HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Upper Pulangi River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Central Mindanao University

© University of the Philippines Diliman and Central Mindanao University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and G.R. Puno, (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Upper Pulangi River, in Enrico C. Paringit, (Ed.), Flood Hazard Mapping of the Philippines using LIDAR, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry—181pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. George R. Puno

Project Leader, PHIL-LIDAR 1 Program Central Mindanao University Maramag, Bukidnon 8714 E-mail: geopuno@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-020-4

TABLE OF CONTENTS

TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF ACRONYMS AND ABBREVIATIONS	. vii
CHAPTER 1: OVERVIEW OF THE PROGRAM AND UPPER PULANGI RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Upper Pulangi River Basin	2
CHAPTER 2: LIDAR DATA ACQUISITION OF THE Upper Pulangi FLOODPLAIN	4
2.1 Flight Plans	4
2.2 Ground Base Stations	6
2.3 Flight Missions	. 15
2.4 Survey Coverage	. 17
CHAPTER 3: LIDAR DATA PROCESSING FOR Upper Pulangi FLOODPLAIN	. 19
3.1 LiDAR Data Processing for Upper Pulangi Floodplain	. 19
3.1.1 Overview of the LiDAR Date Pre-Processing	. 19
3.2 Transmittal of Acquired LiDAR Data	. 21
3.3 Trajectory Computation	. 22
3.4 LiDAR Point Cloud Computation	. 25
3.5 LiDAR Data Quality Checking	. 26
3.6 LiDAR Point Cloud Classification and Rasterization	. 32
3.7 LiDAR Image Processing and Orthophotograph Rectification	. 34
3.8 DEM Editing and Hydro-Correction	. 35
3.9 Mosaicking of Blocks	. 37
3.10 Calibration and Validation of Mosaicked LiDAR DEM	. 39
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	. 43
3.12 Feature Extraction	. 44
3.12.1 Quality Checking of Digitized Features' Boundary	.44
3.13 Height Extraction	. 45
3.13.1 Feature Attribution	. 45
3.13.2 Final Quality Checking of Extracted Features	. 47
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE Upper Pulangi RIVER BASIN.	. 48
4.1 Summary of Activities	. 48
4.2 Control Survey	. 50
4.3 Baseline Processing	. 54
4.4 Network Adjustment	. 55
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	. 57
4.6 Validation Points Acquisition Survey	. 62
4.7 River Bathymetric Survey	. 64
CHAPTER 5: FLOOD MODELING AND MAPPING	. 68
5.1 Data Used for Hydrologic Modeling	. 68
5.1.1 Hydrometry and Rating Curves	. 68
5.1.2 Precipitation	. 68
5.1.3 Rating Curves and River Outflow	. 70
5.2 RIDF Station	. 72
5.3 HMS Model	. 74
5.4 Cross-section Data	. 78
5.5 Flo 2D Model	. 79
5.6 Results of HMS Calibration	. 80
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	. 82
5.7.1 Hydrograph using the Rainfall Runoff Model	. 82
5.8 River Analysis (RAS) Model Simulation	. 83
5.9 Flow Depth and Flood Hazard	. 84
5.10 Inventory of Areas Exposed to Flooding	. 86
5.11 Flood Validation	. 87

REFERENCES	
ANNEX	91
ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Manupali Floodplair	n Survey91
ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey	92
ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	99
ANNEX 4. The LIDAR Survey Team Composition	
ANNEX 5. Data Transfer Sheet for Upper Pulangi Floodplain	101
ANNEX 6. Flight Logs for the Flight Missions	
ANNEX 7. Flight Status Reports	126
ANNEX 8. Mission Summary Reports	146
ANNEX 9. Upper Pulangi Model Basin Parameters	147
ANNEX 10. Upper Pulangi Model Reach Parameters	153
ANNEX 11. Upper Pulangi Field Validation Points	156
ANNEX 12. Educational Institutions Affected by flooding in Upper Pulangi Flood Plain	166
ANNEX 13. Health Institutions affected by flooding in Upper Pulangi Flood Plain	170

