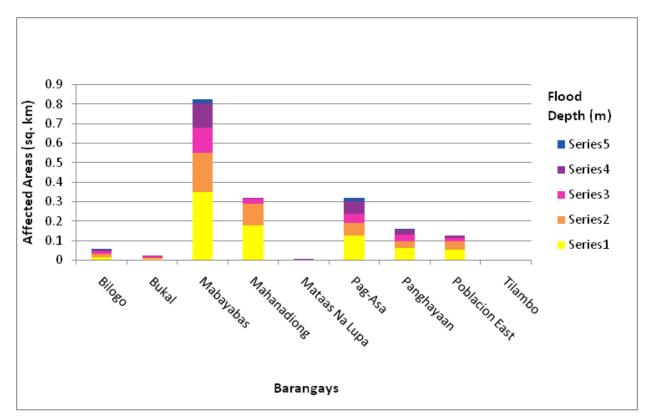


Figure 108. Affected Areas in Taysan, Batangas during 100-Year Rainfall Return Period

Moreover, the generated flood hazard maps for the Calumpang Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps ("Low," "Medium," and "High"), the affected institutions were given their individual assessment for each flood hazard scenario (5-year, 25-year, and 10-year).

Table 71. Areas covered by each warning level with respect to the rainfall scenarios

Marning Louol	Area	a Covered in	sq km.
Warning Level	5 year	25 year	100 year

Marning Loval	Area	a Covered in	sq km.
Warning Level	5 year	25 year	100 year
Low	11.13	12.26	12.84
Medium	8.63	12.40	13.76
High	6.22	8.92	10.92
TOTAL	8.66	33.58	37.51

Of the 215 identified educational institutions in Calumpang Floodplain, 20 schools were discovered exposed to low-level flooding during a 5-year scenario, while 12 schools were found exposed to mediumlevel flooding in the same scenario.

In the 25-year scenario, 21 schools were found exposed to low-level flooding, while 23 schools were discovered exposed to medium-level flooding, and 1 to high-level flooding.

For the 100-year scenario, 22 schools were discovered exposed to low-level flooding , while 27 schools were exposed to medium-level flooding. In the same scenario, 2 schools were found exposed to high-level flooding.

Apart from this, 88 health institutions were identified in the Calumpang Floodplain. For the 5-year scenario, 3 were exposed to low-level flooding while 1 was exposed to medium-level flooding. For the 25-year scenario, 8 were exposed to low-level flooding and 2 to medium-level flooding. For the 100-year scenario, 12 were exposed to low- and 3 to medium-level flooding.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done by going to a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the flood depth maps produced and to improve on what is needed.

The flood validation consists of 181 points randomly selected all over the Calumpang Floodplain. It has an RMSE value of 2.56.



Figure 109. Flood validation points of Calumpang River Basin

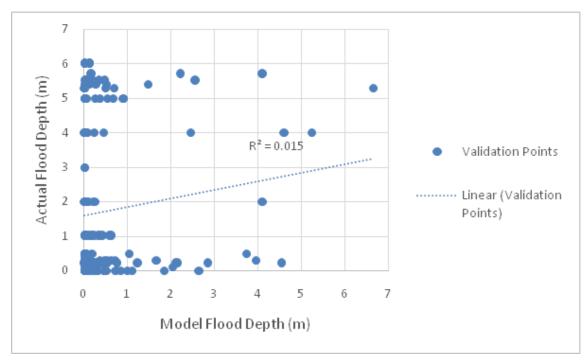


Figure 110. Flood map depth vs. actual flood depth

Actual Flood Depth			Modeled Fl	ood Depth (m)			
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	42	14	6	3	6	0	71
0.21-0.50	21	3	3	2	2	0	31
0.51-1.00	8	5	2	0	0	0	15
1.01-2.00	7	2	0	0	1	0	10
2.01-5.00	17	4	4	0	2	1	28
> 5.00	14	3	3	1	3	1	25
Total	109	31	18	6	14	2	180

Table 72. Actual flood depth vs. simulated flood depth in Calumpang

The overall accuracy generated by the flood model is estimated at 27.78% with 50 points correctly matching the actual flood depths. In addition, there were 43 points estimated one level above and below the correct flood depths while there were 23 points and 59 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 92 points were underestimated in the modeled flood depths of Calumpang.

Table 73. Summary of accuracy assessment in the Calumpang River Basin Survey

	No. of Points	%
Correct	50	27.78
Overestimated	38	21.11
Underestimated	92	51.11
Total	180	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. OPTECH Technical Specification

PEGASUS

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
	POS AV™ AP50 (OEM);
Position and orientation system	220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
Dimensions and weight	Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

GEMINI SENSOR

Annex 2. NAMRIA Certificates of Reference Points Used in the LiDAR Survey

BTG-51

	hilippings		
Department of Er	rimppines		
S NATIONAL M	vironment and Natural Resources APPING AND RESOURCE INFORMATION	AUTHORITY	
INATIONAL IN		Authorit	
101101			
		January 0	5, 201
	CERTIFICATION		
whom it may concern:			
This is to certify that according t	o the records on file in this office, the requ	uested survey information is as f	follows
	Province: BATANGAS		
	Station Name: BTG-51		
Jalandi L UZON	Order: 2nd		
	Order: 2nd Barangay: TALAGA		
Island: LUZON Municipality: TANAUAN Latitude: 14º 6' 8.57112"	Order: 2nd Barangay: TALAGA MSL Elevation:	Ellipsoidal Hgt: 152.3690	00 m.
Municipality: TANAUAN	Order: 2nd Barangay: TALAGA MSL Elevation: <i>PRS92 Coordinates</i> Longitude: 121° 5' 52.31002"	Ellipsoidal Hgt: 152.3690	00 m.
Municipality: TANAUAN Latitude: 14º 6' 8.57112"	Order: 2nd Barangay: TALAGA MSL Elevation: <i>PRS92 Coordinates</i> Longitude: 121° 5' 52.31002" <i>WGS84 Coordinates</i>		
Municipality: TANAUAN Latitude: 14º 6' 8.57112"	Order: 2nd Barangay: TALAGA MSL Elevation: <i>PRS92 Coordinates</i> Longitude: 121° 5' 52.31002"	Ellipsoidal Hgt: 152.3690 Ellipsoidal Hgt: 197.5510	
Municipality: TANAUAN	Order: 2nd Barangay: TALAGA MSL Elevation: <i>PRS92 Coordinates</i> Longitude: 121° 5' 52.31002" <i>WGS84 Coordinates</i>		
Municipality: TANAUAN Latitude: 14º 6' 8.57112" Latitude: 14º 6' 3.27790"	Order: 2nd Barangay: TALAGA MSL Elevation: <i>PRS92 Coordinates</i> Longitude: 121° 5' 52.31002" <i>WGS84 Coordinates</i> Longitude: 121° 5' 57.24592"		
Municipality: TANAUAN Latitude: 14º 6' 8.57112"	Order: 2nd Barangay: TALAGA MSL Elevation: <i>PRS92 Coordinates</i> Longitude: 121° 5' 52.31002" <i>WGS84 Coordinates</i> Longitude: 121° 5' 57.24592" <i>PTM / PRS92 Coordinates</i>	Ellipsoidal Hgt: 197.5510	

BTG-51

Location Description

From Star Expressway Exit, Tanauan City, turn right to Talisay and continue traveling W until reaching the Y-road. Station is located inside the Mabini Shrine, approx. 100 m. from the right side of the road. It is situated approx. 2 m. S of the flagpole, about 15 m. N from the gate of the said shrine. Mark is the head of a 4 in. copper nail centered and embedded on a 30 cm. x 30 cm. concrete block flushed on the ground, with inscriptions "BTG-51 2007 NAMRIA".

DOST-PCIEERD **Requesting Party:** Purpose: Reference OR Number: 8089513 I T.N.: 2016-0018

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

BTG-3343

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 19, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: BATANGAS		
	Station Name: BTG-3343		
Island: LUZON Municipality: BATANGAS C	Order: 4th	Barangay: BAI	RANGAY 3 (POB
(CAPITAL)	PRS92 Coordinates		
Latitude: 13º 45' 28.66051'	Longitude: 121º 3' 42.01826"	Ellipsoidal Hgt:	9.01500 m.
	WGS84 Coordinates		
Latitude: 13º 45' 23.44551'	Longitude: 121° 3' 46.98401"	Ellipsoidal Hgt:	55.06100 m.
	PTM Coordinates		
Northing: 1521397.691 m.	Easting: 506669.312 m.	Zone: 3	
	UTM Coordinates		
Northing: 1,521,707.64	Easting: 290,422.78	Zone: 51	

BTG-3343

From Batangas City Hall, travel E along M.H. Del Pilar St. approx. 450 m towards Calumpang Bridge and turn left before the bridge. Follow the street and turn right at Rizal Avenue (3rd corner) and continue until the end of the road to the corner of Rizal and P. Herrera St. The station is beside the stairs leading to the dike. Station is located in Brgy. Pallocan, Batangas City, Batangas. Mark is the head of a 4 in. copper nail centered on a 20 cm x 20 cm cement putty with inscriptions, "BTG-3343, 2008, NAMRIA".

Location Description

Requesting Party: UP DREAM Pupose: Reference OR Number: 8795394 A T.N.: 2014-355

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 1

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

QZN-21

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 13, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Provin	ce: QUEZON			
	Station I	Name: QZN-21			
Island: LUZON Municipality: TIAONG	Orde	r: 2nd	Baranga	y: POBI	LACION III
	PRS	92 Coordinates			
Latitude: 13º 57' 44.31576"	Longitude:	121º 19' 27.34822"	Ellipsoid	al Hgt:	51.25800 m.
	WGS	S84 Coordinates			
Latitude: 13º 57' 39.07397"	Longitude:	121º 19' 32.29499"	Ellipsoid	al Hgt:	97.38200 m.
	PT	M Coordinates			
Northing: 1544027.063 m.	Easting:	535036.042 m.	Zone:	3	
	UT	M Coordinates			
Northing: 1,544,101.56	Easting:	318,981.12	Zone:	51	

Location Description

QZN-21 From Tiaong Municipal Hall, travel along the highway going to Lucena, then turn left to Dia St. until reaching Paaralang Elementarya ng Silangang Tiaong. Station is located on the open ground of the said school, 30 m. NE from the entrance gate. It is approx. 21 m. WNW from the NW corner post in front of the stage and 13.4 m. ESE from the concrete wall of the school. Mark is the head of a 4 in. copper nail centered on a 30 cm. x 30 cm. concrete monument flushed on the ground, with inscriptions "QZN-21 2006 NAMRIA".

Requesting Party: UP-TCAGP Pupose: Reference OR Number: 8795355 A T.N.: 2014-320

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 7

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Annex 3. Baseline Processing Reports of Reference Points Used in the LiDAR Survey

BTG-A and TGT-1

Project information				Coordinate S	ystem			
Name:				Name:		UTM		
Size:				Datum:		PRS 92		
Modified:	10/12/20	12 4:40:11 PM	(UTC:-6)	Zone:		51 North (12	23E)	
Time zone:	Mountair	n Standard Time	B	Geoid:		EGMPH		
Reference number:				Vertical datur	n:			
Description:								
		Ba	seline Proce	ssina Rea	ort			
0		-	Processing			0.14		
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
BTG-51 BTG-A (B1)	BTG-51	BTG-A	Fixed	0.003	0.013	170°48'36"	16216.677	221.457
BTG-51 BTG-A (B2)	BTG-51	BTG-A	Fixed	0.004	0.017	170°48'36"	16216.637	221.577
BTG-51 BTG-A (B3)	BTG-51	BTG-A	Fixed	0.003	0.012	170°48'36"	16216.621	221.544
TGT-1 BTG-A (B4)	BTG-A	TGT-1	Fixed	0.008	0.017	315°18'50"	24750.750	239.384
BTG-51 TGT-1 (B5)	BTG-51	TGT-1	Fixed	0.009	0.018	276°06'46"	14901.801	460.990
BTG-A TGT-1 (B6)	BTG-A	TGT-1	Fixed	0.005	0.019	315°18'50"	24750.733	239.429
BTG-51 TGT-1 (B7)	BTG-51	TGT-1	Fixed	0.005	0.017	276°06'46"	14901.814	461.001
TGT-2 TGT-1 (B8)	TGT-2	TGT-1	Fixed	0.005	0.008	183°02'45"	3.316	0.124
BTG-A TGT-2 (B9)	TGT-2	BTG-A	Fixed	0.006	0.017	135°16'50"	24752.968	-239.298
BTG-51 TGT-2 (B10)	BTG-51	TGT-2	Fixed	0.007	0.017	276°07'32"	14901.989	460.964
TGT-1 TGT-2 (B11)	TGT-2	TGT-1	Fixed	0.003	0.004	182°17'41"	3.293	0.187
BTG-A TGT-2 (B12)	TGT-2	BTG-A	Fixed	0.004	0.017	135°16'50"	24752.942	-239.320
BTG-51 TGT-2 (B13)	BTG-51	TGT-2	Fixed	0.005	0.017	276°07'32"	14901.994	460.970
BTG-51 BTG-A (B14)	BTG-51	BTG-A	Fixed	0.020	0.025	170°48'36"	16216.661	221.703
TGT-2 BTG-A (B15)	TGT-2	BTG-A	Fixed	0.065	0.038	135°16'50"	24753.003	-239.177
BTG-51 TGT-2	BTG-51	TGT-2	Fixed	0.004	0.013	276°07'31"	14901.990	460.994

1

	Acceptance	e Summary			
Processed	Passed	Flag	P	Feli	Þ
16	16	0		0	

BTG-51 - BTG-A (10:17:13 AM-4:00:13 PM) (S1)

BIG	5-51 - BTG-A (10:17:13 AM-4:00:13 PM) (S1)
Baseline observation:	BTG-51 BTG-A (B1)
Processed:	1/6/2016 4:11:57 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Hortzontal precision:	0.003 m
Vertical precision:	0.013 m
RMS:	0.003 m
Maximum PDOP:	1.859
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Proceesing start time:	12/21/2015 10:17:33 AM (Local: UTC+8hr)
Processing stop time:	12/21/2015 4:00:13 PM (Local: UTC+8hr)
Proceesing duration:	05:42:40
Proceesing Interval:	1 second

Vector Components (Mark to Mark)

From:	BTG-51							
	ərid		Lo	cal			G	obel
Easting	294641.947 m	Latit	tude	N14°06'08	8.57113"	Latitude		N14°06'03.27790"
Northing	1559783.810 m	Long	gitude	E121°05'5	2.31001"	Longitude		E121°05'57.24592*
Elevation	152.867 m	Helg	ght	15	52.369 m	Height		197.551 m
To:	BTG-A							
	bhe		Lo	cal			G	obel
Easting	297103.192 m	Latit	tude	N13°57'2	7.65020*	Latitude		N13°57'22.39320"
Northing	1543753.102 m	Long	gitude	E121°07'1	8.59698"	Longitude		E121°07'23.54499"
Elevation	374.449 m	Helg	ght	37	73.826 m	Height		419.468 m
Vector								
ΔEasting	2461.2	46 m	NS Fwd Azimuth			170°48'36"	ΔX	-4333.540 m
ΔNorthing	-16030.7	08 m	Ellipsold Dist.			16216.677 m	ΔY	2168.834 m
∆Elevation	221.5	82 m	∆Height			221.457 m	ΔZ	-15477.964 m

2

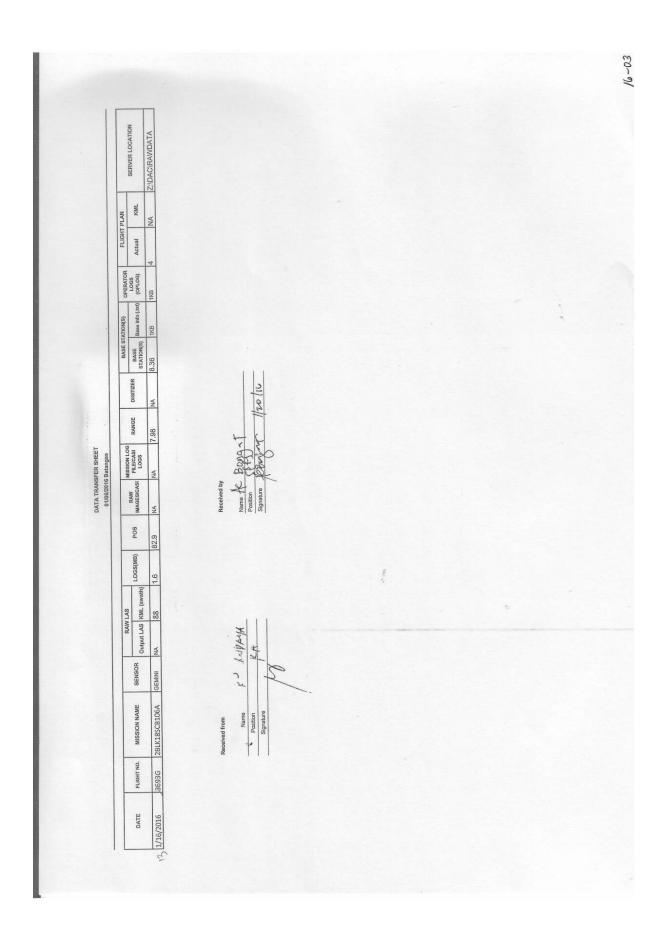
Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component	Designation	Name	Agency/Affiliation
Sub-team	-		
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component	Data Component	ENGR. CZAR JAKIRI S. SARMIENTO	UP TCAGP
Leader	Project Leader –I	ENGR. LOUIE P. BALICANTA	UP TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP TCAGP
	Supervising Science	LOVELY GRACIA ACUNA	UP TCAGP
	Research Specialist (Supervising SRS)	ENGR. LOVELYN ASUNCION	UP TCAGP
FIELD TEAM			
	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP TCAGP
		JULIE PEARL MARS	UP TCAGP
		JONALYN GONZALES	UP TCAGP
LiDAR Operation		ENGR. IRO NIEL ROXAS	
	Research Associate	ENGR. LARAH KRISELLE PARAGAS	UP TCAGP
		KRISTINE JOY ANDAYA	UP TCAGP
		FAITH JOY SABLE	UP TCAGP
		PAULINE JOANNE ARCEO	
Ground Survey,		ENGR. CHRISTOPHER JOAQUIN	UP TCAGP
Data Download	Research Associate	MA. VERLINA TONGA	UP TCAGP
and Transfer		ENGR. KENNETH QUISADO	UP TCAGP
LiDAR Operation/	Research Associate	ENGR. RENAN PUNTO	UP TCAGP
Ground Survey	Research Associate	ENGR. DAN ALDOVINO	UP TCAGP
		TSG. JULIUS RENDON	PHILIPPINE AIR FORCE (PAF)
	Airborne Security	TSG. BENJIE CARBOLLEDO	PHILIPPINE AIR FORCE (PAF)
		SSG. RAYMUND DOMINE	PHILIPPINE AIR FORCE (PAF)
		CAPT. MARK TANGONAN	ASIAN AEROSPACE CORP (AAC)
LiDAR Operation		CAPT. RAUL SAMAR	ASIAN AEROSPACE CORP (AAC)
	Pilot	CAPT. FRANCO PEPITO	ASIAN AEROSPACE CORP (AAC)
		CAPT. CESAR ALFONSO III	ASIAN AEROSPACE CORP (AAC)
		CAPT. ALBERT PAUL LIM	ASIAN AEROSPACE CORP (AAC)
		CAPT. RANDY LAGCO	ASIAN AEROSPACE CORP (AAC)

