HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Bislig River

JULY 2017

University of the Philippines Training Center for Applied Geodesy and Photogrammetry CARAGA State University

© University of the Philippines Diliman and CARAGA State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and M.M. Santillan, (Eds). (2017), LiDAR Surveys and Flood Mapping Report of Bislig River, in Enrico C. Paringit, (Ed.), Flood Hazard Mapping of the Philippines using LiDAR, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-210 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Meriam Makinano-Santillan

Project Leader, Phil-LiDAR 1 Program CARAGA State University Butuan City, Philippines 8600 mmsantillan@carsu.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 ecparingit@up.edu.ph

National Library of the Philippines ISBN: 987-621-430-021-1

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

TABLE OF CONTENTS

List of Figures	v
List of Tables	vii
List of Acronyms and Abbreviations	viii
	1
1.1 Background of the Phil-IIDAR 1 Program	∎ 1
1.2 Overview of the Bislig River Basin	1
	2
1 1 Flight Plans	יייייייייייייייייייייי ר
2.2 Ground Base Stations	5
2.3 Flight Missions	
2.4 Survey Coverage	14
CHAPTER 3: LIDAR DATA PROCESSING OF THE BISLIG FLOODPLAIN	16
3.1 Overview of the LiDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data	16
3.3 Trajectory Computation	17
3.4 LiDAR Point Cloud Computation	19
3.5 LiDAR Data Quality Checking	19
3.6 LiDAR Point Cloud Classification and Rasterization	23
3.7 LIDAR Image Processing and Orthophotograph Rectification	
3.8 DEW Editing and Hydro-Correction	20
3.9 Mosaicking of Blocks	20
3.10 Calibration and Validation of Mosacked LiDAR Digital Terrain Model	23
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	35
3.12.3 Feature Attribution	35
3.12.4 Final Quality Checking of Extracted Features	36
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BISLIG RIVER BASIN	37
4.1 Summary of Activities	37
4.2 Control Survey	38
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section, Bridge AS-Built, and Water Level Marking	50
4.0 Valuation Fornts Acquisition Survey	
5.1 Data Used for Hydrologic Modeling	60
5.1 1 Hydrometry and Rating Curves	
5.1.2 Precipitation	60
5.1.3 Rating Curves and River Outflow	61
5.2 RIDF Station	62
5.2 HMS Model	63
5.4 Cross-Section Data	64
5.4 Flo 2D Model	
5.0 KESUITS OT HIVIS CALIBRATION	69
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	60
5.7.1 Hydrograph using the Rainfall Runoff Model	9 60
5.8 River Analysis (RAS) Model Simulation	
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding	79
5.11 Flood Validation	84
References	86

Annexes		87
Annex 1.	Technical Specifications of the LiDAR Sensors used in the Bislig Floodplain Survey.	87
Annex 2.	NAMRIA Certification of Reference Points Used in the LiDAR Survey	88
Annex 3.	Baseline Processing Reports of Control Points used in the LiDAR Survey	94
Annex 4.	The LiDAR Survey Team Composition	96
Annex 5.	Data Transfer Sheet for Bislig Floodplain	97
Annex 6.	Flight Logs for the Flight Missions	102
Annex 7.	Flight Status Reports	117
Annex 8.	Mission Summary Report	134
Annex 9.	Bislig Model Basin Parameters	194
Annex 10.	Bislig Model Reach Parameters	202
Annex 11.	Bislig Field Validation Points	205
Annex 12.	Educational Institutions Affected by Flooding in Bislig Floodplain	212
Annex 13.	Health Institutions Affected by Flooding in Bislig Floodplain	213

LIST OF FIGURES

Figure 1.	Map of Bislig River Basin	1
Figure 2.	Flight plan and base stations used for Bislig floodplain	4
Figure 3.	GPS set-up over SS-124located at the second approach of Bislig bridge in Bislig.	
	Surigao Del Sur(a) and NAMRIA reference point SS-124(b) as recovered by the field team	5
Figure 4	GPS set-up over SRS-60 as recovered inside Brgy. Sta Cruz health center.	
inguie ii	on the corner near the hamboo fence (a) NAMRIA reference point SRS-60	
	(h) as recovered by the field team	6
Figure 5	GPS set-up over SRS-57 located on the concrete ground corner of the flagnole	0
rigule 5.	of Talicay Elementary School in Prov. Talicay – Hinatyan (a) and NAMPIA reference point	
	SPS E7 (b) as recovered by the field team	7
Figuro 6	CPS set up over SPS 61 as recovered on the open field about 100m	/
Figure 0.	are set-up over Sh5-01 as recovered on the open held about 10011	
	away from the happole of Mone National Fight School in Bigy. Mone, Bislig,	0
F :	Surigao Del Sur (a) and NAIVIRIA reference point SRS-61 (b) as recovered by the field team.	ð
Figure 7.	GPS set-up over SRS-56 recovered on the east side of the ground corner of the	
	Tiagpole of Barobo Town Site Elementary School in Brgy. Poblacion,	
	Barobo, Surigao Dei Sur (a) and NAIVIRIA reference point SRS-56	~
-	(b) as recovered by the field team	9
Figure 8.	GPS set-up over SRS-58 recovered on the concrete ground of the flagpole of	
	Maglambing Elementary School in Brgy. Maglambing, Tagbina, Surigao Del Sur	
	(a) and NAMRIA reference point SRS-58 (b) as recovered by the field team	.10
Figure 9.	GPS set-up over SRS-63 located 4 kms to the junction of the road	
	of San Antonio in Brgy. Sitio Pagmam-am, Bislig, Surigao Del Sur	
	(a) and NAMRIA reference point SRS-63 (b) as recovered by the field team	.11
Figure 10.	Actual LiDAR survey coveragefor Bislig floodplain.	.15
Figure 11.	Schematic Diagram for Data Pre-Processing Component	.16
Figure 12.	Smoothed Performance Metric Parameters of Bislig Flight 1870A	.17
Figure 13.	Solution Status Parameters of Bislig Flight 1870A	.18
Figure 14.	The best estimated trajectory of the LiDAR missions conducted	
	over the Bislig floodplain	.18
Figure 15.	Boundary of the processed LiDAR data over Bislig Floodplain	.19
Figure 17.	Pulse density map of merged LiDAR data for Bislig floodplain	.21
Figure 18.	Elevation difference map between flight lines for Bislig floodplain.	.22
Figure 19.	Quality checking for a Bislig flight 1870A using the Profile Tool of QT Modeler	.22
Figure 19.	Tiles for Bislig floodplain (a) and classification results (b) in TerraScan	.23
Figure 21.	Point cloud before (a) and after (b) classification.	.24
Figure 22.	The production of last return DSM (a) and DTM (b), first return DSM (c)	
0	and secondary DTM (d) in some portion of Bislig floodplain	.24
Figure 23.	Bislig floodplain with available orthophotographs	.25
Figure 24.	Sample orthophotograph tiles for Bislig floodplain	.26
Figure 25.	Portions in the DTM of Bislig floodplain – hilly portions before	
1.8410 201	(a) and after (b) data retrieval: and a bridge before (c) and after (d) manual editing	27
Figure 26.	Map of Processed LiDAR Data for Bislig Flood Plain.	.29
Figure 27	Map of Bislig Flood Plain with validation survey points in green	30
Figure 28	Correlation plot between calibration survey points and LiDAR data	31
Figure 29	Correlation plot between validation survey points and LiDAR data	32
Figure 30	Man of Bislig Flood Plain with bathymetric survey points shown in hlue	22
Figure 31	Blocks (in blue) of Bislig building features that were subjected to OC	3/
Figure 32	Extracted features for Bislig floodnlain	36
Figure 33	Extracted reaches for Bising noouplain.	.50
riguie 55.	validation survey (red)	28
Figure 3/	GNSS Network of Riclig River Field Survey	20
Figure 24.	CNSS has soft up. Trimble® SDS 952 at PMSS 120 located on one and of a concrete	.55
Figure 50.	barrier along Surigao Davao Coastal Road in Brgy Mangagoy Biolig City Surigao del Sur	11
Figure 27	CNSS base set up. Trimble® SDS 952 at DMSS 160, located at Damuksukan Dridge in Dray	.41
ingule 37.	Camut Tago, Surigao del Sur	۸1
Figure 20	CNSS receiver set up. Trimble® SDS 992et DMSS 00 leasted inside	.41
rigure 38.	Mahayhay Drimary School in the Mynicipality of Unature Coving del Cov	12
Figure 20	IVIANAYNAY Primary School in the iviunicipality of Hinatuan, Surigao dei Sur	.42
Figure 39.	Construction of the second sec	42
	Burboanan Bridge in Brgy. Burboanan, Bislig City, Surigao del Sur	.42

Figure 40.	GNSS base set up, Trimble [®] SPS 852 at UP-BAG , located near Bagnan Bridge in Brgy. Mone, Bislig City, Surigao del Sur	43
Figure 41.	Trimble [®] SPS 882 setup at UP-DUG, located near Dugmanon Bridge	40
Figure 42.	GNSS base set up, Trimble [®] SPS 985 at UP-MAG, located at Maglambing Bridge along Surigao-Davao Coastal Road in Brgy. Maglambing in the Municipality of Tagbina, Surigao del Sur	43 ЛЛ
Figure 43.	GNSS base set up, Trimble [®] SPS 882 at UP-TAG1, located at Tago-San Miguel Bridge, Municipality of San Miguel, Surigao del Sur	44
Figure 44.	As-built at (a) Bagnan Bridge (b) and Burboanan Bridge in Bislig City, Surigao del Sur	50
Figure 45.	Location map of Bagnan bridge cross-section	51
Figure 46.	Bagnan bridge cross-section diagram	51
Figure 47.	Bagnan bridge data form	52
Figure 48.	Location Map of Burboanan bridge cross-section	53
Figure 49.	Burboanan bridge cross-section diagram	53
Figure 50.	Burboanan bridge data form	54
Figure 51.	Ground Validation setup: A Trimble [®] SPS 882, mounted in a 2-meter pole	
	and attached in front of the vehicle	55
Figure 52.	LiDAR Ground validation points acquisition survey extent in Bislig River Basin	56
Figure 53.	Bathymetry Set-up using OHMEX [™] single beam echo sounder with a Trimble [®] SPS 882	57
Figure 54.	Bathymetric survey of Bislig River	58
Figure 55.	Riverbed profile of from left upstream tributary down to the mouth of Bislig River	58
Figure 56.	Riverbed profile of from right upstream tributary until the intersection of tributaries	59
Figure 57.	Location map of Bislig HEC-HMS model used for calibration	60
Figure 58.	Cross-Section Plot of Burboanan Bridge	61
Figure 59.	Rating Curve at Burboanan Bridge, Bislig City, Surigao del Sur	61
Figure 60.	Rainfall at Manat ARG and outflow data at Burboanan Bridge used for modeling	62
Figure 61.	Location of Hinatuan RIDF Station relative to Bislig River Basin	63
Figure 62.	Synthetic storm generated for a 24-hr period rainfall for various return periods	63
Figure 63.	The Bislig river basin model generated using HEC-HMS	64
Figure 64.	River cross-section of Bislig River generated through Arcmap HEC GeoRAS tool	65
Figure 65.	Screenshot of subcatchment with the computational area	
	to be modeled in FLO-2D GDS Pro	66
Figure 66.	Generated 100-year rain return hazard map from FLO-2D Mapper	66
Figure 67.	Generated 100-year rain return flow depth map from FLO-2D Mapper	67
Figure 68.	Outflow Hydrograph of Puyo Bridge produced by the HEC-HMS	~-
-	model compared with observed outflow	67
Figure 69.	Simulated in HEC-HMS.	69
Figure 70.	Sample output of Bislig RAS Model. Flood depth and extent	
	at Bislig River basin during typhoon "Seniang"	71
Figure 71.	5-year Flood Hazard Map for Bislig Floodplain	73
Figure 72.	5-year rain return flow depth map for Bislig Floodplain	74
Figure 73.	25-year Flood Hazard Map for Bislig Floodplain	75
Figure 74.	25-year Flow Depth Map for Bislig Floodplain	76
Figure 75.	100-year Flood Hazard Map for Bislig Floodplain	77
Figure 76.	100-year Flow Depth Map for Bislig Floodplain	78
Figure 77.	Affected Areas in Trento during 5-Year Rainfall Return Period	80
Figure 78.	Affected Areas in Bislig City during 5-Year Rainfall Return Period	81
Figure 80.	Affected Areas in Bislig City during 25-Year Rainfall Return Period	82
Figure 81.	Affected Areas in Trento during 100-Year Rainfall Return Period	83
Figure 83.	Flood Validation Points of Aringay River Basin	84

LIST OF TABLES

Table1. Table2.	Flight planning parameters for Aquarius LiDAR system Details of the recovered NAMRIA benchmark point SS-124 with processed	3
Table 3.	coordinates used as base station for the LiDAR acquisition Details of the recovered NAMRIA horizontal control point SRS-60	5
Table 4.	used as base station for the LiDAR acquisition Details of the recovered NAMRIA horizontal control point SRS-57 used as base station	6
	for the LiDAR acquisition.	7
Table 5.	Details of the recovered NAMRIA horizontal control point SRS-61 used as	
	base station for the LiDAR acquisition	8
Table 6.	Details of the recovered NAMRIA horizontal control point SRS-56	
	used as base station for the LiDAR acquisition	9
Table 7.	Details of the recovered NAMRIA horizontal control point SRS-58	
	used as base station for the LiDAR acquisition	10
Table 8.	Details of the recovered NAMRIA horizontal control point SRS-63	
	used as base station for the LiDAR acquisition	11
Table 9.	Ground control points used during LiDAR data acquisition	12
Table 10.	Flight missions for LiDAR data acquisition of the Bislig Floodplain.	13
Table 11.	Actual parameters used during LiDAR data acquisition of the Bislig Floodplain	14
Table 12.	List of municipalities and cities surveyed during Bislig floodplain LiDAR acquisition	14
Table 13.	Self-calibration results values for Bislig flights	19
lable 14.	List of LiDAR blocks for Bislig floodplain.	20
Table 15.	Bislig classification results in TerraScan.	23
lable 16.	LIDAR blocks with its corresponding area.	26
lable 17.	Shift values of each LiDAR Block of Bislig floodplain.	28
Table 18.	Calibration Statistical Measures.	31
Table 19.	Validation Statistical Measures	
Table 20.	Quality Checking Ratings for Bislig Building Features	34
Table 21.	Building features Extracted for Bislig Floodplain.	35
Table 22.	Total Length of Extracted Roads for Bislig Floodplain	35
Table 23.	Number of Extracted Water Bodies for Bislig Floodplain.	36
Table 24.	List of References and Control Points used in Surigao del Sur survey	
Table 25.	Baseline Processing Report for Bislig river survey	44
Table 26.	Control Point Constraints	46
Table 27.	Adjusted Grid Coordinates	46
Table 28	Adjusted Geodetic Coordinates	48
Table 29.	Reference and control points used and its location	48
Table 30.	RIDF values for Hinatuan Kain Gauge computed by PAGASA	61
Table 31.	Range of Calibrated Values for Sliaga	68
Table 32.	Summary of the Efficiency lest of Bislig HMS Model	68
Table 33.	Peak values of the Bislig HEC-HIVIS Model outflow using the Hinatuan RIDF	69
Table 34.	Area covered by each warning level with respect to the rainfall scenario	72
Table 35.	Affected Areas in Trento during 5-Year Rainfall Return Period	
	Affected Areas in Trents during 25 Year Rainfall Return Period	80
	Affected Areas in Pielia City during 25-Year Kainfall Return Period	۲۵ دە
Table 20	Affected Areas in Trepto during 100 Year Dainfall Return Period	2ŏ
	Affected Areas in Pielia City during 100 Year Dainfall Return Period	کŏ
	Anecteu Areas III Bislig City during 100-rear Kälmäll Kelurn Period	5۵ مר
	Actual Flood Depth vs Simulated Flood Depth III Bislig	50
idule 42.	Summary of Accuracy Assessment III Bisilg	

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CSRS	Chief Science Research Specialist		
CSU	CARAGA State University		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC Data Validation and Bathym Component			
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		
IMU	Inertial Measurement Unit		
kts	knots		
LAS	Land Analysis System		

LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	Mean Sea Level		
NAMRIA	National Mapping and Resource Information Authority		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall Intensity Duration Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Sun Canopy Sensor		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
TBC	Thermal Barrier Coatings		
UPC	University of the Philippines Cebu		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BISLIG RIVER

Enrico C. Paringit, Dr. Eng., Engr. Meriam Makinano-Santillan, and Engr. Jojene Santillan

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GIA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the Caraga State University (CSU). CSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Caraga Region. The university is located in Butuan City in the province of Agusan del Norte.

1.2 Overview of the Bislig River Basin

Figure 1. Map of Bislig River Basin

The Bislig River Basin is located in the eastern portion of the Island of Mindanao, Philippines. It lies generally between 126°06' to 126°23' east longitude and 8°00' to 8°20' north latitude. It includes a major part of Bislig City, Surigao del Sur, and small areas of Lingig, Hinatuan, and Tagbina municipalities of Surigao del

Sur; and of Trento, Bunawan, and Rosario municipalities of Agusan del Sur. The basin covers an area of approximately 516 square kilometers, and is about 35 kilometers long and averages about 30 kilometers in width.

The Bislig River is the principal drainage way of the basin. It has two major tributaries whose origins can be traced from the northwest and south portions of the basin. The northwestern and southern tributaries meet the Bislig River at a junction near Barangay Burboanan, Surigao del Sur. From this junction, Bislig River flows towards Bislig Bay at a distance of approximately 6.5 kilometers. At this portion, the river channel is wide and is navigable by motor boats.

The climate of the basin is Type II which is characterized by no dry season but with a very pronounced precipitation period generally during November to January. The seasonal precipitation distribution, which is similar to that of the nearby Agusan River Basin, is caused primarily by the three main seasonal winds that pass through it. The northeast monsoon passes during the period from October to January, the trade wind with an east to southeast direction from February to April, and the southwest monsoon for the rest of the year¹.

The basin's highest point is at738 meters above mean sea level situated along the mountain ridges of the Municipality of Rosario, Agusan del Sur. The most abundant soil type in the basin based on maps published by the Department of Agriculture was clay which accounts for 72% of the basin's land area. The basin is mostly covered by open canopy forests and brush land leaving the built-up areas only covering less than 1.0 % of the basin.

Built-up areas and communities in the basin are concentrated in Bislig City, particularly in Barangay Mangagoy, the downtown area often dubbed by its residents as "the little city within the city". Barangay Mangagoy is the largest barangay in the city in terms of population and land area, and is considered the center of trade and industry. As of the 2015 estimate, this barangay has a population of 32,464. Since Brgy. Poblacion is often referred by the locals simply as 'Bislig', Mangagoy on the other hand is often mistaken as a separate town though it is only just one out of the 24 barangays that comprises the entire City of Bislig². The Bislig Bridge which plies the Surigao-Davao Coastal Road connects the city and other localities in the south to Hinatuan, Surigao del Sur in the north.

Based on Caraga Region 2015 Census of Population, Bislig City was ranked 3rd in the Top 10 Most Populous Cities/Municipalities in the Region with 94,535 people residing. The local language of the city is Cebuano although some residents used the *Kamayo* language. The city's socio-economic condition thrived by producing good quality agricultural and aquamarine products and becoming a leading eco-tourism destination in Southeastern Philippines. The people's main sources of living are fishing, corn cropping, logging and tourism. Bislig City Water District is providing the people, particularly in the urban areas, with clean water sourced from the basin's upstream watersheds. As for the folks in the rural area, they relish the unlimited flowing of fresh clean water from the basin's tropical forest. Covered by a diverse ecosystem, the city is preserving and nurturing their natural resources such as the mangrove areas, tropical rain forest and aquatic resources³.

Bislig City is one of localities that was affected during the onslaught of Tropical Storm "Agaton" in January 2014 to the extent that a 'state of calamity' was declared by the City government. It can be recalled that "Agaton" was the first Tropical Storm that affected the country. It was a low pressure area and developed into a Tropical Depression 130 kilometer northeast of Guiian, Eastern Samar in the morning of 17 January 2014, and it moved westward slowly at 5 kilometers per hour closer to the provinces of Surigao del Norte and Surigao del Sur⁴. The slow movement of "Agaton" and the continuous rain and strong winds that it brought along has caused flooding and landslides not only in the Bislig City but also in other localities in Mindanao.

¹ US Department of Interior, 1966. A Report on the Agusan River Basin, Mindanao, Philippines. Bureau of Reclamation, US Department of Interior.

² https://en.wikipedia.org/wiki/Bislig

³ Ecosystems Research and Development Bureau-DENR, Bislig City

⁴ NDRRMC Update, Final Report, re: Effects of Tropical Depression "AGATON" http://ndrrmc.gov.ph/attachments/article/2783/FINAL_REPORT_ re_Effects_of_Tropical_Depression_AGATON_17_-20JAN2014.pdf

CHAPTER 2: LIDAR ACQUISITION IN BISLIG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Ms. Mary Catherine Elizabeth M. Baliguas

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

1.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Bislig floodplain in Surigao del Sur. These missions were planned for 17 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 1 shows the flight plan for Bislig floodplain survey.

Block Name	Flying Height (AGL)	Overlap	Field of View (θ)	Pulse Rate Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Around (Minutes)
BLK66A	500	30,40	36	50	45	130	5
DIKCCD	550	30,40	36	50	45	130	5
BLK00B	600	30,40	36	50	45	130	5
BLK66C	600	40	36	50	45	130	5
BLK66D	500	40,60	40	50	45	130	5
	600	40,60	40	50	45	130	5
BLK66G	600	30	50	50	40	130	5
BLK66H	600	30	36,50	50	40,45	130	5
BLK66I	600	30	36	50	45	130	5
BLK66J	600	30	36	50	45	130	5
BLK66L	600	45	36	50	45	130	5
BLK66U	600	40	36	50	45	130	5
BLK66V	600	30,40	36	50	45	130	5
DLKCCM	550	30,40	36	50	45	130	5
BLKOOVV	600	30,40	36	50	45	130	5

Table 1. Flight planning parameters for Aquarius LiDAR system.

Figure 2. Flight plan and base stations used for Bislig floodplain

2.2 Ground Base Stations

The project team was able to recover six (6) NAMRIA ground control points:SRS-60, SRS-57, SRS-61, SRS-63, SRS-56 and SRS-58 which are of second (2nd) order accuracy and one (1) NAMRIA Benchmark SS-124. The benchmark was used as vertical reference point and was also established as ground control point. The certifications for the NAMRIA reference points are found inAnnex B and the baseline processing report for the established control pointis found inAnnex C. These were used as base stations during flight operations for the entire duration of the survey (August 3 - September 5, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLESPS 852, and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Bislig floodplain are shown in Figure 1.

Figure 3 to Figure 9 shows the recovered NAMRIA reference points within the area. In addition, Table 2to Table 8show the details about the following NAMRIA control stations and established point, while Table 9shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

Figure 3. GPS set-up over SS-124located at the second approach of Bislig bridge in Bislig, Surigao Del Sur(a) and NAMRIA reference point SS-124(b) as recovered by the field team.

Table2. Details of the recovered NAMRIA benchmark point SS-124 with processed coordinatesused as base station for the LiDAR acquisition.

Station Name	SS-124	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	8°13'07.07644" North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	126°18'24.14659" East
	Ellipsoidal Height	3.637 meters
Grid Coordinates, Philippine Transverse	Easting	864399.325 meters
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	909915.188 meters

	Latitude	8°13'03.71089"North	
	Longitude	126°18'29.55827"East	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Ellipsoidal Height	80.77 meters	
Grid Coordinates, Universal Transverse	Easting	1085282.295meters	
Mercator Zone 51 North		044005 250	
(UTM 51N PRS 1992)	Northing	911895.258meters	

Figure 4. GPS set-up over SRS-60 as recovered inside Brgy. Sta Cruz health center, on the corner near the bamboo fence (a) NAMRIA reference point SRS-60 (b) as recovered by the field team.

Station Name	SRS-60		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 15′ 26.63928″ North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	126° 17' 56.66192" East	
	Ellipsoidal Height	83.08300 meters	
Grid Coordinates, Philippine Transverse	Easting	643129.132 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	913248.992 meters	
	Latitude	8°15' 23.26276" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	126° 18' 2.07013" East	
	Ellipsoidal Height	155.22600meters	

Table 3. Details of the recovered NAMRIA horizontal control point SRS-60 used as base station for the LiDAR acquisition.

Figure 5. GPS set-up over SRS-57 locatedon the concrete ground corner of the flagpole of Talisay Elementary School in Brgy. Talisay , Hinatuan (a) and NAMRIA reference point SRS-57 (b) as recovered by the field team.

Station Name	SRS-57		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 27' 1.69252" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	126° 21' 8.66908" East	
	Ellipsoidal Height	26.14400 meters	
Grid Coordinates, Philippine Transverse	Easting	648933.286 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	934625.002 meters	
	Latitude	8° 26′ 58.26936″ North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	126° 21' 14.05931" East	
	Ellipsoidal Height	98.02200meters	

Table 4. Details of the recovered NAMRIA horizontal control point SRS-57 used as base station for the LiDAR acquisition.

Figure 6. GPS set-up over SRS-61 as recovered on the open field about 100m away from the flagpole of Mone National High School in Brgy. Mone, Bislig, Surigao Del Sur (a) and NAMRIA reference point SRS-61 (b) as recovered by the field team.