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR system.	4
Table 2. Details of the recovered NAMRIA horizontal control point MSE-19 used as base station for	-
Table 2. Details of the recovered NAMPIA berizontal control point MSE 20 used as base station for	/
Table 3. Details of the recovered NAMIRIA horizontal control point Mise-20 used as base station for the LiDAP acquisition	Q
Table 4 Details of the recovered NAMRIA horizontal control point MSE-3241used as base station for	0
the LiDAR acquisition	9
Table 5. Details of the recovered NAMRIA horizontal control point MSE-3340 used as base station	5
for the LiDAR acquisition	. 10
Table 6. Details of the recovered NAMRIA horizontal control point BKN-475 used as base station for	. 10
the LiDAR acquisition	. 11
Table 7. Details of the recovered NAMRIA horizontal control point BKN-478 used as base station for	
the LiDAR acquisition	. 12
Table 8. Details of the recovered NAMRIA benchmark BK-56 used as base station for the LiDAR	
acquisition with processed coordinates	. 13
Table 9. Ground control points used during LiDAR data acquisition.	. 14
Table 10. Flight missions under DREAM program which covers part of Upper Pulangi river basin	. 15
Table 11. Flight missions for LiDAR data acquisition in Upper Pulangi floodplain	. 15
Table 12. Actual parameters used during LiDAR data acquisition.	. 16
Table 13. List of municipalities and cities surveyed during Upper Pulangi floodplain LiDAR survey	. 17
Table 14. Self-Calibration Results values for Upper Pulangi flights.	. 25
Table 15. List of LiDAR blocks for Upper Pulangi floodplain	. 27
Table 16. Upper Pulangi classification results in TerraScan	. 32
Table 17. LiDAR blocks with its corresponding area	. 35
Table 18. Shift Values of each LiDAR Block of Upper Pulangi floodplain.	. 37
Table 19. Calibration Statistical Measures	41
Table 20. Validation Statistical Measures.	. 42
Table 21. Quality Checking Ratings for Upper Pulangi Building Features.	. 44
Table 22. Building Features Extracted for Upper Pulangi Floodplain.	. 45
Table 23. Number of Extracted Water Bodies for Upper Pulangi Floodplain.	. 46
Table 24. List of reference and control points used during the survey in Upper Pulangi River (Source:	
NAMRIA, UP-TCAGP)	. 50
Table 25. Baseline Processing Report for Upper Pulangi River Static Survey	. 54
Table 26. Control Point Constraints	. 55
Table 27. Adjusted Grid Coordinates	. 55
Table 28. Adjusted Geodetic Coordinates	. 56
Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	. 56
Table 30. RIDF values for Malaybalay Rain Gauge computed by PAGASA	. 72
Table 31. Range of calibrated values for the Upper Pulangi River Basin.	. 80
Table 32. Summary the Efficiency Test of the Upper Pulangi HMS Model	. 81
Table 33. Peak values of the Upper Pulangi HEC-HMS Model outflow using the Malaybalay RIDF 24-	
hour values	. 82
Table 34. Municipalities affected in Manupali-Upper Pulangi-Upper Pulangi floodplain	. 84
Table 35. Areas covered by each warning level with respect to the rainfall scenarios	. 84
Table 36. Actual flood vs simulated flood depth at differnent levels in the Manupali-Sawaga-Upper	
Pulangi River Basin.	. 88
Table 37. The summary of the Accuracy Assessment in the Manupali-Upper Pulangi-Upper Pulangi	
River Basin Survey	. 89