Annex 5.	Data	Transfer	Sheet for	Calumpang	Floodplain
----------	------	----------	-----------	-----------	------------

	fer.	NOF	Eawith	Rawito	Raw10	Rawing	Ram' 0	Rawing	Raw10	RawA10	Rew10	Rawvio	Raw10	Rew1C	Rew 1C	Raw10	HOW10	Rawit1	Raw11	RowA11	Rawin	
	SERVER	POCA	ZtArbore_Rawtt	Z.Veirborne_Raw/10 27P	Z.Mirbome_Raw/10	Z: Wrborne Rawing	Z: Wirborne_Ram -0	Z'Wirborne, Rawno 56P	Z'Miborne_Ram10 63P	Z'Aidome_Raw110 67P	Z'Airborne_Rew/10	Z \Arbome_RswVI0 79P	Z Wrborne_Raw10 83P	Z.Vurbome_Rew1C 87P	Z'Mittome_Rew10	Z'Airtome_Raw10 55P	Z'Nerbome_How10	Z Mirzome Rawn	2:Mittorre_Rawl1: 05P	Z:VArbome	Z: Mrbcrie_Raw11 00P	
	NAI	KML	NIA	AVA	NIA	NIA	NIA	Min	Vit.	AUA	NIA	N/A	NIG	NIA	NV.C.	NVA	N/A	NIA	NUA	NEA	NIA	
	FLIGHT PLAN	Actual	33.5KB	105KB	40.6KB	SS, ZKB	76.5KB	133KB	28.34(8	63.SKB	95.2KB	69.9KB	62.6KB	32.840	66.1KB	76.7KB	G5 2KB	191KB	161KB		196×B	
	OPERATOR LOGE	(DOTAD)		14. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	Carteson and		South Section		福井県の	All STORES	100000		- Salar	States of			S. Standers	「「「「「「」」		VIN		
		Base Into (ter)	B 245B	3 7188	8 528	8 3625	B SC48	8 4218	8 32:8	B 333B	H 411B	8 4798	B GMB	4208	8 42EB	B 287B	9 9438	3 4298	3 394B	ALM &	3108	
	BASE STATION(S)	BASE STATION(S) Bas	1093	B 112B	8 1108	8 1418	B 217B	2018	B 191B	D 130B	HOAL N	81-6-	B 10CB	8581 8	B 189B	B 205B	8502	8038	B 205B	217B	2178	
	DIGITIZER	-	B a.DAMB	6.71MB	8 COMB	6.76MB	2.26MB	ame	5.96MB	5.021/13	2.50MN	3.01MB	12.4MB	10.7MB	10 1MB	11.4MB	11.4MB	BMU U.	-6.0MD	-ZMB	12MB	
-	PANGE DIG		CB 39.8CB	CB NY	GB N'A	GB NYA	GB N/A	GB N.A	GE NIA	DE NIA	GE NIA	GE NIA	CE NIA	AUN BE	AUN BE	YN BD	SB NA	ANV BE	ANV BO	AUN BE	SB NA	
-	MISSION PA	-	E 9.28CB	4B 14.3GB	14 765	6.13GB	B 13,3GB	G 10.1GB	18.635	G 11.5GB	B 5.438	48 5.5138	BC93- B	B 14.8GB	B 20 2 GB	48 14.908	20.768	19 BGB	22 208	B 10.2GB	15 9GB	
	RAW NIS	24.40	3B 111KB	3B 83.94B	NIA	N/A	GB 154KB	3B 119KB	3B 174KB	CB 111KB	3 157KB	3B 55.8KB	3B 187KB	3 139KB	3B 250KB	4B 1.61KB	1398	NIA	NIA	3B 149KB	MIN	
	POS		ME 11 8CB	8011.7 BW	MB NEA	MB N/A	MB 14.4GB	MB 11.738	MB 19.2GB	MB 11 6CB	MB 16GB	MB 4.97GB	NB 22 608	MB 16GB	MB 52 7GB	NB S6.9MB	MB NIA	MB N.A	MB N/A	MB 16.7GB	MB N/A	
	P		MB 52 6MB	MB 194MD	MB 185MB	MB 125MB	BMEST BM	MB 167MB	MB 144MB	MB 167MB	MB 157MB	MB 132MB	AMEC1 AM	MB 183MB	MB 171MB	MB 235MB	MB 234MB	MR 221MB	MB 219MB	MB 215MB	MB 183MB	
		KML (sweth)	MB 4.74MB	MB 5.69MB	MB 5 60MB	KB 3.52MB	MB 5.47MB	MB 5.61MB	KB 5.17MB	MB 4 99MB	MB A. 91MB	VB 3.17MB	5.92MB 5.56MB	8W61.5 8W/7.5	2.40MB 6.22MB	BM59.7 BMB	MB 7.46MB	IMR B RIMR	MB 6.85MB	BME0 7 DBMB	1.67MB 5.61MB	
	RAW LAS	Output KN LAS	AB 1.01MB	GB 1.62MB	GB : 63MB	4B 687KB	GB 1.60MB	GB 1.13MB	GB ASSKB	GWGC', BM	GB81MB	4E 6031/B		3.		GB 1.53MB	GB 2.39MB	GR 2.34MR	GB 2 67MB	124		
	NOS		EINE 958MB	US 1 SIGB	LIS 1 57GB	IUS 534MB	US 1.28GB	US 1.04GB	LIS 1.18GB	UG 921MB	US 1.62GB	US 45°MB	UE 147CB	US 1 28GB	LUS 2.17GB	US 1.15GB	US 1.70GB	RUS 2 12GR	US 2.35GB	EM657 SUI	US NA	
-	E SENSOR	100	PECASUE	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PECASUG	PEGASUS	PEGASUS	PECASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGABUS	PECASUS	PEGASUS	PEGASUS	
	MISSICH NAME		1BLK15BC24A	181K184025A	161K1 SC025A	1BLK1BKS029A	1BLKISE0314	1BLK15F033A	181 K1 SDOMA	1DLK19H035A	TELKIBIOSEA	1BLKEFS038A	1BLK18J30A	1BLK18K/09	1BLK16W/41A	1BLK18U42A	1BLK18US43A	1BLK18V/WS/4A	1BLK18T44B	1BLK18CRS16A	1BLK18US45B	
	FUGHT	NO.	1063P	1027P	1031P	1043P	1061P	1069P	1063P	1067P	1071P	1079P	1063P	1067P	1061P	1065P	1059P	11C3P	1105P	1107P	11080	
	DATE		Jan 24, 2014	Jan 25, 2014	Jan 28, 2014	Jan 29, 2014	Jan 31, 2014	ⁿ eb 2, 2014	Feb 3, 2014	Feb 4, 2014	Feb 5, 2014	² eb 7, 2014	Feb 3, 2014	Feb 3, 2014	⁵ eb 10, 2014	^{-eb} 11, 2014	=eb 12, 2014	^c eb 13, 2014	Feb 13,2014	*eb 14,2014	"eb 14,2014	

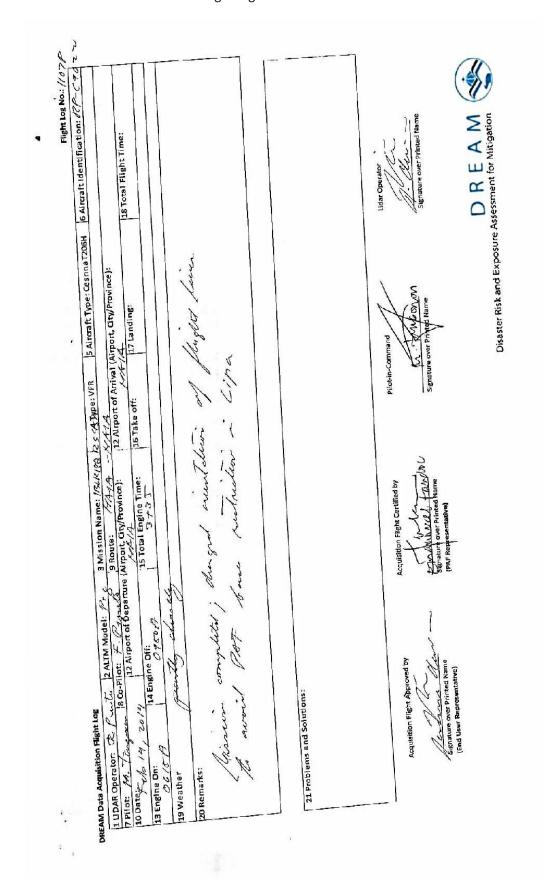
2:Mirborre_Raw/10	40.5 NA		2428	Ħ	7.43 1478	7.	19.1 NA	19.1	NA	A.A.	105	11.8	BX	2.05 35KB		EGA.SI	ũ	1BLK18B0284	
Z: Mittome_Raw11	NIA	171K3		4108	1578	6 25MB	MA	15.4GB	B MO/L	2010		T			t		SIRSADEd		
39P	ANN	BATKB		9					1 704 0	adre	HIVE .C	1.25MB	BOMB	1.05.08			PEGASUS	IBLKIESCOB PEGABL	1
Z Mittome Powd14				ac	1308	6.71WB	VIN	100	23943	20.308	SWEEZ		DW12+			51			
36P	VIN	axa.ra		8								T SOMAN	Z 45MD		IS 2.1968		PEGASUS	TBLKTEXERA PEGASL	
Citititeme Duritit				0205	1 33H	7.52MB	33.9GB	17.4GB	117KB	7.4136	236MB	T. SSMB	2.04MB	2.8408 2.1			1SV51=4		
Z'Mattorne Rawl-	ALLA	91.EKB	2053	8	1238	La.ZME	-			1	Т			Γ	F		0.10.000	TRI KIRVAS	
31P	5			1		12 740	NIA	12.1GB	140KB	18.9GB	1091/8	4.711/18	1.41MB	1.0038 1.			PECASUS	ELK182518 PECASI	
Z: Witbome P.am.11	NIA	BY BKB	80:8	1.0	1338	13.2MD	90.4GB	SCGB	EXPERI	30.35	Billery	Common's		1	1			T	
Z7P	NA.	87.7KB	BLOG	00	n on	-			an and	out ut	219140	PIMER 7	2.39MB	.6465 2.	-		PEGASUS	13LK18251A PEGAS	
25P				-	0000	A AGAR	NV.0	12.168	NIA	AUN	BMOBL	S.26MB	EWPS.	HADRAB 1.	-		PEGASUS	1BLA10650A PEGAS	
Z'AFOUND REWALL	NIA	79.748	2628	20	213B	12.6MB	VIN	6.57GB	V:N	VIN	144MB	SM124	avec	Τ	T		2		
230	MAN	43KB		8	2								e e Gren	17/140		1 2	PFCASSIS	18-K185468 PFCAS1	
7.Vittorna Dauga			COLD	1	96.1.0	12.5948	MIN	14.768	PILA	NIA	103MB	6.46MB	BINE	.38GB	-	5 I	PEGASUS	1BLK1EOG49A PEGASU	
Z'Arbome Raw11	100	4160	5208		213MB	14.7WB	VIN	16.805	SYS6 .	EDG LZ	E CONTRACTOR								
11P	KIN	71KB	0000	8	801 V	380.0						o seven	GRIAD	1 COCH		3	PEGASUS	TRLK180484 PEGASUS	
The second secon	-			-	O TEO	10 BMB	NIN	14.7GB	172KB	-9.765	1 94MB	6.22MB	87362.1	1.3968		÷.	PEGASUS	1BLK18RS46A PEGASUS	1


×4.

.

	SERVER LOCATION Z:DACIFAXWDATA Z:DACIFAXWDATA Z:DACIFAXWDATA Z:DACIFAXWDATA	11
	$\frac{1125}{275} a_{112} \frac{a_{1235}}{112} $	
DATA TRANSFER SHEET 0100/2018 Batangae	LOGS(MB) POS Rawn 10.6 155 41.7 31 47.7 35 195 NA NA Arran 1128 1955 NA NA	
	MISSION NAME SENSOR CONTAINS RANCAS 1814/1858/363A PECASUS 2/11 1195 2814/1858/363A CEMINI NA 198 2814/1858/363A CEMINI NA 198 2814/1858/363A CEMINI NA 221 Redived from Redived from Redived from Signature	
	DATE Fluetrino 12/22/2015 1 36596 281 12/23/2015 5 36596 281 12/30/2015 5 36796 281 12/30/2015 5 36796 281 12/30/2015 5 36796 281 280	

LiDAR Surveys and Flood Mapping of Calumpang River



	LOCATION	Z:UDACIRAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	DATA	
PLAN	KML	na	na							
FLIGHT PLAN	Actual	100	11	5/3	NA	4/2	4/20	23	10	
ODEDATOD	(OPLOG)	1KB	1KB							
BASE STATION(S)	Base Info (.txt)	1KB	0KB	0KB	OKB	OKB	0KB	0KB	0KB	
BASE ST	BASE STATION(S)	11.1	27.2	27.2	18.5	20.9	20.9	12.9	12.9	
	DIGITIZER	na	na	a	na	na	na	па	na	1/12/11
	RANGE	7.11	38.7	12.8	24	24.4	17.2	16.3	6.93	te
	MISSION LOG FILE/CASI LOGS	85	NA	NA	NA	NA	NA	NA	NA	ABOUNDEL
Batangas 1/13/16	RAW IMAGES/CASI	11.1	NA	NA	NA	NA	NA	ΝĂ	NA	Received by Name Ar
Batangas	POS	107	157	131	209	185	172	219	124	
	LOGS(MB)	3.8	669	401	0	786	0	1.54	440	
1 VS	KML (swath)	656	322	60	226	66	214	201	12.8	
SALWA	Output LAS KML (swath)	736	NA	NA	NA	NA	NA	NA	NA	
	SENSOR	pegasus	GEMINI	GEMINI	GEMINI	GEMINI	GEMINI	GEMINI	GEMINI	MIDA
	MISSION NAME	1BLK18SB355A	2BLK18SK006A		2BLK18SM007A	2BLK18SF008A	2BLK18SGS008B	2BLK18SV009A	2BLK18SVV009B	Received from C. Jerto Name C. Jerto Position Signature
	FLIGHT NO.	3000P	3677G	3679G	3681G	3685G	3687G	~ 3689G	3691G	
	DATE	21-Dec /	6-Jan 6	6-Jan 7	7-Jan &	8-Jan G	8-Jan 10	9-Jan #	9-Jan N	

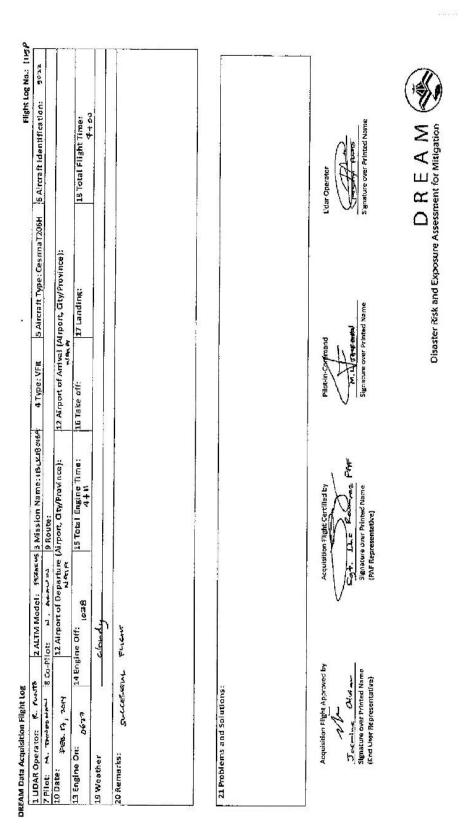
110-05

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

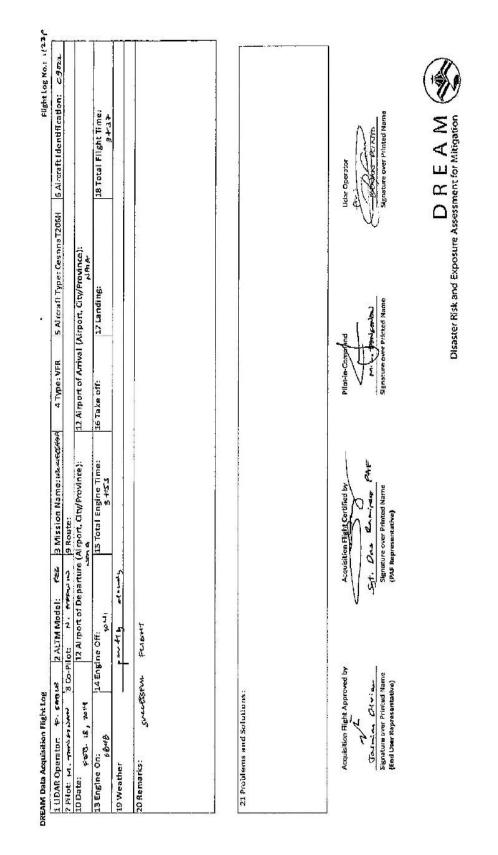
Annex 6. Flight Logs for the Flight Missions

Flight log for 1107P Mission

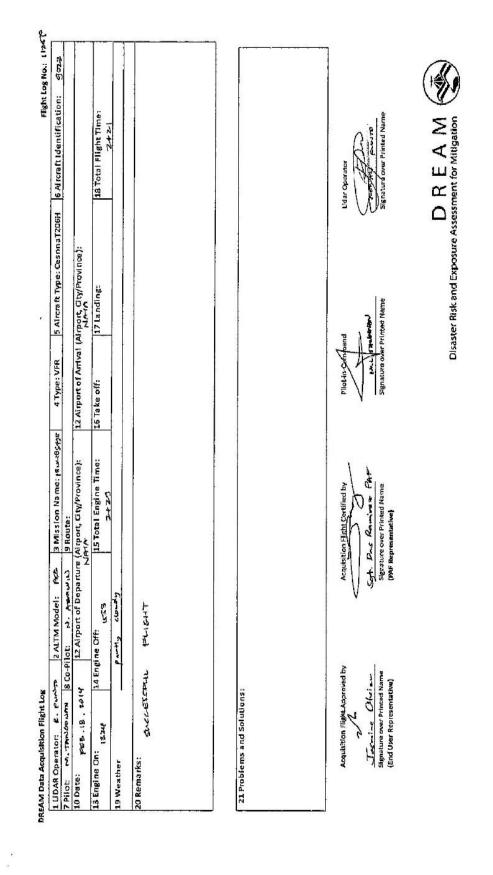
Flight Log No.: 1111P of clarks 5 Aircraft Type: CesnnaT206H 6 Aircraft Identification: A.P. 2012 24 p-112 Signature over Printed Name 11 SYN 13COUT aluta 18 Total Flight Time: 2 6 Claumic 1 Lidar Operator 5 010HK (C2 11) (C) 140 ž 4-4 winde 12 AI rport of Arrival (Ai rport, Gty/Prownce): haus 17 Landing: f Pilot-In-Cor Signatur r's 16 Take off: but out the IS Total Engine Time: ネナ イオー Signature over Printed Name (PAF Representative) Acquisition Flight Certified by and what y karlu Raa very clo-dy tE+O) 14 Engine Off: B.44 Jacober River Signature over Printed Name (End User Representative) Acquisition Flight Approved by **DREAM Data Acquisition Flight tog** 21 Problems and Solutions: 7 ç 13 Engine On: 6 F-SD 20 Remarks: 19 Weather


.

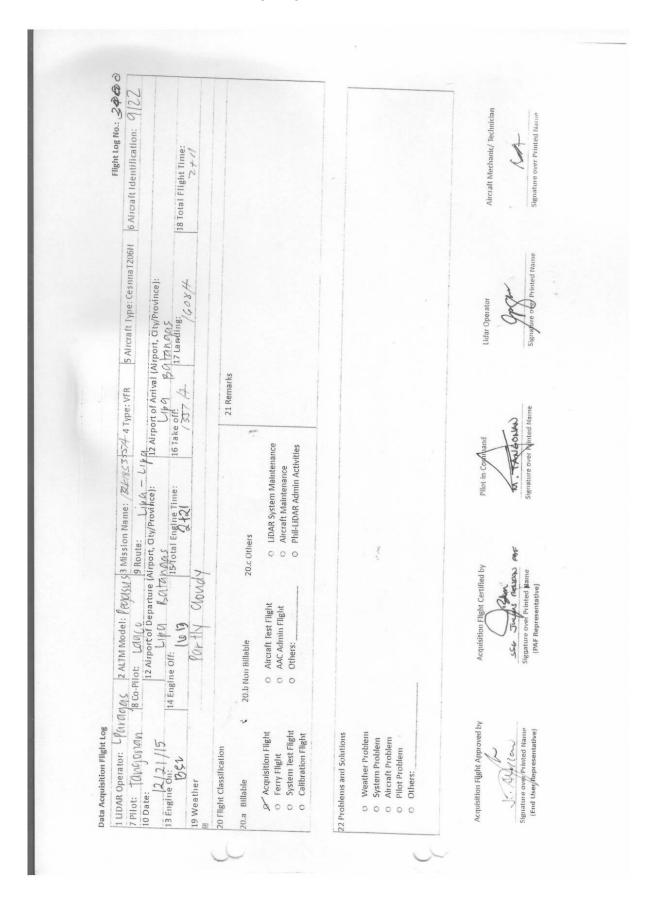
.