Station Name	SRS-61		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 9' 52.82479" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	126° 16' 5.42126" East	
	Ellipsoidal Height	2.46400 meters	
Grid Coordinates, Philippine Transverse	Easting	639590.647 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	902980.994 meters	
	Latitude	8° 9' 49.47002" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	126° 16' 5.42126" East	
	Ellipsoidal Height	74.71500meters	
Grid Coordinates, Universal Transverse	Easting	198797.23 meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	903466.77 meters	

Table 5. Details of the recovered NAMRIA horizontal control point SRS-61 used as base station for the LiDAR acquisition.

Figure 7. GPS set-up over SRS-56 recovered on the east side of the ground corner of the flagpole of Barobo Town Site Elementary School in Brgy. Poblacion, Barobo, Surigao Del Sur (a) and NAMRIA reference point SRS-56 (b) as recovered by the field team.

Station Name	SRS-56		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 31′ 39.52861″ North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	126° 7' 4.08061" East	
	Ellipsoidal Height	36.22400 meters	
Grid Coordinates, Philippine	Easting	623069.127 meters	
(PTM Zone 5 PRS 92)	Northing	943079.391 meters	
Geographic Coordinates World	Latitude	8° 31′ 36.06400″ North	
Geodetic System 1984 Datum	Longitude	126° 7' 9.46645" East	
(WGS 84)	Ellipsoidal Height	107.36300meters	
Grid Coordinates, Universal	Easting	182673.15 meters	
(UTM 51N PRS 1992)	Northing	943755.61meters	

Table 6. Details of the recovered NAMRIA horizontal control point SRS-56 used as base station for the LiDAR acquisition.

Figure 8. GPS set-up over SRS-58 recovered on the concrete ground of the flagpole of Maglambing Elementary School in Brgy. Maglambing, Tagbina, Surigao Del Sur (a) and NAMRIA reference point SRS-58 (b) as recovered by the field team.

Station Name	SRS-58		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 25′ 30.89446″ North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	126° 11' 37.55708" East	
	Ellipsoidal Height	10.93400 meters	
Grid Coordinates, Philippine Transverse	Easting	631468.821 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	931778.214 meters	
	Latitude	8° 25' 27.46381" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	126° 11' 42.95134" East	
	Ellipsoidal Height	82.47300meters	
Grid Coordinates, Universal Transverse	Easting	190961.53meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	932360.98meters	

Table 7. Details of the recovered NAMRIA horizontal control point SRS-58 used as base station for the LiDAR acquisition.

Figure 9. GPS set-up over SRS-63 located 4 kms to the junction of the road of San Antonio in Brgy. Sitio Pagmam-am, Bislig, Surigao Del Sur (a) and NAMRIA reference point SRS-63 (b) as recovered by the field team.

Station Name	SRS-63		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 8′ 0.61702″ North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	126° 20' 25.46527" East	
	Ellipsoidal Height	89.36100 meters	
Grid Coordinates, Philippine Transverse	Easting	647729.756 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	899559.567 meters	
	Latitude	8° 7' 57.27724" North	
Geographic Coordinates, World Geodetic	Longitude	126° 20' 30.88421" East	
	Ellipsoidal Height	161.85800meters	
Grid Coordinates, Universal Transverse	Easting	206906.01 meters	
(UTM 51N PRS 1992)	Northing	899963.22 meters	

Table 8. Details of the recovered NAMRIA horizontal control point SRS-63 used as base station for the LiDAR acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
03-Aug-14	1778A	3BLK66GH215A	SS-124 andSRS-60
03-Aug-14	1780A	3BLK66HS215B	SS-124 andSRS-60
04-Aug-14	1784A	3BLK66HSI216B	SS-124 andSRS-60
05-Aug-14	1786A	3BLK66ISJ217A	SS-124 andSRS-60
05-Aug-14	1788A	3BLK66EGS217B	SS-124 AND SRS-60
07-Aug-14	1796A	3BLK66LSJS219B	SRS-57 andSRS-60
13-Aug-14	1818A	3BLK66D225A	SRS-60 and SRS-61
16-Aug-14	1830A	3BLK66A228A	SRS-60 and SRS-61
17-Aug-14	1834A	3BLK66AS229A	SRS-60 and SRS-61
17-Aug-14	1836A	3BLK66DS229B	SRS-60 and SRS-61
21-Aug-14	1850A	3BLK66VW233A	SRS-60 and SRS-61
22-Aug-14	1854A	3BLK66BWS234A	SRS-61 and SRS-63
26-Aug-14	1870A	3BLK66ASB238A	SRS-61 and SRS-63
2-Sep-14	1898A	3BLK66C245A	SRS-61 and SRS-63
5-Sep-14	E Son 14 1010A 201 KGC SU 249A	3BLK66CSU248A	SRS-56, SRS-58,
		JULKUUCJUZ40A	SRS-61 and SRS-63

Table 9. Ground control points used during LiDAR data acquisition.

2.3 Flight Missions

Fifteen (15) missions were conducted to complete the LiDAR Acquisition in Bislig floodplain for a total of fifty-nine hours and thirty-four minutes (59+34) of flying time for RP-C9122. All missions were acquired using the Aquarius LiDAR system. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission while Table 11 presents the actual parameters used during the LiDAR data acquisition.

		Flight		Area Surveyed	Area	No. of	Flying Hours	
Date Surveyed	Flight Number	Plan Area (km²)	Surveyed Area (km²)	within the Floodplain (km ²) (km ²)		Images (Frames)	H	Min
3-Aug-14	1778A	82.889	102.32	19.09	83.23	1201	4	23
3-Aug-14	1780A	82	75.61	24.37	51.24	945	3	5
4-Aug-14	1784A	98.845	90.02	24.51	65.51	1918	3	17
5-Aug-14	1786A	98	112	15.47	96.53	865	4	17
5-Aug-14	1788	70	82.05	NA	95.58	884	3	53
07-Aug-14	1796A	79.152	95.58	NA	95.58	1029	3	53
13-Aug-14	1818A	94	60.56	NA	60.56	449	4	23
16-Aug-14	1830A	92	73.34	NA	73.34	83	4	23
17-Aug-14	1834A	97	128.16	NA	128.16	NA	3	23
17-Aug-14	1836A	94	65.32	NA	65.32	636	3	5
21-Aug-14	1850A	140	116.47	NA	116.47	1465	4	23
22-Aug-14	1854A	80.311	45.49	NA	45.49	697	4	23
26-Aug-14	1870A	118.516	147.98	NA	147.98	1506	4	23
2-Sep-14	1898A	132	131.84	NA	131.84	NA	4	23
5-Sep-14	1910A	114	96.36	NA	96.36	1107	4	23
TOTAL		1472.713	1423.1	83.44	1353.19	12785	59	34

Table10. Flight missions for LiDAR data acquisition in Bislig floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KhZ)	Scan Frequency (Hz)	Average Speed (Kts)	Average Turn Time (Minutes)
1778A	600	30	50	50	40	120	5
1780A	600	30	36	50	45	120	5
1784A	600	30	36	50	45	120	5
1786A	600	30	36	50	45	120	5
1788A	600	30	36	50	40,45	120	5
1796A	600	45	36	50	45	120	5
1818A	500,600	40,60	40	50	50	120	5
1830A	500	40	36	50	45	120	5
1834A	500	40	36	50	45	120	5
1836A	600	40,60	36	50	45	120	5
1850A	600	30,40	36	50	45	120	5
1854A	550,600	40	36	50	45	120	5
1870A	600	30,40	36	50	45	120	5
1898A	600	40	36	50	45	120	5
1910A	600	40	36	50	45	120	5

Tablell.Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

Bislig floodplain is located in the province of Surigao del Sur with majority of the floodplain situated within the city of Bislig. The municipality of Lingigis completely covered during the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 12. The actual coverage of the LiDAR acquisition for Bislig floodplain is presented in Figure 10.

Province	Municipality/ City	Area of Municipality/ City (km²)	Total Area Surveyed(km²)	Percentage of Area Surveyed
	Lingig	227.04	227.04	100%
Surigao del Sur	Bislig	269.88	249.39	92%
	Hinatuan	238.31	52.89	22%
	Trento	515.17	197.46	38%
Agusan del Sur	Bunawan	608.49	112.57	18%
	Rosario	452.81	67	15%
Davao Oriental	Boston	392.62	37.27	9%

Table 12. List of municipalities and cities surveyed during Bislig floodplain LiDAR survey.

Figure 10. Actual LiDAR survey coveragefor Bislig floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE BISLIG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).]

3.1 Overview of the LiDAR Data Pre-Processing

Figure 11. Schematic Diagram for Data Pre-Processing Component

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectifiedLiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 10.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Bislig floodplain can be found in Annex A-5. Data Transfer Sheets. Missions flown during the first survey conducted on August 2014 used the Airborne LiDAR Terrain

Mapper (ALTM[™] Optech Inc.) Aquarius system over Surigao del Sur. The Data Acquisition Component (DAC) transferred a total of 176.88 Gigabytes of Range data, 3.52 Gigabytes of POS data, 200.59 Megabytes of GPS base station data, and 774.6 Gigabytes of raw image data to the data server on September 9, 2014. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Bislig was fully transferred on December 9, 2014 as indicated on the Data Transfer Sheets for Bislig floodplain.

3.3 Trajectory Computation

The *Smoothed Performance Metric*parameters of the computed trajectory for flight 1870A, one of the Bisligflights, which is the North, East, and Down position RMSE values are shown in Figure 11. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell onFebruary 7, 2015 00:00 AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metric Parameters of Bislig Flight 1870A

The time of flight was from 179000 seconds to 193000 seconds, which corresponds to morning of August 26, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure B-2 shows that the North position RMSE peaks at 2.40 centimeters, the East position RMSE peaks at 2.80 centimeters, and the Down position RMSE peaks at 4.60 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Bislig Flight 1870A.

The Solution Statusparameters of flight 1870Aone of the Bisligflights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure B-3. The graphs indicate that the number of satellites during the acquisition did not go down to 4. Majority of the time, the number of satellites tracked was between 4 and 11. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Bislig flights is shown in Figure 13.

Figure 14. The best estimated trajectory of the LiDAR missions conducted over the Bislig floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 256flight lines, with each flight line containing one channel, since the Aquarius system contains one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Bislig floodplain are given in Table 13.

Parameter	Acceptable Value
Boresight Correction stdev(<0.001degrees)	0.000305
IMU Attitude Correction Roll and Pitch Corrections stdev(<0.001degrees)	0.001336
GPS Position Z-correction stdev(<0.01meters)	0.0022

Table 13. Self-Calibration Results values for Bislig flights.

The optimum accuracy is obtained for all Bislig flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex B-1. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Bislig Floodplain is shown in Figure 14. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data over Bislig Floodplain

The total area covered by the Bislig missions is 1148.08 sq.km that is comprised of fifteen (15) flight acquisitions grouped and merged into twelve (12) blocks as shown in Table 14.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
	1870A		
SurigaoDelSur_Blk66AB	1830A		
	1834A	239.58	
	1854A		
SurigaoDelSur_Blk66C	1910A	89.05	
SurigaoDelSur_Blk66C_supplement	1898A	127.62	
	1818A	72 54	
	1836A	73.54	
SurigaoDelSur_Blk66D_additional	1836A	48.83	
SurigaoDelSur_Blk66W	1854A	39.34	
SurigaoDelSur_Blk66V	1850A	115.47	
	1786A	121.02	
SurigaoDeiSur_Bikooj	1796A	121.92	
	1778A		
SurigaoDelSur_Blk66H	1780A	97.67	
	1784A		
	1778A	26.41	
SurigaoDelSur_Bik66G	1788A	20.41	
SurigaoDelSur_Blk66G_additional	1778A	47.85	
	1784A	119.60	
	1786A	110.00	
TOTAL		1145.88 sq.km	

 Table 14. List of LiDAR blocks for Bislig floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 15. Since the Aquarius system employs one channel only, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 17. Pulse density map of merged LiDAR data for Bislig floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 17. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation difference map between flight lines for Bislig floodplain.

A screen capture of the processed LAS data from a Bislig flight 1870A loaded in QT Modeler is shown in Figure 18. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed green line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for a Bislig flight 1870A using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	349,364,436
Low Vegetation	288,932,927
Medium Vegetation	1,050,209,459
High Vegetation	1,765,023,021
Building	28,980,247

Table 15. Bislig classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Bislig floodplain is shown in Figure 19. A total of 1765 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 630.35 meters and 46.6 meters respectively.

Figure 19. Tiles for Bislig floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 20. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 21. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Bislig floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,4681km by 1km tiles area covered by Bislig floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Bislig floodplain survey attained a total of 823.2 sq. km in orthophotogaph coverage comprised of 11,848 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 23.

Figure 23. Bislig floodplain with available orthophotographs.

Figure 24. Sample orthophotograph tiles for Bislig floodplain

3.8 DEM Editing and Hydro-Correction

Fourteen (14) mission blocks were processed for Bislig flood plain. These blocks are composed of Surigao del Sur blocks with a total area of 1,281.40 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
SurigaodelSur_Blk66H	97.67
SurigaodelSur_Blk66I	118.60
SurigaodelSur_Blk66J	121.92
SurigaodelSur_Blk66V	115.47
SurigaodelSur_Blk66W	39.34
SurigaodelSur_Blk66D	73.54
SurigaodelSur_Blk66D_Additional	48.83
SurigaodelSur_Blk66C	89.05
SurigaodelSur_Blk66C_Supplement	127.62
SurigaodelSur_Blk66G	26.41
SurigaodelSur_Blk66G_Additional	47.85
SurigaodelSur_Blk66AB	239.58
TOTAL	1,145.88 sq.km

Table 16. LiDAR blocks with its corres	sponding area.
--	----------------

Portions of DTM before and after manual editing are shown in Figure 24. Hilly portions (Figure 24a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 24b) to allow the correct flow of water. The bridge (Figure 24c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 24d) in order to hydrologically correct the river.

Figure 25. Portions in the DTM of Bislig floodplain – hilly portions before (a) and after (b) data retrieval; and a bridge before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

SurigaodelSur_Blk66H was used as the reference block at the start of mosaicking because this block contained national highway in which the validation surveys passed through this road.

Mosaicked LiDAR DTM for Bislig floodplain is shown in Figure B-16. It can be seen that the entire Bislig floodplain is 99.99% covered by LiDAR data.

Mission Blocks	Shift Values (meters)				
	х	у	z		
SurigaodelSur_Blk66I	0.00	0.00	0.20		
SurigaodelSur_Blk66J	0.00	0.00	0.34		
SurigaodelSur_Blk66V	0.00	0.00	0.75		
SurigaodelSur_Blk66W	0.00	0.00	0.65		
SurigaodelSur_Blk66D	0.00	0.00	0.12		
SurigaodelSur_Blk66D_Additional	0.00	0.00	0.04		
SurigaodelSur_Blk66C	0.00	0.00	0.69		
SurigaodelSur_Blk66C_Supplement	0.00	0.00	0.73		
SurigaodelSur_Blk66G	0.00	0.00	0.41		
SurigaodelSur_Blk66G_Additional	0.00	0.00	0.40		
SurigaodelSur_Blk66AB	0.00	0.00	0.66		
SurigaodelSur_Blk66F	0.00	0.00	0.42		
SurigaodelSur_Blk66E	0.00	0.00	0.59		

Figure 26. Map of Processed LiDAR Data for Bislig Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Bislig to collect points with which the LiDAR dataset is validated is shown in Figure 26. A total of 3,702 survey points were used for calibration and validation of Bislig LiDAR data. Random selection of 80% of the survey points, resulting to 2,962 points, was used for calibration. A good correlation between the

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 27. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.35 meters with a standard deviation of 0.16 meters. Calibration of Bislig LiDAR data was done by subtracting the height difference value, 0.35 meters, to Bislig mosaicked LiDAR data. Table 18 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 27. Map of Bislig Flood Plain with validation survey points in green.

Figure 28. Correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	0.35
Standard Deviation	0.16
Average	-0.32
Minimum	-0.63
Maximum	0.00

The remaining 20% of the total survey points, resulting to 740 points, were used for the validation of calibrated Bislig DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 28. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.15 meters with a standard deviation of 0.15 meters, as shown in Table 19.

Figure 29. Correlation plot between validation survey points and LiDAR data

Validation Statistical Measures	Value (meters)
RMSE	0.15
Standard Deviation	0.15
Average	0.03
Minimum	-0.27
Maximum	0.32

Table 19. Validation Statistical Measure
--

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Bislig with 17,175 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.56 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Bislig integrated with the processed LiDAR DEM is shown in Figure 30.

Figure 30. Map of Bislig Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Bislig floodplain, including its 200 m buffer, has a total area of 76.88 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 2182 building features, are considered for QC. Figure 30 shows the QC blocks for Bislig floodplain.

Figure 31. Blocks (in blue) of Bislig building features that were subjected to QC.

Quality checking of Bislig building features resulted in the ratings shown in Table 20.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Bislig	99.68	99.95	90.15	PASSED

Table 20. Quality Checking Ratings for Bislig Building Features.

3.12.2 Height Extraction

Height extraction was done for 18,202 building features in Bislig floodplain. Of these building features, 751 buildings were filtered out after height extraction, resulting to 17,451 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 21.18m.

3.12.3 Feature Attribution

Field surveys, familiarity with the area, and free online web maps such as Wikimapia (http://wikimapia. org/) and Google Map (https://www.google.com/maps) were used to gather information such as name and type of the features within the river basin.

Table 21 summarizes the number of building features per type. On the other hand, Table 22 shows the total length of each road type, while Table 23 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	16,878
School	258
Market	5
Agricultural/Agro-Industrial Facilities	4
Medical Institutions	15
Barangay Hall	4
Military Institution	0
Sports Center/Gymnasium/Covered Court	15
Telecommunication Facilities	0
Transport Terminal	6
Warehouse	0
Power Plant/Substation	7
NGO/CSO Offices	0
Police Station	3
Water Supply/Sewerage	0
Religious Institutions	21
Bank	4
Factory	187
Gas Station	5
Fire Station	0
Other Government Offices	21
Other Commercial Establishments	18
Total	17,451

Table 21. Building Features Extracted for Bislig Floodplain.

Table 22. Total Length of Extracted Roads for Bislig Floodplain.

	Road Network Length (km)						
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road Others		Total	
Bislig	454.27	8.90	145.39	34.95	1.60	645.11	

Table 23. Number of Extracted Water Bodies for Bislig Floodplain.

	Water Body Type					
Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Bislig	18	1	0	0	0	19

A total of 35 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 31 shows the Digital Surface Model (DSM) of Bislig floodplain overlaid with its ground features.

Figure 32. Extracted features for Bislig floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BISLIG RIVER BASIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Engr. Elainne R. Lopez , Engr. Jovelle Anjeanette S. Canlas, Engr. Irish R. Cortez, Jovy Anne S. Narisma , Engr. Jommer M. Medina, Myra Laika C. Estur

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

Bislig River Basin covers portions of the City of Bislig in the province of Surigao del Sur, and the Municipality of Bunawan and Trento in Agusan del Sur. According to DENR – RCBO, it covers a drainage area of 381 km² and has an estimated annual run-off of 762 million cubic meters.

Its main stem, Bislig River, is part of the twelve (12) river systems in the CARAGA region. According to the 2015 national census of NSO, a total of 17,980locals are residing in the immediate vicinity of the river distributed among barangays Burboanan, Kahayag, Mone, Poblacion, San Fernando and San Isidro.The latest flooding event in Bislig River was last January 13, 2014, where hundreds of residents were evacuated due to flooding caused by a low-pressure area (http://interaksyon.com/article/52461/7000-flee-floods-in-caraga-region).

In line with this, the DVBC in partnership with the CSU conducted field survey in Bislig RiveronMay 4-8 and August 24 – September 7, 2015 with the following scope of work: reconnaissance; static survey for the establishment of a control point; cross-section and as-built survey of Burboanan Bridge in Brgy. Burboana and Bagnan Bridge in Brgy. Mone, Bislig City, Surigao Del Sur; LiDAR Validation of about268 km; and bathymetric survey from Brgy. Mone down to the mouth of the river in Brgy. Poblacion, with an estimated length of 16.60 km using an OHMEX[™] Single Beam Echo Sounder and GNSS PPK survey technique.

Figure 33. Extent of the bhathymetric survey (in blue line) in Bislig River and the LiDAR data validation survey (red).

4.2 Control Survey

The GNSS network used for Bislig River Basin is composed of seven (7) loops established on August 27, September 5 and 6, 2015 occupying the following reference points: SRS-54, a second order GCPin Brgy. Gata, Municipality of San Agustin; SS-130, a first order BM in Brgy. Mangagoy, Bislig City; and SS-160, a first order BM in Brgy. Gamut, Municipality of Tago, all in Surigao del Sur.

Four control points were established along the approach of bridges namely: UP-BAG, located at the approach of Bagnan Bridge in Brgy. Mone, Bislig City;UP-DUG, at Dugmanon Bridge in Brgy, Dugmanon, Municipality of Hinatuan; UP-MAG at Maglambing Bridge in Brgy. Maglambing, Municipality of Tagbina; and UP-TAG1 located at Tago-San Miguel Bridge, Municipality of San Miguel, all in Surigao del Sur. NAMRIA established control points namely SS-99, in Brgy. Mahayhay, Municipality of Hinatuan; and SS-4213, at Burboanan Bridge in Brgy. Burboanan, Bislig City were also occupied to use as marker during the survey.

The summary of references and control points and its location is summarized in in Table 24 while the GNSS network established is illustrated in Figure 33.