LIST OF FIGURES

Figure 1. Map of the Upper Pulangi River Basin in brown Figure 2. Flight plans and base stations for Upper Pulangi floodplain Figure 3. GPS set-up over MSE-19 at the center island located at the road intersections going to Cagayan de Oro, Butuan City and Iligan City (a) and NAMRIA reference point MSE-19 (b) as recovered by the field team.	2 5 7
Figure 4. GPS set-up over MSE-20 in front of Cagayan de Oro Gardens Memorial Park, located at Barangay Lumbia, Cagayan de Oro City (a) and NAMRIA reference point MSE-20 (b) as recovered	
by the field team.	. 8
Figure 5. GPS set-up over MSE-3241 on a center island near a gasoline station beside	0
Figure 6. GPS set-up over MSE-3340 inside Agusan Barangay Plaza (a) and NAMRIA reference point	9
MSE-3340 (b) as recovered by the field team.	10
Figure 7. GPS set-up over NAMIRIA reference point BKN-475 inside Agusan Barangay Plaza	11
City (a) and NAMRIA reference point RKN-475 (b) as recovered by the field team	12
Figure 9 GPS set-up over NAMRIA benchmark BK-56 inside Agusan Barangay Plaza	12
Figure 10 Actual LiDAR survey coverage for Unner Pulangi floodalain	18
Figure 11 Schematic Diagram for Data Pre-Processing Component	20
Figure 12, Smoothed Performance Metric Parameters of Upper Pulangi Elight 1629P	22
Figure 13. Solution Status Parameters of Upper Pulangi Flight 1629P.	23
Figure 14. The best estimated trajectory of the LiDAR missions conducted over the Upper Pulangi	
floodplain	24
Figure 15. Boundary of the processed LiDAR data over Upper Pulangi Floodplain	26
Figure 16. Image of data overlap for Upper Pulangi floodplain.	28
Figure 17. Density map of merged LiDAR data for Upper Pulangi floodplain	29
Figure 18. Elevation difference map between flight lines for Upper Pulangi floodplain.	30
Figure 19. Quality checking for a Upper Pulangi flight 1629P using the Profile Tool of QT Modeler	31
Figure 20. Tiles for Upper Pulangi floodplain (a) and classification results (b) in TerraScan	32
Figure 21. Point cloud before (a) and after (b) classification	33
Figure 22. The production of the last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Upper Pulangi floodplain	33
Figure 23. Available orthophotographs near Upper Pulangi floodplain.	34
Figure 24. Sample orthophotograph tiles near Upper Pulangi floodplain	34
Figure 25. Portions in the DTM of Upper Pulangi floodplain – a bridge and building footprint before	
(a, c) and after manual editing (b, d); and a paddy field before (e) and after (f) data retrieval	36
Figure 26. Map of Processed LiDAR Data for Upper Pulangi Flood Plain	38
Figure 27. Map of Upper Pulangi Flood Plain with validation survey points in green	40
Figure 28. Correlation plot between calibration survey points and LiDAR data	41
Figure 29. Correlation plot between validation survey points and LiDAR data.	42
Figure 30. Map of Upper Pulangi Flood Plain with bathymetric survey points shown in blue	43
Figure 31. Blocks (In blue) of the Upper Pulangi building features that were subjected to QC	44
Figure 32. Extracted features for Opper Pulangi floodplain.	47
validation survey (rod)	10
Figure 24 Upper Bulangi Biver Pacin Control Survey Extent	49 51
Figure 35. ONSS receiver set up. Trimble® SPS 882. at RK-56. located at the west post of the	21
welcome arc of Malayhalay City in Brgy Sumpong, Bukidnon	52
Figure 36 GNSS receiver setup BKN-475 located within the DPWH Compound in Brgy Aglavan	52
Valencia City, Bukidnon	52
Figure 37. GNSS receiver set up. Trimble [®] SPS 882, at UP_MAN -2, located near the approach of	-
Manupali Bridge in Brgy, Bangcud, Malavbalav City, Province of Bukidnon	53
Figure 38. GNSS receiver serup, UP LUM-2, located near the Pulangui Diversion Dam in Brgv.	-
Lumbayao, Valencia City, Province of Bukidnon.	53

Figure 39. Upstream side of Valencia Bridge	. 57
Figure 40. As-built survey of Valencia Bridge	. 57
Figure 41. Valencia Bridge Location Map	. 58
Figure 42 Valencia Bridge Cross-section Diagram	. 59
Figure 43. Valencia Bridge Data Sheet	. 60
Figure 44. Water-level markings on Valencia Bridge	. 61
Figure 45. Validation points acquisition survey set-up for Upper Pulangi River	. 62
Figure 46. Validation points acquisition covering the Upper Pulangi River Basin Area	. 63
Figure 47. Manual Bathymetric survey of ABSD at Upper Pulangi River using Nikon® Total Station	. 64
Figure 48. Gathering of random bathymetric points along Upper Pulangui River	. 65
Figure 49. Bathymetric survey of Upper Pulangui River	. 66
Figure 50. Quality checking points gathered along Upper Pulangui River by DVBC	. 66
Figure 51. Upper Pulangi Riverbed Profile	. 67
Figure 52. The location map of Upper Pulangi HEC-HMS model used for calibration	. 69
Figure 53. The cross-section plot of the Upper Pulangi (Sugod) Bridge	. 70
Figure 54. Rainfall and outflow data used for modeling	. 70
Figure 55. HQ Curve of HEC-HMS model	. 71
Figure 56. Location of Malaybalay RIDF Station relative to Upper Pulangi River Basin	. 72
Figure 57. Synthetic storm generated for a 24-hr period rainfall for various return periods	. 73
Figure 58. The soil map of the Upper Pulangi River Basin	. 74
Figure 59. The land cover map of the Upper Pulangi River Basin (Source: NAMRIA)	. 75
Figure 60. Slope Map of Upper Pulangi River Basin	. 76
Figure 61. Stream delineation map of Upper Pulangi river basin	. 76
Figure 62. HEC-HMS generated Upper Pulangi River Basin Model	. 77
Figure 63. Upper Pulangi River Cross-section generated using HEC GeoRAS tool	. 78
Figure 64. Outflow Hydrograph of Upper Pulangi produced by the HEC-HMS model compared with	
observed outflow	. 80
Figure 65. Outflow hydrograph at Upper Pulangi Station generated using Malaybalay RIDF simulated	
in HEC-HMS	. 82
Figure 66. Sample output of Upper Pulangi RAS Model	. 83
Figure 67. The Validation Points for a 5-year Flood Depth Map of the Manupali-Sawaga-Upper	
Pulangi Floodplain	. 87
Figure 68. Flood map depth vs actual flood depth	. 88