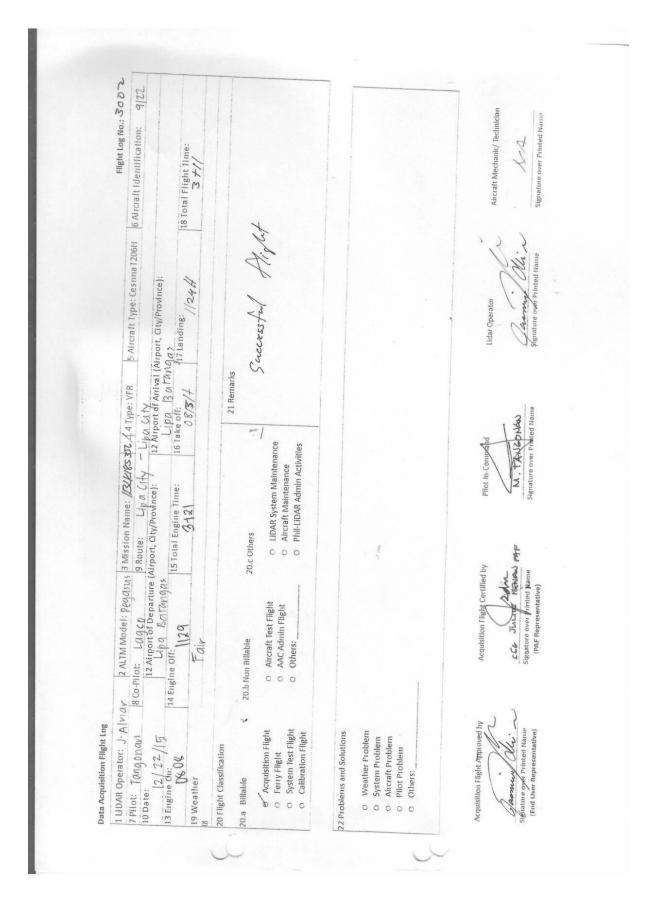

. 7

1

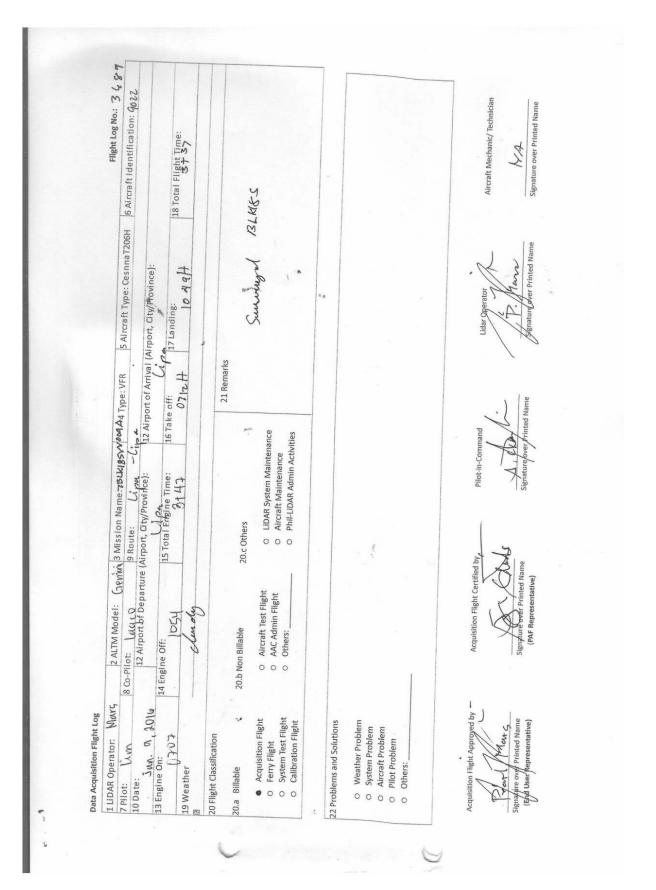

Flight log for 1111P Mission

Flight Log for 1113P Mission

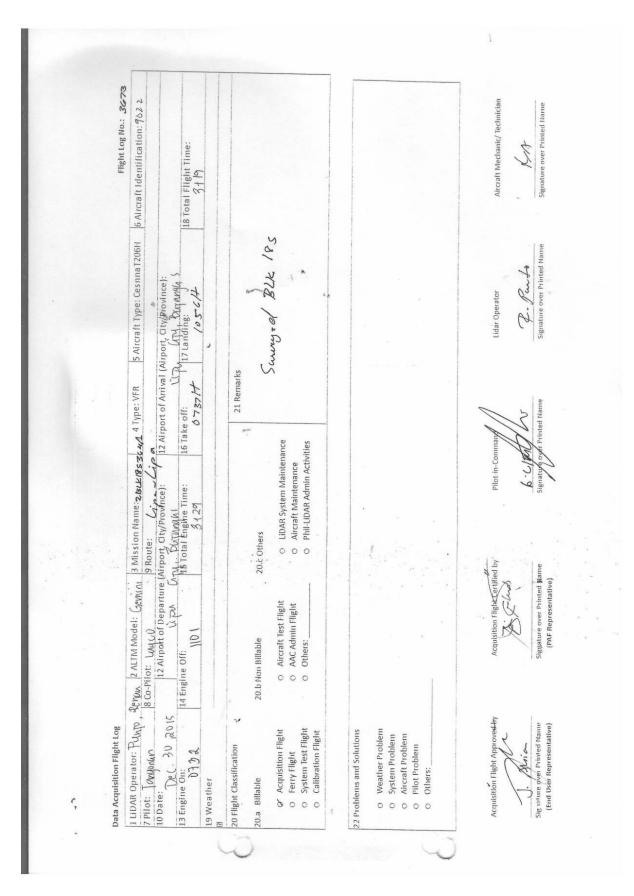

Flight log for 1123P Mission



Flight log for 1125P Mission

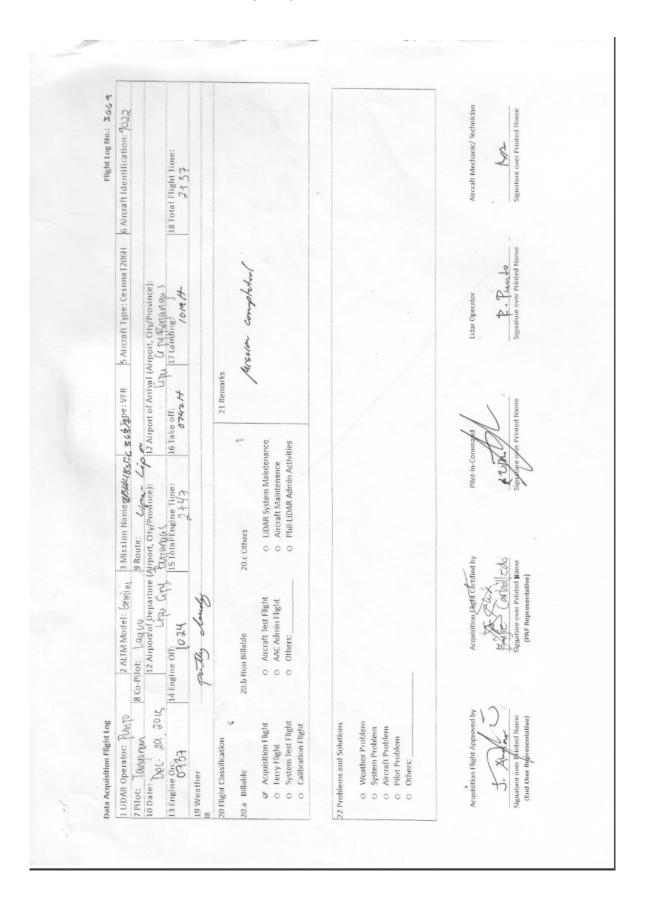

LiDAR Surveys and Flood Mapping of Calumpang River

Flight log for 3000P Mission



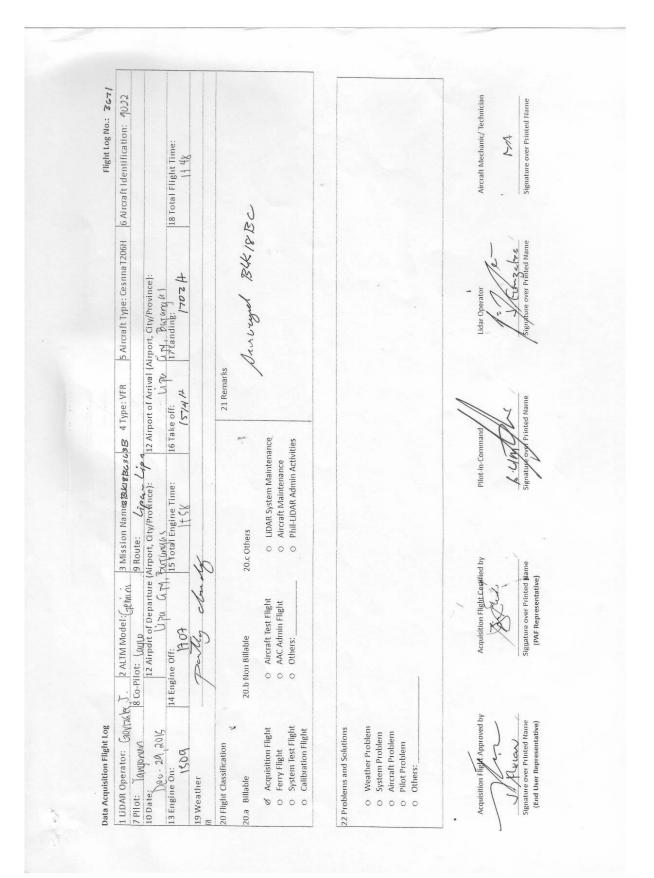
Flight Log for 3002P Mission

Flight Log for 3689G Mission


139

Flight Log for 3673G Mission

Flight Log No.: 26 2/ 2 ALTM Model: CEMÂNI 3 Mission Namerzisty 1997 (1940 - VFR 5 Alrcraft Type: Cesnne T206H 6 Arrcraft Identification: 9022 8 Co-Pilot: 1040 - 9 Route: 12 Airport of Departure (Airport, City/Province): 12 Airport of Arrysa (Airport, City/Province): Aircraft Mechanic/ Tech 18 Total Flight Time: 2 +1 3 195 Buc Provel Mars 4 06 14 iture over Printed Na All ٦ Uidar Operator Comments T 17 Landing: 21 Remarks 16 Take off: UDAR System Maintenance
 Aircraft Maintenance
 Phil-UDAR Admin Activities Niet-Im-I Ine Time 15 Total En 20.c Others Aircraft Test Flight
 AAC Admin Flight
 Others: 14 Engine Off: 14 1 2 Church 20.b Non Billable 1 UDAR Operator: Muns 10 Date: Jon. 9, 3014 Ferry Flight System Test Flight Calibration Flight Data Acquisition Flight Log 22 Problems and Solutions Acquisition Flight Weather Problen System Problem Aircraft Problem 13 Engine On: 150 Pilot Problem LAM 20 Flight Classificatio Others: 19 Weather Billable 7 Pilot: ъ 000 00000 20.8 . . .

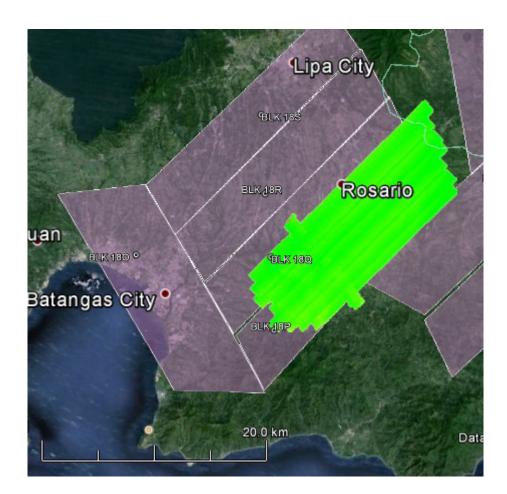

Flight Log for 3671G Mission

Flight Log for 3669G Mission

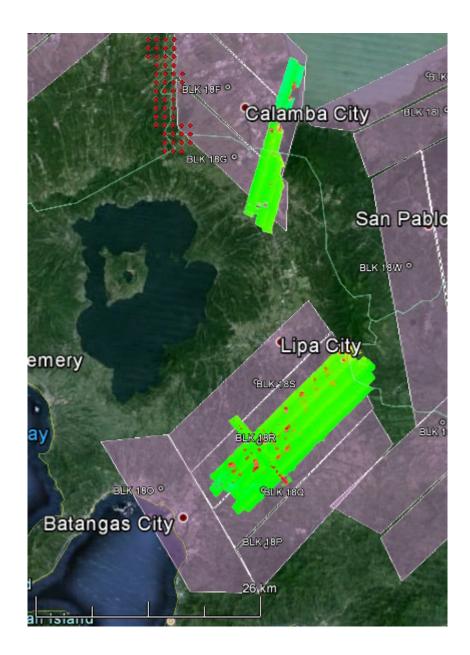
LiDAR Surveys and Flood Mapping of Calumpang River

Flight Log for 3691G Mission

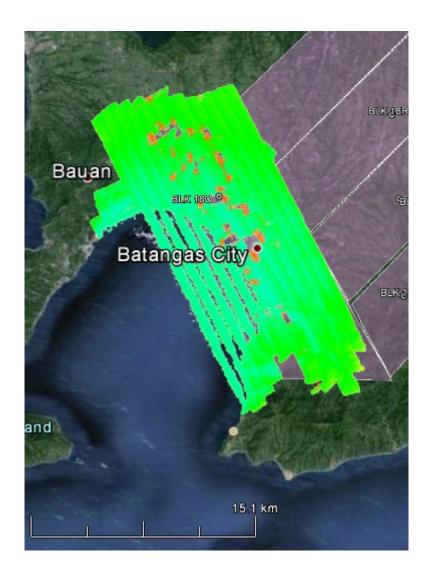
Flight Log for 3693GMission

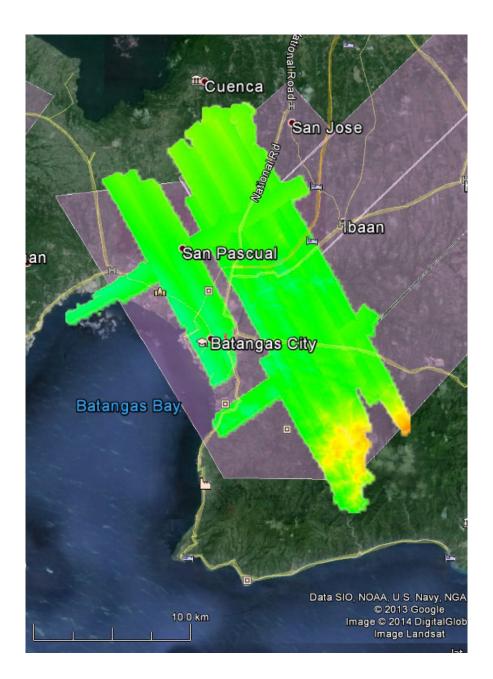

PHIL-LIDAR I Data Acquisition						Flight Log No.: 3693 G
PILOAR Operator: P. Marg	B CO-PILOL: R. LAGLD	3 Mission Name:	<u>4 T</u>	ype: VFR	5 Aircra ft Type : CesnnaT206H	6 Aircraft Identification: 9022
10 Date:	12 Airport of Departure	9 Route; (Airport, City/Province):	12 Airpo	rt of Arrival (A	A) (port, City/Province):	
January 16,201	le	NALA 15 Total Engine Time:			NAIA	
0550	14 Engine Off. 06 55	15 lotal Engine lime: (+ 0 S	16 Take	565	17 Landing: D& 50	18 Total Flight Time: 0+55
19 Weather Fine						_1
		a sea an				
20 Flight Classification				21 Remarks	pilere C	
20.a Billable	20 h Non Billable	20.c Others		Surver	yed BLK185C	
Acquisition Flight	O Alicraft Test Flight	O LIDAR System Mainte	nance			
O Ferry Flight	O AAC Admin Flight	 Aircraft Maintenance 				
O System Test Flight O Calibration Flight	o Others:	O Phil-LiDAR Admin Act	ivities			
22 Problems and Solutions		and the suggestion provides a start from the start of the				
 Weather Problem System Problem 						
O Aircraft Problem						
O Pilot Problem						
O Others:	a parage advance and the a					
		a fandar fan staar yn it staar o an ander an antagener antagener fan de staar on antagener.				
Annual of the second						
	Acquisition Flight Certif	ied by Pilot-in-	Command		LIDAR Operator	Aircraft Mechanic/ IIDAR Technicia
Acquisition Flight Approved by	Acquisition Flight Certifi	ico by	1	/	Pn	
100		M .=	TANGO	NAN	/m	~-
101100	Signature over Printed N	lame Signatur	e over Printe	d Name	Signature over Printed Na	me Signature over Printed Name
. Signature over Printed Name (End User Representative)	(PAF Representative)					
,						

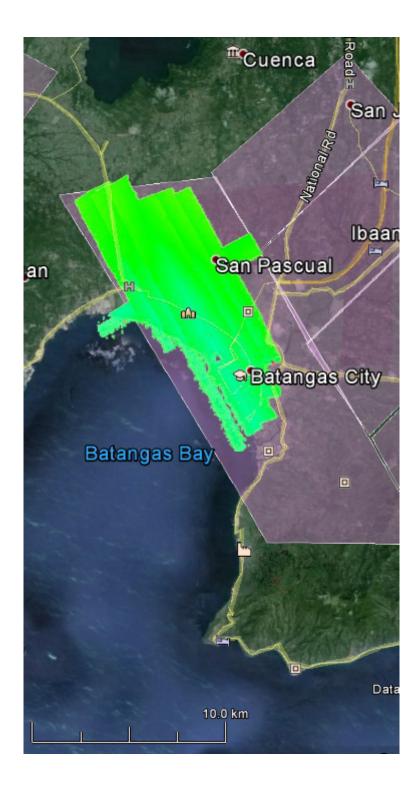
Annex 7. Flight Status Reports

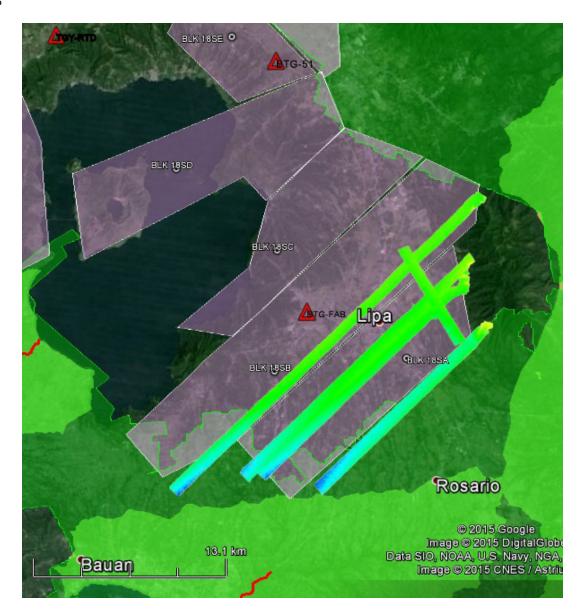

		CALAB	ARZON							
(DE	(DECEMBER 21-22, 2015 DECEMBER 29-30, 2015, JANUARY 9, 2016 and JANUARY 16, 2016)									
FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS					
14-Feb- 14	1107P	1BLK18QRS45A	R. Punto	14-Feb	Mission completed; changed orientation of flight plan to avoid PAF base restriction in Lipa; 1200m flying height					
15-Feb- 14	1111P	1BLK18QRS46A	F. Sable	15-Feb	Data acquired but aborted mission due to strong wind, heavy build up and traffic especially in Laguna area; 1200m flying height					
17-Feb- 14	1119P	1BLK18O48A	R. Punto	17-Feb	Data acquired but with major voids due to clouds					
18-Feb- 14	1123P	1BLK18OS49A	F. Sable	18-Feb	Mission completed at 1200 flying height					
18-Feb- 14	1125P	1BLK18S49B	R. Punto	18-Feb	Data acquired at 1200m flying height					
3000P	BLK 18SAB	1BLK18SB355A	LK PARAGAS	21-Dec	SURVEYED BLK 18SAB					
	LIPA, SAN JOSE				60.04 SQ KM					
3002P	BLK 18SABEK TANAUAN,	1BLK18S356A	J ALVIAR	22-Dec	SURVEYED BLK 18SABEK					
	MALVAR, TALISAY				304.12 SQ KM					
3689G	GAPS IN BLK 18KDBEF	2BLK18SV009A	P.MARS	9-Jan	SURVEYED GAPS IN BLK 18KDBEF					
					77.45 SQ KM.					
3673G	BLK 18SG, 18SB LAUREL, LIPA,	2BLK18S363A	R PUNTO	30-Dec	SURVEYED BLK 18SG, GAPS IN BLK 18SB					
	CUENCA				156.04 SQ KM					
3691G	GAPS IN BLK18KLB	2BLK18SVV009B	P.MARS	9-Jan	SURVEYED IN GAPS IN BLK18SKL					
					45.86 SQ KM.					
3669G	BLK 18SAB	2BLK18SBC363A	R PUNTO	29-Dec	SURVEYED BLK 21AB;					
	LIPA, SAN JOSE				144.41 SQ KM					
3671G	BLK 18SBC	2BLK18BC363B	J GONZALES	29-Dec	SURVEYED BLK 18SBC					
	CUENCA				71.61 SQ KM					
3693G	BLK18SC	2BLK18SCB016A	P.MARS	16-Jan	SURVEYED IN BLK18SC					
					33.941 SQ KM.					

LAS/SWATH BOUNDARIES PER FLIGHT

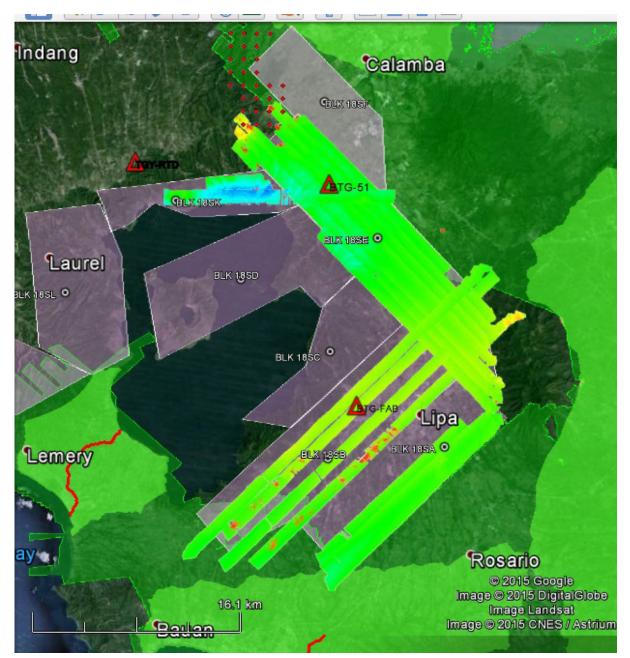

Flight No. :	1107P				
Area:	BLK 18PQ				
Mission Name:	1BLK18QRS45A				
Parameters:	PRF 200	SF	30	FOV	50


Flight No. :	1111P					
Area:	BLK 18RS AND BLK 18ES					
Mission Name:	1BLK18RS46A					
Parameters:	PRF 200	SF	30	FOV	50	


Flight No. :	1119P				
Area:	BLK 18O				
Mission Name:	1BLK18048A				
Parameters:	PRF 200	SF	30	FOV	50

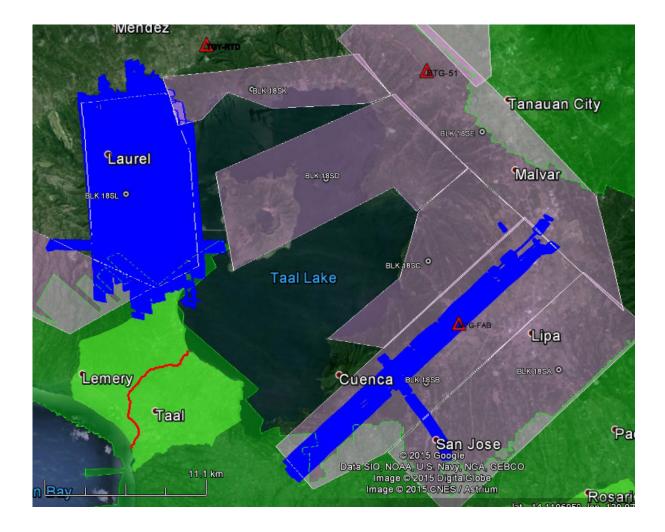

Flight No. :	1123P (renamed from 1121P)					
Area:	BLK 180PQRS					
Mission Name:	1BLK18OS49A					
Parameters:	PRF 200	SF	30	FOV	50	

Flight No. :	1125P (renamed from 1123P)					
Area:	BLK 18Os					
Mission Name:	1BLK18OS49B					
Parameters:	PRF 200	SF	30	FOV	50	



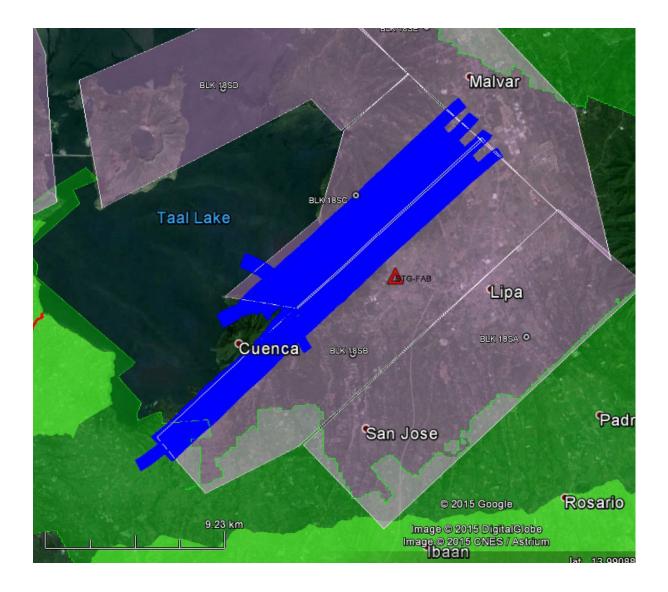
Flight No. :	3000P					
Area:	BLK 18SAB					
Mission Name:	1BLK18SB355A					
Parameters:	PRF 200	SF	30	FOV	50	