Figure 34. GNSS Network of Bislig River Field Survey

Table 24. List of References and Control Points used in Surigao del Sur survey. (Source: NAMRIA and UP-TCAGP)

		Geographic Coordinates (WGS 84)					
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Elevation in MSL (Meter)	Date Established	
SRS-54	2 nd order, GCP	8°42'29.12518"	126°11'07.08070"	71.938	3.335	2007	
SS-130	1 st order, BM	8°11′01.30897″	126°21′23.49960″	73.969	5.237	2008	
SS-160	1 st order, BM	9°00'44.86640"	126°10'25.53097"	75.213	7.065	2009	

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

SS-99	Used as Marker	8°24'53.51089"	126°16'34.96716"	98.350	29.782	2008
SRS-4213	Used as Marker	8°10'56.27507"	126°15′21.74124″	72.222	2.959	2012
UP-BAG	UP Established	8°10'28.76338"	126°17'14.48487"	71.368	2.211	Sep 5, 2015
UP-DUG	UP Established	8°24'10.91693"	126°19′18.89585″	72.157	4.035	Sep 6, 2015
UP-MAG	UP Established	8°25′15.48835″	126°12'01.07825"	82.586	13.509	Sep 6, 2015
UP-TAG1	UP Established	8°56′22.49905″	126°01′48.98421″	85.888	16.502	Aug 27, 2015

The GNSS set ups made in the location of the reference and control points are exhibited in Figure 34-Figure 42:

Figure 35. Trimble® SPS 852 setup at SRS-54 near the flag pole of Gata Integrated School in San Agustin, Surigao del Sur

Figure 36. GNSS base set up, Trimble® SPS 852at BMSS-130 located on one end of a concrete barrier along Surigao-Davao Coastal Road in Brgy. Mangagoy, Bislig City, Surigao del Sur

Figure 37. GNSS base set up, Trimble® SPS 852 at BMSS-160, located at Pamuksukan Bridge in Brgy. Gamut, Tago, Surigao del Sur

Figure 38. GNSS receiver set up, Trimble® SPS 882at BMSS-99 located inside Mahayhay Primary School in the Municipality of Hinatuan, Surigao del Sur

Figure 39. GNSS receiver set up, Trimble® SPS 882 at BMSS-4213 located near Burboanan Bridge in Brgy. Burboanan, Bislig City, Surigao del Sur

Figure 40. GNSS base set up, Trimble® SPS 852 at UP-BAG , located near Bagnan Bridge in Brgy. Mone, Bislig City, Surigao del Sur

Figure 41. Trimble® SPS 882 setup at UP-DUG, located near Dugmanon Bridge in the Municipality of Hinatuan, Surigao del Sur

Figure 42. GNSS base set up, Trimble® SPS 985 at UP-MAG, located at Maglambing Bridge along Surigao-Davao Coastal Road in Brgy. Maglambing in the Municipality of Tagbina, Surigao del Sur

Figure 43. GNSS base set up, Trimble® SPS 882 at UP-TAG1, located at Tago-San Miguel Bridge, Municipality of San Miguel, Surigao del Sur

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20cm and +/-10cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Bislig River Basin is summarized in generated TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
SRS-4213 UP-MAG	09-06-2015	Fixed	0.006	0.028	346°54'31"	27101.111	10.348
UP-BAG SRS-4213	09-05-2015	Fixed	0.003	0.016	283°45'49"	3553.032	0.870
SS-99 SS- 130	09-06-2015	Fixed	0.004	0.025	160°56'32"	27048.109	-24.369
UP-BAG SS-130	09-05-2015	Fixed	0.007	0.030	82°31'19"	7687.540	2.595
SS-99 UP- BAG	09-06-2015	Fixed	0.005	0.028	177°23'35"	26593.869	-26.916
SS-99 SRS- 4213	09-06-2015	Fixed	0.008	0.030	184°58'49"	25818.568	-26.099
SS-130 UP- DUG	09-06-2015 Fixed 0.004 C		0.026	351°04'11"	24555.772	-1.865	
SS-99 UP- DUG	09-06-2015	Fixed	0.005	0.017	104°37'16"	5182.796	-26.175
SS-160 SRS-54	08-27-2015	Fixed	0.009	0.042	357°50'28"	33687.727	3.259

Table 25. Baseline Processing Report for Bislig river survey

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
SS-99 UP- MAG	09-06-2015	Fixed	0.006	0.020	274°36'46"	8405.733	-15.761
UP-TAG1 SRS-54	08-27-2015	Fixed	0.005	0.037	326°20'38"	30763.333	13.888
UP-DUG BMSS-99	09-06-2015	Fixed	0.003	0.019	284°37′40"	5182.793	26.194
SS-99 UP- MAG	09-06-2015	Fixed	0.005	0.023	274°36'46"	8405.736	-15.773
SS-99 SRS- 54	09-06-2015	Fixed	0.011	0.031	162°48'46"	33945.127	26.544
SRS-54 UP- MAG	09-06-2015	Fixed	0.014	0.058	177°01'20"	31798.307	10.764
UP-DUG SRS-54	09-06-2015	Fixed	0.005	0.025	155°57'50"	36939.414	0.268
SS-160 UP- TAG1	08-27-2015	Fixed	0.008	0.017	242°57'01"	17718.093	10.680

As shown in Table 25, a total of 17 baselines were processed and all of them passed the required accuracy set by the project.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20cm and z less than 10cm in equation from:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
< 20 cm and z_e < 10 cm

Where:

Xe is the Easting error,

Ye is the Northing error, and

Ze is the Elevation error

The nine (9) control points, SRS-54, SS-130, SS-160, SS-99, SRS-4213, UP-BAG, UP-DUG, UP-MAG and UP-TAG1 were occupied ans observed simultaneously to form a GNSS loop. Coordinates of SRS-54 and elevation values of SS-130 and SS-160 were held fixed during the processing of the control points as presented in

Table 26. Through these reference points, the corrdinates and elevation of the unknown control points were computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
BMSS-130	Grid				Fixed
BMSS-160	Grid				Fixed
SRS-54	Local	Fixed	Fixed		
Fixed = 0.000001(Meter)					

Table 26. Control Point Constraints

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 27. All fixed control points have no values for grid and elevation errors.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraints
BMSS-130	869923.595	0.025	906149.656	0.019	5.237	?	e
BMSS-160	848999.411	0.009	997745.370	0.008	7.065	?	е
BMSS-99	860869.543	0.023	931673.348	0.017	29.782	0.069	
SRS-4213	858838.293	0.024	905903.658	0.019	2.959	0.088	
SRS-54	850558.697	?	964056.168	?	3.335	0.072	LL
UP-BAG	862300.278	0.025	905085.566	0.019	2.211	0.083	
UP-DUG	865901.481	0.023	930405.547	0.017	4.035	0.075	
UP-MAG	852475.815	0.023	932279.823	0.018	13.509	0.085	
UP-TAG1	833273.403	0.007	989543.115	0.007	16.502	0.064	

Table 27. Adjusted Grid Coordinates

With the mentioned equation, for horizontal and for the vertical; the computation for the accuracy are as follows:

SRS-54

horizontal accuracy	=	Fixed
Vertical accuracy	=	7.2 cm < 10 cm

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

SS 120		
horizontal accuracy	= =	$\sqrt{((2.50)^2 + (1.90)^2)}$ $\sqrt{(6.25 + 3.61)}$ 3.14 cm< 10 cm
Vertical accuracy	=	Fixed
SS-160 horizontal accuracy	= =	$v((0.9)^2 + (0.8)^2)$ v(0.81 + 0.64)
Vertical accuracy	=	Fixed
SS-99 horizontal accuracy	= =	$v((2.30)^2 + (1.70)^2)$ v(5.29 + 2.89)
Vertical accuracy	=	6.90 cm < 10 cm
SRS-4213		
horizontal accuracy	= =	$v((2.40)^2 + (1.90)^2)$ v(5.76 + 3.61)
Vertical accuracy	=	3.06 cm < 20 cm 8.80 cm < 10 cm
UP-BAG		
horizontal accuracy	=	$\sqrt{(2.50)^2 + (1.90)^2}$ $\sqrt{(6.25 + 3.61)}$
Vertical accuracy	=	3.14 cm < 20 cm 8.30 cm < 10 cm
UP-DUG		
horizontal accuracy	=	$\sqrt{((2.30)^2 + (1.70)^2)}$ $\sqrt{(5.29 + 2.89)}$
Vertical accuracy	=	2.86cm < 20 cm 7.50 cm < 10 cm
UP-MAG		
horizontal accuracy	=	$v((2.30)^2 + (1.80)^2)$ v(5.29 + 3.24)
Vertical accuracy	=	2.92 cm < 20 cm 8.50 cm < 10 cm
UP-TAG1		
horizontal accuracy	= =	$\sqrt{((0.70)^2 + (0.70)^2)}$ $\sqrt{(0.49 + 0.49)}$
Vertical accuracy	= =	0.99 cm < 20 cm 6.40 cm < 10 cm

Following the given formula and based on the results of the computations, the horizontal and vertical accuracy conditions of the project are satisfied.

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
BMSS-130	N8°11'01.30897″	E126°21'23.49960"	73.969	?	е
BMSS-160	N9°00'44.86640"	E126°10′25.53097″	75.213	?	е
BMSS-99	N8°24'53.51089"	E126°16'34.96716"	98.292	0.069	
SRS-4213	N8°10′56.27507″	E126°15′21.74124″	72.265	0.088	
SRS-54	N8°42′29.12518″	E126°11'07.08070"	71.864	0.072	LL
UP-BAG	N8°10′28.76338″	E126°17′14.48487″	71.388	0.083	
UP-DUG	N8°24'10.91693"	E126°19'18.89585"	72.120	0.075	
UP-MAG	N8°25′15.48835″	E126°12'01.07825"	82.582	0.085	
UP-TAG1	N8°56'22.49905"	E126°01'48.98421"	85.877	0.064	

Table 28. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 28. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 29.

		Geogr	aphic Coordinates (WGS	84)	UT	M ZONE 51 N	
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
SRS-54	2 nd Order, GCP	8°42'29.12518"	126°11'07.08070"	71.864	964056.168	850558.697	3.335
SS-130	1 st Order, BM	8°11′01.30897″	126°21'23.49960"	73.969	906149.656	869923.595	5.237
SS-160	1 st Order, BM	9°00'44.86640"	126°10'25.53097"	75.213	997745.370	848999.411	7.065
SS-99	Used as Marker	8°24'53.51089"	126°16′34.96716″	98.292	931673.348	860869.543	29.782
SRS-4213	Used as Marker	8°10'56.27507"	126°15′21.74124″	72.265	905903.658	858838.293	2.959
UP-BAG	UP Established	8°10'28.76338"	126°17′14.48487″	71.388	905085.566	862300.278	2.211
UP-DUG	UP Established	8°24'10.91693"	126°19′18.89585″	72.120	930405.547	865901.481	4.035
UP-MAG	UP Established	8°25′15.48835″	126°12′01.07825″	82.582	932279.823	852475.815	13.509
UP-TAG1	UP Established	8°56′22.49905″	126°01′48.98421″	85.877	989543.115	833273.403	16.502

Table 29. Reference and control	points used and its location ((Source: NAMRIA, UP-TCAGP)
		(/

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and As-built survey was conducted on May 4 to 8 and September 6, 2015 at the downstream side of Bagnan Bridge in Brgy. Mone and Burboanan Bridges in Brgy. Burboanan, City of Bislig, Surigao del Sur using PPK technique using Trimble[®] SPS 882 GNSS PPK survey technique as shown in Figure 43.

Figure 44. As-built at (a) Bagnan Bridge (b) and Burboanan Bridge in Bislig City, Surigao del Sur

The cross-sectional line of Bagnan Bridge is about 258.30 m with eighty (80) cross-sectional points; and Burboanan Bridge is about147.39 m with sixty-two (62) cross-sectional points; using the control point SMR-3322 as the GNSS base station. The cross-section diagrams, planimetric maps, and the bridge data forms are shown in Figure 44 to Figure 49, respectively.

The water surface elevation of Bislig River was determined using a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on September 2, 2015 at 1:07 PM with a value of 0.216 m (MSL) for Bagnan Bridge as shown in Figure 46; and on the same day at 11:50 AM with a value of 1.13 m (MSL) for Burboanan Bridge as shown in Figure 47.

Figure 45. Location map of Bagnan bridge cross-section

Figure 46. Bagnan bridge cross-section diagram

D				Bridge D	ata Fori	m			
orio	dge Na	me: <u>BA</u>	GNAN BRIDGE			Date: Sept	ember 2	<u>2, 2015</u>	
Riv	er Nam	ne: <u>BIS</u>	LIG RIVER			Time	e: <u>1:0</u>	7 pm	
.00	ation (Brgy, Cit	y, Region): Brgy. Mon	e, Bislig City,	, Surigao	o del Sur			
Sur	vey Te	am: <u>DVB</u>	C/DVC Surigao del Sur Te	eam Survey -	– Team	JM			
lo	w cond	lition:	low normal) high		Weathe	er Condi	ition: (f	air rainy
.at	itude:	<u>8°10'2</u>	28.38037" N			Longitud	le: <u>1</u> 2	26°17'10.17	040" E
A1	BA2	Ab1			Ab2	BA4	Legend: BA = Bridge Ab = Abutm	Approach P = eent D =	Pier LC = Low (Deck HC = High
			P		Н	с — — — — — — — — — — — — — — — — — — —			
			Deck (Please start your me	asurement from	the left si	de of the bank fac	ing downs	stream)	
eva	ation: _	0.216	50 m (MSL) Width	: <u>n/a</u> S	pan (BA	3-BA2):	81.10 m		
			Station		High	Chord Elevat	ion	Low Cho	ord Elevation
L			Pier 1			5.528 m			
2			Pier 2		5.501 m				
3	Pier 3				5.535 m				
	Pier 4					5.535 m			
1			Pier 3			5.535 m 5.428 m			
1			Pier 3 Pier 4			5.535 m 5.428 m			
1			Pier 3 Pier 4 Bridge Approach (Please :	start your measurem	ent from the	5.535 m 5.428 m	acing downst	:ream)	
1		Statio	Pier 3 Pier 4 Bridge Approach (Please : on(Distance from BA1)	start your measurem	ent from the	5.535 m 5.428 m left side of the bank f Station(Dis	acing downst	ream)	Elevation
1	BA1	Statio	Pier 3 Pier 4 Bridge Approach (Please s on(Distance from BA1) 0	start your measurem Elevation 4.759 m	ent from the	5.535 m 5.428 m left side of the bank f Station(Di :	acing downs1 stance f 21.874 r	rream) F rom BA1) n	Elevation 5.369 m
1	BA1 BA2	Statio	Pier 3 Pier 4 Bridge Approach (Please so on(Distance from BA1) 0 40.793 m	start your measurem Elevation 4.759 m 5.521 m	ent from the BA3 BA4	5.535 m 5.428 m left side of the bank f Station(Dis 12	acing downst stance f 21.874 r 58.275 r	rream) F rom BA1) n	Elevation 5.369 m 3.359 m
1	BA1 BA2	Statio	Pier 3 Pier 4 Bridge Approach (Please so on(Distance from BA1) 0 40.793 m	Elevation 4.759 m 5.521 m	BA3 BA4	5.535 m 5.428 m left side of the bank f Station(Dis 12	acing downst stance f 1.1.874 r 58.275 r	rream) r rom BA1) n	Elevation 5.369 m 3.359 m
•	BA1 BA2 Abu	Statio	Pier 3 Pier 4 Bridge Approach (Please son(Distance from BA1) 0 40.793 m Is the abutment sloping	start your measurem Elevation 4.759 m 5.521 m ? Yes	ent from the BA3 BA4 No;	5.535 m 5.428 m Heft side of the bank f Station(Dis 12 16 If yes, fill in	acing downst stance f 11.874 r 58.275 r the follo	rream) f rom BA1) n n wing inform	Elevation 5.369 m 3.359 m ation:
1	BA1 BA2 Abu	Statio	Pier 3 Pier 4 Bridge Approach (Please st in(Distance from BA1) 0 40.793 m Is the abutment sloping Station (D	start your measurem Elevation 4.759 m 5.521 m ? Yes vistance fron	ent from the BA3 BA4 No; n BA1)	5.535 m 5.428 m left side of the bank f Station(Di 12 16 If yes, fill in	acing downst stance f 1.874 r 58.275 r the follo	rream) rom BA1) n n pwing inform Elevatic	Elevation 5.369 m 3.359 m ation:
1	BA1 BA2 Abu	Statio	Pier 3 Pier 4 Bridge Approach (Please a on(Distance from BA1) 0 40.793 m Is the abutment sloping Station (D	start your measurem Elevation 4.759 m 5.521 m ? Yes istance fron n/a	ent from the BA3 BA4 No; n BA1)	5.535 m 5.428 m left side of the bank f Station(Dis 12 16 If yes, fill in	stance f stance f 1.874 r 8.275 r the follo	rream) from BA1) n n pwing inform Elevatic n/a	Elevation 5.369 m 3.359 m ation:
1	BA1 BA2 Abu	Statio	Pier 3 Pier 4 Bridge Approach (Please so on(Distance from BA1) 0 40.793 m Is the abutment sloping Station (D	start your measurem Elevation 4.759 m 5.521 m ? Yes bistance from n/a n/a n/a	ent from the BA3 BA4 No; n BA1)	5.535 m 5.428 m left side of the bank f Station(Dis 12 16 If yes, fill in	acing downst stance f 1.874 r 58.275 r the follo	rream) from BA1) n n wing inform Elevatic n/a n/a	Elevation 5.369 m 3.359 m ation:
•	BA1 BA2 Abu	Statio	Pier 3 Pier 4 Bridge Approach (Please so on(Distance from BA1) 0 40.793 m Is the abutment sloping Station (D Pier (Please start your mea	start your measurem Elevation 4.759 m 5.521 m ? Yes bistance from n/a n/a surement from	ent from the BA3 BA4 No; n BA1) the left sid	5.535 m 5.428 m left side of the bank f Station(Dis 12 16 If yes, fill in	stance f stance f 21.874 r 38.275 r the follo	rream) (rom BA1) n n wwing inform Elevatic n/a n/a stream)	Elevation 5.369 m 3.359 m ation:
1	BA1 BA2 Abu Al Al Sha	Statio	Pier 3 Pier 4 Bridge Approach (Please 4 on(Distance from BA1) 0 40.793 m Is the abutment sloping Station (D Pier (Please start your mea 	start your measurem Elevation 4.759 m 5.521 m ? Yes bistance from n/a n/a n/a surement from Piers: <u>4</u>	ent from the BA3 BA4 No; n BA1) the left sid	5.535 m 5.428 m left side of the bank f Station(Di 12 16 17 16 16 16 17 16 16 16 16 16 17 16 16 16 17 17 16 16 16 16 16 17 17 16 16 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	acing downst stance f 1.874 r i8.275 r the follo ing down:	rream) from BA1) n n owing inform Elevatic n/a n/a stream) ng:	Elevation 5.369 m 3.359 m ation:
1	BA1 BA2 Abu Al	Statio	Pier 3 Pier 4 Bridge Approach (Please a on(Distance from BA1) 0 40.793 m Is the abutment sloping Station (D Pier (Please start your mea	start your measurem Elevation 4.759 m 5.521 m ? Yes Distance from n/a n/a surement from Piers: <u>4</u> m BA1)	ent from the BA3 BA4 No; n BA1) the left sid	5.535 m 5.428 m left side of the bank f Station(Dis 12 16 If yes, fill in de of the bank fac Height of colur Elevation	acing downst stance f 21.874 r 38.275 r the follo ing down:	rream) (rom BA1) n n owing inform Elevatio n/a n/a stream) ng: Pier 1	Elevation 5.369 m 3.359 m ation:
1	BA1 BA2 Abu Al Al Sha	Statio	Pier 3 Pier 4 Bridge Approach (Please a n(Distance from BA1) 0 40.793 m Is the abutment sloping Station (D Pier (Please start your mea	start your measurem Elevation 4.759 m 5.521 m ? Yes Distance from n/a n/a n/a surement from Piers: <u>4</u> n BA1)	ent from the BA3 BA4 No; n BA1) the left sid	5.535 m 5.428 m left side of the bank f Station(Di 12 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	acing downst stance f 11.874 r i8.275 r the follo the follo ing downst nn footin	rream) rom BA1) n n owing inform Elevatio n/a n/a stream) ng: Pier ¹	Elevation 5.369 m 3.359 m ation:
	BA1 BA2 Abu Al Al Sha Pier 1 Pier 2	Statio	Pier 3 Pier 4 Pier 4 Bridge Approach (Please 4 On(Distance from BA1) O 40.793 m Is the abutment sloping Station (D Pier (Please start your mea	start your measurem Elevation 4.759 m 5.521 m ? Yes bistance from n/a n/a n/a surement from Piers: <u>4</u> m BA1)	ent from the BA3 BA4 No; n BA1) the left sid	5.535 m 5.428 m left side of the bank f Station(Dia 12 16 17 16 16 17 16 16 16 17 17 16 16 16 17 17 16 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	acing downst stance f 1.874 r i8.275 r the follo ing down:	rream) from BA1) n n owing inform Elevatic n/a n/a stream) ng: Pier 1	Elevation 5.369 m 3.359 m ation: n width
	BA1 BA2 Abu Al Al Sha Pier 1 Pier 2 Pier 3	Statio	Pier 3 Pier 3 Pier 4 Bridge Approach (Please 3 In(Distance from BA1) 0 40.793 m Is the abutment sloping Station (D Pier (Please start your mea	start your measurem Elevation 4.759 m 5.521 m ? Yes bistance from n/a n/a surement from Piers: <u>4</u> n BA1)	ent from the BA3 BA4 No; n BA1) the left sid	5.535 m 5.428 m left side of the bank f Station(Dis 12 16 17 16 16 17 16 16 17 16 17 16 16 16 17 16 17 16 17 16 17 16 17 17 16 17 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	acing downst stance f 21.874 r i8.275 r the follo ing down nn footin	ream) from BA1) n n owing inform Elevatic n/a stream) ng: Pier 1	Elevation 5.369 m 3.359 m ation:

Figure 47. Bagnan bridge data form

Figure 48. Location Map of Burboanan bridge cross-section

Figure 49. Burboanan bridge cross-section diagram

Figure 50. Burboanan bridge data form

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on August 25, 26, 31, September 1 & 3, 2015 using a survey grade GNSS rover receiverTrimble[®] SPS 882 mounted on a pole which was attached in front of a vehicle, as shown inFigure 50. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The height of instrument was measured and noted a 2.404-meter distance from the ground up to the bottom of notch. Points were gathered along major concrete roads with the aid of a vehicle which moved at a speed of 20-40 kph, cutting across the flight strips of the DAC with the aid of available topographic maps and Google Earth[™] images.

Figure 51. Ground Validation setup: A Trimble® SPS 882, mounted in a 2-meter pole and attached in front of the vehicle

The survey covered Municipalities of Rosario and Trento in Agusan Del Sur andtwelve (12) municipalities in Surigao Del Sur namely: Barobo, Bayabas, Cagwait, Cortes, Hinatuan, Lanuza, Lianga, Marihatag, San Agustin, San Miguel, Tagbina and Tago including Bislig and Tandag City of Surigao Del Sur. The routestarted in Brgy. Zone 14, Municipality of Lanuza, Surigao Del Sur, going down through the National High Way and ended in Brgy. Santa Maria, Municipality of Trento, Agusan Del Sur, A total of 27,314 points were gathered with approximate length of 268 km using SS-130, SS-99, SS-160, SRS-54, and UP-TAG1 as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 51.

Figure 52. LiDAR Ground validation points acquisition survey extent in Bislig River Basin

4.7 River Bathymetric Survey

Bathymetric survey was executedon September 1-2, 2015 using Trimble[®] SPS 882 in GNSS PPK survey technique and an installed Ohmex[™] Single Beam echo sounder mounted at the side of a boat as shown inFigure 52.

Figure 53. Bathymetry Set-up using OHMEX[™] single beam echo sounder with a Trimble[®] SPS 882

The survey started at two different location in Brgy. Mone, Bislig City with coordinates 8°10'56.82616"N, 126°15'26.93720"Eand 8°09'59.70792"N, 126°17'02.60332"E, down to the mouth of the river in Brgy. Kahayag, also in Bislig City with coordinates 8°13'39.245212"N, 126°19'06.68723"E.The NAMRIA established control point SS-130 was used as base station all throughout the bathymetric survey.

There is a total of 17,194 points covering 16.6 km of the river were gathered during the survey traversing five (5) barangays namely: Burboanan, Kahayag, Mone, Poblacion and San Fernando. A CAD drawing was also produced to illustrate the Bislig riverbed profile. As shown in Figure C-23 and Figure C-24, the highest and lowest elevation garnered 11-meter difference. The highest elevation observed was -0.164meter below mean sea level located in Brgy. Kahayagwhile the lowest was -11.532 meter below mean sea level locate in Brgy. San Fernando, both in Bislig City.

Figure 54. Bathymetric survey of Bislig River

Figure 55. Riverbed profile of from left upstream tributary down to the mouth of Bislig River

Figure 56. Riverbed profile of from right upstream tributary until the intersection of tributaries

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Bislig River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from two automatic rain gauges (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This is Manat Elementary School ARG and Bislig National High School ARG. (Figure 56).

The total precipitation for this event in Manat rain gauge from 20 November 2015 11:00 to 25 November 2015 00:15 is 73.4 mm. It has a peak rainfall of 79.8 mm on 21 November 2015 12:30. The lag time between the peak rainfall and its corresponding peak discharge at Burboanan Bridge is 3 hours and 45 minutes.

Figure 57. Location map of Bislig HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Burboanan Bridge, Bislig City, Surigao del Sur (8°10'54.46"N, 126°15'23.23"E). It gives the relationship between the observed water levels from Burboanan Bridge and outflow of the watershed at this location.

For Burboanan Bridge, the rating curve is expressed as $Q = 48.992H^2 + 15.978H + 6.9255$ as shown in Figure 58.

Figure 58. Cross-Section Plot of Burboanan Bridge

Figure 59. Rating Curve at Burboanan Bridge, Bislig City, Surigao del Sur

This rating curve equation was used to compute the river outflow at Burboanan Bridge (Figure 58) and was utilized for the calibration of the HEC-HMS model. Peak discharge is 77.76 cubic meter per second (cms) at 06:30 AM, November 19, 2015.

Figure 60. Rainfall at Manat ARG and outflow data at Burboanan Bridge used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Hinatuan Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Bislig watershed. The extreme values for this watershed were computed based on a 42-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION													
T (yrs)	5 min	10 min	15 min	20 min	30 min	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs			
2	12.1	24.2	27.2	36.2	45.4	61.8	85.8	103.8	132.7	164.3	201			
5	15.9	31.9	35.9	47.8	60.4	82.8	116.9	141.9	190.6	230.6	276.5			
10	18.5	41.8	41.7	55.5	70.2	96.6	137.5	167.2	228.9	274.4	326.5			
25	21.7	43.3	49	65.3	82.7	114.2	163.5	199.1	277.3	329.8	389.7			
50	24.1	48.1	54.4	72.5	92	127.2	182.8	222.8	313.2	370.9	436.6			
100	26.4	52.8	59.8	79.7	101.2	140.1	202	246.3	348.8	411.7	483.1			

Table 30. RIDF values for Hinatuan Rain Gauge computed by PAGASA

Figure 61. Location of Hinatuan RIDF Station relative to Bislig River Basin

Figure 62. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

Using the SAR-based DEM, the Bislig basin was delineated and further subdivided into subbasins. The model consists of 189 sub basins, 96 reaches and 97 junctions. This basin model is illustrated in Figure 62. It was calibrated using data gathered through hydrological measurement at Burboanan Bridge.

Figure 63. The Bislig river basin model generated using HEC-HMS

5.4 Cross-Section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 64. River cross-section of Bislig River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

Figure 65. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

Figure 66. Generated 100-year rain return hazard map from FLO-2D Mapper

Figure 67. Generated 100-year rain return flow depth map from FLO-2D Mapper

5.6 Results of HMS Calibration

After calibrating the Bislig HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 67 shows the comparison between the two discharge data.

Figure 68. Outflow Hydrograph of Puyo Bridge produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 31 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	1.54-80.12
Basin 1	LUSS	SCS Curve number	Curve Number	36 - 97
	Transform	SCS Unit Hydrograph	Lag Time (min)	8.68 to 189
	ITANSIOTTI		Lag Time (Tim)	
	Deceflow	Decession	Recession Constant	0.75
	Basenow	Recession	Ratio to Peak	0.25
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.05

Table 31. Range of Calibrated Values for Silaga

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 1.54-80.12mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 36 to 97 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area. For Bislig, the basin mostly consists of grasslands and the soil consists of clay, clay loam, and hydrosol and undifferentiated.

Lag time is the travel time of runoff in a watershed. The range of calibrated values from 8.68 to 189 minutes determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is he ratio of the baseflow discharge to the peak discharge. Recession constant of 0.75 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Bislig model basin parameters are presented in Annex 9.