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation				
Ab	abutment				
ALTM	Airborne LiDAR Terrain Mapper				
ARG	automatic rain gauge				
ATQ	Antique				
AWLS	Automated Water Level Sensor				
BA	Bridge Approach				
BM	benchmark				
CAD	Computer-Aided Design				
СМО	Central Mindanao University				
CN	Curve Number				
CSRS	Chief Science Research Specialist				
DAC	Data Acquisition Component				
DEM	Digital Elevation Model				
DENR	Department of Environment and Natural Resources				
DOST	Department of Science and Technology				
DPPC	Data Pre-Processing Component				
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]				
DRRM	Disaster Risk Reduction and Management				
DSM	Digital Surface Model				
DTM	Digital Terrain Model				
DVBC	Data Validation and Bathymetry Component				
FMC	Flood Modeling Component				
FOV	Field of View				
GiA	Grants-in-Aid				
GCP	Ground Control Point				
GNSS	Global Navigation Satellite System				
GPS	Global Positioning System				
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System				
HEC-RAS	Hydrologic Engineering Center - River Analysis System				
нс	High Chord				
IDW	Inverse Distance Weighted [interpolation method]				

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
IAMRIA	National Mapping and Resource Information Authority			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
AGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
TBC	Thermal Barrier Coatings			
UP- TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND UPPER PULANGI RIVER

Enrico C. Paringit, Dr. Eng., and Dr. George R. Puno

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS" (Paringit, et. Al. 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the Central Mindanao University (CMU). CMU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Northern Mindanao Region. The university is located in Maramag in the province of Bukidnon.

1.2 Overview of the Upper Pulangi River Basin

Figure 1. Map of the Upper Pulangi River Basin in brown

The Upper Pulangui River Basin traverses the barangays of Iba, Anlogan, Paradise and Jasaan in the Municipality of Cabanglasan, Malayanan and Tugop in the Municipality of San Fernando, barangays of Lumbayao, Sinabuagan, San Isidro, Vintar, Nabago, Sugod, Batangan, Pinatilan, and Catumbalon in the City of Valencia, barangays of Dologon, Tubigon, Bayabason and Panadtalan in the Municipality of Maramag, and barangay of Sto. Niño in the City of Malaybalay, Bukidnon. The DENR River Basin Control Office (RBCO) states that the Upper Pulangui River Basin has a drainage area of 6,772 km² with an estimated annual runoff of 7,862 cubic meter (MCM) (RBCO, 2015).

Its main stem, Upper Pulangui River, is among the twelve (12) river systems in Northern Mindanao. According to the 2015 national census of PSA, a total of 72,236 persons are residing in the barangays of the Municipalities of Cabanglasan, San Fernando, Maramag and Cities of Valencia and Malaybalay that are within the immediate vicinity of the river. The economy of the province of Bukidnon largely rests on agriculture particularly farming, fishing, trade, and commerce. The province is a major producer of rice, corn, sugar, coffee and cassava (Province of Bukidnon Brief Information, 2014). On January 19, 2017, the tail-end of a cold front triggered floods in parts of Mindanao, including eight (8) barangays in the City of Valencia in the Province of Bukidnon. (Lagsa, 2017).