Flight No. :	3002P					
Area:	BLK 18SABEK					
Mission Name:	1BLK18S356A					
Parameters:	PRF 200	SF	30	FOV	50	



Flight No. :	3689G					
Area:	GAPS IN BLK 18KDBEF					
Mission Name:	2BLK18SV009A					
Parameters:	PRF 142	SF	40	FOV	50	

Flight No. :	3673G				
Area:	BLK 18SG, 18SBS				
Mission Name:	1BLK18S364	A			
Parameters:	PRF 100	SF	20	FOV	40


Flight No. :	3691G				
Area:	BLK 18SG, SF				
Mission Name:	2BLK18SVV009B				
Parameters:	PRF 142	SF	40	FOV	50

Flight No. :	3669G				
Area:	BLK 18SAB				
Mission Name:	1BLK18SBC363A				
Parameters:	PRF 100	SF	20	FOV	40

Flight No. :	3671G				
Area:	BLK 18SBC				
Mission Name:	1BLK18SBC363	В			
Parameters:	PRF 100	SF	20	FOV	40

Flight No. :	3693G				
Area:	BLK 18SC				
Mission Name:	2BLK18SCB016	6a			
Parameters:	PRF 142	SF	40	FOV	50

Flight Area	Batangas		
Mission Name	Blk18SA		
Inclusive Flights	3000P, 3002P		
Range data size	32.41 GB		
POS data size	292 MB		
Base data size	38.6 MB		
Image	52.8 GB		
Transfer date	January 15, 2016		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	Yes		
Processing Mode (<=1)	No		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.2698		
RMSE for East Position (<4.0 cm)	1.0579		
RMSE for Down Position (<8.0 cm)	1.8439		
	1.0435		
Boresight correction stdev (<0.001deg)	0.000239		
IMU attitude correction stdev (<0.001deg)	0.000238		
GPS position stdev (<0.01m)	0.001200		
Minimum % overlap (>25)	6.79		
Ave point cloud density per sq.m. (>2.0)	2.94		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	130		
Maximum Height	620.36 m		
Minimum Height	102.31 m		
Classification (# of points)			
Ground	85,591,089		
Low vegetation	58,169,445		
Medium vegetation	119,088,921		
High vegetation	217,682,240		
Building	15,032,211		
Orthophoto	Yes		
Processed by	Engr. Sheila-Maye Santillan, Engr. Merven Matthew Nating KathlynClaudyn Zarate		

Annex 8. Mission Summary Reports

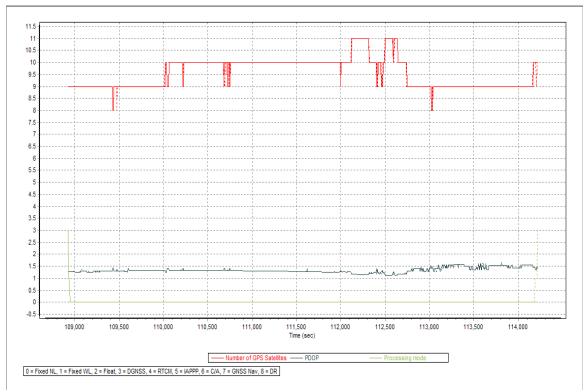


Figure 1.1.1. Solution Status

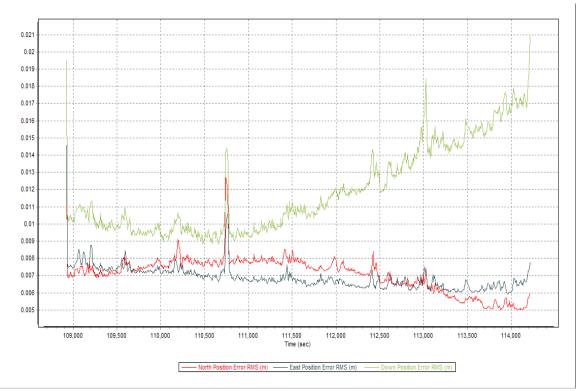


Figure 1.1.2. Smoothed Performance Metric Parameters

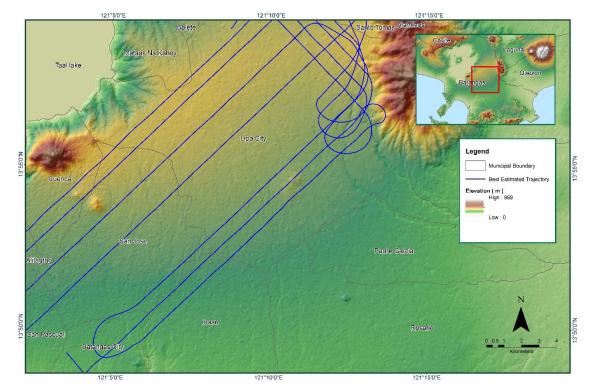


Figure 1.1.3. Best Estimated Trajectory

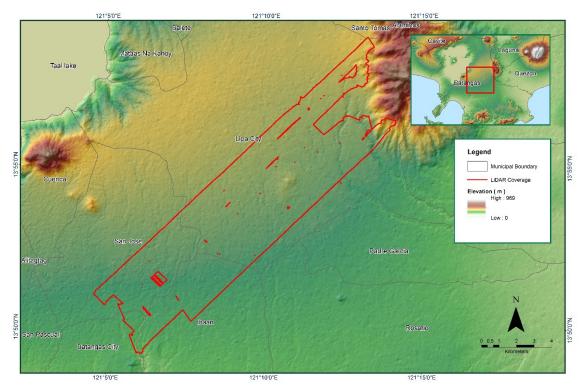


Figure 1.1.4. Coverage of LiDAR Data

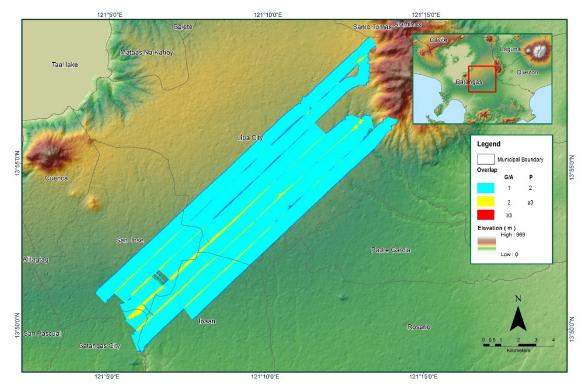


Figure 1.1.5. Image of data overlap

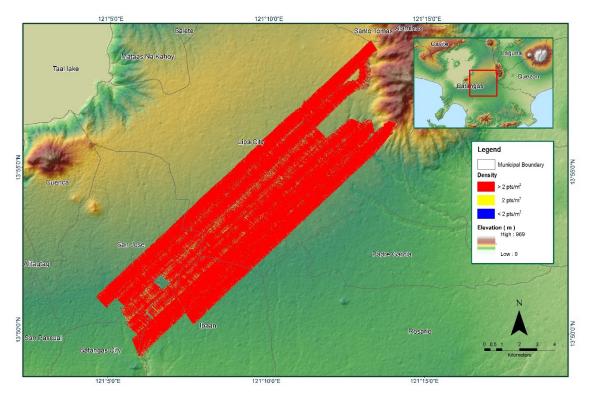


Figure 1.1.6. Density map of merged LiDAR data

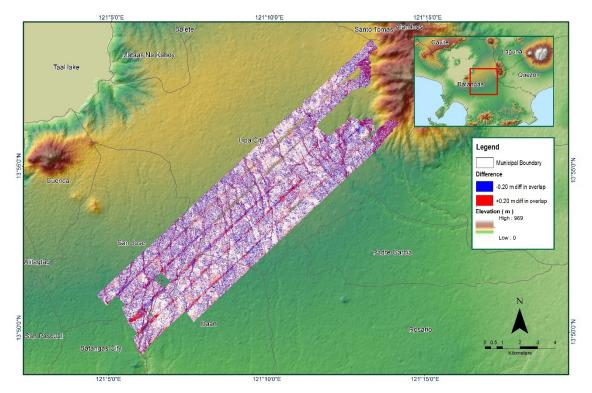


Figure 1.1.7. Elevation difference between flight lines

Flight Area	Batangas			
Mission Name	Blk18SA_additional			
Inclusive Flights				
Range data size	16.3 GB			
POS data size	219 MB			
Base data size	12.9 MB			
Image	n/a			
Transfer date	January 15, 2016			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	No			
Processing Mode (<=1)	No			
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	0.9595			
RMSE for East Position (<4.0 cm)	1.1895			
RMSE for Down Position (<8.0 cm)	3.2216			
Boresight correction stdev (<0.001deg)	0.000865			
IMU attitude correction stdev (<0.001deg)	0.001788			
GPS position stdev (<0.01m)	0.0087			
Minimum % overlap (>25)	96.27			
Ave point cloud density per sq.m. (>2.0)	5.92			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	17			
Maximum Height	291.37 m			
Minimum Height	171.27 m			
Classification (# of points)				
Ground	2,017,754			
Low vegetation	2,246,486			
Medium vegetation	18,378,369			
High vegetation	17,092,659			
Building	144,595			
-				
Orthophoto	No			
Processed by	Engr. Angelo Carlo Bongat, Engr. Edgardo Gubatanga Jr., Marie Denise Bueno			

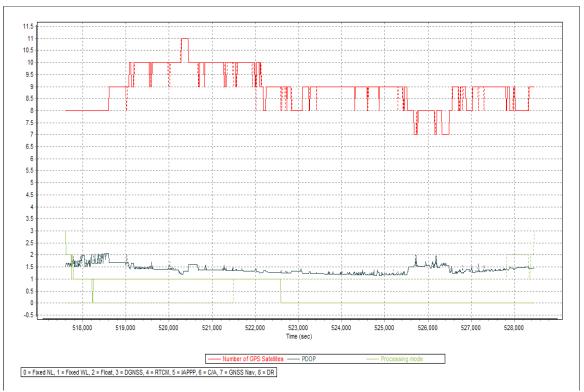


Figure 1.2.1. Solution Status

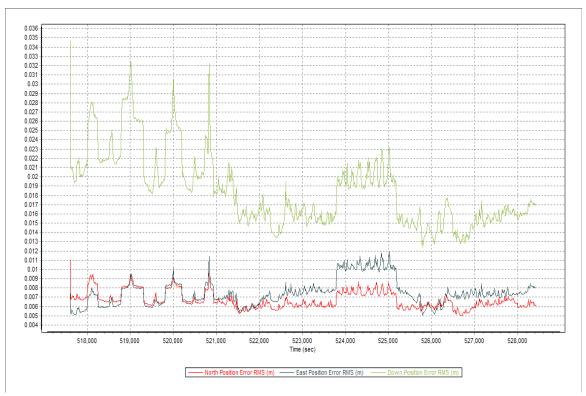


Figure 1.2.2. Smoothed Performance Metric Parameters

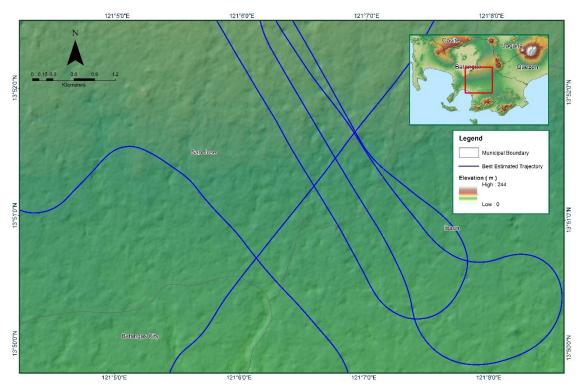


Figure 1.2.3. Best Estimated Trajectory

Figure 1.2.4. Coverage of LiDAR Data

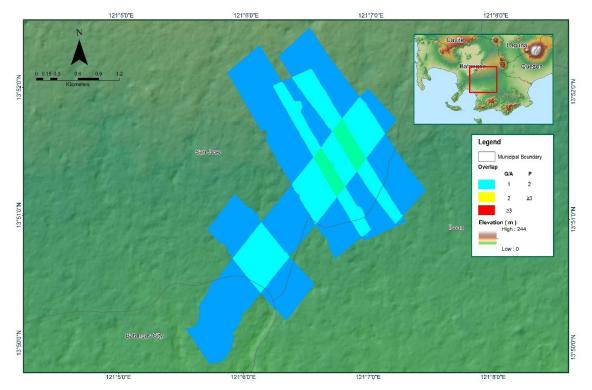


Figure 1.2.5. Image of data overlap

Figure 1.2.6. Density map of merged LiDAR data

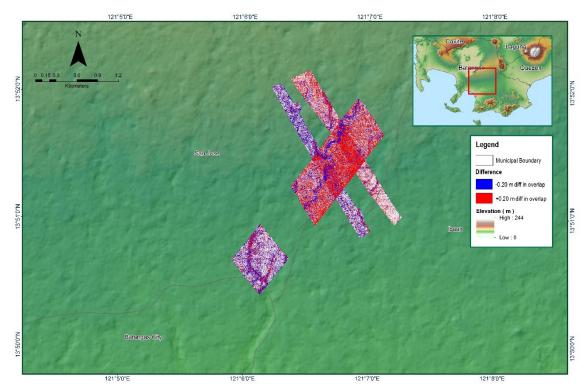


Figure 1.2.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk18SB
Inclusive Flights	3002P, 3673G, 3689G
Range data size	58.2 GB
POS data size	599 MB
Base data size	51.8 MB
Image	41.7 GB
Transfer date	January 15, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1457
RMSE for East Position (<4.0 cm)	1.0991
RMSE for Down Position (<8.0 cm)	3.2627
Boresight correction stdev (<0.001deg)	0.000395
IMU attitude correction stdev (<0.001deg)	0.003896
GPS position stdev (<0.01m)	0.002300
· · · · ·	
Minimum % overlap (>25)	30.66
Ave point cloud density per sq.m. (>2.0)	4.16
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	216
Maximum Height	766.11 m
Minimum Height	28.87 m
Classification (# of points)	
Ground	110,887,488
Low vegetation	116,871,073
Medium vegetation	284,484,416
High vegetation	427,490,155
Building	44,511,337
Orthophoto	Yes
Processed by	Engr. Sheila-Maye Santillan, Engr. Kennetl Solidum, Engr. JovelleAnjeannette Canlas Marie Denise Bueno

Figure 1.3.1. Solution Status

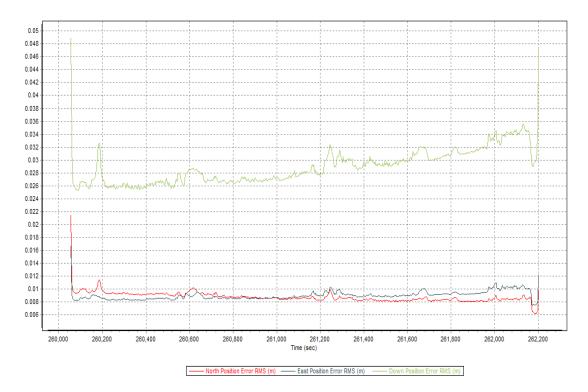


Figure 1.3.2. Smoothed Performance Metric Parameters

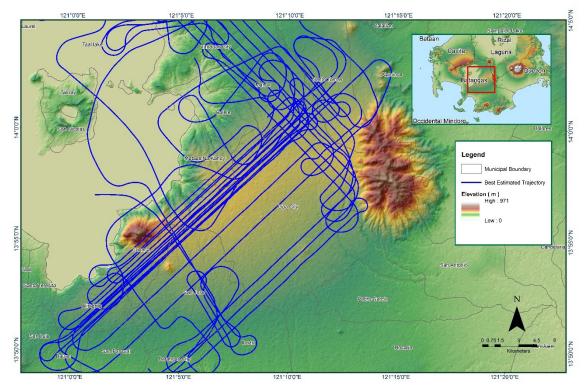


Figure 1.3.3. Best Estimated Trajectory

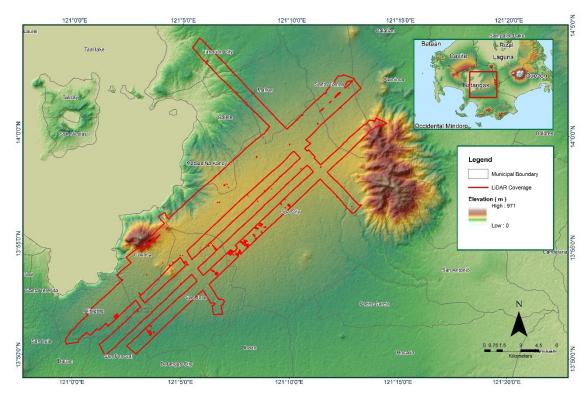


Figure 1.3.4. Coverage of LiDAR Data

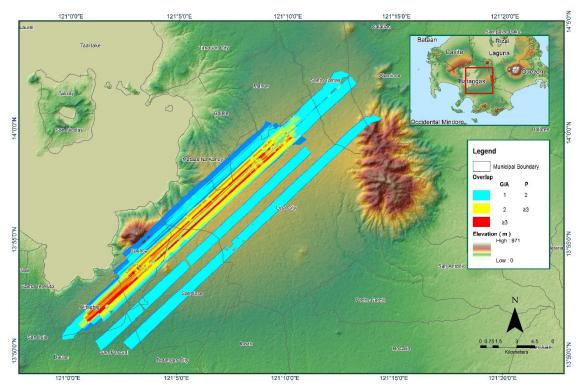


Figure 1.3.5. Image of data overlap

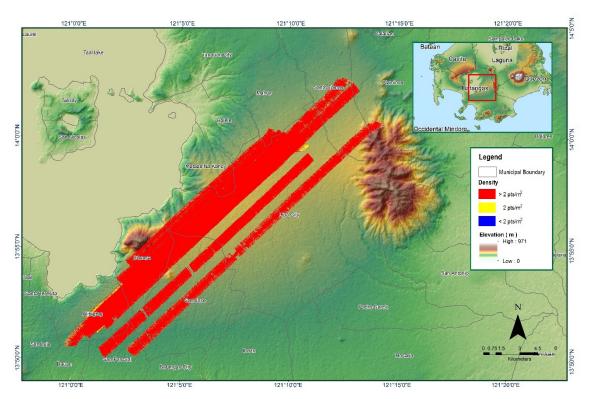


Figure 1.3.6. Density map of merged LiDAR data

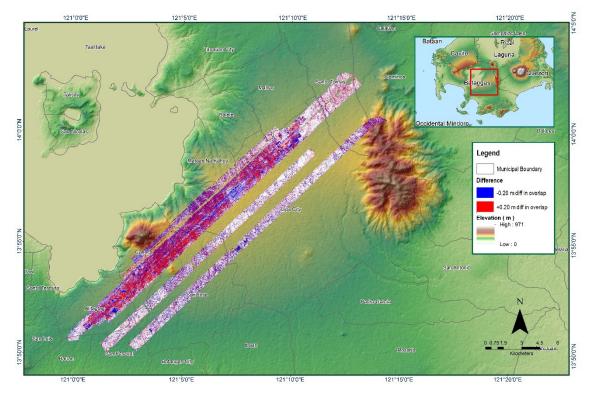


Figure 1.3.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk18SB_additional
Inclusive Flights	3691G
Range data size	6.93 GB
POS data size	124 MB
Base data size	12.9 MB
Image	n/a
Transfer date	January 15, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1374
RMSE for East Position (<4.0 cm)	1.3443
RMSE for Down Position (<8.0 cm)	2.1918
Boresight correction stdev (<0.001deg)	0.002622
IMU attitude correction stdev (<0.001deg)	0.001037
GPS position stdev (<0.01m)	0.001500
Minimum % overlap (>25)	56.86
Ave point cloud density per sq.m. (>2.0)	6.74
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	18
Maximum Height	443.07 m
Minimum Height	290.06 m
Classification (# of points)	
Ground	3,697,480
Low vegetation	2,978,689
Medium vegetation	7,394,117
High vegetation	15,180,500
Building	516,231
Orthophoto	No
Processed by	Engr. Sheila-Maye Santillan, Engr. Edgardo Gubatanga Jr., Marie Denise Bueno