Manning's roughness coefficient of 0.05 corresponds to the common roughness of Philippine watersheds. Bislig river basin is determined to anopen forests.

r ²	0.7444
NSE	0.677
PBIAS	-22.737
RSR	0.568

Table 32. Summary of the Efficiency Test of Bislig HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified to be 0.043 m³/s.

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.7444.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model, with E = 1 being the optimal value. The model attained an efficiency coefficient of 0.677.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. The optimal value is 0. In the model, the PBIAS is -22.737.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.568.

After calibrating the Bislig HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 15 shows the comparison between the two discharge data.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 16) shows the Bislig outflow using the Hinatuan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 69. Outflow hydrograph at Bislig Station generated using the Hinatuan RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Bislig discharge using the Hinatuan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m3/s)	Time to Peak
5-Year	200.93	20.97	1,621.24	2 hours and 40 minutes
10-Year	276.41	27.65	2,745.35	2 hours and 20 minutes
25-Year	326.39	32.13	3,548.52	2 hours and 10 minutes
50-Year	389.57	37.74	4,592.40	2 hours and 0 minute
100-Year	436.45	41.90	1,288.11	2 hours and 0 minute

Table 33. Peak values of the Bislig HEC-HMS Model outflow using the Hinatuan RIDF

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Bislig River using the HMS outflow of Typhoon Seniang is shown in Figure 69.

Figure 70. Sample output of Bislig RAS Model. Flood depth and extent at Bislig River basin during typhoon "Seniang"

5.9 Flood Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. The 5-, 25-, and 100-year rain return scenarios of the Bislig floodplain are shown in Figures 18 to 23.

The generated flood hazard maps for the Bislig Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

	Area Covered in sq. km.			
warning Level	5 year	25 year	100 year	
Low	8.22	8	8.09	
Medium	13.5	15	14.93	
High	10.9	13	17.69	

Table 34. Area covered by each warning level with respect to the rainfall scenario

insert assessment

The resulting hazard and flow depth maps for the 5-, 25-, and 100-year rain return scenarios of the Bislig floodplain are shown in Figure 70 to Figure 75.

74

Figure 73. 25-year Flood Hazard Map for Bislig Floodplain

Figure 74. 25-year Flow Depth Map for Bislig Floodplain

Figure 76. 100-year Flow Depth Map for Bislig Floodplain

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Bislig River Basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of 18 barangays are expected to experience flooding when subjected to 5-, 25- and 100-yr rainfall return period. Annexes 12 and 13 list the educational and health institutions, respectively, that will be affected by flooding in Bislig River Basin.

For the 5-year return period, 0.06% of the municipality of Trento with an area of 555.7 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00%, 0.00%, 0.02%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

BISLIG BASIN	Affected Barangays in Trento (sq. km.)			
	San Isidro	Tudela		
1	0.343739	0.016564		
2	0.011737	0.0001		
3	0.011719	0.00019		
4	0.023302	0.0001		
5	0.084487	0		
6	0.145219	0		

Table 35. Affected Areas in Trento during 5-Year Rainfall Return Period

Figure 77. Affected Areas in Trento during 5-Year Rainfall Return Period

For the 5-year return period, 15.80% of the municipality of Bislig City with an area of 331.8 sq. km. will experience flood levels of less than 0.20 meters. 1.94% of the area will experience flood levels of 0.21 to 0.50 meters while 2.16%, 2.63%, 1.44%, and 0.52% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

	Affected Area (sq. km.)						
BISLIG BASIN	1	2	3	4	5	6	
Burboanan	5.355405	0.630108	1.177065	2.778807	1.221811	0.51225	
Coleto	5.243453	0.457245	0.387269	0.301191	0.15189	0.0141	
Comawas	2.371736	0.852049	1.172328	0.064071	0.012678	0.003025	
Kahayag	3.115882	0.372069	0.375485	0.613451	0.230711	0	
Maharlika	2.143248	0.080239	0.057112	0.061819	0.298918	0.037583	
Mangagoy	0.034153	0.001202	1.91E-06	0	0	0	
Mone	7.265391	0.777851	1.742984	3.406909	1.511861	0.605237	
Pamanlinan	2.342655	0.095458	0.073312	0.086438	0.116868	0.012642	
Poblacion	4.290089	1.701236	0.772067	0.102078	0.393195	0.13948	
San Antonio	5.983591	0.187832	0.122845	0.138963	0.140819	0.037825	
San Fernando	2.916295	0.663185	0.650742	0.536473	0.056907	0.157234	
San Isidro	0.343739	0.011737	0.011719	0.023302	0.084487	0.145219	
San Jose	5.914436	0.152969	0.156085	0.241637	0.450747	0.035314	
San Roque	4.505012	0.319522	0.257528	0.191708	0.096663	0.0118	
Santa Cruz	0.394461	0.018878	0.006462	0.001961	0	0	
Sibaroy	0.2067	0.111294	0.195348	0.189208	0.000664	0	

Table 36. Affected Areas in Bislig City during 5-Year Rainfall Return Period

Figure 78. Affected Areas in Bislig City during 5-Year Rainfall Return Period

For the 25-year return period, 0.06% of the municipality of Trento with an area of 555.7 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00%, 0.00%, 0.02%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

	Affected Barangays in Trento (sq.km.)				
DISEIG DASIN	San Isidro	Tudela			
1	0.342464	0.016564			
2	0.012091	0.0001			
3	0.01245	0.00019			
4	0.023692	0.0001			
5	0.084351	0			
6	0.145155	0			

Table 37. Affected Areas in Trento during 25-Year Rainfall Return Period

Figure 79. Affected Areas in Trento during 25-Year Rainfall Return Period

For the 25-year return period, 14.81% of the municipality of Bislig City with an area of 331.8 sq. km. will experience flood levels of less than 0.20 meters. 1.91% of the area will experience flood levels of 0.21 to 0.50 meters while 2.31%, 3.17%, 1.69%, and 0.58% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

	Affected Barangays in Bislig City (sq. km.)						
BISLIG BASIN	1	2	3	4	5	6	
Burboanan	5.105792	0.535564	1.047424	2.930324	1.506629	0.549712	
Coleto	5.042753	0.500843	0.446802	0.35693	0.192119	0.0157	
Comawas	2.002168	0.762632	1.311256	0.378928	0.015978	0.004925	
Kahayag	2.875121	0.409362	0.367192	0.663546	0.392376	0	
Maharlika	2.10067	0.092038	0.065166	0.066243	0.300552	0.054249	
Mangagoy	0.034153	0	0.001204	0	0	0	
Mone	7.02331	0.814841	1.611578	3.50108	1.742597	0.616827	
Pamanlinan	2.294284	0.103066	0.084313	0.09373	0.135533	0.016447	
Poblacion	3.205068	1.852799	1.303021	0.494502	0.319533	0.223221	
San Antonio	5.831809	0.203337	0.144991	0.153251	0.207374	0.071114	
San Fernando	2.603319	0.441487	0.636253	1.047707	0.071609	0.180462	
San Isidro	0.342464	0.012091	0.01245	0.023692	0.084351	0.145155	
San Jose	5.841141	0.155859	0.162558	0.253896	0.48912	0.048614	
San Roque	4.333981	0.35187	0.294707	0.2474	0.140708	0.013568	
Santa Cruz	0.379889	0.025719	0.011856	0.004136	0.000161	0	
Sibaroy	0.133642	0.08772	0.164079	0.299534	0.018239	0	

Table 38. Affected Areas in Bislig City during 25-Year Rainfall Return Period

Figure 80. Affected Areas in Bislig City during 25-Year Rainfall Return Period

For the 100-year return period, 0.06% of the municipality of Trento with an area of 555.7 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00%, 0.00%, 0.01%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

BISLIG BASIN	Affected Barangays in Trento (sq. km.)			
	San Isidro	Tudela		
1	0.328561	0.016364		
2	0.008889	0.0003		
3	0.011876	0.00019		
4	0.02171	0		
5	0.062588	0.0001		
6	0.18658	0		

Table 39. Affected Areas in Trento during 100-Year Rainfall Return Period

Figure 81. Affected Areas in Trento during 100-Year Rainfall Return Period

For the 100-year return period, 13.83% of the municipality of Bislig City with an area of 331.8 sq. km. will experience flood levels of less than 0.20 meters. 1.83% of the area will experience flood levels of 0.21 to 0.50 meters while 2.20%, 3.16%, 2.74%, and 0.73% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) **BISLIG BASIN** 2 1 3 4 5 6 Burboanan 4.815261 0.404789 0.725154 2.212117 2.848554 0.669571 Coleto 4.815244 0.52253 0.499287 0.432921 0.263616 0.02155 Comawas 1.773716 0.74222 1.222012 0.713258 0.019055 0.005625 0.454796 0.370493 0.693624 0.455268 Kahayag 2.733416 0 0.071585 Maharlika 2.063178 0.104218 0.071857 0.286054 0.082026 0.034153 0.001204 0 Mangagoy 0 0 0 6.5543 0.711051 1.090051 3.224513 3.060552 Mone 0.669765 2.230454 Pamanlinan 0.11014 0.093301 0.104772 0.153514 0.035193 1.77781 Poblacion 2.078104 1.883183 0.917389 0.384572 0.357086 5.718708 0.214931 0.160245 0.168174 0.249749 0.100067 San Antonio San Fernando 2.280929 0.375747 0.512687 1.078674 0.542803 0.189996 San Isidro 0.008889 0.328561 0.011876 0.02171 0.062588 0.18658 5.772257 0.154621 0.160133 0.240333 0.548934 0.074909 San Jose San Roque 4.193128 0.373893 0.317766 0.295865 0.184163 0.017418 0.03239 Santa Cruz 0.36936 0.014254 0.005597 0.000161 0 Sibaroy 0.115656 0.084981 0.149711 0.319704 0.033162 0

Table 40. Affected Areas in Bislig City during 100-Year Rainfall Return Period

Figure 82. Affected Areas in Bislig City during 100-Year Rainfall Return Period

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 277 points (Annex 11) randomly selected all over the Bislig flood plain. It has an RMSE value of 0.82.

Figure 83. Flood Validation Points of Aringay River Basin

		Modeled Flood Depth (m)						
BISLIG	DASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
ч	0-0.20	124	30	22	11	2	0	189
eptl	0.21-0.50	20	7	9	3	0	0	39
Др	0.51-1.00	10	3	9	4	2	2	30
00] (m)	1.01-2.00	6	0	0	8	2	2	18
al F	2.01-5.00	0	0	0	0	0	0	0
ctu	> 5.00	0	0	0	0	0	0	0
Ā	Total	160	40	40	26	6	4	276

Table 41. Actual Flood Depth vs Simulated Flood Depth in Bislig

The overall accuracy generated by the flood model is estimated at 53.62%, with 148 points correctly matching the actual flood depths. In addition, there were 68 points estimated one level above and below the correct flood depths while there were 39 points and 21 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 89 points were overestimated while a total of 39 points were underestimated in the modelled flood depths of Bislig.

	No. of Points	%
Correct	148	53.62
Overestimated	89	32.25
Underestimated	39	14.13
Total	276	100.00

Table 42. Summary of Accuracy Assessment in Bislig

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Bislig Floodplain Survery

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitiude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg;
	Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey

SRS-61

August 15, 20 nformation is as follow MONE ation: Hgt: 2.46400 m. Hgt: 74.71500 m. 5 52 Highschool compound
MONE ation: Hgt: 2.46400 m. Hgt: 74.71500 m. 5 52 Highschool compound
MONE ation: Hgt: 2.46400 m. Hgt: 74.71500 m. 5 52 Highschool compound
MONE ation: Hgt: 2.46400 m. Hgt: 74.71500 m. 5 52 Highschool compound
MONE ation: Hgt: 2.46400 m. Hgt: 74.71500 m. 5 52 Highschool compound
MONE ation: Hgt: 2.46400 m. Hgt: 74.71500 m. 5 52 Highschool compound
Hgt: 2.46400 m. Hgt: 74.71500 m. 5 52 Highschool compound
Hgt: 2.46400 m. Hgt: 74.71500 m. 5 52 Highschool compound
Hgt: 74.71500 m. 5 52 Highschool compound
Hgt: 74.71500 m. 5 52 Highschool compound
5 52 Highschool compound
5 52 Highschool compound
52 Highschool compound
Highschool compound
Highschool compound
. Mark is the head of a RS-61 2007 NAMRIA.
EN, MNSA
Geodesy Branch
4 1 6 0 6 2 8
4 1 6 0 6 2 8

SRS-60

	CERTIFICATION	, laguel 66, 2011
To whom it may concern:		
This is to certify that according	to the records on file in this office, the req	uested survey information is as follows -
	Province: SURIGAO DEL SUR Station Name: SRS-60 Order: 2nd	
Island: MINDANAO Municipality: BISLIG		Barangay: STA. CRUZ MSL Elevation:
l atitude: 8º 15' 26 63928"	PRS92 Coordinates	Ellipsoidal Hat: 83 08300 m
Landad. 0 10 20.00020	WGS84 Coordinates	
Latitude: 8º 15' 23.26276"	Longitude: 126° 18' 2.07013"	Ellipsoidal Hgt: 155.22600 m.
	PTM / PRS92 Coordinates	
Northing: 913248.992 m.	Easting: 643129.132 m.	Zone: 5
Northing:	UTM / PRS92 Coordinates Easting:	Zone:
	Location Description	
From barangay hall 100 m SE to B compound, on the SW ground corr of cement block embedded on the	rgy. Health Center, the station is located in her near the bamboo fence. Mark is the he ground with inscriptions SRS-60 2007 NA	nside the barangay health center ad of a 3" copper nail set at the center MRIA.
Requesting Party:ENGR. CHRISPupose:ReferenceOR Number:8799670 AT.N.:2014-1784	STOPHER CRUZ	RUEL DM. BELEN, MNSA
	Directo	r, Marpping And Geodesy Branch

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Teil. No.: (632) 810-4831 to 41 Branch : 421 Barraca SI. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

SRS-57

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

SS-124

Project Information				Coordinate Sy	ratem						
Name:				Name:		UTM					
Size:				Datum:		PRS 92					
Modified:	10/12/20	12 4:40:11 PM (UTC:-6)	Zone: 51 North (123E)							
Time zone:	Mountain	Standard Time		Geoid: EGMPH							
Reference number:				Vertical datur	n:						
Description:											
		Bas	eline Proce	ssing Rep	ort						
			Processing §	Summary							
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipeoid Dist. (Meter)	∆Height (Meter)			
BMSS-124 SRS- 60 (B1)	SRS-60	BMSS-124	Fixed	0.004	0.016	168°53'56"	4369.046	-79.26			
			Acceptance	Summary	_						
Processes	d	Pass	Acceptance :	Summary Fleg	P		Fall	-			
Processe 1	d	Pase 1	Acceptance :	Summary Fleg 0	P		Fall 0	-			
Processed 1	d	Pase 1 BMSS-124 - 3	Acceptance : ed SRS-60 (8:56:3	Summary Fleg 0 13 AM-10:21:	47 AM) (S	1)	Fall				
Processed 1 Baseline observation	d 	Pas: 1 BMSS-124 - 3	Acceptance : ed SRS-60 (8:56:3 BMSS 10/12	Summary Flag 0 3 AM-10:21: -124 SRS-60	47 AM) (S	1)	Fall 0				
Processed 1 Baseline observation Processed: Solution type:	d	Pas 1 BMSS-124 - 1	Acceptance 3 ed SRS-60 (8:56:3 BMSS 10/13/ Elved	Summary Flag 0 13 AM-10:21: 124 SRS-60 2016 12:59:34	47 AM) (S 0 (B1) PM	1)	Fall 0	•			
Processed 1 Baseline observation Processed: Solution type: Frequency used:	d 	Pas: 1 BMSS-124 - 3	Acceptance 3 ed SRS-60 (8:56:3 BMSS 10/13/ Fixed Dual F	Summary Flag 0 33 AM-10:21: -124 SRS-60 2016 12:59:34 1 requency (L1, L	47 AM) (S 0 (B1) PM	1)	Fall 0				
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision:	d	Pas 1 BMSS-124 - 3	Acceptance 3 ed SRS-60 (8:56:3 BMSS 10/13/ Fixed Dual F 0.004	Summary Flag 0 3 AM-10:21: 3-124 SRS-60 2016 12:59:34 Frequency (L1, I m	47 AM) (S 0 (B1) PM -2)	1)	Fall 0	•			
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision: Vertical precision:	d 	Pass 1 BMSS-124 - 3	Acceptance 3 ed SRS-60 (8:56:3 BMSS 10/13/ Fixed Dual F 0.004 0.016	Summary Fleg 0 3 AM-10:21: 3-124 SRS-60 2016 12:59:34 1 Frequency (L1, L m m	47 AM) (S 0 (B1) PM _2)	1)	Fall 0				
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision: Vertical precision: RMS:	d	Pas 1 BMSS-124 - 3	Acceptance 3 ed SRS-60 (8:56:3 BMSS 10/13/ Fixed Dual F 0.004 0.016 0.003	Summary Flag 0 3 AM-10:21: 3 A	47 AM) (S 0 (B1) PM -2)	1)	Fall 0	•			
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision: Vertical precision: RMS: Maximum PDOP:	d 1	Pass 1 BMSS-124 - 3	Acceptance 3 ed SRS-60 (8:56:3 BMSS 10/13/ Fixed Dual F 0.004 0.016 0.003 2.274	Summary Fleg 0 33 AM-10:21: 3-124 SRS-60 2016 12:59:34 1 Frequency (L1, L m m m	47 AM) (S 0 (B1) PM -2)	1)	Fall 0				
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision: Vertical precision: RMS: Maximum PDOP: Ephemeris used:	d	Pas 1 BMSS-124 - 3	Acceptance 3 96 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Summary Flag 0 3 AM-10:21: 3 AM-10:21: 3 -124 SRS-60 2016 12:59:34 1 Frequency (L1, I m m m	47 AM) (S 0 (B1) PM -2)	1)	Fall 0				
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision: Vertical precision: RMS: Maximum PDOP: Ephemeris used: Antenna model:	d 1	Pass 1 BMSS-124 - 3	Acceptance 3 ed SRS-60 (8:56:3 BMSS 10/13/ Fixed Dual F 0.004 0.016 0.003 2.274 Broad Trimbl	Summary Summary Flag 0 3 AM-10:21: 0 3-124 SRS-60 0 2016 12:59:34 0 Frequency (L1, I 0 m 0 cast 0 le Relative 0	47 AM) (S 0 (B1) PM _2)	1)	Fall 0	-			
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision: Vertical precision: RMS: Maximum PDOP: Ephemeria used: Antenna model: Processing start time	d	Pas 1 BMSS-124 - 3	Acceptance 3 96 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Summary Flag 0 3 AM-10:21: 3-124 SRS-60 2016 12:59:34 1 Frequency (L1, I m m m cast le Relative 14 8:56:33 AM	47 AM) (S 0 (B1) PM _2) (Local: UTC	1)	Fall 0				
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision: RMS: Maximum PDOP: Ephemeris used: Antenna model: Proceesing start time Processing stop time	d	Pass 1 BMSS-124 - 3	Acceptance 3	Summary Flag 0 3 AM-10:21: 3 AM-10:21: 3 -124 SRS-60 2016 12:59:34 1 2016 12:59:34 1 3	(Local: UTC (Local: UTC	+8hr) C+8hr)	Fall 0				
Processed 1 Baseline observation Processed: Solution type: Frequency used: Hortzontal precision: RMS: Maximum PDOP: Ephemeris used: Antenna model: Processing start time Processing stop time	d	Pas 1 BMSS-124 - 3	Acceptance 3 96 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Summary Flag 0 3 AM-10:21: -124 SRS-60 2016 12:59:34 1 Frequency (L1, I m m m cast e Relative 14 8:56:33 AM 14 10:21:47 AN 14	47 AM) (S 0 (B1) PM _2) (Local: UTC ((Local: UTC	+8hr) C+8hr)	Fall 0				

Vector Components (Mark to Mark)

From:	SRS-60				
	Grid		Local		Global
Easting	863521.635 m	Latitude	N8°15'26.63928*	Latitude	N8°15'23.26276"
Northing	914200.696 m	Longitude	E126°17'56.66192"	Longitude	E126°18'02.07013*
Elevation	86.358 m	Height	83.083 m	Height	155.226 m
To:	BMSS-124	a () A daar		1	
	Grid		Local		Global
Easting	864399.330 m	Latitude	N8°13'07.07643*	Latitude	N8°13'03.71088"
				1	
Northing	000015.188 m	Longitude	E126°18'24.14675"	Longitude	E126°18'20.55843*

Vector					
ΔEasting	877.695 m	NS Fwd Azimuth	168°53'56"	AX	-995.278 m
ΔNorthing	-4285.508 m	Ellipsoid Dist.	4369.046 m	ΔY	-66.246 m
ΔElevation	-79.227 m	∆Height	-79.262 m	ΔZ	-4254.421 m

Standard Errors

Vector errors:					
σ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.005 m
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔY	0.006 m
σ ΔElevation	0.008 m	σ∆Height	0.008 m	σΔΖ	0.002 m

Aposteriori Covariance Matrix (Meter*)

	x	Y	z
x	0.0000292083		
Y	-0.0000323684	0.0000417973	
z	-0.0000075535	0.0000094738	0.0000049392

Occupations

6	From	То
Point ID:	SRS-60	BMSS-124
Data file:	C:\Users\Windows User\Documents \Business Center - HCE\Unnamed (3)\SRS60 (Modular) 8-3-14 [1.685m].T02	C:\Users\Windows User\Documents \Business Center - HCE\Unnamed (3)\BMSS124 (Rover) 8-3-14 [1.768m].T02
Receiver type:	SPS852	SPS985
Receiver serial number:	5203K81512	5245F15374
Antenna type:	Zephyr Geodetic 2	SPS985 Internal
Antenna serial number:		
Antenna height (measured):	1.685 m	1.768 m
Antenna method:	Bottom of notch	Antenna Phase Center

Tracking Summary

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO PARINGIT, D.ENG	UP-TACAGP
Data Acquisition	Data Component Project Leader – I	ENGR. CZAR JAIKIRI SARMIENTO	UP-TCAGP
	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Research Specialist	ENGR. LOVELYN ASUNCION	UP-TCAGP
	(SupSRS)	LOVELY GRACIA ACUNA	UP-TCAGP
	FIEL	.D TEAM	
LiDAR Operation	Research Associate (RA)	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
	RA	MA. REMEDIOS VILLANUEVA	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	JONATHAN ALMALVEZ	UP-TCAGP
LiDAR Operation	Airborne Security	SSG. OLIVER SACLOT	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. JEFFREY JEREMY ALAJAR	ASIAN AEROSPACE CORPORATION (AAC)
LiDAR Operation		CAPT. ANGELO GARCHITORENA	AAC