Upper Pulangi River Basin is part of the greater Pulangi River Basin in the north-central Bukidnon, Mindanao, Philippines. The basin has an area of 281,053hectarescovers the reservoir of the National Power Corporation (NCP) in Maramag. Going upstream, it covers major tributaries namely Manupali, Sawaga, Tigwa and Pulangi rivers. The basin encompassed five (5) municipalities and two cities (2) namely San Fernando, Cabanglasan, Impagsug-ong, Maramag, Lantapan, and Valencia and Malaybalay Cities. The river runs from upstream located north in the Municipality of Impasug-ong to the south in the Municipality of Quezon.

The Upper Pulangi River Basin plays important role in housing diverse wildlife and a repository of carbon stock. The river feeds water for the Pulangi IV Hydro-electric Power Plant which contributes significantly to the power needs of Mindanao. The river is likewise diverted to several major irrigation systems ensuring rice production for the locals and neighboring communities.

Flooding caused by the river has become a concern to Malaybalay and Valencia cities which was historically unimaginable. Some of the flood occurrences which stroke the area were on 2011 during Sendong, June of 2012, December of 2012 during Typhoon Pablo, August 2015, and the latest as of writing was on January 2017.

Under the Phil-LiDAR1 Program, Upper Pulangi was generated with up-to-date and detailed 3D flood hazard maps by Central Mindanao University (CMU) using Light Detection and Ranging (LiDAR) Technology. Maps were derived through flood modeling comprised of hydrologic and hydraulic models. The former which is responsible for simulating discharge based on a particular rainfall event was developed using the computer software Hydrologic Engineering Centre's – Hydrologic Modeling System(HEC-HMS). It was calibrated using the actual data of the Tropical Depression Carina on July 28-29, 2016. Model efficiency was subsequently evaluated using statistical tests which later revealed a good model performance. Using the calibrated HMS model inputted with Rainfall Intensity Duration Frequency (RIDF) data of the Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) based on a 26-year record of Malaybalay City rain gauge, hypothetical discharge hydrographs were simulated. These were later used in performing hydraulic simulations over the LiDAR Digital Terrain Model (DTM) showing flood extent and depth information. Flood hazard maps were then generated illustrating the 5-, 25-, and 100-year flood scenarios in Upper Pulangi River.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE UPPER PULANGI FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Alex John B. Escobido , Engr. Ma. Ailyn L. Olanda, Engr. Mark Joshua A. Salvacion, Jovy Anne S. Narisma , Engr. Jommer M. Medina, Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Upper Pulangi floodplain in Bukidnon. These missions were planned for 12 lines that ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plan for Upper Pulangi floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
RX_BLKE	900	30	50	200	30	130	5
BLK 64A	900	30	50	200	30	130	5
BLK 64B	900	30	50	200	30	130	5
BLK 64C	900	30	50	200	30	130	5
BLK 64D	900	30	50	200	30	130	5
BLK 64E	900	30	50	200	30	130	5

Table 1. Flight planning parameters for Pegasus LiDAR system.

Figure 2. Flight plans and base stations for Upper Pulangi floodplain

2.2 Ground Base Stations

The project team was able to recover six (6) NAMRIA ground control points: MSE-19, MSE-20, BKN-475 and BKN-478 which are of second (2nd) order accuracy; and MSE-3241, MSE-3340 which are of third (3rd) order accuracy. The team was also able to recover one (1) NAMRIA benchmark: BK-56 which is of first (1st) order vertical accuracy. The benchmark was used as vertical reference point and was also established as ground control point. The certifications for the NAMRIA reference points are found in ANNEX 2. These were used as base stations during flight operations for the entire duration of the survey (May 27 – July 10, 2014 and October 23 – November 14, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Upper Pulangi floodplain are shown in Figure 2.

Figure 3 to Figure 9 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 8 show the details about the following NAMRIA control stations, while Table 9 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over MSE-19 at the center island located at the road intersections going to Cagayan de Oro, Butuan City and Iligan City (a) and NAMRIA reference point MSE-19 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point MSE-19 used as base station for the
LiDAR acquisition.

Station Name	MSE-19		
Order of Accuracy	2 nd order		
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 30' 19.11464" North 124° 37' 6.46518" East 11.24200 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	457,992.786 meters 940,451.853 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 30' 15.52234" North 124° 37' 11.86795" East 78.72200 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	678,151.65 meters 940,474.22 meters	

Figure 4. GPS set-up over MSE-20 in front of Cagayan de Oro Gardens Memorial Park, located at Barangay Lumbia, Cagayan de Oro City (a) and NAMRIA reference point MSE-20 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point MSE-20 used as base station for the LiDAR acquisition.