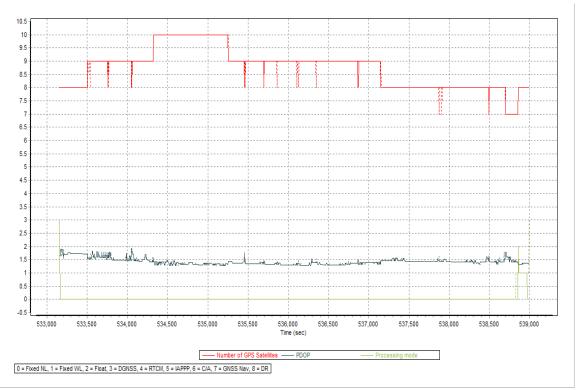


Figure 1.4.1. Solution Status

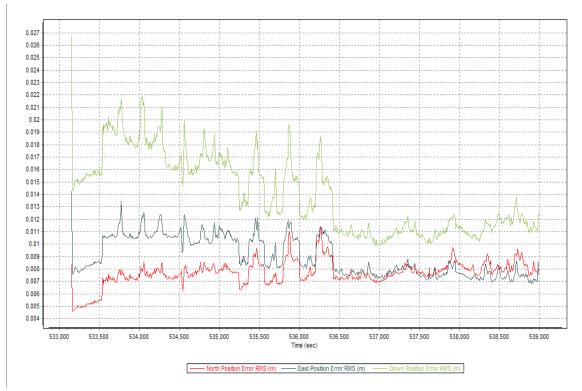


Figure 1.4.2. Smoothed Performance Metric Parameters

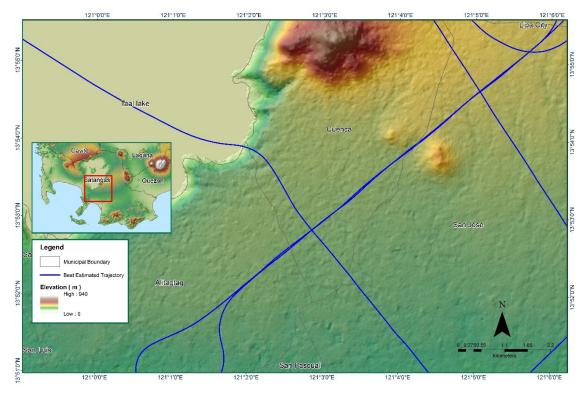


Figure 1.4.3. Best Estimated Trajectory

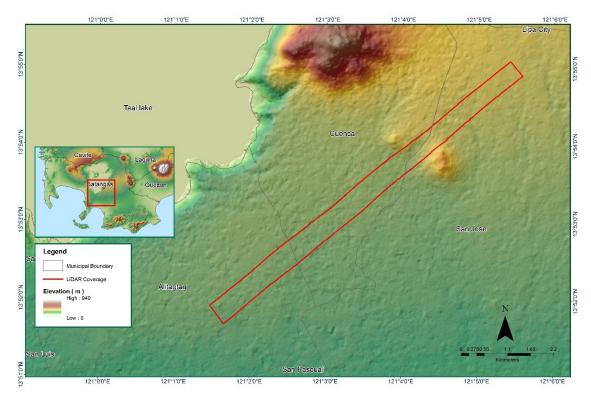


Figure 1.4.4. Coverage of LiDAR Data

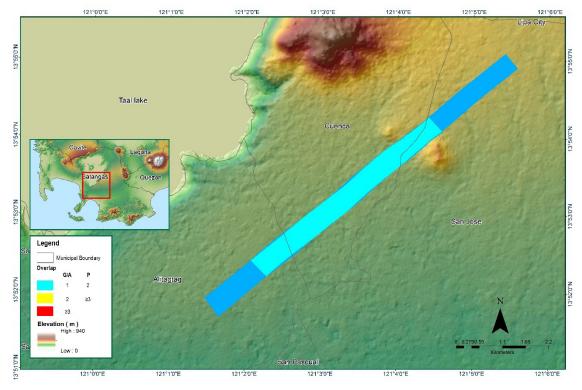


Figure 1.4.5. Image of data overlap

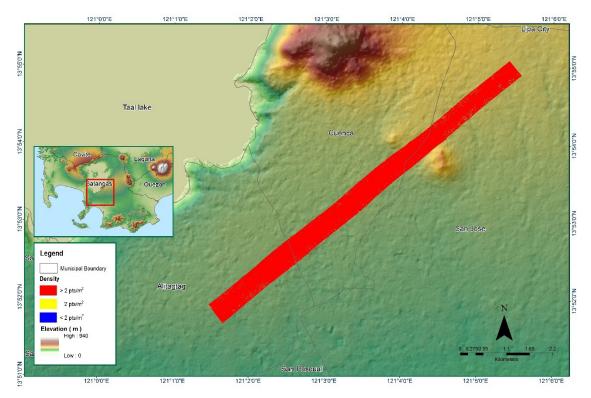


Figure 1.4.6. Density map of merged LiDAR data

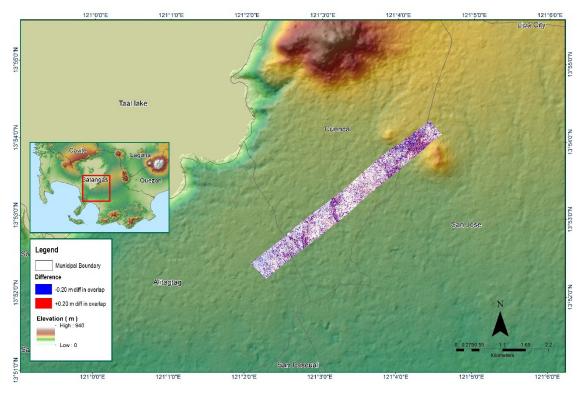
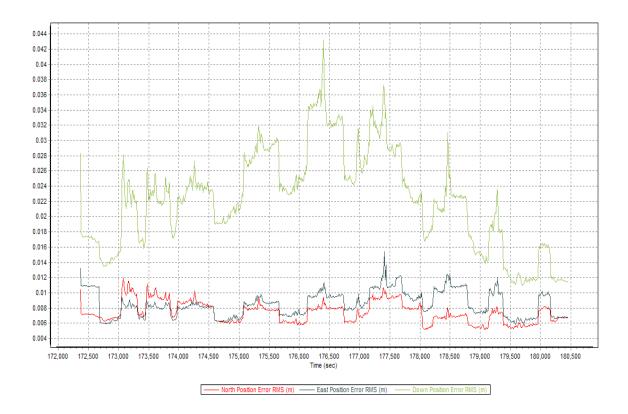



Figure 1.4.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk18SB_supplement
Inclusive Flights	3669G
Range data size	14.9 GB
POS data size	151 MB
Base data size	7.42 MB
Image	N/A
Transfer date	January 06, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.19
RMSE for East Position (<4.0 cm)	1.54
RMSE for Down Position (<8.0 cm)	4.31
Boresight correction stdev (<0.001deg)	0.000524
IMU attitude correction stdev (<0.001deg)	0.004882
GPS position stdev (<0.01m)	0.0022
Minimum % overlap (>25)	24.09 %
Ave point cloud density per sq.m. (>2.0)	3.57
Elevation difference between strips (<0.20 m)	Yes
· · · ·	
Number of 1km x 1km blocks	196
Maximum Height	601.68 m
Minimum Height	175.82 m
<u> </u>	
Classification (# of points)	
Ground	54,649,078
Low vegetation	61,016,989
Medium vegetation	136,361,089
High vegetation	165,308,687
Building	19,226,341
~	
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Ma. Joanne Balaga, Engr. Elainne Lopez

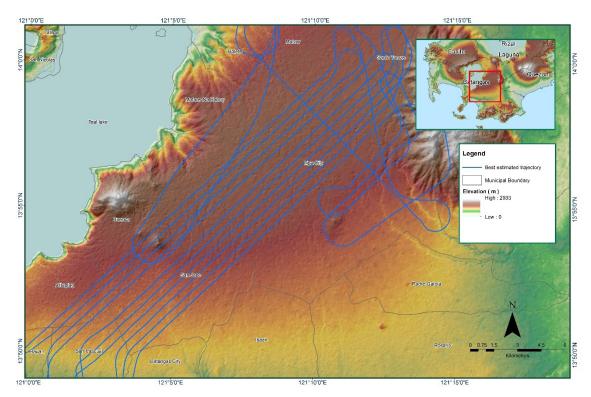


Figure 1.5.3. Best Estimated Trajectory

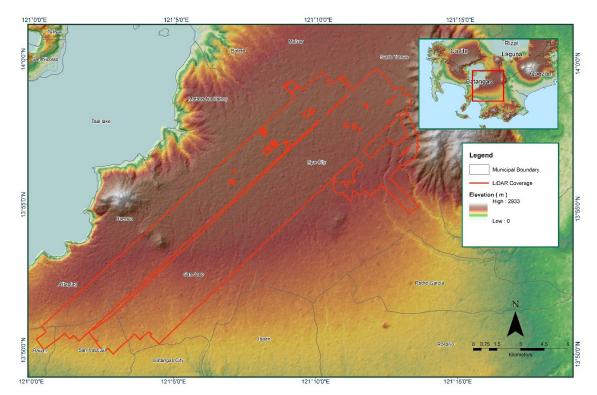


Figure 1.5.4. Coverage of LiDAR Data

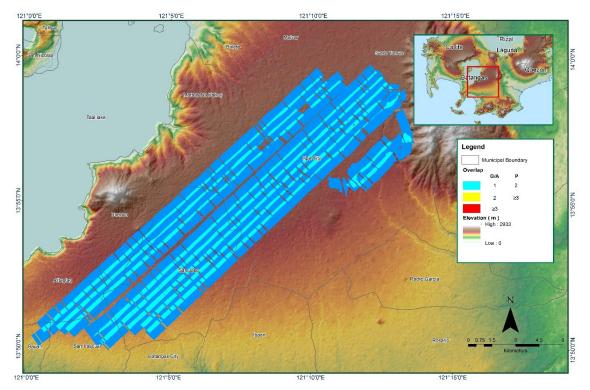


Figure 1.5.5. Image of data overlap

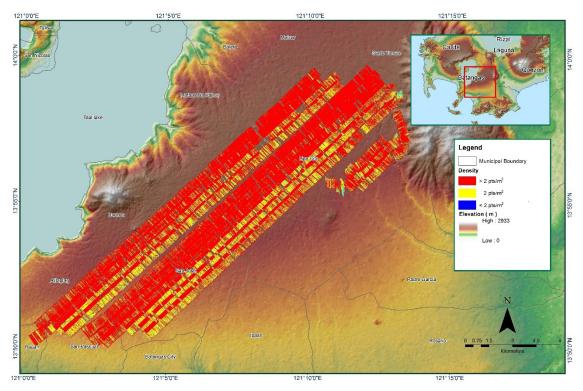


Figure 1.5.6. Density map of merged LiDAR data

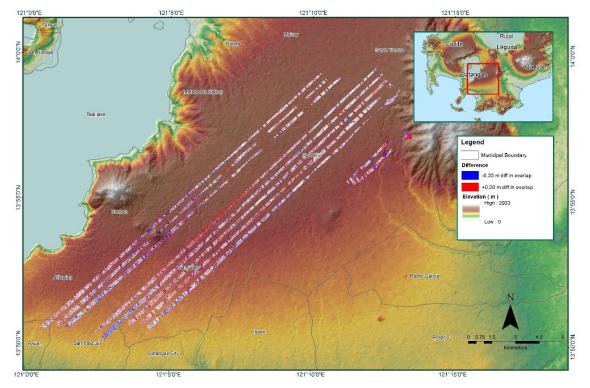


Figure 1.5.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk18SC
Inclusive Flights	3671G
Range data size	7.41 GB
POS data size	85 MB
Base data size	7.42 MB
Image	N/A
Transfer date	January 06, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	.80
RMSE for East Position (<4.0 cm)	.88
RMSE for Down Position (<8.0 cm)	1.24
Boresight correction stdev (<0.001deg)	0.001711
IMU attitude correction stdev (<0.001deg)	0.002627
GPS position stdev (<0.01m)	0.0018
Minimum % overlap (>25)	1.04 %
Ave point cloud density per sq.m. (>2.0)	3.75
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	113
Maximum Height	779.19 m
Minimum Height	49.56 m
Classification (# of points)	
Ground	36,956,676
Low vegetation	15,958,180
Medium vegetation	46,648,268
High vegetation	133,227,835
Building	5,156,617
Orthophoto	No
Processed by	Engr. Don Matthew Banatiin, Engr. Edgardo Gubatanga Jr., Engr. Elainne Lopez

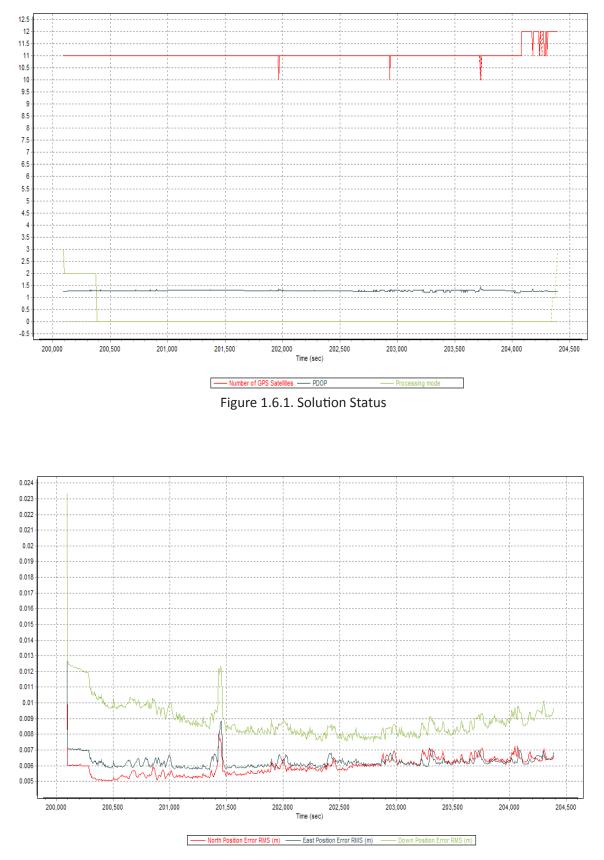


Figure 1.6.2. Smoothed Performance Metric Parameters

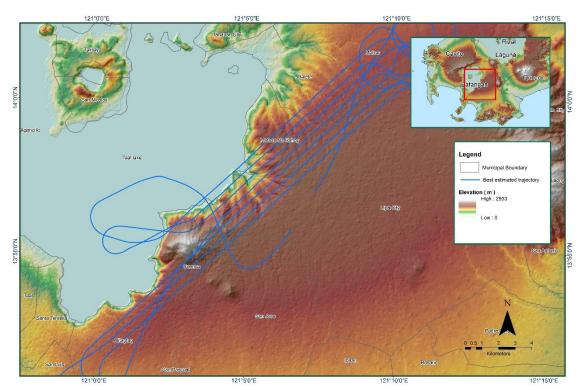


Figure 1.6.3. Best Estimated Trajectory

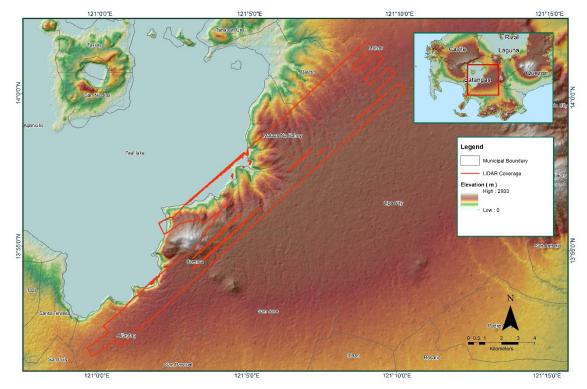


Figure 1.6.4. Coverage of LiDAR Data

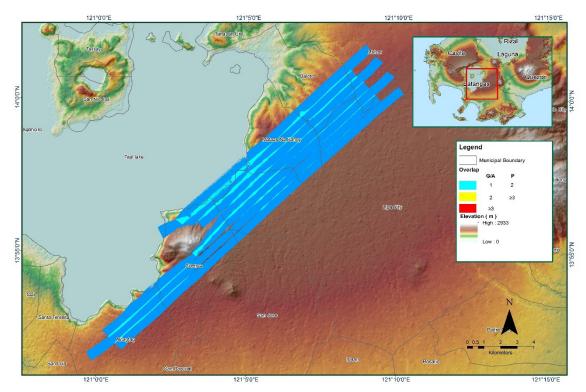


Figure 1.6.5. Image of data overlap

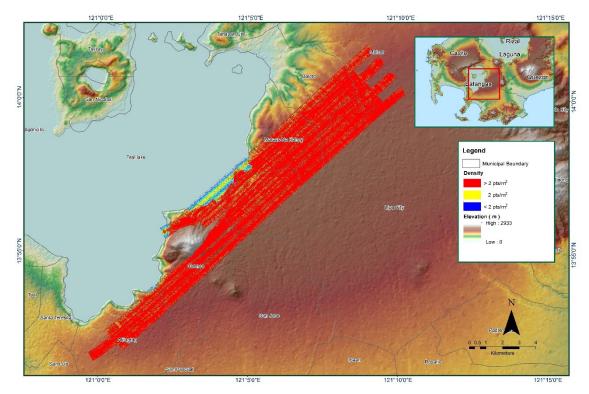


Figure 1.6.6. Density map of merged LiDAR data

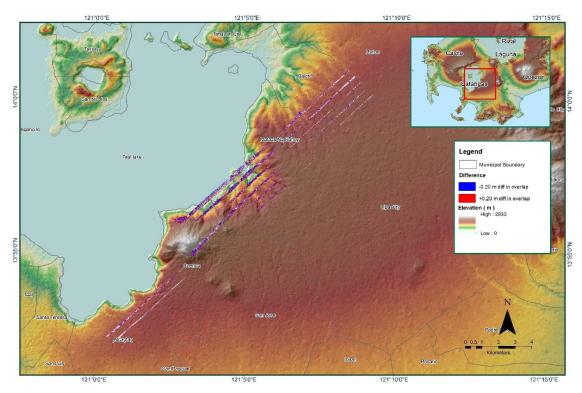


Figure 1.6.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk18SC_supplement
Inclusive Flights	3693G
Range data size	7.98 GB
POS data size	82.9 MB
Base data size	8.36 MB
Image	N/A
Transfer date	January 20, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	.75
RMSE for East Position (<4.0 cm)	1.01
RMSE for Down Position (<8.0 cm)	2.70
Boresight correction stdev (<0.001deg)	0.001711
IMU attitude correction stdev (<0.001deg)	0.002627
GPS position stdev (<0.01m)	0.0018
Minimum % overlap (>25)	38.51 %
Ave point cloud density per sq.m. (>2.0)	4.78
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	78
Maximum Height	553.45 m
Minimum Height	48.17 m
Classification (# of points)	
Ground	9,620,275
Low vegetation	5,386,146
Medium vegetation	79,015,481
High vegetation	95,038,735
Building	344,062
Banang	011,002
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Merven Matthe Natino, JovyNarisma

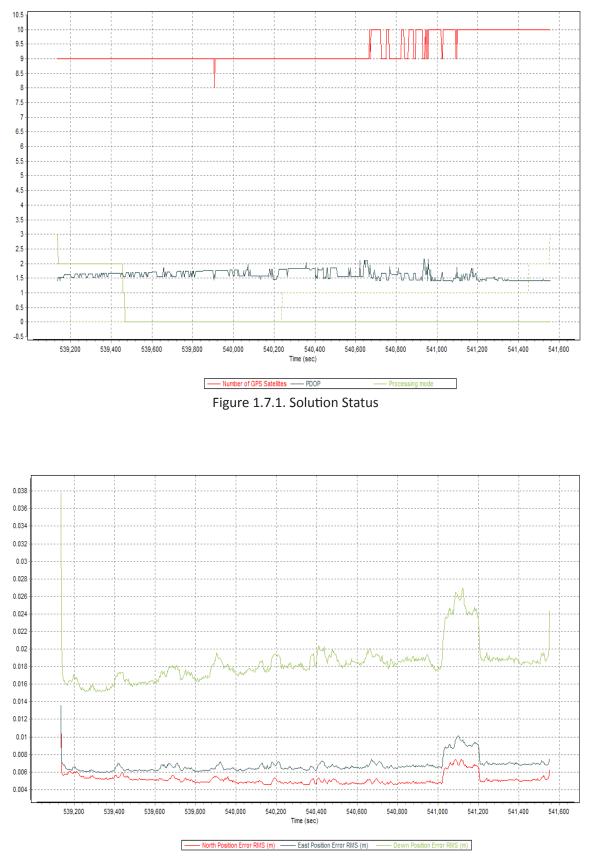


Figure 1.7.2. Smoothed Performance Metric Parameters

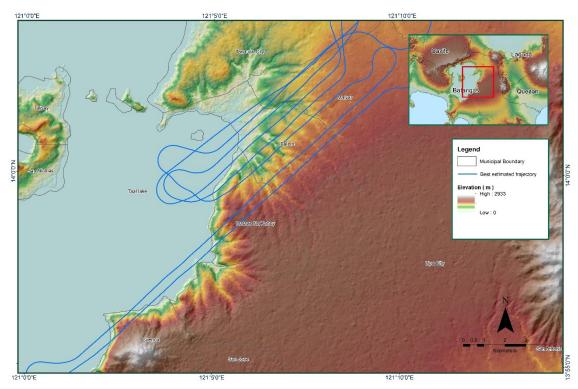


Figure 1.7.3. Best Estimated Trajectory

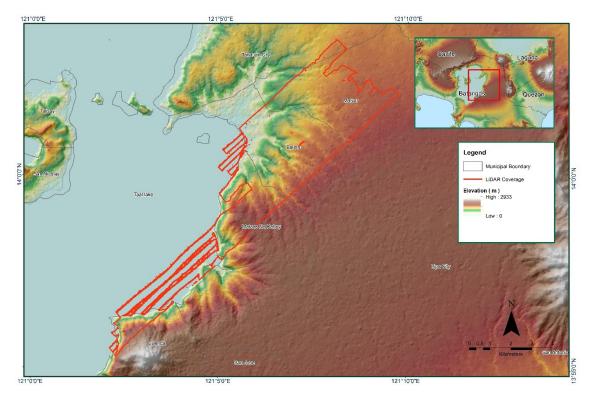


Figure 1.7.4. Coverage of LiDAR Data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

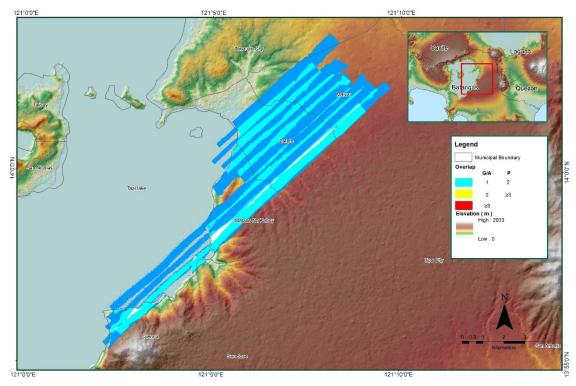


Figure 1.7.5. Image of data overlap

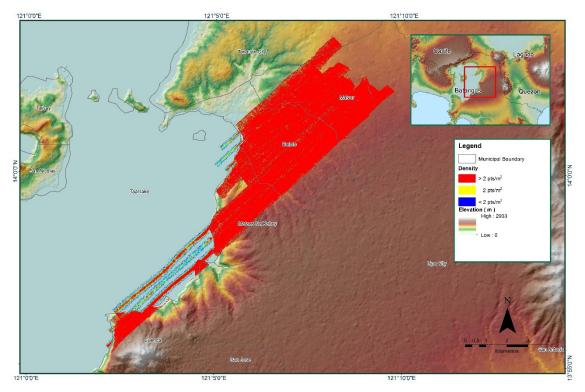


Figure 1.7.6. Density map of merged LiDAR data

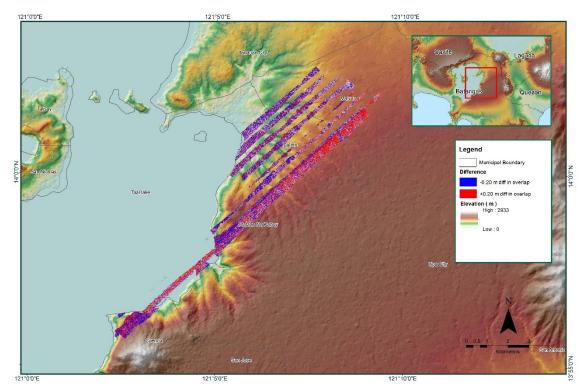


Figure 1.7.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk18O
Inclusive Flights	1119P, 1123P
Range data size	15.8 GB
POS data size	250 MB
Base data size	11.7 MB
Image	21.5 GB
Transfer date	April 14, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.9
RMSE for East Position (<4.0 cm)	1.0
RMSE for Down Position (<8.0 cm)	3.6
Boresight correction stdev (<0.001deg)	0.000501
IMU attitude correction stdev (<0.001deg)	0.002500
GPS position stdev (<0.001deg)	0.0181
	0.0101
Minimum % overlap (>25)	29.57
Ave point cloud density per sq.m. (>2.0)	1.31
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	247
Maximum Height	496.05 m
Minimum Height	39.15 m
Classification (# of points)	
Ground	91,045,249
Low vegetation	83,625,596
Medium vegetation	77,719,810
High vegetation	128,136,411
Building	19,065,771
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Melanie Hingpi Engr. RoaShelmar Redo