Floodplain
r Bislig
Sheet fo
Transfer
. Data
Annex 5

SERVER	LOCATION		Z:DACKAW	ZUDACIRAW	DATA	DATA										
PLAN	KML		NA		NA	NA	-									
FLIGHT	Actual	ALIMAN	13		11	11										
OPERATOR	LOGS	(OPLOG)	1KB	+	1KB	avia	avi									
TION(S)	Dara Info	(txt)	front little	IKB	1KB		1KB									
BASE STA		BASE	ICINICIALS	14.6	14.6		11				tı(ı)¢					
	-	DIGITIZER		NA	MA		NA				2					
		RANGE		12.3	000	3.94	10.1				A RIET					
ig ready)	DON LOG	FILE/CASI	LOGS	567		149	NA				10101	0				
9/30/2014(Bisl	-	RAW	IMAGES/CASI	7 2 2	10.1	12.4	NA			Received by	Name Position Signature					
0		ane	2	-	192	108		231								
			LOGS(MB)		1.7	402		1.03								
		AS	KML	(impans)	1156	237	501	228								
		RAW	Output LAS		NA		NA	NA								
			SENSOR		AQUARIUS		AQUARIUS	AQUARIUS			AP A PACK)				
		2	IISSION NAME			3LK66C5248A	SLK66RS248B	-			aceived from ame C C sistion K					
			FLIGHT NO.		10100	3	1912A 36	10180	36		α z d š					
			DATE			+107-C-6	9-5-2015		+107-R-R							
FAN/LASFAN/LASFAN/LASFAN/LASFAN/LASFAN/LASFAN/LASFAUALFLECARIMAGENICASIMAGENI	FRUNC FRUNC <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>															
--	---	----------	---------------	-------------	----------	-----	--------------------	------------	---------	-----------	--------------------	---------------------	----------	--------	--------	--------------------
SENSOR Luput Las (watti) KML (watti) Loos(MB) (watti) POS MadES/CASI Loos(S) Loos RAME District Base into Loos Actual KML quarius NA $477/245$ 1:19 257 81.9 605 13 2.39 9.32 148 178 473 $9/8$ quarius NA 563 922 174 53.7 462 9.97 9.32 148 $4/3$ $9/8$ quarius NA 529 922 174 53.7 462 9.97 616 17.4 148 169 4 9 quarius NA $301/475$ 151 244 100 674 14.2 NA 17.4 148 148 4 9 $10/11$ quarius NA 590 161 14.2 14.2 10.4 17.4 17.8 148 149 $10/11$ quarius	ENSOF Under Lus KmL Locs(m) Pos Madewords Control Standing Evening Road Form Standing Form Standing Form Standing Form Standing Form Standing Form Form Form Standing Form <		RA	N LAS				MISSIONIOG			BASE STI	(TION(S)	OPERATOR	FLIGHT	- PLAN	SERVER
Adminus NA 477/245 1.19 257 81.9 605 13 2.39 9.32 148 4/3 4/3 9/8 Aquantus NA 563 922 174 53.7 465 9.97 NA 9.32 148 148 4/3 9/8 Aquantus NA 563 922 174 53.7 462 9.97 8 17.4 148 148 4 9 Aquantus NA 529 909 212 61.2 437 9.97 8 17.4 148 148 4 9 10/11 Aquantus NA 529 909 212 61.2 437 0.94 17.4 17.8 148 4 9 10/11 Aquantus NA 589/45 1.00 67.4 10.4 10.7 17.8 148 148 149 11/9 Aquantus NA 589/45 1.06 226.0 10.3	Aquartus Nu 477/245 1.19 257 81.9 605 13 2.39 9.32 168 4/3 9/8 20000A Aquartus Nu 563 922 174 53.7 462 9.9 NA 9.32 168 168 4 9 20000A Aquartus Nu 553 922 174 53.7 462 9.9 NA 9.32 168 168 4 9 20000A Aquartus Nu 529 909 212 61.2 437 9.97 6 17.4 17.8 168 4 9 2000AA Aquartus Nu 301/475 1.51 244 100 674 1.107 17.8 168 144 11.9 2000AA Aquartus Nu 557 9.04 10.01 10.3 520 11.9 168 144 11.19 2000AB Aquartus Nu 357 149	SENSO	DR Output LAS	KML (swath)	LOGS(MB)	POS	RAW IMAGES/CASI	FILEICASI	RANGE	DIGITIZER	BASE STATION(S)	Base Info (.txt)	(OPLOG)	Actual	KML	LOCATION
quartus NA 563 922 174 53.7 462 9.9 NA 9.32 148 48 4 8 quartus NA 523 920 174 53.7 462 9.97 46 9.32 148 148 4 8 quartus NA 529 909 212 61.2 437 9.97 46 17.4 148 148 4 9 quartus NA 301/475 1.51 244 100 674 14.2 NA 17.8 148 4 11/1 quartus NA 589/45 1.06 228 50.4 10.4 107 17.8 148 149 11/1 quartus NA 557 958 10.4 10.4 10.4 10.4 11/1 quartus NA 552 MB 17.8 148 148 11/1 quartus NA 324/239 0.99 24	Aquarius Nu 563 922 174 53.7 462 9.9 NA 9.32 148 4 8 20000RA Aquarius NA 529 909 212 61.2 437 9.97 cg 616 17.4 148 148 9 2000RA Aquarius NA 529 909 212 61.2 437 9.97 cg 616 17.4 148 149 2000RA Aquarius NA 529 151 244 100 674 10.7 17.8 148 19 2000RA Aquarius NA 589/45 1.06 674 10.4 1.07 17.8 148 1.19 2000RA Aquarius NA 557 9.97 10.01 10.3 520 18 148 11/9 2000RA Aquarius NA 323/239 0.99 261 48.6 148 149 11/13 200ARA Aquarius <	Aquarius	NA	477/245	1.19	257	81.9	605	13	2.39	9.32	1KB	1KB	4/3	9/8	ZIDACIRA WDATA
NA 529 909 212 61.2 437 9.97 LB 616 MB 17.4 1KB 1KB 4 9 quarius NA 529 909 212 61.2 437 9.97 LB 17.4 1KB 1KB 4 9 quarius NA 301/475 1.51 244 100 674 14.2 NA 17.8 1KB 1KB 4 10/13 quarius NA 589/45 1.06 228 50.4 500 10.4 1.7 17.8 1KB 1KB 4 11/9 quarius NA 550 MB 1.07 17.8 1KB 1KB 5 11/9 quarius NA 550 MB 17.8 1KB 1KB 5 11/9 quarius NA 324/239 0.99 261 48.6 337 13.9 17.8 1KB 1KB 45 13/1 <td>Aquarius NA 529 909 212 61.2 437 9.97 6 17.4 168 168 4 9 700.004 Aquarius Na 301/475 1.51 244 100 674 14.2 Na 17.8 168 168 5 10/11 200.004 Aquarius Na 301/475 1.51 244 100 674 14.2 Na 17.8 168 5 10/11 200.043 Aquarius Na 589/45 1.06 228 50.4 500 10.4 1.07 17.8 168 4 11/9 200.043 Aquarius Na 529 50.4 500 10.4 1.07 17.8 168 11 200.043 Aquarius Na 324/239 0.99 261 337 13.9 148 148 11/9 200.043 Aquarius Na 324/239 0.99 261 10.8 Na <td< td=""><td>Aquarius</td><td>NA</td><td>563</td><td>922</td><td>174</td><td>53.7</td><td>462</td><td>9.9</td><td>NA</td><td>9.32</td><td>1KB</td><td>1KB</td><td>4</td><td>00</td><td>ZIDACIRA WDATA</td></td<></td>	Aquarius NA 529 909 212 61.2 437 9.97 6 17.4 168 168 4 9 700.004 Aquarius Na 301/475 1.51 244 100 674 14.2 Na 17.8 168 168 5 10/11 200.004 Aquarius Na 301/475 1.51 244 100 674 14.2 Na 17.8 168 5 10/11 200.043 Aquarius Na 589/45 1.06 228 50.4 500 10.4 1.07 17.8 168 4 11/9 200.043 Aquarius Na 529 50.4 500 10.4 1.07 17.8 168 11 200.043 Aquarius Na 324/239 0.99 261 337 13.9 148 148 11/9 200.043 Aquarius Na 324/239 0.99 261 10.8 Na <td< td=""><td>Aquarius</td><td>NA</td><td>563</td><td>922</td><td>174</td><td>53.7</td><td>462</td><td>9.9</td><td>NA</td><td>9.32</td><td>1KB</td><td>1KB</td><td>4</td><td>00</td><td>ZIDACIRA WDATA</td></td<>	Aquarius	NA	563	922	174	53.7	462	9.9	NA	9.32	1KB	1KB	4	00	ZIDACIRA WDATA
operative NA 301/475 1.51 244 100 674 14.2 NA 17.8 1KB 1KB 5 10/11 operatives NA 301/475 1.51 244 100 674 14.2 NA 17.8 1KB 1KB 5 11/19 operative NA 589/45 1.06 228 50.4 500 10.4 1.07 17.8 1KB 1KB 4/4 11/19 operative NA 557 958 245 4.25/56.4 31/400 10.3 520 MB 11.9 1KB 1KB 5 11/19 operative NA 324/239 0.99 261 48.6 337 13.9 NA 17.8 1KB 1KB 6/5 13/1 operative NA 323/239 0.99 261 48.6 524 10.8 NA 17.8 1KB 1KB 4/6 11/1	Aquarius NA 301/475 1.51 244 100 674 14.2 NA 17.8 1KB 5 10/11 20000Ra Aquarius NA 589/45 1.51 244 100 674 14.2 NA 17.8 1KB 5 11/9 20000Ra Aquarius NA 557 958 245 4.25/56.4 31/400 10.3 520 MB 11.9 1KB 4/4 11/9 20000Ra Aquarius NA 557 958 245 31/400 10.3 520 MB 11.9 1KB 4/4 11/9 2000Fa Aquarius NA 324/239 0.99 261 43.40 10.3 520 MB 17.8 1KB 6/5 13/12 2000CB Aquarius NA 324/239 0.99 261 48.6 10.8 17.8 17.8 17.8 17.8 17.9 17.3 2000CB 200ACB Aquari	Aquarius	NA	579	606	212	61.2	437	9.97 LB	616 100	17.4	1KB	1KB	4	6	Z:DACIRA WDATA
quartus NA 589/45 1.06 228 50.4 500 10.4 1.07 17.8 1/8 1/8 4/4 1/1/9 quartus NA 589/45 1.06 228 50.4 500 10.4 1.07 17.8 1/8 1/8 4/4 1/1/9 quartus NA 557 958 245 4.25/56.4 31/400 10.3 520 MB 11.9 1/8 1/8 5 11 quartus NA 324/239 0.99 261 48.6 337 13.9 NA 17.8 1/8 1/8 6/5 13/1	Image: diagram Image:	Aquarius	NA	301/475	1.51	244	100	674	14.2	NA	17.8	1KB	1KB	5	10/11	Z'IDACIRA WDATA
quarius NA 557 958 245 4.25/56.4 31/400 10.3 520 MB 11.9 1KB 5 11 quarius NA 357 958 245 4.25/56.4 31/400 10.3 520 MB 11.9 1KB 5 11 quarius NA 324/239 0.99 261 48.6 337 13.9 NA 17.8 1KB 6/5 13/1 monoire NA 327/578 1.1 226 52.4 10.8 NA 17.8 1KB 4/6 11/1	Aquarius Na 557 958 245 31/400 10.3 520 Ms 11.9 1KB 1KB 5 11 20000R Aquarius Na 324/239 0.99 261 48.6 337 13.9 NA 17.8 1KB 1KB 6/5 13/12 2000R Aquarius NA 324/239 0.99 261 48.6 337 13.9 NA 17.8 1KB 1KB 6/5 13/12 2004R Aquarius NA 352/578 1.1 226 52.4 10.8 NA 17.8 1KB 1KB 4/6 11/1.3 Z'0AKR	Aquarius	NA	589/45	1.06	228	50.4	500	10.4	1.07	17.8	1KB	1KB	4/4	11/9	Z'IDACIRA WDATA
Automic Dot Dot Dot 261 48.6 337 13.9 NA 17.8 14B 14B 6/5 13/1 quarture NA 324/239 0.99 261 48.6 337 13.9 NA 17.8 14B 14B 6/5 13/1 number NA 327/578 1.1 226 54.9 524 10.8 NA 17.8 14B 4/6 11/1	Aquarius NA 324/239 0.99 261 48.6 337 13.9 NA 17.8 14B 6/5 13/12 ZUDACR Aquarius NA 324/239 0.99 261 48.6 337 13.9 NA 17.8 14B 6/5 13/12 ZUDACR Aquarus NA 352/578 1.1 226 54.9 524 10.8 NA 17.8 14B 4/6 11/13 ZUDACR Aquarus NA 352/578 1.1 226 54.9 524 10.8 NA 17.8 14B 4/6 11/13 ZUDACR	Anuarius	NA	557	958	245	4.25/56.4	31/400	10.3	520 MB	11.9	1KB	1KB	5	11	Z:UACHA WDATA
quantus nue 324/239 0.00 20 54.9 524 10.8 NA 17.8 1KB 1KB 4/6 11/1	Aquanus NA 32.4/239 V.V.V Z.DaCiR Aquanus NA 352/578 1.1 226 54.9 524 10.8 NA 17.8 1KB 4/6 11/13 Z.DaCiR Aquanus NA 352/578 1.1 226 54.9 524 10.8 NA 17.8 1KB 4/6 11/13 Z.DaCiR Received by Received by Name A.D.D.A. R.E.D. Received by R.E.D.		N N	000/100	0 00	261	48.6	337	13.9	NA	17.8	1KB	1KB	6/5	13/12	Z:UDAC/RA WDATA
NA 252/578 1.1 226 34.9 324 10.0 10.0	Aquarius NA 352/578 1.1 226 34.9 324 10.0 100 100 100 100 100 100 100 100 10	Aquanus	NA	324/239			0.1	60.4	10.8	NA	17.8	1KB	1KB	4/6	11/13	ZIDACIRA
	Received by Name ANDA RRETD	Aquarius	NA	352/578	1.1	977	D4.40	176	0.01					-	-	

	SERVER LOCATIO	Z:\DAC\R AWDATA	Z:\DAC\R	Z:IDACIR AWDATA	Z:IDACIR AWDATA	5 AWDATA	ZNDACIR	AWDATA	ZIDACIR	14 AWDATA	1 AWDAU		
TOLAN	KMI	11/0	11	13/12	11/13	13/2	16	00	-	119	5 8/		
	Actual	AIA	4	6/5	4/6	4/8	7	4/9/6		6/7	4/5/5/		6
	OPERAT OR LOGS (OPLOG)	1KB	avt	1KB	1KB	1KB	1KB	1KB		1KB	1KB		
IOTIOLE	ATION(S) Base Info (.txt)	140		1KB	1KB	1KB	1KB	1KB		1KB	1KB		11
TO TO A C	BASE ST BASE STATION	17 0	0.11	17.8	17.8	11.3	9.7	10.6	0.01	9.63	10.5		5/6
	DIGITIZE	4 07	1.01	AN	NA	NA	NA	VIV		NA	NA		RICTO
-	RANGE		4.0	13.0	10.8	12	9.83	0 11	7.01	8.36	16.1		PA SS
	MISSION LOG FILE/CAS	1 LUGS	000	31/400	524	1/343/129	428	001	138	352	760	~	101
	RAW IMAGES/ CASI		00.4	4.00/07.4	54.9	45 8/21.3	56.6		97.4	45.5	105	Received b	Name Position Signature
	POS		07	C45	101 De	45	27.0	4	260	248	267 .		
	OGS(MB		00.	80			. «	0.	.42	372	1.43		
	KML (swath)		09/60	000110	1241233	O ICIZC		con	96/687	15/395	306/715		
	Output		A .	A A				X	A	A	A		
	SENSOR		vquarius ir	vquarius n	Auditus 1	A cuincing	i sniinh	vquarius Ir	quarius N	quarius N	quarius		ANDAYA
	MISSION NAME			3BLK66M218A A	3BLK00LM3219A A	3BLN00L3J3219B	3BLK0055230A A	3BLK661231A A	3BLK66VW233A A	ANS734A	3BLK66ASB238A A		eceived from Name TIN Position DA
	FLIGHT NO.		1/004	1790A	1/94A	Add 1	1838A	1842A	1850A	10EAN	1870A		Ω.
	DATE		4107/G/	/6/2014	1///2014	1//2014	18/2014	19/2014	21/2014		6/2014		

	SERVER	LOCATION	Z:IDACIRAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	
	PLAN	KML	11/12	23	9	
	FLIGHT	Actual	5/6	23	9	
	OPERATOR	(OPLOG)	1KB	1KB	1KB	
	(TION(S)	Base Info (.txt)	1KB	1KB	1KB	
	BASE STA	BASE STATION(S)	18.3	11.7	12.1	6102
		DIGITIZER	13.3	NA	NA	PRIEN
		RANGE	13.7	10.2	11.4	the F
	DO I NOISSI	FILE/CASI	650	366	546	aion
SFER SHEET (BISLIG)	-	RAW IMAGES/CASI	15.9	6.94	5.3	Received by Name Position Signature
0ATA TRANS		POS	269	218	273	
-		(aw)soor	1.44	825	1.15	
	LAS	KML (swath)	353/763	500	737	
	RAW	Output LAS	NA	NA	NA	
		SENSOR	AQUARIUS	AQUARIUS	AQUARIUS	1
		MISSION NAME	3BLK66PSQ223A	3BLK665226A	3BLK66A228A	Received from Name C. J. on C Position F& Signature
		FLIGHT NO.	1810A	1822A	1830A	
		DATE	11-Aug-14	14-Aug-14	16-Aug-14	

Annex 6. Flight Logs for the Flight Missions

Flight Log for 3BLK66GH215A Mission

102

1206H 6 Alrcraft Identification: <i>KPC</i>	18 Total Flight Time:			Lidar Operator MCH Ontrin MCH OAULUAS Signature over Printed Name	D R E A M	
4 Type: VFR 5 Alrcraft Type: Cesnna T Tport of Arrival (Alrport, City/Province):	ke off: 17 Landing:	gurt of wind.		Pilot-in-Command	Disaster Risk and Exposure	
el: Angrius 3 Mission Name: 3BX KocH2 2133. archibreng Route:	0.14y 115 Total Engine Time: 16 Tai 0305	re are gaps due to strong		Acquisition Flight Certified by		
acquistron right us Dperator: MCE Baliayay 2 ALTM Mode JJ Alajay 8Co-Pilot: MA Go	e on: 3, 2014 Bislig e on: 14 Engine off: 507 14 Engine off: 1812	ks: Ission completed but the	lems and Solutions:	Acquisition filght Approved by	00 s kana tang	

Flight Log for 3BLK66HS215B Mission

Filight Lo 577064 6 Almraft Identification: K			18 Total Flight Time:				Lidar Operator MCE Warder, Ma MICE BAULLUGK Signature over Printed Name	D R E A M
r strengt Toma' Cases	Alfcialt Type, cast	al (Airport, City/Province):	17 Landing:				mmand hydrog by a second secon	Disaster Risk and Exposu
	LYOU HD. LZ ODDE: VFH	: 12 Airport of Arriv	: 16 Take off:		area I. meta		Pilotin-Co	
	IUS 3 Mission Name: 00	Province)	15 Total Engine Time		nd 13 liner of u		ruisition Flight Certified by	
	Jaj2 ALTM Model: Payar	12 Alroort of Departu	ngine Off: VOA	Hary	s in area H a Di-ops in liv		by Acc	
a Acquisition Filght Log	Operator: MCE Balig	U Alajar 1800	Augurt 4, 2014	ther	larks: Covered gap Restart the Acertion fi	oblems and Solutions:	Acquisition Fight Approvec Lover Acquisition Fight Approvec Signature over Printed Nan (End User Representative)	

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Flight Log No 6 Aircraft Identification: <i>PP</i> - (18 Total Flight Time:	t		Udar Oberator Marty Mattyle over Printed Name	REAM
升 Type: VFR S Alrcraft Type: CesnnaT206H Nrport of Arrival (Airport, Clty/Province):	ake off: 17 Landing:	LK66J; no digitizer.		Pilot-in-Command	Disaster Risk and Exposure Asses
el: Aquarik 3 Mission Name 3BLK6615[12] 3rch threm9 Route: Departure (Almort, Oty/Prownce): 12 A	117 15 Total Engine Time: 16 T 16 T 16 T	nd surveyed 10 lines over B'		Acquisition Fight Certified by	
A Data Acquisition Flight Log IDAR Operator: MCE BONIQUANTM Mode HOL: JJ Algyr 8 CoMIDE: MA Co Date: 2014	Engine OA: 21 201 14 10 1210 01: 3 08.03 122.00 Weather Clo	Remarks: Completed BLKG6I an		Acquisition Flight Approved by LEOUED HAR KELINCLOD Signature burnted Name (End User Representative)	

6 Alrcraft Identification:		18 Total Filght Time:			Udar Operator <u> Mrt. Millancocu a</u> Signature over Printed Name	OREAM ssment for Mitigation	
5 Aircraft Type: Cesnna T206H	(Airport, City/Province):	17 Landing:			amen batnika	saster Risk and Exposure Asse	
EGS 21743 YPe: VFR	12 Alrport of Arrival	16 Take off:	er BLK666,		Pilot-in-Comm	ă	i name
A a Mission Name 3 R X60	(Alrport, City/Province):	15 Total Engine Time: 0353	d Covered void ov 500 m.		ition Flight Certified by		
CALTM Model: Aguari	12 Airport of Departure	12 doudy	over BLK66E an BLK66E at		Acquis Signar	n de la companya de l	
Data Acquisition Flight Log	Jate: J Alajor Jeco-Pil	Audust 5, 2014 ingine on: 1419 Vesther vesther	lemarks: Mission completed bothy survey over	Problems and Solutions:	Acquisition Filight Approved by LOULDAN HAPLUNCUS Signature over Printed Name (End User Representative)		

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1) $\,$

Flight Log for 3BLK66EGS217B Mission

Flight Log	6 Alrcraft Identification: RV		18 Total Flight Time:				dat Operator	R E A M	
	5 Alrcraft Type: Cesnna T206H	(Airport, City/Province):	17 Landing:				nd LL	Ster Risk and Exposure Assessn	
	USZPADype: VFR	12 Airport of Arrival	16 Take off:				Pilot-In-Comma	Disa	
	lel: Anuarius 3 Mission Name 3BLK66LS	f Departure (Airport, City/Province):	15 Total Engine Time: 0353	and BLKGGL; no digitizer			Acquisition Flight Certified by		
AM Data Acquisition Filght Log	LUDAR Operator: M // ロルセンは ALTM Mod 7 Pilot:) 1 A / かいか 8 Co-Pilot: 小瓜 /	12 Alronto Date: 12 Alronto Dalva	3 Engine On 14 Engine Off: 9 1428 [82] 9 Weather	ORemarks: Counpleted BLK66J		21 Problems and Solutions:	Acquisition Filght Approved by		
DREA	1	1	<u>14 1</u>	<u>,</u>					

del: Andrius a Mission Name: 381K6 (J225 A Type: VFR 5 Aircraft Type: Cesnna T206H 6 Aircraft Identifica Garchirth: Regeneute: sf Departurg (Airport, Gty/Prownce): 12 Airport of Arrival (Airport, Gty/Prownce):	C1+Y 15 Total Engine Time: 16 Take off: 17 Landing: 18 Total Flight Time 04 23 04 23 04 23	over BLK660 with voids due to high terrarin. Jering from line 22.1 to 18; no digitizer.		Acquisition Flight Certified by Pilot-in-Command Ludar Operator Public Part Certified by Pilot-in-Command Ludar Operator Public Part Part Company Co	
AM Data Acquisition Flight Log L LIDAR Operator: MR VI'I I AMUC ZALTM I 7 Pilot: U Aloy OY 8 CO-Pilot: ML 10 Date: 12 Alrog	Angwit 3, 2014 Birlin 13 Engine On: 08 41 By 1304 1304 19 Weather partly	20 Remarks: Covered 13 lin. Camera not tri	21 Problems and Solutions:	Acquisition Flight Approved by LOVEN AS YAO CON Signature over Printed Name (End User Representative)	

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Flight Log for 3BLK66D225A Mission

Flight Log No.: /	Alrcraft Identification: $RP \sim 0$	3 Total Flight Time:	nd 6.2.		Operator MillonuleVel ture over Printed Name
	5 Alrcraft Type: Cesnna T206H 6 /	17 Landing:	to in line 4.2 av		Signed
	DLK66A33999799e:VFR	e: 16 Take off:	no digitizer da		Pilot-In-Command
	Includenting Mission Name 3	City 15 Total Engine Tim	over BLKG6A;		Acquisition Flight Certified by
tion Flight Log	ALAN NI JANNA 20 HIOT MODE	14 16 , 2014 Biclin 14 16 , 14 Engine Off: 0 15 1348	Bathy survey	nd Solutions:	tion Flight Approved by
tEAM Data Acquisit	1 LIDAR Operato 7 Pilot: J) A	13 Engine Of C	20 Remarks:	21 Problems ar	Acquisi

Flight Log for 3BLK66A228A Mission

Flight Log for 3BLK66AS229A Mission

Alrcraft Identificat Stotal Flight Time: Calb-M	Name Ion
Idar 6	R E A I
ircraft Type: CesnnaT206H Landing:	d Name Risk and Exposure Assess
Pilotin-Command U. Obering Distriction Dis	Signature over Printe
(3 Mission Name 281 KGG000 (Airport, Gty/Province): (Airport, Gty/Province): 15 Total Engine Time: 15 Total Engine Time: 16 Total Engine Time: 16 Total Engine Time: 17 Total Engine Time: 18 Total En	entresentative)
Rarry Model: Application 1106: MA Carchibren Bisting City ady port, dark Acquisi	Sterrature (PAF R
cquisition Flight Log Derator: MCE Palipu Must 134, 2014 On: 134, 2014 Connerca C	End User Representative)

Flight Log for 3BLK66DS229B Mission

ر • .