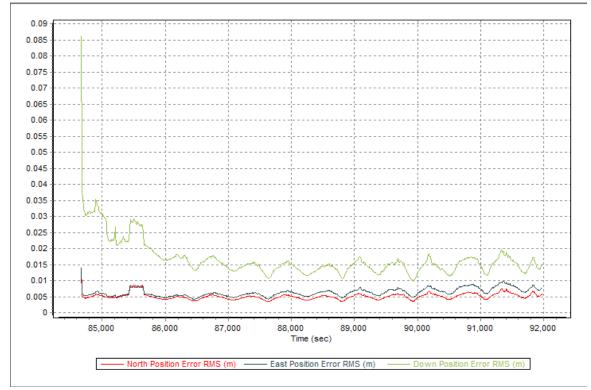


Figure 1.8.1. Solution Status



Figure 1.8.2. Smoothed Performance Metric Parameters

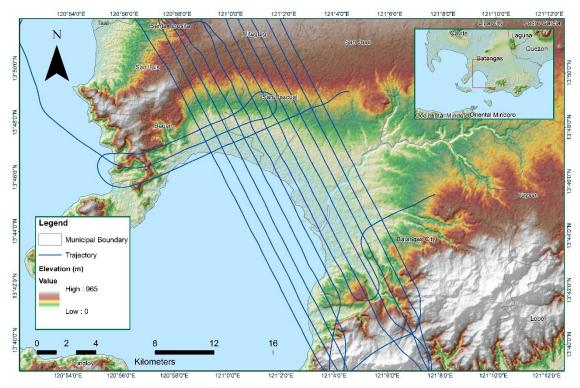


Figure 1.8.3. Best Estimated Trajectory

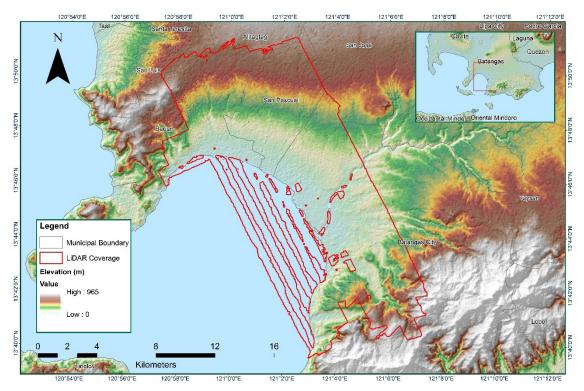


Figure 1.8.4. Coverage of LiDAR Data

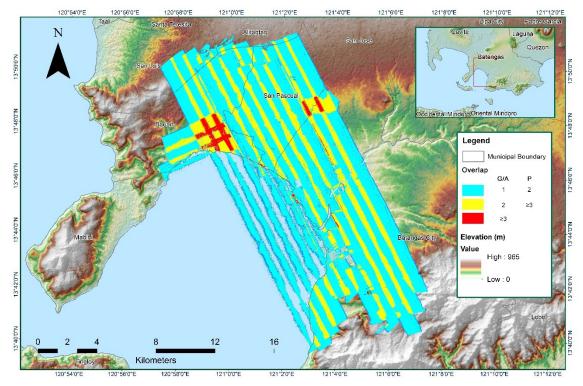


Figure 1.8.5. Image of data overlap

Figure 1.8.6. Density map of merged LiDAR data

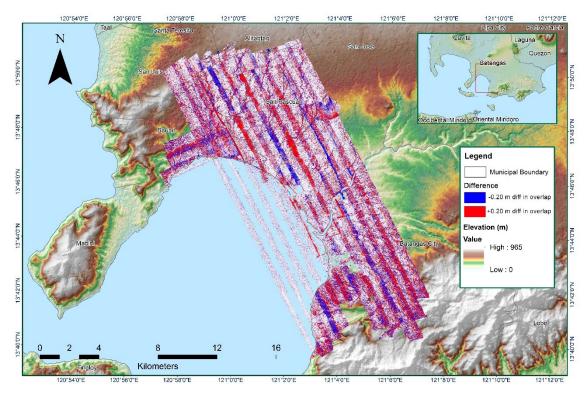


Figure 1.8.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk180_supplement2
Inclusive Flights	1123P
Range data size	14.7 GB
POS data size	193 MB
Base data size	12.6 MB
Image	NA
Transfer date	April 14, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.82
RMSE for East Position (<4.0 cm)	1.06
RMSE for Down Position (<8.0 cm)	2.27
Boresight correction stdev (<0.001deg)	0.000342
IMU attitude correction stdev (<0.001deg)	0.0086
GPS position stdev (<0.01m)	0.000491
Minimum % overlap (>25)	36.25
Ave point cloud density per sq.m. (>2.0)	1.71
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	249
Maximum Height	799.89 m
Minimum Height	47.54 m
Classification (# of points)	
Ground	102,344,866
Low vegetation	100,585,314
Medium vegetation	89,099,375
High vegetation	213,535,108
Building	19,838,980
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Charmaine Cruz
	JovyNarisma

Figure 1.9.1. Solution Status

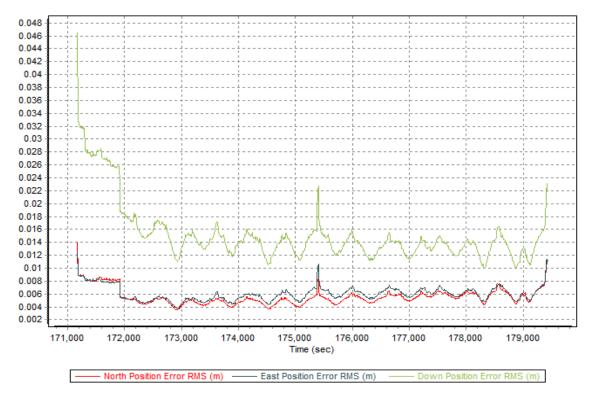


Figure 1.9.2. Smoothed Performance Metric Parameters

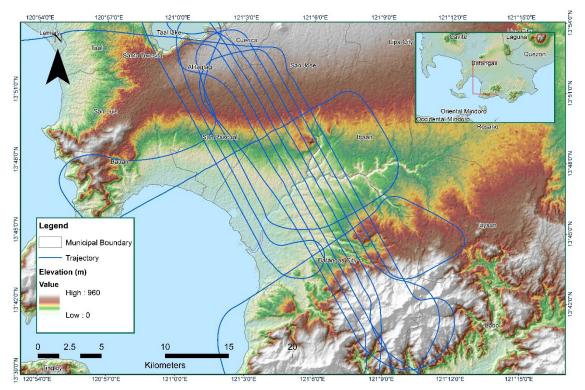


Figure 1.9.3. Best Estimated Trajectory

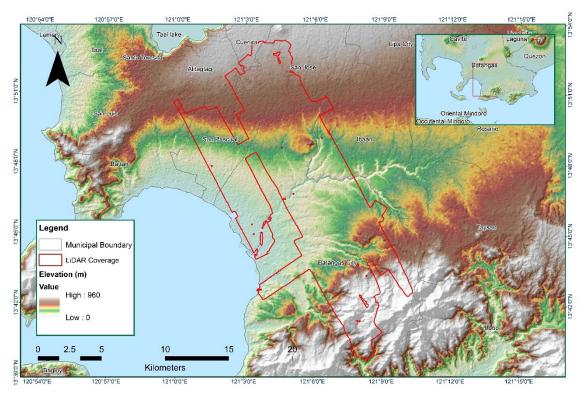


Figure 1.9.4. Coverage of LiDAR Data

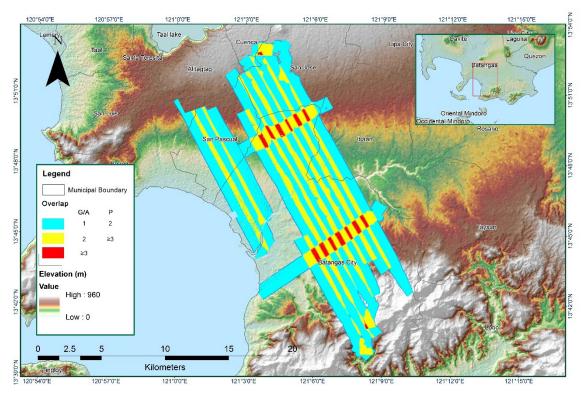


Figure 1.9.5. Image of data overlap

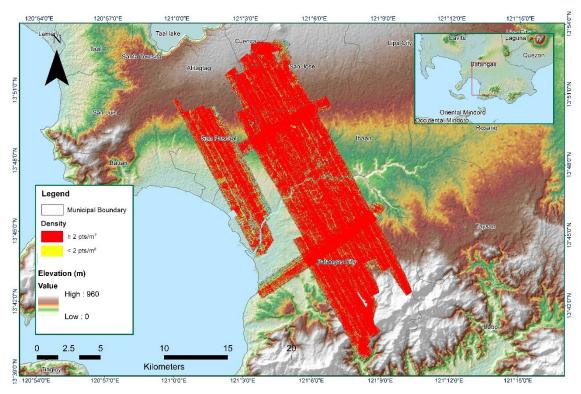


Figure 1.9.6. Density map of merged LiDAR data

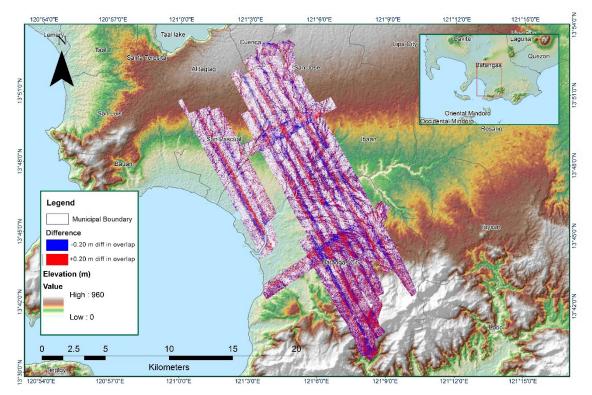


Figure 1.9.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk18QR_supplement1
Inclusive Flights	1107P
Range data size	10.2 GB
POS data size	215 MB
Base data size	12 MB
Image	16.7 GB
Transfer date	April 14, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.96
RMSE for East Position (<4.0 cm)	1.25
RMSE for Down Position (<8.0 cm)	5.13
Boresight correction stdev (<0.001deg)	0.000544
IMU attitude correction stdev (<0.001deg)	0.001183
GPS position stdev (<0.01m)	0.0102
Minimum % overlap (>25)	33.45
Ave point cloud density per sq.m. (>2.0)	1.97
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	203
Maximum Height	424.07 m
Minimum Height	37.25 m
Classification (# of points)	
Ground	127,864,102
Low vegetation	116,063,635
Medium vegetation	96,973,073
High vegetation	155,630,114
Building	11,308,922
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Melanie Hingpit, AilynBiñas



Figure 1.10.1. Solution Status

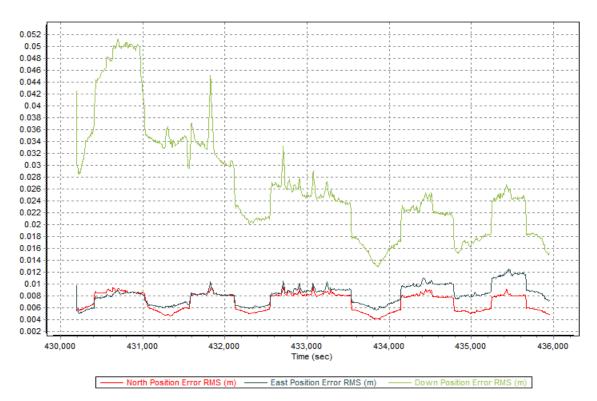


Figure 1.10.2. Smoothed Performance Metric Parameters

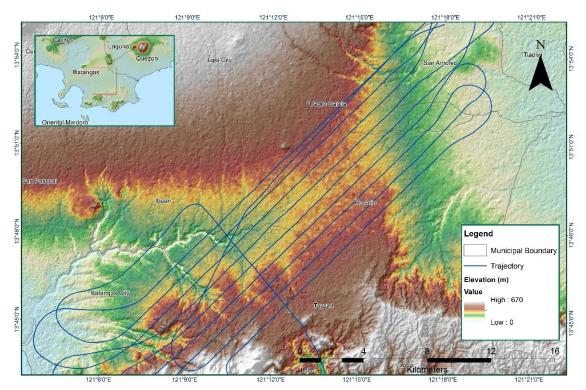


Figure 1.10.3. Best Estimated Trajectory

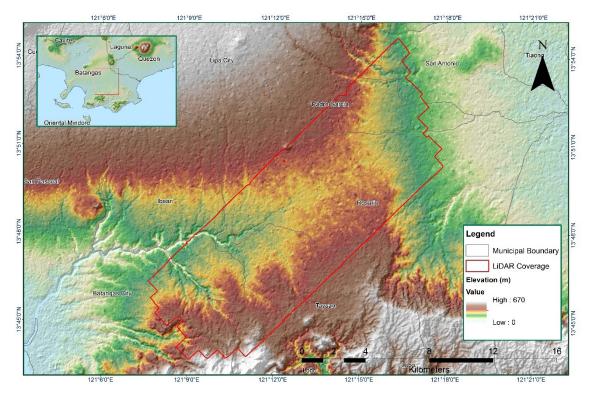


Figure 1.10.4. Coverage of LiDAR Data

Figure 1.10.5. Image of data overlap

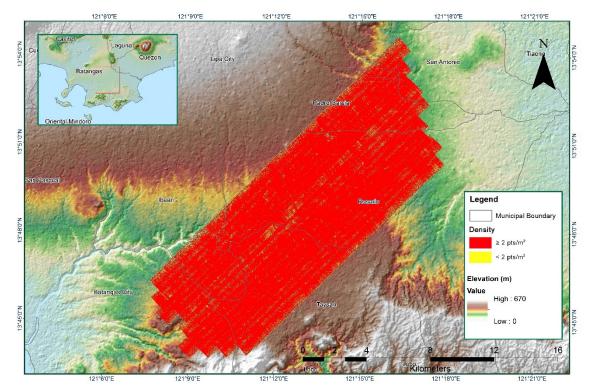


Figure 1.10.6. Density map of merged LiDAR data

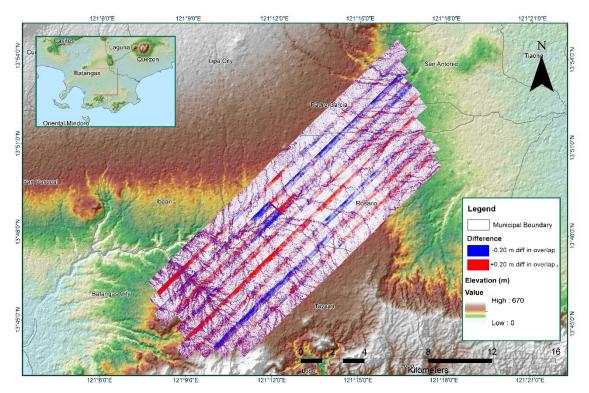


Figure 1.10.7. Elevation difference between flight lines

Flight Area	Batangas
Mission Name	Blk18QR
Inclusive Flights	1111P, 1125P
Range data size	14.7 GB
POS data size	194 MB
Base data size	10.9 MB
Image	19.7 GB
Transfer date	April 14, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.11
RMSE for East Position (<4.0 cm)	1.38
RMSE for Down Position (<8.0 cm)	3.05
Boresight correction stdev (<0.001deg)	0.000419
IMU attitude correction stdev (<0.001deg)	0.000506
GPS position stdev (<0.01m)	0.0294
Minimum % overlap (>25)	60.87
Ave point cloud density per sq.m. (>2.0)	2.36
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	240
Maximum Height	858.77 m
Minimum Height	46.29 m
Classification (# of points)	
Ground	125,111,499
Low vegetation	188,073,929
Medium vegetation	174,188,362
High vegetation	204,736,395
Building	22,904,374
Orthophoto	Yes
Processed by	Engr. Carlyn Ann Ibañez, Engr. Christy Lubiano, Ryan James Nicholai Dizon



Figure 1.11.1. Solution Status

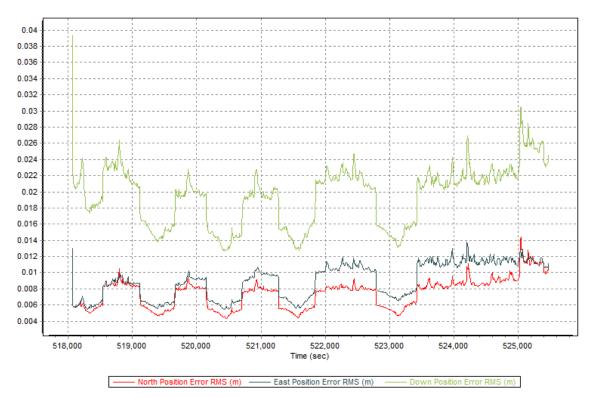


Figure 1.11.2. Smoothed Performance Metric Parameters

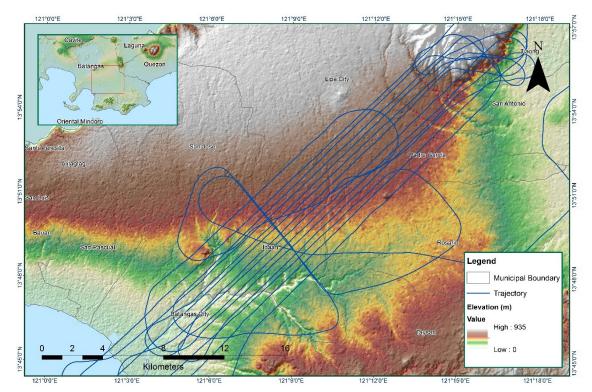


Figure 1.11.3. Best Estimated Trajectory

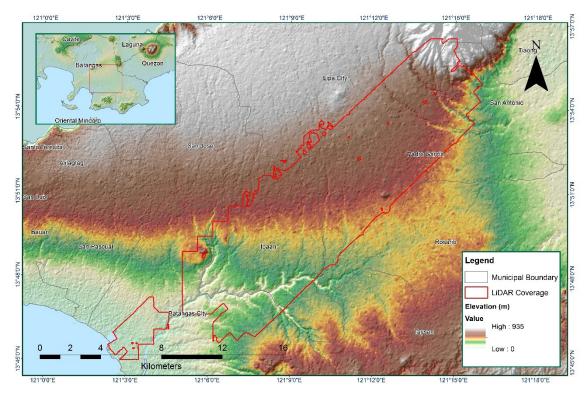


Figure 1.11.4. Coverage of LiDAR Data

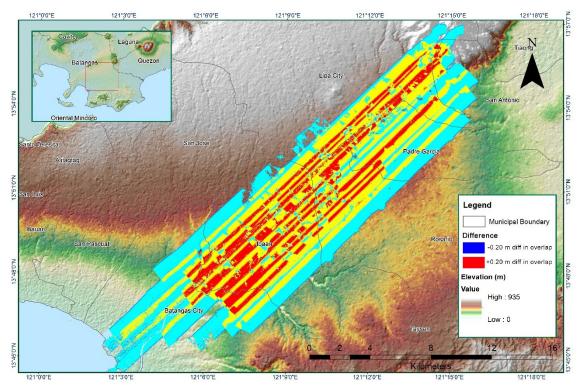


Figure 1.11.5. Image of data overlap

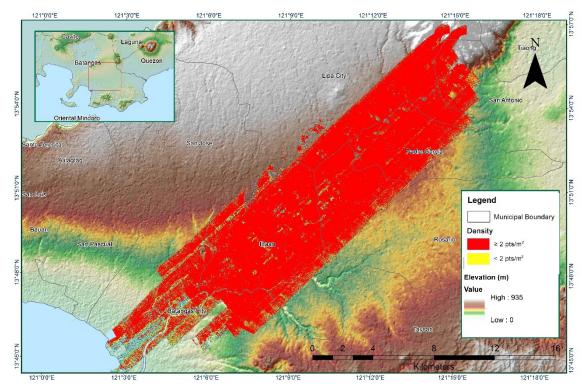


Figure 1.11.6. Density map of merged LiDAR data

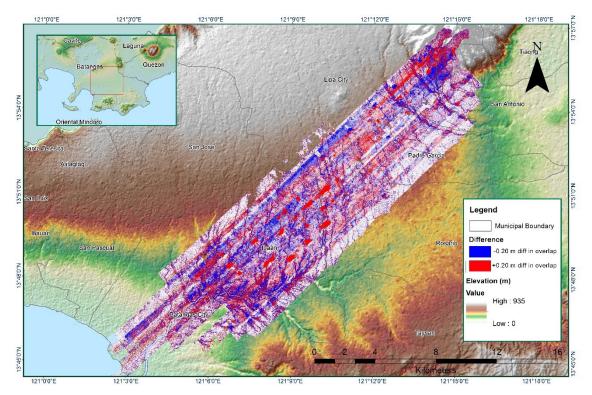


Figure 1.11.7. Elevation difference between flight lines

Flight Area	CALABARZON
Mission Name	Blk18EFGs
Inclusive Flights	1111P
Range data size	14.7 GB
POS	194 MB
Image	19.7 GB
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	3.1
Boresight correction stdev (<0.001deg)	0.000576
IMU attitude correction stdev (<0.001deg)	0.030256
GPS position stdev (<0.01m)	0.0233
Minimum % overlap (>25)	24.19%
Ave point cloud density per sq.m. (>2.0)	1.83
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	256
Maximum Height	577.15 m
Minimum Height	48.27 m
Classification (# of points)	
Ground	222,961,135
Low vegetation	368,839,290
Medium vegetation	326,022,186
High vegetation	411,722,251
Building	50,368,864
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Chelo Prado, Engr. John Dill Macapagal