Ilignud Artival Mission Name: 331 KG6/M/93009pe: UFR 541 8 60-Plot: MAL Excelling goute: 12 Apport Departure 12 Apport Departure 12 Apport Departure 14 Engine Off: 12 Apport Departure 15 Total Engine Time: 16 Take off: 171 14 Engine Off: 14 Engine Off: 15 Total Engine Time: 16 Take off: 171 14 Engine Off: 10 Oct Acel Hind 16 Covered 0 14 Engine Off: 10 Oct Acel Hind 16 Covered 0 14 Engine Off: 10 Oct Acel Hind 16 Covered 0 14 Engine Off: 10 Oct Acel Hind 16 Covered 0 14 Engine Off: 10 Oct Acel Hind 16 Covered 0 15 Antor Departure 16 Covered 0 0 14 Engine Off: 10 Oct Acel Hind 10 Covered 0 15 Antor Dependence 10 Oct Acel Hind 10 Covered 0 16 Antor Departure 10 Oct Acel Hind 10 Covered 0 17 Antor Departure 10 Covered 10 Covered 0 18 Acel Hind 10 Covered 10 Covered 0 10 Acel Hind 10 Covered 10 Covered 0 10 Acel Hind 10 Covered 10 Covered 10 Covered 10 Ace	Flight Log / road type: CesnnaT206H 6 Alrcraft Identification: R_{I}	rt, Gty/Province):	anding: 18 Total Flight Time:	e lines		Lidar Operator	Pilsk and Exposure Assessment for Miligation
Induced a ATM Model: Arupry 1/2 AITM Model: Arupros AITM Model: Arupros AITM For Character (AITP) 12 AITM For Character (AITP) 12 AITMONT (Construction) (Construct	Ission Name: کار کر کر کر کی کی کی ادار ا	oute: ort, Gty/Province): 12 Airport of Arrival (Airpo	Total Engine Time: 16 Take off: $17L$	BLK66V and covered G Lightner with camera.		Flight Certified by Pilot-in-Command	Disaste
Log Particles Participation Pa	Log Darlian Ja ALTM Model: Ani norvi Ja Mi	8 co-Pilot: MA For darthregge 12 Arport of Departure (Alpo	2014 Bidlig Uty 15T 14Engine Off: J. 15T 1320 cloud ceiling	m completed over BLKGGW, ino d	lons:	Approved by Acquisition f Acquisition f Arvin Caros Stanture of Inted Name (PAF Repres	

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Flight Log for 3BLK66VW233A Mission

÷.,

Flight Log for 3BLK66BWS234A Mission

Flight Log for 3BLK66ASB238A Mission

114

Flight Log for 3BLK66C245A Mission

Flight Log for 3BLK66CSU248A Mission

IDAP Onerstor / La Material	2 AITAA MANANI VANANI VANAN	21717171717	- youd		Flight Log No.: 10
Pilot: J ALAIAR 8 C	-Pilot: MA CARHI - ARVA	3 MISSION Name: 2010	The Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 1(22
Date: Sert. 5, 2214	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
Engine On: 141	ingine Off:	15 Total Engine Time: 내고 3	16 Take off:	17 Landing:	18 Total Flight Time:
Weather	Party Cloudy	(res 1)			
Remarks: S	vered remaining st	shier make but shin	over Brkuhc	Bukanu	
Problems and Solutions:					
Acquisition Flight Approv	ad by Acqu	uisition Flight Certified by	Pilot-in-Com	pueu	Lidar Operator
Signature over Printed Na (End User Representative	Sign (PAR	ature over Printed Name F Representative)	Signature ove	ar Printed Name	Signature over hinted Name

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1778A	BLK66G & BLK66H	3BLK66GH215A	MR. VILLANUEVA	03-Aug-14	Completed area G and covered 4 lines of area H.
1780A	BLK66H	3BLK66HS215B	MCE BALIGUAS	03-Aug-14	Mission completed but there are gaps due to strong gust of wind
1784A	BLK66H & BLK66I	3BLK66HSI216B	MCE BALIGUAS	04-Aug-14	Covered gaps in area H and 13 lines of area I. Restart the Di-ops in line 8 due to Camera Assertion failure.
1786A	BLK66I & BLK66J	3BLK66ISJ217A	MR. VILLANUEVA	05-Aug-14	Completed area I and 9 lines of area J
1788A	BLK66E & BLK66G	3BLK66EGS217B	MCE BALIGUAS	05-Aug-14	Completed area G and E. (Bathy survey on area E @ 500m.
1796A	BLK66L & BLK66J	3BLK66LSJS219B	MR. VILLANUEVA	07-Aug-14	Completed area L and J.
1798A	BLK66N	3BLK66N220A	MR. VILLANUEVA	08-Aug-14	Mission completed. Digitizer error in line 1, lines 4 onwards has digitizer.
1818A	BLK66D	3BLK66D225A	MR. VILLANUEVA	13-Aug-14	Covered 13 lines. Camera is not triggering in some lines.
1830A	BLK66A	3BLK66A228A	MR. VILLANUEVA	16-Aug-14	Covered 12 lines
1834A	BLK66A	3BLK66AS229A	MR. VILLANUEVA	17-Aug-14	Mission completed. No camera for this flight.
1836A	BLK66D	3BLK66DS229B	MCE BALIGUAS	17-Aug-14	One line left for this mission. No digitzer, camera not triggering in lines 13, 15 & 16
1850A	BLK66V & BLK66W	3BLK66VW233A	MCE BALIGUAS	21-Aug-14	Competed area V. Covered several strips of area W. No digitizer for this flight.
1854A	BLK66B & BLK66W	3BLK66BWS234A	MR. VILLANUEVA	22-Aug-14	Covered 10 lines of area W and 1 line/tieline in area B.
1870A	BLK66A & BLK66B	3BLK66ASB238A	MCE BALIGUAS	26-Aug-14	Completed area B and and area AS (additional/ supplementary flight for area A)
1898A	BLK66C	3BLK66C245A	L. ASUNCION	2-Sep-14	Covered several strips of area C. Camera error in line 3.No images in line 3 onwards. New cam ssd used in line 9. No digitizer
1910A	BLK66C	3BLK66CSU248A	L. ASUNCION	5-Sep-14	Supplementary flight for area C. Completed area C and 4 strips of area U, including tie line. Lost connection with pilot display, pilots had a hard time navigate the line. No digitizer

Annex 7. Flight Status Reports

Swath Coverage of Mission 3BLK66GH215A
 FLIGHT LOG NO. 1778A
 AREA: BLK66G & BLK66H
 MISSION NAME: 3BLK66GH215A
 SWATH AREA: 97.59 sq.km
 PARAMETERS: Alt: 600 m Scan Freq: 40 kHz Scan Angle: 18 deg
 SURVEY COVERAGE:

2. Swath Coverage of Mission 3BLK66HS215B
FLIGHT LOG NO. 1780
AREA: BLK66H
MISSION NAME: 3BLK66HS215B
SWATH AREA: 72.83 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

3. Swath Coverage of Mission 3BLK66F216A
FLIGHT LOG NO. 1782A
AREA: BLK66F
MISSION NAME: 3BLK66F216A
SWATH AREA: 61.16 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

4. Swath Coverage of Mission 3BLK66HSI216B
FLIGHT LOG NO. 1784A
AREA: BLK66H & BLK66I
MISSION NAME: 3BLK66HSI216B
SWATH AREA: 85.07 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

5. Swath Coverage of Mission 3BLK66ISJ217A FLIGHT LOG NO. 1786A AREA: BLK66I & BLK66J MISSION NAME: 3BLK66ISJ217A SWATH AREA: 109.02 sq.km PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg SURVEY COVERAGE:

6. Swath Coverage of Mission 3BLK66EGS217B
FLIGHT LOG NO. 1788A
AREA: BLK66E & BLK66G
MISSION NAME: 3BLK66EGS217B
SWATH AREA: 80.67 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

7. Swath Coverage of Mission 3BLK66LSJS219B

FLIGHT LOG NO.	1796A				
AREA:	BLK66L & BLK66J				
MISSION NAME:	3BLK66LSJS219B				
SWATH AREA:	93.57 sq.km				
PARAMETERS:	Alt: 600 m	Scan Freq: 45 kHz	Scan Angle: 18 deg		
SURVEY COVERAGE:					

8. Swath Coverage of Mission 3BLK6D225A
FLIGHT LOG NO. 1818A
AREA: BLK66D
MISSION NAME: 3BLK66D225A
SWATH AREA: 58.99 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 40 kHz Scan Angle: 25 deg
SURVEY COVERAGE: SURVEY

9. Swath Coverage of Mission 3BLK66A228A
FLIGHT LOG NO. 1830A
AREA: BLK66A
MISSION NAME: 3BLK66A228A
SWATH AREA: 71.64 sq.km
PARAMETERS: Alt: 500 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

10.Swath Coverage of Mission 3BLK66AS229AFLIGHT LOG NO.1834AAREA:BLK66AMISSION NAME:3BLK66AS229ASWATH AREA:60.36 sq.km.PARAMETERS:Alt: 500 mSCan Freq: 45 kHzScan Angle: 18 degSURVEY COVERAGE:

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

11. Swath Coverage of Mission 3BLK66DS229B				
FLIGHT LOG NO.		1836A		
AREA:	BLK66D)		
MISSION NAME	Ξ:	3BLK66	DS229B	
SWATH AREA:	64.78 s	q.km		
PARAMETERS:	Alt: 600) m	Scan Freq: 45 kHz	Scan Angle: 18 deg
SURVEY COVERAGE:				

12.Swath Coverage of Mission 3BLK66VW233A
FLIGHT LOG NO. 1850A
AREA: BLK66V and BLK66W
MISSION NAME: 3BLK66VW233A
SWATH AREA: 114.26 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

13.Swath Coverage of Mission 3BLK66BWS234A
FLIGHT LOG NO. 1854A
AREA: BLK66B and BLK66W
MISSION NAME: 3BLK66BWS234A
SWATH AREA: 42.76 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

14. Swath Coverage of Mission 3BLK66ASB238A
FLIGHT LOG NO. 1870A
AREA: BLK66B and BLK66W
MISSION NAME: 3BLK66ASB238A
SWATH AREA: 133.12 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

15. Swath Coverage of Mission 3BLK66C245A
FLIGHT LOG NO. 1898A
AREA: BLK66C
MISSION NAME: 3BLK66C245A
SWATH AREA: 125.17 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

16. Swath Coverage of Mission 3BLK66CSU248A
FLIGHT LOG NO. 1910A
AREA: BLK66C and BLK66U
MISSION NAME: 3BLK66CSU248A
SWATH AREA: 90.41 sq.km
PARAMETERS: Alt: 600 m Scan Freq: 45 kHz Scan Angle: 18 deg
SURVEY COVERAGE:

Annex 8. Mission Summary Report

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66AB
Inclusive Flights	1830A, 1834A, 1854A & 1870A
Range data size	43.57 GB
POS	963 MB
Base Data	36.63 MB
Image	5.30 GB
Transfer date	September 1 & September 5, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	2.40
RMSE for East Position (<4.0 cm)	3.40
RMSE for Down Position (<8.0 cm)	6.00
Boresight correction stdev (<0.001deg)	0.000551
IMU attitude correction stdev (<0.001deg)	0.003793
GPS position stdev (<0.01m)	0.0042
Minimum % overlap (>25)	42.51
Ave point cloud density per sq.m. (>2.0)	2.91
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	315
Maximum Height	348.55 m
Minimum Height	46.6 m
Classification (# of points)	
Ground	89560497
Low vegetation	90607261
Medium vegetation	176120797
High vegetation	185784702
Building	4444415
Orthophoto	Yes
Processed by	Engr. Angelo Carlo Bongat, Engr. Chelou Prado, Engr. Elainne Lopez

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66C
Inclusive Flights	1910A
Range data size	12.30 GB
POS	257 MB
Base Data	14.6 MB
Image	76.70 MB
Transfer date	October 1, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.50
RMSE for East Position (<4.0 cm)	2.45
RMSE for Down Position (<8.0 cm)	3.60
Boresight correction stdev (<0.001deg)	
IMU attitude correction stdev (<0.001deg)	
GPS position stdev (<0.01m)	
Minimum % overlap (>25)	34.48
Ave point cloud density per sq.m. (>2.0)	3.63
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	199
Maximum Height	488.53 m
Minimum Height	58.26 m
Classification (# of points)	
Ground	23872937
Low vegetation	17575938
Medium vegetation	86039694
High vegetation	136585716
Building	1909135
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Edgardo Gubatanga, Jr., JovyNarisma

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66C Supplement
Inclusive Flights	1898A
Range data size	17.50 GB
POS	286 MB
Base Data	11.6 MB
Image	NA
Transfer date	December 9, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.70
RMSE for East Position (<4.0 cm)	3.00
RMSE for Down Position (<8.0 cm)	3.33
Boresight correction stdev (<0.001deg)	0.000305
IMU attitude correction stdev (<0.001deg)	0.001336
GPS position stdev (<0.01m)	0.0022
Minimum % overlap (>25)	46.08
Ave point cloud density per sq.m. (>2.0)	3.80
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	171
Maximum Height	453.89 m
Minimum Height	55.99 m
Classification (# of points)	
Ground	40234643
Low vegetation	31804155
Medium vegetation	149257312
High vegetation	195565131
Building	5253064
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Edgardo Gubatanga, Jr., Engr. Elainne Lopez

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66D
Inclusive Flights	1818A
Range data size	10.30 GB
POS	257 MB
Base Data	9.12 MB
Image	32.10 MB
Transfer date	September 1, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.90
RMSE for East Position (<4.0 cm)	4.44
RMSE for Down Position (<8.0 cm)	6.40
Boresight correction stdev (<0.001deg)	0.002140
IMU attitude correction stdev (<0.001deg)	0.207778
GPS position stdev (<0.01m)	0.0340
Minimum % overlap (>25)	55.57
Ave point cloud density per sq.m. (>2.0)	4.72
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	109
Maximum Height	596.83 m
Minimum Height	67.34 m
Classification (# of points)	
Ground	16433399
Low vegetation	11267866
Medium vegetation	97149477
High vegetation	167635044
Building	1708000
Orthophoto	Yes
Processed by	Engr. AnalynNaldo, Engr. Christy Lubiano, Engr. John Dill Macapagal

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66D Additional
Inclusive Flights	1836A
Range data size	9.01 GB
POS	178 MB
Base Data	16.5 MB
Image	30.70 MB
Transfer date	September 1, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.00
RMSE for East Position (<4.0 cm)	2.30
RMSE for Down Position (<8.0 cm)	9.50
Boresight correction stdev (<0.001deg)	0.002140
IMU attitude correction stdev (<0.001deg)	0.207778
GPS position stdev (<0.01m)	0.0340
Minimum % overlap (>25)	44.29
Ave point cloud density per sq.m. (>2.0)	3.66
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	86
Maximum Height	474.01 m
Minimum Height	68.93 m
Classification (# of points)	
Ground	21019440
Low vegetation	7224792
Medium vegetation	53328590
High vegetation	69534254
Building	627386
Orthophoto	Yes
Processed by	Engr. AnalynNaldo, Engr. Antonio Chua, Jr., Ryan James Nicholai Dizon

Solution Status

moothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66W
Inclusive Flights	1854A
Range data size	8.36 GB
POS	248 MB
Base Data	9.63 MB
Image	45.50 MB
Transfer date	September 5, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.35
RMSE for East Position (<4.0 cm)	2.00
RMSE for Down Position (<8.0 cm)	4.60
Boresight correction stdev (<0.001deg)	0.000562
IMU attitude correction stdev (<0.001deg)	0.690700
GPS position stdev (<0.01m)	0.0044
Minimum % overlap (>25)	49.70
Ave point cloud density per sq.m. (>2.0)	5.05
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	69
Maximum Height	525.37 m
Minimum Height	121.84 m
Classification (# of points)	
Ground	10,295,205
Low vegetation	7,695,619
Medium vegetation	57,212,416
High vegetation	116,387,163
Building	2,448,182
Orthophoto	Yes
Processed by	Engr. Irish Cortez, AljonRieAraneta, Engr. Melissa Fernandez

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Figure 1.6.7Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66V
Inclusive Flights	1850A
Range data size	15.20 GB
POS	260 MB
Base Data	10.6 MB
Image	97.40 MB
Transfer date	September 5, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.95
RMSE for East Position (<4.0 cm)	2.80
RMSE for Down Position (<8.0 cm)	3.90
Boresight correction stdev (<0.001deg)	0.000725
IMU attitude correction stdev (<0.001deg)	0.003001
GPS position stdev (<0.01m)	0.0029
Minimum % overlap (>25)	46.56
Ave point cloud density per sq.m. (>2.0)	3.82
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	175
Maximum Height	398.12 m
Minimum Height	69.57 m
Classification (# of points)	
Ground	22,755,718
Low vegetation	15,550,523
Medium vegetation	97,044,962
High vegetation	229,154,643
Building	3,586,890
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Mark Joshua Salvacion, Engr. Melissa Fernandez

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66J
Inclusive Flights	1786A & 1796A
Range data size	25.00 GB
POS	470 MB
Base Data	35.6 MB
Image	154.90 MB
Transfer date	August 20, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	5.20
RMSE for East Position (<4.0 cm)	5.60
RMSE for Down Position (<8.0 cm)	9.50
Boresight correction stdev (<0.001deg)	0.000575
IMU attitude correction stdev (<0.001deg)	0.010816
GPS position stdev (<0.01m)	0.0275
Minimum % overlap (>25)	48.46
Ave point cloud density per sq.m. (>2.0)	3.53
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	172
Maximum Height	456.37 m
Minimum Height	64.83 m
Classification (# of points)	
Ground	27,475,354
Low vegetation	19,235,361
Medium vegetation	86,561,167
High vegetation	219,738,869
Building	1,807,121
Orthophoto	Yes
Processed by	Engr. AnalynNaldo, Engr. Antonio Chua, Jr., Engr. John Dill Macapagal

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66H
Inclusive Flights	1778A, 1780A & 1784A
Range data size	33.60 GB
POS	622 MB
Base Data	
Image	176.60 MB
Transfer date	August 20 and September 1, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.20
RMSE for East Position (<4.0 cm)	4.44
RMSE for Down Position (<8.0 cm)	9.00
Boresight correction stdev (<0.001deg)	0.000419
IMU attitude correction stdev (<0.001deg)	0.009927
GPS position stdev (<0.01m)	0.0274
Minimum % overlap (>25)	50.99
Ave point cloud density per sq.m. (>2.0)	4.32
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	145
Maximum Height	358.35 m
Minimum Height	66.38 m
Classification (# of points)	
Ground	39942266
Low vegetation	41221922
Medium vegetation	105018009
High vegetation	150978733
Building	3482900
Orthophoto	Yes
Processed by	Engr. AnalynNaldo, Engr. Harmond Santos, Ryan James Nicholai Dizon

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66G
Inclusive Flights	1778A
Range data size	13.00 GB
POS	257 MB
Base Data	9.32 MB
Image	81.90 MB
Transfer date	August 20, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.60
RMSE for East Position (<4.0 cm)	1.50
RMSE for Down Position (<8.0 cm)	3.00
Boresight correction stdev (<0.001deg)	0.000278
IMU attitude correction stdev (<0.001deg)	0.001175
GPS position stdev (<0.01m)	0.0149
Minimum % overlap (>25)	26.16
Ave point cloud density per sq.m. (>2.0)	3.29
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	78
Maximum Height	276.11 m
Minimum Height	66.52 m
Classification (# of points)	
Ground	9760314
Low vegetation	7804910
Medium vegetation	19940917
High vegetation	32586969
Building	968426
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Chelou Prado, Engr. Jeffrey Delica

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66G Additional
Inclusive Flights	1788A
Range data size	10.40 GB
POS	228 MB
Base Data	17.8 MB
Image	50.40 MB
Transfer date	August 20, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.60
RMSE for East Position (<4.0 cm)	1.08
RMSE for Down Position (<8.0 cm)	3.80
Boresight correction stdev (<0.001deg)	0.001353
IMU attitude correction stdev (<0.001deg)	0.003331
GPS position stdev (<0.01m)	0.0035
Minimum % overlap (>25)	35.71
Ave point cloud density per sq.m. (>2.0)	3.00
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	78
Maximum Height	291.93 m
Minimum Height	64.46 m
Classification (# of points)	
Ground	16874507
Low vegetation	14027224
Medium vegetation	38836740
High vegetation	52670726
Building	1294329
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Melanie Hingpit, Engr. Elainne Lopez

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Figure 1.11.5 Image of data overlap

Figure 1.11.6Density map of merged LiDAR data

Figure 1.11.7Elevation difference between flight lines

Flight Area	Bislig (Surigao Del Sur)
Mission Name	Block 66I
Inclusive Flights	1784A & 1786A
Range data size	24.90 GB
POS	435 MB
Base Data	35.2 MB
Image	141 MB
Transfer date	August 20 and September 1, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.33
RMSE for East Position (<4.0 cm)	4.60
RMSE for Down Position (<8.0 cm)	8.00
Boresight correction stdev (<0.001deg)	0.00009
IMU attitude correction stdev (<0.001deg)	0.001444
GPS position stdev (<0.01m)	0.0076
Minimum % overlap (>25)	42.57
Ave point cloud density per sq.m. (>2.0)	3.63
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	169
Maximum Height	484.66 m
Minimum Height	67.48 m
Classification (# of points)	
Ground	31,140,156
Low vegetation	24,917,356
Medium vegetation	83,699,378
High vegetation	208,401,071
Building	1,450,399
Orthophoto	Yes
Processed by	Engr. AnalynNaldo, Engr. Harmond Santos, Engr. John Dill Macapagal

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Parameters	
Basin	
Model	
Bislig	
Annex 9.	

	SCS Cur	ve Number	Loss	SCS Unit Hydrograph		Re	cession Basef	low	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Lag Time (min)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W1860	11.88	79	0	65.304144	Discharge	0.82421	0.75	Ratio to Peak	0.25
W1870	12.084	79	0	80.447904	Discharge	0.93789	0.75	Ratio to Peak	0.25
W1880	12.079	79	0	65.327796	Discharge	0.52629	0.75	Ratio to Peak	0.25
W1890	13.145	77	0	59.509512	Discharge	0.63093	0.75	Ratio to Peak	0.25
W1900	11.88	79	0	42.79986	Discharge	0.3836	0.75	Ratio to Peak	0.25
W1910	11.88	79	0	49.168944	Discharge	0.33892	0.75	Ratio to Peak	0.25
W1920	11.88	79	0	38.745864	Discharge	0.21411	0.75	Ratio to Peak	0.25
W1930	11.99	79	0	59.856408	Discharge	0.37512	0.75	Ratio to Peak	0.25
W1940	11.9784368	79	0	45.007164	Discharge	0.29426	0.75	Ratio to Peak	0.25
W1950	12.254	79	0	112.097844	Discharge	0.95146	0.75	Ratio to Peak	0.25
W1960	12.424	78	0	57.031668	Discharge	0.37956	0.75	Ratio to Peak	0.25
W1970	11.894	79	0	56.962656	Discharge	0.3065	0.75	Ratio to Peak	0.25
W1980	12.4498088	78	0	88.97904	Discharge	0.32501	0.75	Ratio to Peak	0.25
W1990	12.035	79	0	32.863644	Discharge	0.21946	0.75	Ratio to Peak	0.25
W2000	12.621	78	0	41.479992	Discharge	0.28826	0.75	Ratio to Peak	0.25
W2010	11.871	79	0	37.979712	Discharge	0.10825	0.75	Ratio to Peak	0.25
W2020	12.672	78	0	85.272912	Discharge	0.25048	0.75	Ratio to Peak	0.25
W2030	12.146	79	0	69.374664	Discharge	0.47281	0.75	Ratio to Peak	0.25
W2040	11.88	79	0	48.482604	Discharge	0.429	0.75	Ratio to Peak	0.25
W2050	11.88	79	0	10.836396	Discharge	0.0084302	0.75	Ratio to Peak	0.25
W2060	11.88	79	0	56.725272	Discharge	0.24466	0.75	Ratio to Peak	0.25
W2070	12.027	79	0	58.200768	Discharge	0.2930038	0.75	Ratio to Peak	0.25
W2080	12.049	79	0	112.827384	Discharge	1.0536	0.75	Ratio to Peak	0.25

	Ratio to Peak	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	7 7 1
low	Threshold Type	Ratio to Peak	Batio to Deal																							
cession Basef	Recession Constant	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0 75
Re	Initial Discharge (M3/S)	0.21	0.35586	0.11435	0.22715	0.0828973	0.27563	0.1501	0.36752	0.0803524	0.42447	0.10788	0.20585	0.0060443	0.0043079	0.30743	0.22615	0.0802596	0.23525	0.20975	0.36273	0.36198	0.0768	0.37128	0.41359	0 57482
	Initial Type	Discharge																								
SCS Unit Hydrograph	Lag Time (min)	60.180516	60.042708	43.767108	38.780316	32.917536	44.704224	58.568508	91.730232	27.70524	64.104804	48.511116	60.507864	52.01604	8.679852	67.329036	53.834544	60.876684	77.308992	40.777344	75.071556	62.6805	51.399576	60.079428	102.667284	93.676932
Loss	Impervious (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11.85272	0	0	0	0	0	0	0	0	0	0
ve Number	Curve Number	79	79	80	79	79	80	80	80	79	81	79	79	81	82	83	82	84	78	79	81	80	83	78	83	81
SCS Cur	Initial Abstraction (mm)	11.88	11.852	11.282	11.88	11.88	11.241	10.948	11.3559688	11.868	10.771	12.1190652	11.883	10.420608	9.812	8.9423	9.9203	8.6323	12.418	11.987	10.709	11.093	9.0881736	12.932	9.1542	10.241
	Basin Number	W2090	W2100	W2110	W2120	W2130	W2140	W2150	W2160	W2170	W2180	W2190	W2200	W2210	W2220	W2230	W2240	W2250	W2260	W2270	W2280	W2290	W2300	W2310	W2320	W2330