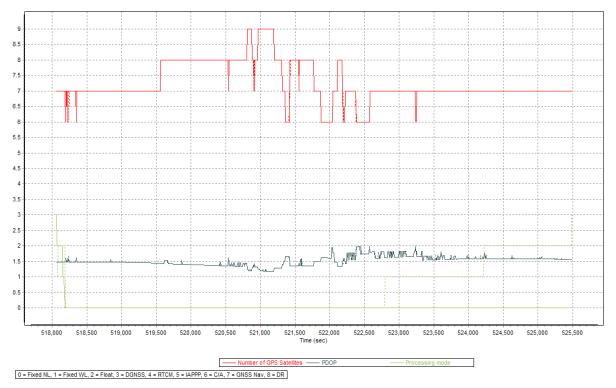


Figure 1.12.1. Solution Status

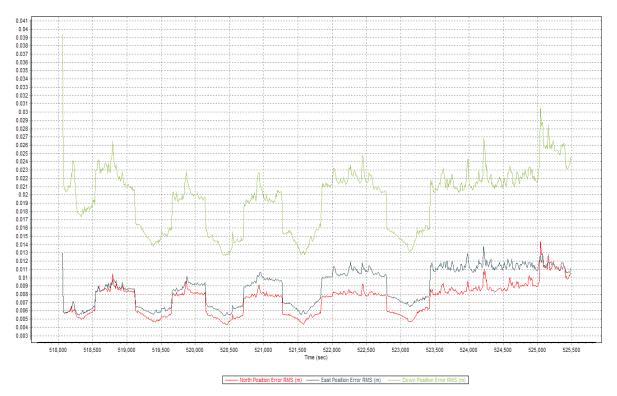


Figure 1.12.2. Smoothed Performance Metrics Parameters

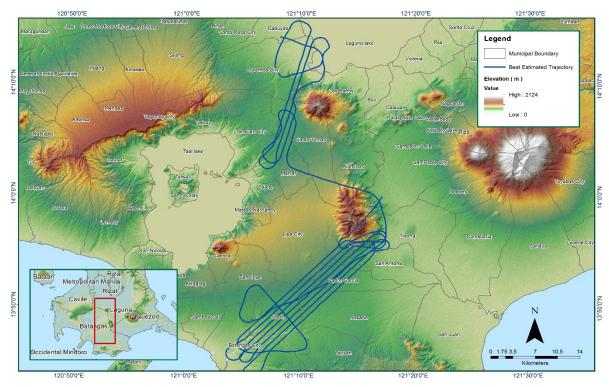


Figure 1.12.3. Best Estimated Trajectory

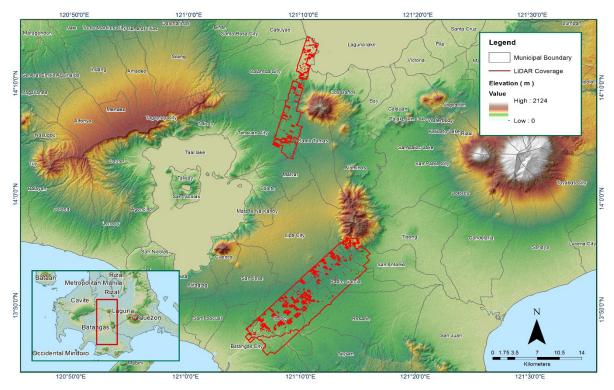


Figure 1.12.4. Coverage of LiDAR data

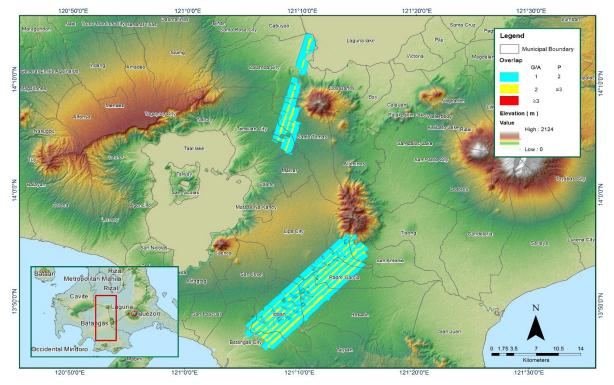


Figure 1.12.5. Image of data overlap

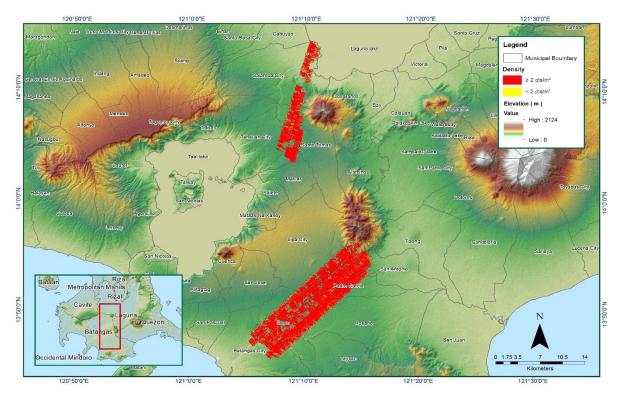


Figure 1.12.6. Density map of merged LiDAR data

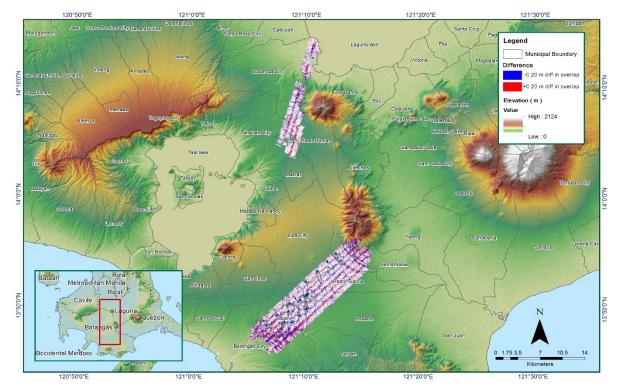


Figure 1.12.7. Elevation difference between flight lines

ח Parameters
Basir
Model
Calumpang N
Annex 9.

	SCS Cur	SCS Curve Number Loss	OSS	Clark Unit Hydrograph Transform	aph Transform			Recession Baseflow	low	
Basin Number	Initial Abstraction (mm)	Curve Number	Imper- vious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W1000	6.4997	50.61	0	16.027	50.446	Discharge	.000219401	0.0213968	Ratio to Peak	0.5
W1010	0.18143	66	0	4.2731	5.8798	Discharge	2.32208E-5	0.0043686	Ratio to Peak	0.0956035
W1020	2.4652	66	0	0.0166667	21.034	Discharge	.000113119	0.0043449	Ratio to Peak	0.5
W1030	7.763	76.981	0	3.7468	3.1395	Discharge	.000477928	0.0014856	Ratio to Peak	0.5
W1040	4.0665	35.236	0	21.648	456.83	Discharge	7.50985E-6	0.0017318	Ratio to Peak	0.5
W1050	0.72586	66	0	3.8434	2.1013	Discharge	0.0011369	0.0711549	Ratio to Peak	0.5
W1060	5.782	39.747	0	26.092	43	Discharge	0.0012837	0.0298211	Ratio to Peak	0.5
W1070	6.2183	57.685	0	1.8029	9.6377	Discharge	2.20959E-5	.000200481	Ratio to Peak	0.5
W1080	12.387	78.895	0	8.2582	0.70597	Discharge	7.32635E-5	.000119695	Ratio to Peak	0.0708667
W1090	0.88965	98.451	0	0.29588	0.42443	Discharge	.000146778	.00019349	Ratio to Peak	0.0054947
W1100	6.7248	74.778	0	5.283	10.499	Discharge	.00040782	0.0146076	Ratio to Peak	0.5
W1110	0.8134	89.099	0	0.0166667	0.07932	Discharge	5.55855E-5	0.0014043	Ratio to Peak	0.0239109
W1120	0.55439	66	0	0.90769	1.9304	Discharge	.000315791	.000614519	Ratio to Peak	0.0104353
W1130	1.8154	93.976	0	0.16631	0.0785829	Discharge	.000244551	.000284409	Ratio to Peak	0.0948509
W1140	1.6418	90.225	0	0.0166667	0.0698002	Discharge	.000156576	0.0014043	Ratio to Peak	0.12352
W580	2.9715	84.722	0	20.877	2.7876	Discharge	.000702646	1.0E-5	Ratio to Peak	0.5
W590	2.3835	72.058	0	14.619	3.7432	Discharge	.000507817	.000257311	Ratio to Peak	0.5
W600	2.2689	66	0	18.576	5.775	Discharge	.000387069	0.07756	Ratio to Peak	0.5
W610	4.0761	49.193	0	66.642	41.385	Discharge	0.0011520	0.1601	Ratio to Peak	0.5
W620	12.321	35.229	0	14.103	5.2019	Discharge	0.0012063	0.0021932	Ratio to Peak	0.5
W630	10.139	86.931	0	352.95	5.7658	Discharge	.000291678	0.0013018	Ratio to Peak	0.5
W640	3.4544	80.073	0	0.0166667	20.19	Discharge	0.0011735	0.18423	Ratio to Peak	0.5
W650	2.9396	93.244	0	9.0666	1.9359	Discharge	.000530271	0.0022608	Ratio to Peak	0.5

0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.34825	0.5	0.5	0.5	0.5	0.28359	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4975	0.75	0.5	0.5
Ratio to Peak																											
0.0021822	0.15166	0.003357	0.18409	0.47142	0.21082	0.12496	0.60262	0.0022837	0.003083	0.27476	0.26473	0.0228267	0.93547	0.63633	0.18887	0.0030676	0.65774	0.98815	0.63875	0.0046012	0.3851	0.43386	0.66667	0.42264	0.66667	0.28456	0.42685
0.0001496	.000260708	.000525382	.000103674	.000287272	.000235319	.000167027	.000736261	.000528348	.000558337	.00026923	.00029186	0.0012911	.000592078	.000272667	.000418346	.000118492	.000481492	.000353214	.000770304	.000403804	9.26446E-5	.000183806	.000309111	.000119221	.000242666	.000254933	.00034255
Discharge																											
7.1649	2.9349	0.33713	5.0133	2.0237	0.37893	7.1244	0.0166667	15.832	2.9764	13.696	5.6094	5.82	1.1589	6.01	16.039	4.5542	0.0166667	0.0166667	0.75067	5.9644	0.0166667	4.5212	3.3469	0.77396	0.0166667	9.5474	7.3429
3.2761	0.0166667	1.9017	2.5693	3.7775	2.292	4.9346	12.107	0.0166667	4.659	5.4008	7.31	18.286	3.0088	6.7205	3.46	4.6826	6.9708	5.4734	7.7959	1.8221	3.1492	2.4735	0.24241	0.0166667	1.2871	6.5304	16.771
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
66.072	77.353	68.615	91.688	87.754	69.045	66	66	70.567	77.239	98.01	77.084	91.943	89.042	65.288	66	46.113	85.487	66	66	35.205	79.989	66	78	66	84.246	85.3	66
8.1786	1.45	3.2785	2.6799	3.6147	1.759	3.5761	3.1616	4.0357	8.3434	0.39705	3.4121	1.6749	0.98216	2.9352	3.0305	7.1625	3.9729	0.38696	1.259	6.9892	2.1865	1.8716	2.8074	2.3843	0.31933	2.6777	1.6734
W660	W670	W680	W690	W700	W710	W720	W730	W740	W750	W760	W770	W780	W790	W800	W810	W820	W830	W840	W850	W860	W870	W880	W890	006M	W910	W920	W930

0.5	0.5	0.5	0.5	0.5	0.5
Ratio to Peak					
0.16801	0.18971	0.19654	0.28848	0.29917	0.2963
2.49302E-5	.000193522	0.0010115	6.87262E-5	.000114363	.000481932
Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
252.57	26.014	6.3404	995	9.0661	5.3218
10.853	5.4602	17.256	5.3516	13.093	2.2035
0	0	0	0	0	0
46.358	85.767	87.325	52.885	67.064	96.827
3.6231	5.1534	3.6534	3.6766	2.1108	1.1972
W940	W950	W960	W970	W980	066M

Reach			Muskingum Cunge Channel Routing	nel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R100	Automatic Fixed Interval	4279.2	0.0154059	0.0001	Trapezoid	50	45
R140	Automatic Fixed Interval	4206.3	0.0130550	0.0031315	Trapezoid	50	45
R170	Automatic Fixed Interval	2271.4	0.0188560	0.0001	Trapezoid	50	45
R220	Automatic Fixed Interval	1463.7	0.0086518	.000209531	Trapezoid	50	45
R250	Automatic Fixed Interval	2067.4	0.0031983	0.0125833	Trapezoid	50	45
R270	Automatic Fixed Interval	9575.2	0.0080064	0.0660926	Trapezoid	50	45
R280	Automatic Fixed Interval	2285.9	.0007167045832783606	0.0001	Trapezoid	50	45
R290	Automatic Fixed Interval	1226.1	.0007568776528695574	.000312869	Trapezoid	50	45
R300	Automatic Fixed Interval	2618.9	0.0078028	0.0021556	Trapezoid	50	45
R320	Automatic Fixed Interval	1005.3	0.0079183	0.0111447	Trapezoid	50	45
R330	Automatic Fixed Interval	1243.3	0.0284608	.000120614	Trapezoid	50	45
R340	Automatic Fixed Interval	6662.4	0.0175610	0.0031672	Trapezoid	50	45
R350	Automatic Fixed Interval	1644.3	0.0162837	0.0001	Trapezoid	50	45
R360	Automatic Fixed Interval	3903.5	0.0193559	0.0001	Trapezoid	50	45
R370	Automatic Fixed Interval	9173.2	0.0163789	.000664778	Trapezoid	50	45
R380	Automatic Fixed Interval	2548.2	0.0135790	0.0223875	Trapezoid	50	45
R390	Automatic Fixed Interval	1039.5	0.0013045	0.18651	Trapezoid	50	45
R400	Automatic Fixed Interval	7708.4	0.0143203	.000229906	Trapezoid	50	45
R410	Automatic Fixed Interval	365.56	0.0093695	0.0045461	Trapezoid	50	45
R420	Automatic Fixed Interval	1254.7	0.0065916	0.0476641	Trapezoid	50	45
R440	Automatic Fixed Interval	730.12	0.0027957	.000249536	Trapezoid	50	45
R450	Automatic Fixed Interval	685.98	0.0160383	0.0001	Trapezoid	50	45
R460	Automatic Fixed Interval	3881.9	0.0059785	0.0544454	Trapezoid	50	45

Annex 10. Calumpang Model Reach Parameters

R480	Automatic Fixed Interval	1112.7	0.0043431	0.0090216	Trapezoid	50	45
R500	Automatic Fixed Interval	1075.1	.000604183	0.20343	Trapezoid	50	45
R530	Automatic Fixed Interval	1348.1	0.0079600	66600.0	Trapezoid	50	45
R540	Automatic Fixed Interval	415.42	0.0174321	0.0001	Trapezoid	50	45
R70	Automatic Fixed Interval	2822.5	0.0089588	0.0750684	Trapezoid	50	45

Annex 11. Calumpang Field Validation

Point	Validation	Coordinates		Valida-			Rain
Num- ber	Lat	Long	Model Var (m)	tion Points (m)	Error	Event/Date	Return / Scenario
1	13.727393	121.072898	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
2	13.731675	121.074500	0.34	0	-0.34	Glenda/ July 15, 2014	5 -Year
3	13.732275	121.073017	0.32	0	-0.32	Glenda/ July 15, 2014	5 -Year
4	13.733357	121.074602	1.00	0	-1.00	Glenda/ July 15, 2014	5 -Year
5	13.734289	121.072394	2.58	5.5	2.92	Glenda/ July 15, 2014	5 -Year
6	13.734818	121.073332	0.35	5.5	5.15	Glenda/ July 15, 2014	5 -Year
7	13.736704	121.071996	0.51	5.3	4.79	Glenda/ July 15, 2014	5 -Year
8	13.738276	121.071640	0.49	0.3	-0.19	Glenda/ July 15, 2014	5 -Year
9	13.740217	121.071228	0.38	0.3	-0.08	Glenda/ July 15, 2014	5 -Year
10	13.741518	121.070913	0.73	0.3	-0.43	Glenda/ July 15, 2014	5 -Year
11	13.747324	121.059655	0.46	4	3.54	Glenda/ July 15, 2014	5 -Year
12	13.747500	121.059359	0.05	4	3.95	Glenda/ July 15, 2014	5 -Year
13	13.747696	121.067302	0.05	0.3	0.25	Glenda/ July 15, 2014	5 -Year
14	13.747829	121.059660	0.63	1	0.37	Glenda/ July 15, 2014	5 -Year
15	13.748364	121.061092	0.03	3	2.97	Glenda/ July 15, 2014	5 -Year
16	13.748490	121.065140	0.05	2	1.95	Glenda/ July 15, 2014	5 -Year
17	13.748575	121.059634	0.06	1	0.94	Glenda/ July 15, 2014	5 -Year
18	13.748777	121.059349	0.09	0.3	0.21	Glenda/ July 15, 2014	5 -Year
19	13.748989	121.057976	0.06	4	3.94	Glenda/ July 15, 2014	5 -Year
20	13.748996	121.067755	2.05	0.1	-1.95	Glenda/ July 15, 2014	5 -Year
21	13.749423	121.061530	0.48	5.5	5.02	Glenda/ July 15, 2014	5 -Year
22	13.749496	121.061378	0.09	5.5	5.41	Glenda/ July 15, 2014	5 -Year
23	13.749822	121.059618	0.03	1	0.97	Glenda/ July 15, 2014	5 -Year
24	13.750051	121.060314	0.03	3	2.97	Glenda/ July 15, 2014	5 -Year
25	13.750149	121.059479	0.07	2	1.93	Glenda/ July 15, 2014	5 -Year
26	13.750174	121.058438	0.23	2	1.77	Glenda/ July 15, 2014	5 -Year
27	13.750197	121.058647	0.06	2	1.94	Glenda/ July 15, 2014	5 -Year
28	13.750341	121.059755	0.05	2	1.95	Glenda/ July 15, 2014	5 -Year
29	13.750354	121.057676	0.21	1	0.79	Glenda/ July 15, 2014	5 -Year
30	13.750354	121.064457	0.26	1	0.74	Glenda/ July 15, 2014	5 -Year
31	13.750753	121.058647	0.06	1	0.94	Glenda/ July 15, 2014	5 -Year
32	13.751425	121.056736	0.33	1	0.67	Glenda/ July 15, 2014	5 -Year
33	13.751932	121.069977	0.13	0.3	0.17	Glenda/ July 15, 2014	5 -Year
34	13.752289	121.044314	0.60	1	0.40	Glenda/ July 15, 2014	5 -Year
35	13.752367	121.064618	0.03	4	3.97	Glenda/ July 15, 2014	5 -Year
36	13.752870	121.055579	0.03	0.3	0.27	Glenda/ July 15, 2014	5 -Year
37	13.753052	121.043780	0.38	1	0.62	Glenda/ July 15, 2014	5 -Year
38	13.753327	121.070320	0.17	0.3	0.13	Glenda/ July 15, 2014	5 -Year
39	13.753620	121.067953	0.31	0.2	-0.11	Glenda/ July 15, 2014	5 -Year
40	13.754154	121.044694	0.05	1	0.95	Glenda/ July 15, 2014	5 -Year

Point Num-	Validation	Coordinates	Model	Valida- tion	Error	Event/Date	Rain Return /
ber	Lat	Long	Var (m)	Points (m)	LITOI	Eventy Date	Scenario
41	13.754168	121.065340	0.30	5.4	5.10	Glenda/ July 15, 2014	5 -Year
42	13.754237	121.070429	1.69	0.3	-1.39	Glenda/ July 15, 2014	5 -Year
43	13.754331	121.064250	0.03	5.4	5.37	Glenda/ July 15, 2014	5 -Year
44	13.754373	121.047443	0.04	4	3.96	Glenda/ July 15, 2014	5 -Year
45	13.754406	121.055920	0.25	0	-0.25	Glenda/ July 15, 2014	5 -Year
46	13.754710	121.059690	0.03	0.2	0.17	Glenda/ July 15, 2014	5 -Year
47	13.754738	121.062223	0.53	5.4	4.87	Glenda/ July 15, 2014	5 -Year
48	13.754885	121.061580	0.20	5.5	5.30	Glenda/ July 15, 2014	5 -Year
49	13.754914	121.050339	0.12	0.2	0.08	Glenda/ July 15, 2014	5 -Year
50	13.754927	121.062337	0.15	5.4	5.25	Glenda/ July 15, 2014	5 -Year
51	13.755120	121.058733	0.03	0.2	0.17	Glenda/ July 15, 2014	5 -Year
52	13.755125	121.114721	0.03	5	4.97	Glenda/ July 15, 2014	5 -Year
53	13.755145	121.062406	1.48	5.4	3.92	Glenda/ July 15, 2014	5 -Year
54	13.755302	121.063697	5.25	4	-1.25	Glenda/ July 15, 2014	5 -Year
55	13.755359	121.062581	0.70	5.3	4.60	Glenda/ July 15, 2014	5 -Year
56	13.755391	121.052790	0.13	0.3	0.17	Glenda/ July 15, 2014	5 -Year
57	13.755538	121.061602	0.08	5.5	5.42	Glenda/ July 15, 2014	5 -Year
58	13.755549	121.056000	0.76	0	-0.76	Glenda/ July 15, 2014	5 -Year
59	13.755549	121.070726	0.03	0.3	0.27	Glenda/ July 15, 2014	5 -Year
60	13.755559	121.062518	6.66	5.3	-1.36	Glenda/ July 15, 2014	5 -Year
61	13.755593	121.062702	0.03	5.3	5.27	Glenda/ July 15, 2014	5 -Year
62	13.755935	121.062857	0.03	5.3	5.27	Glenda/ July 15, 2014	5 -Year
63	13.756049	121.062782	0.04	5.3	5.26	Glenda/ July 15, 2014	5 -Year
64	13.756085	121.062630	0.56	0.2	-0.36	Glenda/ July 15, 2014	5 -Year
65	13.756096	121.062871	0.93	5	4.07	Glenda/ July 15, 2014	5 -Year
66	13.756215	121.070734	0.06	0.3	0.24	Glenda/ July 15, 2014	5 -Year
67	13.756407	121.063073	0.92	5	4.08	Glenda/ July 15, 2014	5 -Year
68	13.756531	121.066151	0.03	4	3.97	Glenda/ July 15, 2014	5 -Year
69	13.756557	121.062846	2.22	5.7	3.48	Glenda/ July 15, 2014	5 -Year
70	13.756823	121.063203	0.19	5.7	5.51	Glenda/ July 15, 2014	5 -Year
71	13.756844	121.043143	0.44	0.2	-0.24	Glenda/ July 15, 2014	5 -Year
72	13.756999	121.063245	4.13	5.7	1.57	Glenda/ July 15, 2014	5 -Year
73	13.757125	121.063270	0.55	5	4.45	Glenda/ July 15, 2014	5 -Year
74	13.757230	121.060764	2.16	0.2	-1.96	Glenda/ July 15, 2014	5 -Year
75	13.757291	121.063325	0.27	5	4.73	Glenda/ July 15, 2014	5 -Year
76	13.757311	121.056461	0.33	0.2	-0.13	Glenda/ July 15, 2014	5 -Year
77	13.757320	121.070791	0.45	1	0.55	Glenda/ July 15, 2014	5 -Year
78	13.757359	121.055461	1.26	0.2	-1.06	Glenda/ July 15, 2014	5 -Year
79	13.757408	121.064950	0.05	4	3.95	Glenda/ July 15, 2014	5 -Year
80	13.757463	121.056183	0.06	0.2	0.14	Glenda/ July 15, 2014	5 -Year
81	13.757569	121.057345	2.85	0.2	-2.65	Glenda/ July 15, 2014	5 -Year
82	13.757624	121.063513	0.68	5	4.32	Glenda/ July 15, 2014	5 -Year
83	13.757645	121.059426	0.11	0.2	0.09	Glenda/ July 15, 2014	5 -Year