	SCS Cur	ve Number	Loss	SCS Unit Hydrograph		Re	ecession Base	llow	
asin mber	Initial Abstraction (mm)	Curve Number	Impervious (%)	Lag Time (min)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
340	9.7864	82	0	63.925416	Discharge	0.51411	0.75	Ratio to Peak	0.25
350	1.547304	97	45.36058	78.596352	Discharge	0.0854026	0.75	Ratio to Peak	0.25
360	8.9887	83	4.712589	118.992888	Discharge	0.75692	0.75	Ratio to Peak	0.25
2380	7.8217	86	2.157191	94.339944	Discharge	0.38772	0.75	Ratio to Peak	0.25
2390	11.4185016	80	0	71.862768	Discharge	0.31437	0.75	Ratio to Peak	0.25
2400	10.302	81	0	70.17246	Discharge	0.16135	0.75	Ratio to Peak	0.25
2410	12.1676764	79	0	69.342804	Discharge	0.50147	0.75	Ratio to Peak	0.25
2420	9.7757	82	0	56.92734	Discharge	0.29573	0.75	Ratio to Peak	0.25
2430	11.1167584	80	0	82.163916	Discharge	0.66848	0.75	Ratio to Peak	0.25
2440	4.6358	92	0.990958	63.911916	Discharge	0.18325	0.75	Ratio to Peak	0.25
2450	8.5184	84	0	12.546468	Discharge	0.003274	0.75	Ratio to Peak	0.25
2460	3.7218	94	0.104963	124.39494	Discharge	0.32649	0.75	Ratio to Peak	0.25
2470	9.6318	82	0	68.602356	Discharge	0.3166	0.75	Ratio to Peak	0.25
2480	9.278566	83	0	53.012124	Discharge	0.24065	0.75	Ratio to Peak	0.25
2490	4.1916	93	0	199.76166	Discharge	0.48628	0.75	Ratio to Peak	0.25
2500	11.312	80	0	69.453396	Discharge	0.28306	0.75	Ratio to Peak	0.25
2510	12.947	78	0	63.718164	Discharge	0.22964	0.75	Ratio to Peak	0.25
2520	10.221	81	0	58.19256	Discharge	0.2739	0.75	Ratio to Peak	0.25
2530	10.474	81	0	25.478604	Discharge	0.0465254	0.75	Ratio to Peak	0.25
2540	12.21495	79	0	80.104356	Discharge	0.44752	0.75	Ratio to Peak	0.25
2550	10.126	82	0	42.770376	Discharge	0.24233	0.75	Ratio to Peak	0.25
2560	9.812	82	0	581236	Discharge	0.21064	0.75	Ratio to Peak	0.25
2570	10.355	81	0	27.36936	Discharge	0.0846072	0.75	Ratio to Peak	0.25
2580	9.5087432	82	0	59.337684	Discharge	0.37177	0.75	Ratio to Peak	0.25
2590	11.43	80	0	78.617628	Discharge	0.52619	0.75	Ratio to Peak	0.25

	SCS Cur	ve Number	Loss	SCS Unit Hydrograph		Re	cession Basef	low	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Lag Time (min)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W2600	9.6406	82	0	41.42556	Discharge	0.0829106	0.75	Ratio to Peak	0.25
W2610	11.44	80	0	122.598036	Discharge	0.57426	0.75	Ratio to Peak	0.25
W2620	12.328	78	0	81.731484	Discharge	0.47135	0.75	Ratio to Peak	0.25
W2630	11.211	80	0	67.731984	Discharge	0.36665	0.75	Ratio to Peak	0.25
W2640	5.3488	91	0	122.1885	Discharge	0.13091	0.75	Ratio to Peak	0.25
W2650	10.4788464	82	0	117.705528	Discharge	0.13357	0.75	Ratio to Peak	0.25
W2660	11.286	80	0	97.048152	Discharge	0.92694	0.75	Ratio to Peak	0.25
W2670	10.94	80	0	85.529952	Discharge	0.67802	0.75	Ratio to Peak	0.25
W2680	10.651	81	0	59.193396	Discharge	0.26233	0.75	Ratio to Peak	0.25
W2690	10.577	81	0	61.150896	Discharge	0.33018	0.75	Ratio to Peak	0.25
W2700	8.0924	86	0	91.456236	Discharge	0.70818	0.75	Ratio to Peak	0.25
W2710	10.942	80	0	62.231976	Discharge	0.38008	0.75	Ratio to Peak	0.25
W2720	9.2562	83	0	55.665576	Discharge	0.38637	0.75	Ratio to Peak	0.25
W2730	10.034	83	0	95.93802	Discharge	0.0477051	0.75	Ratio to Peak	0.25
W2760	6.8006	87	0	55.217268	Discharge	0.0405473	0.75	Ratio to Peak	0.25
W2770	8.3112	85	0	50.082732	Discharge	0.27184	0.75	Ratio to Peak	0.25
W2780	12.388	78	0	52.271784	Discharge	0.1259	0.75	Ratio to Peak	0.25
W2790	12.47	78	0	32.421276	Discharge	0.0332305	0.75	Ratio to Peak	0.25
W2800	11.204	80	0	77.001732	Discharge	0.75072	0.75	Ratio to Peak	0.25
W2810	12.519	78	0	62.057232	Discharge	0.38244	0.75	Ratio to Peak	0.25
W2830	11.384	80	0	70.429284	Discharge	0.5798	0.75	Ratio to Peak	0.25
W2840	11.659	79	0	43.736328	Discharge	0.23644	0.75	Ratio to Peak	0.25
W2850	11.8358064	79	0	23.307912	Discharge	0.0421777	0.75	Ratio to Peak	0.25
W2860	12.647	78	0	49.679244	Discharge	0.22565	0.75	Ratio to Peak	0.25
W2870	11.88	79	0	71.202348	Discharge	0.32134	0.75	Ratio to Peak	0.25

	SCS Cur	ve Number	Loss	SCS Unit Hydrograph		Re	ecession Basef	low	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Lag Time (min)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W2880	11.603	79	0	67.970556	Discharge	0.51195	0.75	Ratio to Peak	0.25
W2890	11.88	79	0	49.229532	Discharge	0.33986	0.75	Ratio to Peak	0.25
W2900	12.446	78	0	87.316272	Discharge	0.57222	0.75	Ratio to Peak	0.25
W2910	11.88	79	0	62.964972	Discharge	0.34059	0.75	Ratio to Peak	0.25
W2920	11.513	80	0	69.491952	Discharge	0.7162	0.75	Ratio to Peak	0.25
W2930	11.929	79	0	51.863652	Discharge	0.24184	0.75	Ratio to Peak	0.25
W2940	12.4527524	78	0	48.342528	Discharge	0.204	0.75	Ratio to Peak	0.25
W2950	11.88	79	0	49.836492	Discharge	0.27499	0.75	Ratio to Peak	0.25
W2960	11.88	79	0	43.389972	Discharge	0.20262	0.75	Ratio to Peak	0.25
W2970	11.88	79	0	16.517304	Discharge	0.0389965	0.75	Ratio to Peak	0.25
W2980	12.613	78	0	39.853836	Discharge	0.30511	0.75	Ratio to Peak	0.25
W2990	11.88	79	0	64.785528	Discharge	0.484	0.75	Ratio to Peak	0.25
W3000	12.725	78	0	65.614968	Discharge	0.34031	0.75	Ratio to Peak	0.25
W3010	12.578	78	0	65.6883	Discharge	0.31368	0.75	Ratio to Peak	0.25
W3020	12.419	78	0	57.960144	Discharge	0.22051	0.75	Ratio to Peak	0.25
W3030	12.083	79	0	58.761396	Discharge	0.1453951	0.75	Ratio to Peak	0.25
W3040	12.135	79	0	32.775192	Discharge	0.2094	0.75	Ratio to Peak	0.25
W3050	11.636	79	0	42.05952	Discharge	0.18215	0.75	Ratio to Peak	0.25
W3060	12.3519968	78	0	107.46864	Discharge	0.79353	0.75	Ratio to Peak	0.25
W3070	11.88	79	0	45.79524	Discharge	0.29177	0.75	Ratio to Peak	0.25
W3080	11.951	79	0	52.000056	Discharge	0.28733	0.75	Ratio to Peak	0.25
W3090	11.9617872	79	0	51.509088	Discharge	0.2115	0.75	Ratio to Peak	0.25
W3100	12.72	78	0	63.335304	Discharge	0.67779	0.75	Ratio to Peak	0.25
W3110	11.881	79	0	34.522956	Discharge	0.23279	0.75	Ratio to Peak	0.25
W3120	11.995	79	0	44.927028	Discharge	0.24562	0.75	Ratio to Peak	0.25

SCS Cur	ve Number	Loss	SCS Unit Hydrograph		Re	cession Basef	low	
 Initial Abstraction (mm)	Curve Number	Impervious (%)	Lag Time (min)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
12.469	78	0	69.06276	Discharge	0.83895	0.75	Ratio to Peak	0.25
12.4337752	78	0	62.45424	Discharge	0.40783	0.75	Ratio to Peak	0.25
12.018	79	0	32.515128	Discharge	0.13258	0.75	Ratio to Peak	0.25
10.94	81	0	33.599232	Discharge	0.0869799	0.75	Ratio to Peak	0.25
10.666	81	0	20.867328	Discharge	0.035802	0.75	Ratio to Peak	0.25
11.874	79	0	50.274	Discharge	0.25234	0.75	Ratio to Peak	0.25
12.777	78	0	112.660524	Discharge	1.5186	0.75	Ratio to Peak	0.25
12.215	79	0	77.594436	Discharge	0.4922	0.75	Ratio to Peak	0.25
13.033	77	0	65.113956	Discharge	0.44762	0.75	Ratio to Peak	0.25
12.417	78	0	114.214212	Discharge	0.7236	0.75	Ratio to Peak	0.25
12.385252	78	0	27.257148	Discharge	0.086516	0.75	Ratio to Peak	0.25
12.445	78	0	55.925748	Discharge	0.26904	0.75	Ratio to Peak	0.25
12.498	78	0	63.827784	Discharge	0.28745	0.75	Ratio to Peak	0.25
13.058	77	0	68.021748	Discharge	0.28286	0.75	Ratio to Peak	0.25
12.532	78	0	88.90668	Discharge	0.76433	0.75	Ratio to Peak	0.25
12.075	79	0	62.877168	Discharge	0.30183	0.75	Ratio to Peak	0.25
13.052996	78	0	50.361588	Discharge	0.29959	0.75	Ratio to Peak	0.25
12.571	78	0	49.967388	Discharge	0.2663213	0.75	Ratio to Peak	0.25
11.461	80	0	71.6688	Discharge	0.52523	0.75	Ratio to Peak	0.25
12.956	78	0	66.619584	Discharge	0.48239	0.75	Ratio to Peak	0.25
12.721	78	0	55.044576	Discharge	0.26684	0.75	Ratio to Peak	0.25
13.009	77	0	38.284704	Discharge	0.26331	0.75	Ratio to Peak	0.25
11.194	80	0	32.878332	Discharge	0.0854688	0.75	Ratio to Peak	0.25
12.4739824	78	0	48.27006	Discharge	0.20974	0.75	Ratio to Peak	0.25
11.35	80	0	67.33314	Discharge	0.47961	0.75	Ratio to Peak	0.25

	SCS Cur	ve Number	Loss	SCS Unit Hydrograph		Re	ecession Basef	low	
sin nber	Initial Abstraction (mm)	Curve Number	Impervious (%)	Lag Time (min)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
80	13.16	77	0	23.013828	Discharge	0.0373131	0.75	Ratio to Peak	0.25
390	12.493	78	0	75.775284	Discharge	0.38592	0.75	Ratio to Peak	0.25
400	40.844	59	0	107.11116	Discharge	0.27186	0.75	Ratio to Peak	0.25
410	12.444	78	0	32.470308	Discharge	0.10589	0.75	Ratio to Peak	0.25
420	24.3818212	70	0	52.655508	Discharge	0.27162	0.75	Ratio to Peak	0.25
430	12.798	78	0	31.152384	Discharge	0.12786	0.75	Ratio to Peak	0.25
440	61.051	48	0	287.126856	Discharge	1.1043	0.75	Ratio to Peak	0.25
450	12.542	78	0	39.597984	Discharge	0.20655	0.75	Ratio to Peak	0.25
460	12.638	78	0	54.53082	Discharge	0.46429	0.75	Ratio to Peak	0.25
470	21.256	73	0	85.667544	Discharge	0.54018	0.75	Ratio to Peak	0.25
480	65.0381248	45	0	228.540744	Discharge	0.65415	0.75	Ratio to Peak	0.25
490	12.702	78	0	71.283888	Discharge	0.50373	0.75	Ratio to Peak	0.25
500	12.661	78	0	51.673788	Discharge	0.2464	0.75	Ratio to Peak	0.25
510	12.449	78	0	22.92516	Discharge	0.0625773	0.75	Ratio to Peak	0.25
520	12.926	78	0	57.072708	Discharge	0.40034	0.75	Ratio to Peak	0.25
530	12.8318828	78	0	23.12766	Discharge	0.0380023	0.75	Ratio to Peak	0.25
540	21.167	73	0	26.535708	Discharge	0.0636244	0.75	Ratio to Peak	0.25
550	71.702	41	0	268.03278	Discharge	0.83827	0.75	Ratio to Peak	0.25
560	45.870154	56	0	112.460292	Discharge	0.26488	0.75	Ratio to Peak	0.25
570	15.761	76	0	72.65538	Discharge	0.63795	0.75	Ratio to Peak	0.25
580	76.488	38	0	80.599428	Discharge	0.10717	0.75	Ratio to Peak	0.25
590	80.123	36	0	172.44252	Discharge	0.24461	0.75	Ratio to Peak	0.25
600	79.473	36	0	156.663072	Discharge	0.24661	0.75	Ratio to Peak	0.25
610	79.8	36	0	239.07582	Discharge	0.54819	0.75	Ratio to Peak	0.25
620	79.488	36	0	188.258904	Discharge	0.53201	0.75	Ratio to Peak	0.25

	SCS Cur	ve Number	Loss	SCS Unit Hydrograph		Re	scession Basef	low	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Lag Time (min)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W3630	79.473	36	0	189.01512	Discharge	0.39311	0.75	Ratio to Peak	0.25
W3640	79.842	36	0	125.076744	Discharge	0.23464	0.75	Ratio to Peak	0.25
W3650	71.5533016	41	0	171.591048	Discharge	0.49986	0.75	Ratio to Peak	0.25
W3660	78.404	37	0	148.422564	Discharge	0.22328	0.75	Ratio to Peak	0.25
W3670	27.303	67	0	156.329676	Discharge	1.1842	0.75	Ratio to Peak	0.25
W3680	28.325	66	0	123.294096	Discharge	0.81617	0.75	Ratio to Peak	0.25
W3690	66.549	44	0	126.960264	Discharge	0.23761	0.75	Ratio to Peak	0.25
W3700	29.919	65	0	93.665916	Discharge	0.45404	0.75	Ratio to Peak	0.25
W3720	4.1819888	93	21.48002	71.224812	Discharge	0.12014	0.75	Ratio to Peak	0.25
W3730	5.4997008	91	0.279018	44.915256	Discharge	0.0237531	0.75	Ratio to Peak	0.25
W3770	8.0354	86	0	80.959716	Discharge	0.32946	0.75	Ratio to Peak	0.25
W3780	12.2721896	79	0	60.563916	Discharge	0.30894	0.75	Ratio to Peak	0.25
W3820	6.0984	88	0	48.893868	Discharge	0.0208635	0.75	Ratio to Peak	0.25
W3830	11.114	80	0	43.504668	Discharge	0.22336	0.75	Ratio to Peak	0.25
W3870	8.6174	85	0	103.632156	Discharge	0.13548	0.75	Ratio to Peak	0.25
W3880	9.8644	82	0	103.339152	Discharge	1.0452	0.75	Ratio to Peak	0.25

Annex 10. Bislig Model Reach Parameters

Boach	Muskingum Cunge Channel Routing										
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width					
R1000	Automatic Fixed Interval	2194.8	0.01	0.05	Rectangle	10.07					
R1010	Automatic Fixed Interval	1741.2	0.00	0.05	Rectangle	79.71					
R1070	Automatic Fixed Interval	662.84	0.01	0.05	Rectangle	4.18					
R1090	Automatic Fixed Interval	3629.2	0.00	0.05	Rectangle	10.57					
R1160	Automatic Fixed Interval	3688.9	0.00	0.05	Rectangle	19.84					
R1170	Automatic Fixed Interval	4825.6	0.00	0.05	Rectangle	67.32					
R1180	Automatic Fixed Interval	1996.5	0.03	0.05	Rectangle	7.89					
R120	Automatic Fixed Interval	1324.8	0.00	0.05	Rectangle	4.18					
R1200	Automatic Fixed Interval	1595.1	0.01	0.05	Rectangle	4.18					
R1210	Automatic Fixed Interval	2894.2	0.00	0.05	Rectangle	8.19					
R1230	Automatic Fixed Interval	3604	0.01	0.05	Rectangle	10.68					
R1240	Automatic Fixed Interval	1801	0.02	0.05	Rectangle	12.08					
R1260	Automatic Fixed Interval	548.7	0.00	0.05	Rectangle	18.46					
R1270	Automatic Fixed Interval	2576.9	0.00	0.05	Rectangle	58.98					
R1280	Automatic Fixed Interval	8292.3	0.00	0.05	Rectangle	10.74					
R1290	Automatic Fixed Interval	1402	0.00	0.05	Rectangle	52.04					
R1300	Automatic Fixed Interval	791.54	0.00	0.05	Rectangle	45.23					
R1310	Automatic Fixed Interval	1317.8	0.03	0.05	Rectangle	4.18					
R1320	Automatic Fixed Interval	4308.2	0.00	0.05	Rectangle	15.11					
R1380	Automatic Fixed Interval	1848.2	0.00	0.05	Rectangle	40.08					
R140	Automatic Fixed Interval	448.99	0.05	0.05	Rectangle	4.18					
R1400	Automatic Fixed Interval	1689.2	0.00	0.05	Rectangle	35.62					
R1440	Automatic Fixed Interval	2969.5	0.00	0.05	Rectangle	11.09					
R1460	Automatic Fixed Interval	2891.1	0.00	0.05	Rectangle	9.38					
R1470	Automatic Fixed Interval	3593.6	0.00	0.05	Rectangle	30.29					
R1490	Automatic Fixed Interval	722.55	0.00	0.05	Rectangle	26.75					
R1510	Automatic Fixed Interval	1454.4	0.00	0.05	Rectangle	35.65					
R1520	Automatic Fixed Interval	1264	0.02	0.05	Rectangle	22.59					
R1540	Automatic Fixed Interval	5247.7	0.01	0.05	Rectangle	14.75					
R1560	Automatic Fixed Interval	1765.8	0.00	0.05	Rectangle	11.64					
R1590	Automatic Fixed Interval	2067.5	0.00	0.05	Rectangle	44.62					
R1640	Automatic Fixed Interval	998.11	0.01	0.05	Rectangle	21.48					
R1650	Automatic Fixed Interval	3857.2	0.00	0.05	Rectangle	14.22					
R1660	Automatic Fixed Interval	1168.1	0.00	0.05	Rectangle	7.86					
R1670	Automatic Fixed Interval	5304.3	0.00	0.05	Rectangle	29.92					
R1680	Automatic Fixed Interval	894.26	0.01	0.05	Rectangle	21.63					
R1690	Automatic Fixed Interval	8108.8	0.00	0.05	Rectangle	30.37					
R170	Automatic Fixed Interval	1831.5	0.01	0.05	Rectangle	4.18					
R1710	Automatic Fixed Interval	2418.7	0.01	0.05	Rectangle	24.30					
R1720	Automatic Fixed Interval	1447.8	0.01	0.05	Rectangle	25.71					
R1760	Automatic Fixed Interval	2329.4	0.01	0.05	Rectangle	15.25					

	Muskingum Cunge Channel Routing										
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width					
R1780	Automatic Fixed Interval	3427.1	0.01	0.05	Rectangle	23.25					
R180	Automatic Fixed Interval	3749.4	0.01	0.05	Rectangle	4.18					
R1800	Automatic Fixed Interval	4155.9	0.02	0.05	Rectangle	17.76					
R190	Automatic Fixed Interval	2316.7	0.00	0.05	Rectangle	4.18					
R210	Automatic Fixed Interval	3376.9	0.00	0.05	Rectangle	4.18					
R220	Automatic Fixed Interval	424.26	0.00	0.05	Rectangle	4.18					
R260	Automatic Fixed Interval	2251.7	0.00	0.05	Rectangle	4.18					
R270	Automatic Fixed Interval	775.69	0.00	0.05	Rectangle	4.18					
R280	Automatic Fixed Interval	155.56	0.01	0.05	Rectangle	4.18					
R300	Automatic Fixed Interval	827.7	0.00	0.05	Rectangle	4.18					
R320	Automatic Fixed Interval	42.426	0.00	0.05	Rectangle	4.18					
R330	Automatic Fixed Interval	719.83	0.00	0.05	Rectangle	4.18					
R350	Automatic Fixed Interval	288.7	0.00	0.05	Rectangle	4.18					
R370	Automatic Fixed Interval	1077.5	0.00	0.05	Rectangle	4.18					
R3740	Automatic Fixed Interval	282.84	0.00	0.05	Rectangle	4.18					
R3790	Automatic Fixed Interval	1285.8	0.00	0.05	Rectangle	79.71					
R3850	Automatic Fixed Interval	3090.7	0.00	0.05	Rectangle	37.87					
R390	Automatic Fixed Interval	494.26	0.00	0.05	Rectangle	4.18					
R3900	Automatic Fixed Interval	8553.8	0.00	0.05	Rectangle	19.84					
R420	Automatic Fixed Interval	366.27	0.02	0.05	Rectangle	4.18					
R440	Automatic Fixed Interval	2035.1	0.01	0.05	Rectangle	4.18					
R470	Automatic Fixed Interval	2329.2	0.01	0.05	Rectangle	4.18					
R480	Automatic Fixed Interval	335.77	0.00	0.05	Rectangle	256.88					
R50	Automatic Fixed Interval	3255	0.05	0.05	Rectangle	4.18					
R520	Automatic Fixed Interval	1101.5	0.00	0.05	Rectangle	4.18					
R550	Automatic Fixed Interval	3437.8	0.00	0.05	Rectangle	10.39					
R560	Automatic Fixed Interval	349.71	0.00	0.05	Rectangle	10.82					
R580	Automatic Fixed Interval	3627.5	0.01	0.05	Rectangle	20.43					
R590	Automatic Fixed Interval	647.4	0.00	0.05	Rectangle	254.01					
R620	Automatic Fixed Interval	6516.1	0.01	0.05	Rectangle	18.42					
R640	Automatic Fixed Interval	1197.8	0.00	0.05	Rectangle	28.05					
R650	Automatic Fixed Interval	5284.6	0.00	0.05	Rectangle	9.58					
R670	Automatic Fixed Interval	1587.5	0.01	0.05	Rectangle	13.92					
R680	Automatic Fixed Interval	1231.2	0.00	0.05	Rectangle	13.46					
R70	Automatic Fixed Interval	3057.6	0.00	0.05	Rectangle	4.18					
R700	Automatic Fixed Interval	3103.9	0.01	0.05	Rectangle	4.18					
R710	Automatic Fixed Interval	1249.8	0.03	0.05	Rectangle	9.34					
R720	Automatic Fixed Interval	3271.1	0.00	0.05	Rectangle	17.24					
R730	Automatic Fixed Interval	3379.1	0.00	0.05	Rectangle	87.23					
R740	Automatic Fixed Interval	2475.9	0.00	0.05	Rectangle	326.96					
R760	Automatic Fixed Interval	625.27	0.00	0.05	Rectangle	184.41					
R790	Automatic Fixed Interval	9131.5	0.01	0.05	Rectangle	12.50					
R810	Automatic Fixed Interval	1228.5	0.00	0.05	Rectangle	210.16					

Deesh	Mus	skingum Cu	nge Chanı	nel Routing		
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width
R830	Automatic Fixed Interval	2208.7	0.00	0.05	Rectangle	53.52
R840	Automatic Fixed Interval	1173.7	0.00	0.05	Rectangle	79.00
R860	Automatic Fixed Interval	1180.5	0.00	0.05	Rectangle	37.81
R870	Automatic Fixed Interval	5593.3	0.01	0.05	Rectangle	16.38
R890	Automatic Fixed Interval	2018.2	0.00	0.05	Rectangle	20.14
R90	Automatic Fixed Interval	3304.3	0.00	0.05	Rectangle	4.18
R910	Automatic Fixed Interval	1041.5	0.00	0.05	Rectangle	7.41
R940	Automatic Fixed Interval	3513.3	0.01	0.05	Rectangle	29.91
R950	Automatic Fixed Interval	2396.5	0.00	0.05	Rectangle	32.91
R960	Automatic Fixed Interval	1166.4	0.00	0.05	Rectangle	35.71
R970	Automatic Fixed Interval	3470.5	0.00	0.05	Rectangle	25.34
R980	Automatic Fixed Interval	1927.2	0.00	0.05	Rectangle	37.87