Point	Validation	Coordinates		Valida-			Rain
Num-			Model	tion Points	Error	Event/Date	Return /
ber	Lat	Long	Var (m)	(m)			Scenario
84	13.757656	121.057986	0.03	0.2	0.17	Glenda/ July 15, 2014	5 -Year
85	13.757812	121.063102	0.77	0.2	-0.57	Glenda/ July 15, 2014	5 -Year
86	13.757822	121.067054	4.63	4	-0.63	Glenda/ July 15, 2014	5 -Year
87	13.757923	121.063650	0.03	5	4.97	Glenda/ July 15, 2014	5 -Year
88	13.758200	121.062520	3.96	0.3	-3.66	Glenda/ July 15, 2014	5 -Year
89	13.758297	121.063841	0.07	5	4.93	Glenda/ July 15, 2014	5 -Year
90	13.758817	121.045185	0.03	4	3.97	Glenda/ July 15, 2014	5 -Year
91	13.759061	121.063047	0.33	0.2	-0.13	Glenda/ July 15, 2014	5 -Year
92	13.759219	121.074139	0.14	6	5.86	Glenda/ July 15, 2014	5 -Year
93	13.759447	121.072412	0.04	0.2	0.16	Glenda/ July 15, 2014	5 -Year
94	13.759641	121.060604	0.09	0.2	0.11	Glenda/ July 15, 2014	5 -Year
95	13.759800	121.073742	0.03	6	5.97	Glenda/ July 15, 2014	5 -Year
96	13.759836	121.068186	2.47	4	1.53	Glenda/ July 15, 2014	5 -Year
97	13.754885	121.061580	0.20	5.5	5.30	Glenda/ July 15, 2014	5 -Year
98	13.759844	121.067161	0.03	4	3.97	Glenda/ July 15, 2014	5 -Year
99	13.760034	121.062607	0.08	0.2	0.12	Glenda/ July 15, 2014	5 -Year
100	13.760151	121.069145	0.24	4	3.76	Glenda/ July 15, 2014	5 -Year
101	13.760153	121.061194	0.07	0.2	0.13	Glenda/ July 15, 2014	5 -Year
102	13.760266	121.047660	0.10	4	3.90	Glenda/ July 15, 2014	5 -Year
103	13.761035	121.073679	0.14	6	5.86	Glenda/ July 15, 2014	5 -Year
104	13.761503	121.050318	0.03	4	3.97	Glenda/ July 15, 2014	5 -Year
105	13.761511	121.075362	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
106	13.761877	121.076623	0.06	0	-0.06	Glenda/ July 15, 2014	5 -Year
107	13.762158	121.079028	0.54	0	-0.54	Glenda/ July 15, 2014	5 -Year
108	13.762205	121.051567	0.03	5.5	5.47	Glenda/ July 15, 2014	5 -Year
109	13.762412	121.081484	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
110	13.762450	121.080293	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
111	13.762470	121.064130	0.05	0.3	0.25	Glenda/ July 15, 2014	5 -Year
112	13.762500	121.073581	0.03	0.3	0.27	Glenda/ July 15, 2014	5 -Year
113	13.762652	121.083838	0.85	0	-0.85	Glenda/ July 15, 2014	5 -Year
114	13.762797	121.051747	0.14	1	0.86	Glenda/ July 15, 2014	5 -Year
115	13.762797	121.057625	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
116	13.762899	121.085857	0.05	0	-0.05	Glenda/ July 15, 2014	5 -Year
117	13.763066	121.056973	1.05	0.5	-0.55	Glenda/ July 15, 2014	5 -Year
118	13.763084	121.051750	0.03	4	3.97	Glenda/ July 15, 2014	5 -Year
119	13.763394	121.088799	0.13	0	-0.13	Glenda/ July 15, 2014	5 -Year
120	13.763538	121.058100	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
121	13.763614	121.090660	0.28	0	-0.28	Glenda/ July 15, 2014	5 -Year
122	13.763676	121.064475	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
123	13.763885	121.092710	2.67	0	-2.67	Glenda/ July 15, 2014	5 -Year
124	13.764045	121.072156	0.04	2	1.96	Glenda/ July 15, 2014	5 -Year
125	13.764125	121.080205	1.85	0	-1.85	Glenda/ July 15, 2014	5 -Year
126	13.764127	121.072344	0.28	2	1.72	Glenda/ July 15, 2014	5 -Year

Point	Validation	Coordinates	Model	Valida-			Rain
Num- ber	Lat	Long	Var (m)	tion Points (m)	Error	Event/Date	Return / Scenario
127	13.764154	121.073288	1.12	0	-1.12	Glenda/ July 15, 2014	5 -Year
128	13.764163	121.072434	0.03	2	1.97	Glenda/ July 15, 2014	5 -Year
129	13.764268	121.072567	4.13	2	-2.13	Glenda/ July 15, 2014	5 -Year
130	13.764308	121.072703	0.12	2	1.88	Glenda/ July 15, 2014	5 -Year
131	13.764314	121.072838	0.03	0.5	0.47	Glenda/ July 15, 2014	5 -Year
132	13.764400	121.072905	3.75	0.5	-3.25	Glenda/ July 15, 2014	5 -Year
133	13.764470	121.072963	0.03	0.5	0.47	Glenda/ July 15, 2014	5 -Year
134	13.764585	121.098674	4.55	0.2	-4.35	Glenda/ July 15, 2014	5 -Year
135	13.764746	121.073160	0.21	0.5	0.29	Glenda/ July 15, 2014	5 -Year
136	13.764925	121.073173	0.03	6	5.97	Glenda/ July 15, 2014	5 -Year
137	13.765162	121.073124	0.03	5	4.97	Glenda/ July 15, 2014	5 -Year
138	13.765282	121.103365	2.12	0.2	-1.92	Glenda/ July 15, 2014	5 -Year
139	13.765384	121.072784	0.38	5	4.62	Glenda/ July 15, 2014	5 -Year
140	13.765389	121.050369	0.03	1	0.97	Glenda/ July 15, 2014	5 -Year
141	13.765573	121.105959	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
142	13.765676	121.072812	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
143	13.765851	121.080400	0.04	0.2	0.16	Glenda/ July 15, 2014	5 -Year
144	13.766112	121.064915	0.05	0	-0.05	Glenda/ July 15, 2014	5 -Year
145	13.766342	121.054608	0.07	0.3	0.23	Glenda/ July 15, 2014	5 -Year
146	13.766424	121.062208	0.63	0.3	-0.33	Glenda/ July 15, 2014	5 -Year
147	13.759844	121.067161	0.03	4	3.97	Glenda/ July 15, 2014	5 -Year
147	13.766513	121.049629	0.06	1	0.94	Glenda/ July 15, 2014	5 -Year
148	13.766579	121.072679	0.17	0	-0.17	Glenda/ July 15, 2014	5 -Year
149	13.766588	121.106272	0.03	0.2	0.17	Glenda/ July 15, 2014	5 -Year
150	13.767362	121.048213	0.56	0.3	-0.26	Glenda/ July 15, 2014	5 -Year
151	13.767473	121.080592	0.07	1	0.93	Glenda/ July 15, 2014	5 -Year
152	13.768361	121.071135	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
153	13.768373	121.106130	0.03	0.2	0.17	Glenda/ July 15, 2014	5 -Year
154	13.768540	121.065372	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
155	13.768924	121.068926	0.03	0.1	0.07	Glenda/ July 15, 2014	5 -Year
156	13.769012	121.105147	0.06	0	-0.06	Glenda/ July 15, 2014	5 -Year
157	13.769173	121.067627	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
158	13.769350	121.082014	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
159	13.769508	121.101663	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
160	13.769915	121.065531	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
161	13.770017	121.100847	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
162	13.770253	121.055683	0.03	0.5	0.47	Glenda/ July 15, 2014	5 -Year
163	13.770253	121.056972	0.03	0.5	0.47	Glenda/ July 15, 2014	5 -Year
164	13.770253	121.057194	0.06	0.5	0.44	Glenda/ July 15, 2014	5 -Year
165	13.770253	121.085381	0.50	0	-0.50	Glenda/ July 15, 2014	5 -Year
166	13.770357	121.049837	0.05	0.5	0.45	Glenda/ July 15, 2014	5 -Year
167	13.770384	121.065205	0.43	0.2	-0.23	Glenda/ July 15, 2014	5 -Year
168	13.770533	121.050769	0.07	0.5	0.43	Glenda/ July 15, 2014	5 -Year

Point Num- ber	Validation Lat	Coordinates Long	Model Var (m)	Valida- tion Points (m)	Error	Event/Date	Rain Return / Scenario
169	13.771092	121.083208	0.47	0	-0.47	Glenda/ July 15, 2014	5 -Year
170	13.771293	121.050705	0.03	0.5	0.47	Glenda/ July 15, 2014	5 -Year
171	13.771884	121.089597	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
172	13.772039	121.092548	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
173	13.772051	121.098880	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
174	13.772111	121.095739	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
175	13.772343	121.085353	0.03	0	-0.03	Glenda/ July 15, 2014	5 -Year
176	13.772789	121.050769	0.07	0.4	0.33	Glenda/ July 15, 2014	5 -Year
177	13.772790	121.048856	0.03	0.4	0.37	Glenda/ July 15, 2014	5 -Year
178	13.774902	121.045792	0.26	0.2	-0.06	Glenda/ July 15, 2014	5 -Year
179	13.776175	121.044012	0.29	0.2	-0.09	Glenda/ July 15, 2014	5 -Year
180	13.778124	121.041045	0.42	0.2	-0.22	Glenda/ July 15, 2014	5 -Year
181	13.779179	121.039080	0.20	0.2	0.00	Glenda/ July 15, 2014	5 -Year
				RMSE	2.5576887		

Annex 12. Educational Institutions Affected by Flooding in Calumpang Floodplain

F	Batangas				
	tangas City				
Duilding Name	Barangay	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100-year	
Athena School	Alangilan				
Paaralang Elementarya ng Alingilan	Alangilan				
Star Kids Prime School	Alangilan			Low	
Balagtas Elementary School	Balagtas				
Elementary School	Banaba Center	Medium	Medium	Medium	
St. Bridget College	Barangay 1		Medium	Medium	
UCCP Hope Christian School of Batangas Inc.	Barangay 14				
Elite Kids Tutorial	Barangay 16				
Univeristy of Batangas Elem. Dept.	Barangay 16				
Young Intelligence Tutorial Center	Barangay 16				
Home of Knowledge (Learning Center and Review)	Barangay 17				
St. Bridget College	Barangay 17			Medium	
St. Bridget College Auditorium	Barangay 17				
Univeristy of Batangas Elem. Dept.	Barangay 17				
Wonder Kids	Barangay 17				
Elite Kids Tutorial	Barangay 18	Low	Low	Low	
Home of Knowledge (Learning Center and Review)	Barangay 18				
Kids Advantage Learning Center	Barangay 18				
St. Bridget College	Barangay 18	Medium	Medium	High	
Batangas National High School	Barangay 20				
Julia A. Pastor Elementary School	Barangay 20	Low	Low	Medium	
Sterling Tutorial	Barangay 20				
Batangas National High School	Barangay 22	Low	Low	Low	
Divine Child Academy (Elementary)	Barangay 3				
East Central School	Barangay 4				
Divine Child Academy (Elementary)	Barangay 5				
Divine Child Academy (Highschool)	Barangay 5			Low	
Golden Gate College Building	Barangay 5			Low	
Holy Child School	Barangay 5				
East Central School	Barangay 6	Low	Low	Low	
STI	Barangay 6				
Golden Gate College (HS)	Barangay 8		Low	Low	
Golden Gate College Building	Barangay 8			Low	
nstitution for Developmental Education	Barangay 8	Low	Medium	Medium	
Branded Overruns Shoppe	Calicanto	Low	Medium	Medium	
Immaculate Heart of Mary School of Values	Calicanto				
Day Care Center	Catandala	Low	Low	Low	
Katandala Elementary School	Catandala				

	1		I	
Conde Labac Elementary School	Conde Itaas			
Conde Labac National High School	Conde Itaas	Low	Low	Medium
Day Care Center	Conde Itaas			
Day Care Center	Cuta		Medium	Medium
Daycare Center	Cuta		Low	Medium
Holy Cross Montessori School	Cuta		Medium	Medium
Lyceum of the Philippines Batangas	Cuta	Low	Low	Low
Lyceum of the Philippines Martime Training Center	Cuta			
Malitam Elementary School	Cuta		Medium	Medium
Wawa Elementary School	Cuta	Low	Medium	Medium
Dalig Elementary School	Dalig			
Dumuclay Day Care Center	Domoclay			
Dumuclay Elementary School	Domoclay			
Sirang Lupa Elementary School	Domoclay			
Dumantay Elementary School	Dumantay			Low
Gulod Elementary School	Gulod Itaas			
Stonyhurst International School	Gulod Itaas	Low	Medium	Medium
Sunhill Development School	Gulod Itaas			
Dumuclay Elementary School	Gulod Labak			
Christ the Lord Institute Foundation Inc.	Kumintang Ibaba			
East Central School	Kumintang Ibaba	Medium	Medium	Medium
Immaculate Heart of Mary School of Values	Kumintang Ibaba			
Lyceum of the Philippines - Batangas	Kumintang Ibaba			
Lyceum of the Philippines University - Batangas	Kumintang Ibaba			
Sycamore Tree Pre-School	Kumintang Ibaba			Low
WestMead International School	Kumintang Ibaba	Low	Low	Low
Kumintang Elementary School	Kumintang Ilaya			
STI Academic Center	Kumintang Ilaya	Low	Low	Low
Libjo Elementary School	Libjo	Low	Medium	Medium
Libjo National High School	Libjo	Medium	Medium	Medium
Saint Peter D'rock School	Libjo	Medium	Medium	Medium
Store	Libjo	Low	Medium	Medium
Day Care Center	, Mahabang Parang			
Mahacot Day Care Center (Old)	Mahacot Silangan			
Mahacot Elementary School	Mahacot Silangan			
Eulalia Talban Ebora Memorial Elementary School	Malalim			
Malitam Elementary School	Malitam		Medium	Medium
Jose Pastor Memorial Elem. School	Pallocan Kanluran	Medium	High	High
St. Therese of the Child Jesus School	Pallocan Kanluran	Low	Medium	Medium
Carmel School of Batangas	Pallocan Silangan	Medium	Medium	Medium
Pallocan East Elementary School	Pallocan Silangan	Low	Low	Low
University of Batangas	Pallocan Silangan			
Day Care Center	Sampaga			
Sampaga Elementary School	Sampaga			
	230		I	

Alternative Learning School	San Isidro		Low	Low
Bahay Unlad Day Care Center	San Isidro	Medium	Medium	Medium
San Isidro Elementary School	San Isidro			
SIMCO Village Learning Center	San Isidro			
San Pedro Elementary School	San Pedro			
Batangas National High School	Santa Clara	Medium	Medium	Medium
Batangas State University	Santa Clara	Low	Low	Low
Day Care Center	Santa Clara			Low
Julia A. Pastor Elementary School	Santa Clara	Medium	Medium	Medium
Sta. Clara Elementary School	Santa Clara	Medium	Medium	Medium
Sta. Rita Aplaya Elementary School	Santa Rita Aplaya	Medium	Medium	Medium
Mababang Paaralan ng Sta. Rita	Santa Rita Karsada	Low	Low	Medium
Princeton Science School	Santa Rita Karsada	Low	Low	Low
Sirang Lupa Elementary School	Sirang Lupa			
Soro Soro National High School	Sorosoro Ibaba			
Galvasteel Corporation	Sorosoro Karsada			
Day Care Center	Tinga Itaas			
Tinga Itaas Elementary School	Tinga Itaas			
Tingga Labac Elementary School	Tinga Labak			
Day Care Center	Tulo			
Guardian Angels School of Batangas	Tulo			
Tulo I Elementary School	Tulo			
Tulo II Elementary School	Tulo			
Wawa Elementary School	Wawa		Low	Medium

Batangas					
	Ibaan				
		Ra	infall Scena	rio	
Building Name	Barangay	5-year	25-year	100-year	
Balanga Elementary School	Balanga				
Day Care Center	Balanga				
Bungahan Elementary School	Bungahan				
Day Care Center	Bungahan				
Mabalor-Catandala Elementary School	Catandala				
Coliat Elementary School	Coliat		Low	Low	
Day Care Center	Coliat				
Lucsuhin Elementary School	Lucsuhin				
Day Care Center	Mabalor			Low	
Ibaan Central School	Palindan				
Paaralang Elementarya ng Pag-Asa	Panghayaan				
Quilo Elementary School	Quilo				
Sabang Day Care Center	Sabang	Low	Low	Low	
Sabang Elementary School	Sabang				

Batangas						
Rosario						
Duilding Name	Derengeu	R	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100-year		
Colongan Elementary School	Colongan					
Itlugan National High School	Itlugan					
Day Care Center	Maalas-As					
Maalas-As Elementary School	Maalas-As					
Day Care Center	Timbugan					
Timbugan Elementary School	Timbugan					
Timbugan National High School	Timbugan					

Batangas						
Taysan						
Building Name	Barangay	R	ainfall Scena	ario		
building Name	Barangay	5-year	25-year	100-year		
Mabayabas Elementary School	Mabayabas					
Taysan Central School	Mabayabas					
Day Care Center	Mahanadiong					
Day Care Center	Pag-Asa		Low	Low		
Panghayaan Elementary School	Pag-Asa					
Taysan National High School	Poblacion West	Low	Low	Low		

В	atangas				
Batangas City					
Building Name	Barangay	Rainfall Scenario 5-year 25-year 100-ye			
Batangas Health Care Hospital	Barangay 12	o year	20 year	100 year	
Pediatric Clinic	Barangay 12				
Luna-Lacsamana Maternity and Lying-in Clinic	Barangay 14			Low	
Gusaling Pangkalusugan	Barangay 16		Low	Low	
Clinic for the sick Children	Barangay 17				
Luna-Lacsamana Maternity and Lying-in Clinic	Barangay 23			Low	
Children's Clinic	Barangay 3			Low	
De Jesus Maternity & Medical Clinic	Barangay 3		Low	Medium	
St. Patrick's Hospital Medical Center	Barangay 3			Low	
Golden Gate General Hospital	Barangay 5		Low	Low	
Trihealth Nutraceuticals	Barangay 6			Ì	
Golden Gate General Hospital	Barangay 7	Low	Low	Low	
Children's Clinic	Barangay 8			Low	
Golden Gate General Hospital	Barangay 8		Low	Low	
Montage Skin Science	Barangay 9	Medium	Medium	Medium	
St. Camillus Hospital	Bolbok				
Children's Clinic	Calicanto				
Hemotek Renal Center	Calicanto				
Health Center	Domoclay				
Batangas Medical Society	Gulod Itaas				
Jesus of Nazareth Hospital	Gulod Itaas				
Batangas Medical Center	Kumintang Ibaba				
Batangas Regional Hospital	Kumintang Ibaba				
D. Dimaandal Care Center	Kumintang Ibaba				
Guia's Pharmacy	Kumintang Ibaba				
LPU Community Health Care Center	Kumintang Ibaba			Low	
LPU Physical Therapy Clinic	Kumintang Ibaba				
Pioneer Clinical Laboratory, Inc.	Kumintang Ibaba	Low	Low	Low	
Provincial Health Office	Kumintang Ibaba				
D. Dimaandal Care Center	Kumintang Ilaya				
Health Center	Mahacot Kanluran				
Health Center	Malalim				
Health Center	Malitam		Medium	Medium	
San Isidro Health Center and Birthing Facility	San Isidro		Low	Low	
JLS Birthing Home Clinic	Santa Clara				
Malabanan Clinic	Santa Clara	Low	Medium	Medium	
Children's Clinic	Santa Rita Karsada				
Health Center	Tinga Labak				
Health Center	Tulo				

Annex 13. Health Institutions Affected by Flooding in Calumpang Floodplain

Batangas						
Ibaan						
Building Name	Barangay	Rainfall Scenario 5-year 25-year 100-		rio 100-year		
Health Center	Dayapan					

Batangas						
Taysan						
Duilding Name	Darangay	Rair	nfall Scenar	io		
Building Name	Building Name Barangay		25-year	100-year		
Health Center	Mabayabas					
Health Center	Mahanadiong					
Health Center	Pag-Asa		Low	Low		
Health Center	Poblacion West					