Point Number	Valid Coord	ation linates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
	Lat	Long					
1	8.191	126.3	0.05	0	-0.05	Agaton/ January 2014	5 -Year
2	8.1933	126.3	0.07	0	-0.07	Agaton/ January 2014	5 -Year
3	8.1937	126.3	0.22	0	-0.22	Agaton/ January 2014	5 -Year
4	8.2017	126.31	0.03	0.8	0.77	Agaton/ January 2014	5 -Year
5	8.2231	126.3	0.31	0	-0.31	Agaton/ January 2014	5 -Year
6	8.2241	126.3	0.1	0	-0.1	Agaton/ January 2014	5 -Year
7	8.2249	126.3	0.03	0	-0.03	Agaton/ January 2014	5 -Year
8	8.2283	126.27	0.24	0.6	0.36	Agaton/ January 2014	5 -Year
9	8.2282	126.27	0.06	0	-0.06	Agaton/ January 2014	5 -Year
10	8.174	126.27	1.33	0.1	-1.23	Agaton/ January 2014	5 -Year
11	8.1748	126.27	1.4	1.5	0.1	Agaton/ January 2014	5 -Year
12	8.1759	126.27	0.03	0	-0.03	Agaton/ January 2014	5 -Year
13	8.1737	126.29	0.04	0	-0.04	Agaton/ January 2014	5 -Year
14	8.1821	126.3	0.13	0.5	0.37	Agaton/ January 2014	5 -Year
15	8.1825	126.26	0.74	0	-0.74	Agaton/ January 2014	5 -Year
16	8.1828	126.26	0.76	0.09	-0.67	Agaton/ January 2014	5 -Year
17	8.1808	126.26	1.38	0.1	-1.28	Agaton/ January 2014	5 -Year
18	8.1741	126.29	0.19	0.7	0.51	Agaton/ January 2014	5 -Year
19	8.1733	126.27	0.7	0.26	-0.44	Agaton/ January 2014	5 -Year
20	8.2273	126.27	0.06	0.5	0.44	Agaton/ January 2014	5 -Year
21	8.2278	126.27	0.03	0	-0.03	Agaton/ January 2014	5 -Year
22	8.2281	126.27	0.61	0.8	0.19	Agaton/ January 2014	5 -Year
23	8.2288	126.27	0.03	0	-0.03	Agaton/ January 2014	5 -Year
24	8.2286	126.27	0.41	0.1	-0.31	Agaton/ January 2014	5 -Year
25	8.2288	126.28	0.03	0	-0.03	Agaton/ January 2014	5 -Year
26	8.2291	126.28	0.06	0	-0.06	Agaton/ January 2014	5 -Year
27	8.2341	126.29	0.03	0	-0.03	Agaton/ January 2014	5 -Year
28	8.2336	126.29	0.03	0	-0.03	Agaton/ January 2014	5 -Year
29	8.232	126.29	0.03	0	-0.03	Agaton/ January 2014	5 -Year
30	8.2316	126.29	0.03	0	-0.03	Agaton/ January 2014	5 -Year
31	8.2252	126.3	0.06	0.49	0.43	Agaton/ January 2014	5 -Year
32	8.2253	126.3	0.03	0	-0.03	Agaton/ January 2014	5 -Year
33	8.2251	126.3	1.8	1.2	-0.6	Agaton/ January 2014	5 -Year
34	8.225	126.3	0.03	1.3	1.27	Agaton/ January 2014	5 -Year
35	8.1754	126.27	0.03	0.42	0.39	Agaton/ January 2014	5 -Year
36	8.1755	126.27	0.03	0.1	0.07	Agaton/ January 2014	5 -Year
37	8.1763	126.27	0.03	0	-0.03	Agaton/ January 2014	5 -Year
38	8.1741	126.29	0.26	0	-0.26	Agaton/ January 2014	5 -Year
39	8.1753	126.3	0.03	0.2	0.17	Agaton/ January 2014	5 -Year
40	8.1881	126.33	0.8	0.16	-0.64	Agaton/ January 2014	5 -Year
41	8.1902	126.33	0.15	0.05	-0.1	Agaton/ January 2014	5 -Year
42	8.214	126.32	0.04	0	-0.04	Agaton/ January 2014	5 -Year

Annex 11. Silage Field Validation Points

Point Number	Valid Coord	ation linates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario	
	Lat	Long						
43	8.2154	126.31	0.26	0.14	-0.12	Agaton/ January 2014	5 -Year	
44	8.2287	126.27	0.03	0	-0.03	Agaton/ January 2014	5 -Year	
45	8.2276	126.27	0.03	0	-0.03	Agaton/ January 2014	5 -Year	
46	8.2075	126.27	4.96	1.22	-3.74	Agaton/ January 2014	5 -Year	
47	8.191	126.3	0.05	0	-0.05	Seniang/ December 2014	5 -Year	
48	8.1933	126.3	0.07	0	-0.07	Seniang/ December 2014	5 -Year	
49	8.1937	126.3	0.22	0	-0.22	Seniang/ December 2014	5 -Year	
50	8.2017	126.31	0.03	0.8	0.77	Seniang/ December 2014	5 -Year	
51	8.2231	126.3	0.31	0.08	-0.23	Seniang/ December 2014	5 -Year	
52	8.2241	126.3	0.1	0.31	0.21	Seniang/ December 2014	5 -Year	
53	8.2249	126.3	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
54	8.2283	126.27	0.24	0.6	0.36	Seniang/ December 2014	5 -Year	
55	8.2282	126.27	0.06	0	-0.06	Seniang/ December 2014	5 -Year	
56	8.174	126.27	1.33	0.3	-1.03	Seniang/ December 2014	5 -Year	
57	8.1748	126.27	1.4	1.5	0.1	Seniang/ December 2014	5 -Year	
58	8.1759	126.27	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
59	8.1737	126.29	0.04	0	-0.04	Seniang/ December 2014	5 -Year	
60	8.1821	126.3	0.13	0.5	0.37	Seniang/ December 2014	5 -Year	
61	8.1825	126.26	0.74	0	-0.74	Seniang/ December 2014	5 -Year	
62	8.1828	126.26	0.76	0.13	-0.63	Seniang/ December 2014	5 -Year	
63	8.1808	126.26	1.38	0.1	-1.28	Seniang/ December 2014	5 -Year	
64	8.1741	126.29	0.19	0.5	0.31	Seniang/ December 2014	5 -Year	
65	8.1733	126.27	0.7	0.26	-0.44	Seniang/ December 2014	5 -Year	
66	8.2273	126.27	0.06	0.5	0.44	Seniang/ December 2014	5 -Year	
67	8.2278	126.27	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
68	8.2281	126.27	0.61	0.9	0.29	Seniang/ December 2014	5 -Year	
69	8.2288	126.27	0.03	0.9	0.87	Seniang/ December 2014	5 -Year	
70	8.2286	126.27	0.41	0.3	-0.11	Seniang/ December 2014	5 -Year	
71	8.2288	126.28	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
72	8.2291	126.28	0.06	0	-0.06	Seniang/ December 2014	5 -Year	
73	8.2341	126.29	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
74	8.2336	126.29	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
75	8.232	126.29	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
76	8.2316	126.29	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
77	8.2252	126.3	0.06	1.44	1.38	Seniang/ December 2014	5 -Year	
78	8.2253	126.3	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
79	8.2251	126.3	1.8	0.95	-0.85	Seniang/ December 2014	5 -Year	
80	8.225	126.3	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
81	8.1754	126.27	0.03	0.42	0.39	Seniang/ December 2014	5 -Year	
82	8.1755	126.27	0.03	0.1	0.07	Seniang/ December 2014	5 -Year	
83	8.1763	126.27	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
84	8.1741	126.29	0.26	0.2	-0.06	Seniang/ December 2014	5 -Year	
Point Number	Point Coordinates		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario	
-----------------	-------------------	--------	---------------------	--------------------------	-------	------------------------	--------------------------	--
	Lat	Long						
85	8.1753	126.3	0.03	0.2	0.17	Seniang/ December 2014	5 -Year	
86	8.1881	126.33	0.8	0.19	-0.61	Seniang/ December 2014	5 -Year	
87	8.1902	126.33	0.15	0.05	-0.1	Seniang/ December 2014	5 -Year	
88	8.214	126.32	0.04	0	-0.04	Seniang/ December 2014	5 -Year	
89	8.2154	126.31	0.26	0.14	-0.12	Seniang/ December 2014	5 -Year	
90	8.2287	126.27	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
91	8.2276	126.27	0.03	0	-0.03	Seniang/ December 2014	5 -Year	
92	8.2075	126.27	4.96	0.9	-4.06	Seniang/ December 2014	5 -Year	
93	8.191	126.3	0.06	0	-0.06	Agaton/ January 2014	25 -Year	
94	8.1933	126.3	0.11	0	-0.11	Agaton/ January 2014	25 -Year	
95	8.1937	126.3	0.24	0	-0.24	Agaton/ January 2014	25 -Year	
96	8.2017	126.31	0.03	0.8	0.77	Agaton/ January 2014	25 -Year	
97	8.2231	126.3	0.51	0	-0.51	Agaton/ January 2014	25 -Year	
98	8.2241	126.3	0.15	0	-0.15	Agaton/ January 2014	25 -Year	
99	8.2249	126.3	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
100	8.2283	126.27	0.55	0.6	0.05	Agaton/ January 2014	25 -Year	
101	8.2282	126.27	0.15	0	-0.15	Agaton/ January 2014	25 -Year	
102	8.174	126.27	1.38	0.1	-1.28	Agaton/ January 2014	25 -Year	
103	8.1748	126.27	1.45	1.5	0.05	Agaton/ January 2014	25 -Year	
104	8.1759	126.27	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
105	8.1737	126.29	0.09	0	-0.09	Agaton/ January 2014	25 -Year	
106	8.1821	126.3	0.31	0.5	0.19	Agaton/ January 2014	25 -Year	
107	8.1825	126.26	0.84	0	-0.84	Agaton/ January 2014	25 -Year	
108	8.1828	126.26	0.87	0.09	-0.78	Agaton/ January 2014	25 -Year	
109	8.1808	126.26	1.45	0.1	-1.35	Agaton/ January 2014	25 -Year	
110	8.1741	126.29	0.27	0.7	0.43	Agaton/ January 2014	25 -Year	
111	8.1733	126.27	0.75	0.26	-0.49	Agaton/ January 2014	25 -Year	
112	8.2273	126.27	0.06	0.5	0.44	Agaton/ January 2014	25 -Year	
113	8.2278	126.27	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
114	8.2281	126.27	0.92	0.8	-0.12	Agaton/ January 2014	25 -Year	
115	8.2288	126.27	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
116	8.2286	126.27	0.67	0.1	-0.57	Agaton/ January 2014	25 -Year	
117	8.2288	126.28	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
118	8.2291	126.28	0.47	0	-0.47	Agaton/ January 2014	25 -Year	
119	8.2341	126.29	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
120	8.2336	126.29	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
121	8.232	126.29	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
122	8.2316	126.29	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
123	8.2252	126.3	0.06	0.49	0.43	Agaton/ January 2014	25 -Year	
124	8.2253	126.3	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
125	8.2251	126.3	1.95	1.2	-0.75	Agaton/ January 2014	25 -Year	
126	8.225	126.3	0.03	1.3	1.27	Agaton/ January 2014	25 -Year	

Point Coordina Number		ation linates	Model Var (m)		Error	Event/Date	Rain Return/ Scenario	
	Lat	Long						
127	8.1754	126.27	0.03	0.42	0.39	Agaton/ January 2014	25 -Year	
128	8.1755	126.27	0.04	0.1	0.06	Agaton/ January 2014	25 -Year	
129	8.1763	126.27	0.04	0	-0.04	Agaton/ January 2014	25 -Year	
130	8.1741	126.29	0.3	0	-0.3	Agaton/ January 2014	25 -Year	
131	8.1753	126.3	0.03	0.2	0.17	Agaton/ January 2014	25 -Year	
132	8.1881	126.33	0.93	0.16	-0.77	Agaton/ January 2014	25 -Year	
133	8.1902	126.33	0.31	0.05	-0.26	Agaton/ January 2014	25 -Year	
134	8.214	126.32	0.07	0	-0.07	Agaton/ January 2014	25 -Year	
135	8.2154	126.31	0.36	0.14	-0.22	Agaton/ January 2014	25 -Year	
136	8.2287	126.27	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
137	8.2276	126.27	0.03	0	-0.03	Agaton/ January 2014	25 -Year	
138	8.2075	126.27	5.13	1.22	-3.91	Agaton/ January 2014	25 -Year	
139	8.191	126.3	0.06	0	-0.06	Seniang/ December 2014	25 -Year	
140	8.1933	126.3	0.11	0	-0.11	Seniang/ December 2014	25 -Year	
141	8.1937	126.3	0.24	0	-0.24	Seniang/ December 2014	25 -Year	
142	8.2017	126.31	0.03	0.8	0.77	Seniang/ December 2014	25 -Year	
143	8.2231	126.3	0.51	0.08	-0.43	Seniang/ December 2014	25 -Year	
144	8.2241	126.3	0.15	0.31	0.16	Seniang/ December 2014	25 -Year	
145	8.2249	126.3	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
146	8.2283	126.27	0.55	0.6	0.05	Seniang/ December 2014	25 -Year	
147	8.2282	126.27	0.15	0	-0.15	Seniang/ December 2014	25 -Year	
148	8.174	126.27	1.38	0.3	-1.08	Seniang/ December 2014	25 -Year	
149	8.1748	126.27	1.45	1.5	0.05	Seniang/ December 2014	25 -Year	
150	8.1759	126.27	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
151	8.1737	126.29	0.09	0	-0.09	Seniang/ December 2014	25 -Year	
152	8.1821	126.3	0.31	0.5	0.19	Seniang/ December 2014	25 -Year	
153	8.1825	126.26	0.84	0	-0.84	Seniang/ December 2014	25 -Year	
154	8.1828	126.26	0.87	0.13	-0.74	Seniang/ December 2014	25 -Year	
155	8.1808	126.26	1.45	0.1	-1.35	Seniang/ December 2014	25 -Year	
156	8.1741	126.29	0.27	0.5	0.23	Seniang/ December 2014	25 -Year	
157	8.1733	126.27	0.75	0.26	-0.49	Seniang/ December 2014	25 -Year	
158	8.2273	126.27	0.06	0.5	0.44	Seniang/ December 2014	25 -Year	
159	8.2278	126.27	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
160	8.2281	126.27	0.92	0.9	-0.02	Seniang/ December 2014	25 -Year	
161	8.2288	126.27	0.03	0.9	0.87	Seniang/December 2014	25 -Year	
162	8.2286	126.27	0.67	0.3	-0.37	Seniang/ December 2014	25 -Year	
163	8.2288	126.28	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
164	8.2291	126.28	0.47	0	-0.47	Seniang/ December 2014	25 -Year	
165	8.2341	126.29	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
166	8.2336	126.29	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
167	8.232	126.29	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
168	8.2316	126.29	0.03	0	-0.03	Seniang/ December 2014	25 -Year	

Point Number	Point Coordinates		Model Var (m)	Validation Points (m)		Event/Date	Rain Return/ Scenario	
	Lat	Long						
169	8.2252	126.3	0.06	1.44	1.38	Seniang/ December 2014	25 -Year	
170	8.2253	126.3	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
171	8.2251	126.3	1.95	0.95	-1	Seniang/ December 2014	25 -Year	
172	8.225	126.3	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
173	8.1754	126.27	0.03	0.42	0.39	Seniang/ December 2014	25 -Year	
174	8.1755	126.27	0.04	0.1	0.06	Seniang/ December 2014	25 -Year	
175	8.1763	126.27	0.04	0	-0.04	Seniang/ December 2014	25 -Year	
176	8.1741	126.29	0.3	0.2	-0.1	Seniang/ December 2014	25 -Year	
177	8.1753	126.3	0.03	0.2	0.17	Seniang/ December 2014	25 -Year	
178	8.1881	126.33	0.93	0.19	-0.74	Seniang/ December 2014	25 -Year	
179	8.1902	126.33	0.31	0.05	-0.26	Seniang/ December 2014	25 -Year	
180	8.214	126.32	0.07	0	-0.07	Seniang/ December 2014	25 -Year	
181	8.2154	126.31	0.36	0.14	-0.22	Seniang/ December 2014	25 -Year	
182	8.2287	126.27	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
183	8.2276	126.27	0.03	0	-0.03	Seniang/ December 2014	25 -Year	
184	8.2075	126.27	5.13	0.9	-4.23	Seniang/ December 2014	25 -Year	
185	8.191	126.3	0.06	0	-0.06	Agaton/ January 2014	100 -Year	
186	8.1933	126.3	0.13	0	-0.13	Agaton/ January 2014	100 -Year	
187	8.1937	126.3	0.26	0	-0.26	Agaton/ January 2014	100 -Year	
188	8.2017	126.31	0.03	0.8	0.77	Agaton/ January 2014	100 -Year	
189	8.2231	126.3	0.62	0	-0.62	Agaton/ January 2014	100 -Year	
190	8.2241	126.3	0.22	0	-0.22	Agaton/ January 2014	100 -Year	
191	8.2249	126.3	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
192	8.2283	126.27	0.74	0.6	-0.14	Agaton/ January 2014	100 -Year	
193	8.2282	126.27	0.25	0	-0.25	Agaton/ January 2014	100 -Year	
194	8.174	126.27	1.63	0.1	-1.53	Agaton/ January 2014	100 -Year	
195	8.1748	126.27	1.69	1.5	-0.19	Agaton/ January 2014	100 -Year	
196	8.1759	126.27	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
197	8.1737	126.29	0.14	0	-0.14	Agaton/ January 2014	100 -Year	
198	8.1821	126.3	0.43	0.5	0.07	Agaton/ January 2014	100 -Year	
199	8.1825	126.26	1.54	0	-1.54	Agaton/ January 2014	100 -Year	
200	8.1828	126.26	1.56	0.09	-1.47	Agaton/ January 2014	100 -Year	
201	8.1808	126.26	2.1	0.1	-2	Agaton/ January 2014	100 -Year	
202	8.1741	126.29	0.78	0.7	-0.08	Agaton/ January 2014	100 -Year	
203	8.1733	126.27	0.98	0.26	-0.72	Agaton/ January 2014	100 -Year	
204	8.2273	126.27	0.07	0.5	0.43	Agaton/ January 2014	100 -Year	
205	8.2278	126.27	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
206	8.2281	126.27	1.15	0.8	-0.35	Agaton/ January 2014	100 -Year	
207	8.2288	126.27	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
208	8.2286	126.27	0.87	0.1	-0.77	Agaton/ January 2014	100 -Year	
209	8.2288	126.28	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
210	8.2291	126.28	0.94	0	-0.94	Agaton/ January 2014	100 -Year	

Point Number		ation inates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario	
	Lat	Long						
211	8.2341	126.29	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
212	8.2336	126.29	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
213	8.232	126.29	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
214	8.2316	126.29	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
215	8.2252	126.3	0.07	0.49	0.42	Agaton/ January 2014	100 -Year	
216	8.2253	126.3	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
217	8.2251	126.3	2.26	1.2	-1.06	Agaton/ January 2014	100 -Year	
218	8.225	126.3	0.03	1.3	1.27	Agaton/ January 2014	100 -Year	
219	8.1754	126.27	0.03	0.42	0.39	Agaton/ January 2014	100 -Year	
220	8.1755	126.27	0.04	0.1	0.06	Agaton/ January 2014	100 -Year	
221	8.1763	126.27	0.05	0	-0.05	Agaton/ January 2014	100 -Year	
222	8.1741	126.29	0.34	0	-0.34	Agaton/ January 2014	100 -Year	
223	8.1753	126.3	0.03	0.2	0.17	Agaton/ January 2014	100 -Year	
224	8.1881	126.33	1	0.16	-0.84	Agaton/ January 2014	100 -Year	
225	8.1902	126.33	0.4	0.05	-0.35	Agaton/ January 2014	100 -Year	
226	8.214	126.32	0.09	0	-0.09	Agaton/ January 2014	100 -Year	
227	8.2154	126.31	0.41	0.14	-0.27	Agaton/ January 2014	100 -Year	
228	8.2287	126.27	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
229	8.2276	126.27	0.03	0	-0.03	Agaton/ January 2014	100 -Year	
230	8.2075	126.27	6.25	1.22	-5.03	Agaton/ January 2014	100 -Year	
231	8.191	126.3	0.06	0	-0.06	Seniang/ December 2014	100 -Year	
232	8.1933	126.3	0.13	0	-0.13	Seniang/ December 2014	100 -Year	
233	8.1937	126.3	0.26	0	-0.26	Seniang/ December 2014	100 -Year	
234	8.2017	126.31	0.03	0.8	0.77	Seniang/ December 2014	100 -Year	
235	8.2231	126.3	0.62	0.08	-0.54	Seniang/ December 2014	100 -Year	
236	8.2241	126.3	0.22	0.31	0.09	Seniang/ December 2014	100 -Year	
237	8.2249	126.3	0.03	0	-0.03	Seniang/ December 2014	100 -Year	
238	8.2283	126.27	0.74	0.6	-0.14	Seniang/ December 2014	100 -Year	
239	8.2282	126.27	0.25	0	-0.25	Seniang/ December 2014	100 -Year	
240	8.174	126.27	1.63	0.3	-1.33	Seniang/ December 2014	100 -Year	
241	8.1748	126.27	1.69	1.5	-0.19	Seniang/ December 2014	100 -Year	
242	8.1759	126.27	0.03	0	-0.03	Seniang/ December 2014	100 -Year	
243	8.1737	126.29	0.14	0	-0.14	Seniang/ December 2014	100 -Year	
244	8.1821	126.3	0.43	0.5	0.07	Seniang/ December 2014	100 -Year	
245	8.1825	126.26	1.54	0	-1.54	Seniang/ December 2014	100 -Year	
246	8.1828	126.26	1.56	0.13	-1.43	Seniang/ December 2014	100 -Year	
247	8.1808	126.26	2.1	0.1	-2	Seniang/ December 2014	100 -Year	
248	8.1741	126.29	0.78	0.5	-0.28	Seniang/ December 2014	100 -Year	
249	8.1733	126.27	0.98	0.26	-0.72	Seniang/ December 2014	100 -Year	
250	8.2273	126.27	0.07	0.5	0.43	Seniang/ December 2014	100 -Year	
251	8.2278	126.27	0.03	0	-0.03	Seniang/ December 2014	100 -Year	
252	8.2281	126.27	1.15	0.9	-0.25	Seniang/ December 2014	100 -Year	

Point Number	Validation Coordinates		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario	
	Lat	Long						
253	8.2288	126.27	0.03	0.9	0.87	Seniang/ December 2014	100 -Year	
254	8.2286	126.27	0.87	0.3	-0.57	Seniang/ December 2014	100 -Year	
255	8.2288	126.28	0.03	0	-0.03	Seniang/December 2014	100 -Year	
256	8.2291	126.28	0.94	0	-0.94	Seniang/December 2014	100 -Year	
257	8.2341	126.29	0.03	0	-0.03	Seniang/December 2014	100 -Year	
258	8.2336	126.29	0.03	0	-0.03	Seniang/December 2014	100 -Year	
259	8.232	126.29	0.03	0	-0.03	Seniang/December 2014	100 -Year	
260	8.2316	126.29	0.03	0	-0.03	Seniang/ December 2014	100 -Year	
261	8.2252	126.3	0.07	1.44	1.37	Seniang/December 2014	100 -Year	
262	8.2253	126.3	0.03	0	-0.03	Seniang/ December 2014	100 -Year	
263	8.2251	126.3	2.26	0.95	-1.31	Seniang/ December 2014	100 -Year	
264	8.225	126.3	0.03	0	-0.03	Seniang/ December 2014	100 -Year	
265	8.1754	126.27	0.03	0.42	0.39	Seniang/ December 2014	100 -Year	
266	8.1755	126.27	0.04	0.1	0.06	Seniang/ December 2014	100 -Year	
267	8.1763	126.27	0.05	0	-0.05	Seniang/December 2014	100 -Year	
268	8.1741	126.29	0.34	0.2	-0.14	Seniang/ December 2014	100 -Year	
269	8.1753	126.3	0.03	0.2	0.17	Seniang/ December 2014	100 -Year	
270	8.1881	126.33	1	0.19	-0.81	Seniang/ December 2014	100 -Year	
271	8.1902	126.33	0.4	0.05	-0.35	Seniang/ December 2014	100 -Year	
272	8.214	126.32	0.09	0	-0.09	Seniang/ December 2014	100 -Year	
273	8.2154	126.31	0.41	0.14	-0.27	Seniang/ December 2014	100 -Year	
274	8.2287	126.27	0.03	0	-0.03	Seniang/ December 2014	100 -Year	
275	8.2276	126.27	0.03	0	-0.03	Seniang/ December 2014	100 -Year	
276	8.2075	126.27	6.25	0.9	-5.35	Seniang/ December 2014	100 -Year	

Annex 12. Educational Institutions Affected by Flooding in Bislig Floodplain

Agusan del Sur										
Trento										
		Rainfall Scenario								
Building Name	Barangay	5-year	25- year	100- year						
R. Castillo Preliminary School	San Isidro									
Surigao del Sur										
Bislig City		1								
		Rainfall Scenario								
Building Name	Barangay	5-year	25- year	100- year						
Pamanlinan Elementary School	Burboanan	0	0	0						
Coleto Elementary School	Coleto	0	0	0						
Ricardo Rosario Elementary School	Comawas	2	2	2						
Borbuanan Elementary School	Mone	2	2	3						
Mone National High School	Mone	2	2	3						
San Isidro Elementary School	Mone	0	0	0						
San Isidro National High School	Mone	0	0	0						
Ser-Fel Mone Elementary School	Mone	2	2	2						
Pamanlinan Elementary School	Pamanlinan	0	0	0						
Bislig Central Special Science Elementary School	Poblacion	0	0	0						
Bislig City National High School	Poblacion	0	0	0						
San Fernando Elementary School	San Fernando	0	1	1						
San Antonio Elementary School	San Jose	0	0	0						
Jose M. Soriano Learning Center	San Roque	0	0	0						
San Roque Central Elementary School	San Roque	0	0	0						
Simon Edgar A. Garay Elementary School	San Roque	0	0	0						
Bebiano Alba Elementary School	Santa Cruz	0	0	0						

Annex 13. Health Institutions Affected byFlooding in Bislig Floodplain

Surigao del Sur								
Bislig City								
		Rainfall Scenario						
Building Name	Barangay	5-year	25- year	100- year				
Bislig District Hospital	Poblacion	1	1	1				