Station Name	۸	1SE-20
Order of Accuracy	2°	^d order
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates,	Latitude	8° 25' 34.65372" North
Philippine Reference of 1992 Datum	Longitude	124° 36' 50.02579" East
(PRS 92)	Ellipsoidal Height	182.812 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	457481.339 meters 931713.993 meters
Geographic Coordinates,	Latitude	8° 25' 31.08192" North
World Geodetic System 1984 Datum	Longitude	124° 36' 55.43561" East
(WGS 84)	Ellipsoidal Height	250.444 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	677685.12 meters 931773.67 meters

Figure 5. GPS set-up over MSE-3241 on a center island near a gasoline station beside SM Cagayan de Oro (a) and NAMRIA reference point MSE-3241 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MSE-3241used as base station for the LiDAR acquisition.

Station Name	MSE-3241			
Order of Accuracy	3 ^r	3 rd order		
Relative Error (horizontal positioning)	1:20,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 27' 31.07607" North 124° 37' 23.18891" East 109.46700 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	458499.251 meters 935289.375 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 27' 27.49608" North 124° 37' 28.59587" East 177.055 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	678684.71 meters 935314.30 meters		

Figure 6. GPS set-up over MSE-3340 inside Agusan Barangay Plaza (a) and NAMRIA reference point MSE-3340 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point MSE-3340 used as base station for the
LiDAR acquisition.

Station Name	MSE-3340			
Order of Accuracy	3 ^{ra} order			
Relative Error (horizontal positioning)	1:	20,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 29' 23.43073" North 124° 44' 11.52934" East 5.996 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	470991.591 meters 983730.493 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 29' 19.85261" North 124° 44' 16.93252" East 73.801 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	691159.9 meters 938819.85 meters		

Figure 7. GPS set-up over NAMRIA reference point BKN-475 inside Agusan Barangay Plaza

Table 6. Details of the recovered NAMRIA horizontal control point BKN-475 used as base station for the LiDAR acquisition.

Station Name	BI	(N-475		
Order of Accuracy	2 nd order			
Relative Error (horizontal positioning)	1:	50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 3' 25.94887" North 125° 7' 58.6868" East 404.314 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	890880.244 meters 514656.29 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 3' 22.52096" North 125° 8' 4.12506" East 473.98 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	891179.54 meters 735073.78 meters		

Figure 8. GPS set-up over BKN-478 beside the basketball court of Purok 6, Brgy. Sinayawan, Valencia City (a) and NAMRIA reference point BKN-475 (b) as recovered by the field team.

Table 7. Details of the recovered NAMRIA horizontal control point BKN-478 used as base station for the
LiDAR acquisition.

Station Name	BKN-478				
Order of Accuracy	2 nd order				
Relative Error (horizontal positioning)	1:50,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 52' 39.32095" North 125° 8' 33.26511" East 302.837 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	871017.702 meters 515721.851 meters			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 52' 35.94157" North 125° 8' 38.71964" East 372.885 meters			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	871315.75 meters 736235.86 meters			

Figure 9. GPS set-up over NAMRIA benchmark BK-56 inside Agusan Barangay Plaza

Table 8. Details of the recovered NAMRIA benchmark BK-56 used as base station for the LiDAR acquisition with
processed coordinates.

Station Name	ВК-56		
Order of Accuracy	1 st order		
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 9' 56.15912" North 125° 6' 49.1855" East 657.991 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 9' 52.70089" North 125° 8' 4.12506" East 473.98 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	732882.695 meters 903158.564 meters	
Elevation (mean sea level)	10.9546 meters		

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 27,2014	1517P	1RXE147A	MSE-19 & MSE-3241
June 9, 2014	1569P	1BLKRXE160A	MSE-19 & MSE-3241
June 16, 2014	1597P	1BLKRXE167A	MSE-19 & MSE-3241
June 24,2014	1629P	1BLKRXES175A	MSE-20 & MSE-3340
July 10, 2014	1693P	1RXES191A	MSE-20 & MSE-3340
October 23, 2016	23486P	1BKND297A	BKN-478 & BK-56
October 24, 2016	23488P	1BKNDE298A	BKN-478 & BK-56
October 25, 2016	23492P	1BKNDE299A	BKN-475 & BK-56
November 6, 2016	23516P	1BKNF311A	BKN-475 & BK-56
November 6, 2016	23518P	1BKNF311B	BKN-475 & BK-56
November 7, 2016	23520P	1BKNF312A	BKN-475 & BK-56
November 8, 2016	23524P	1BKND313A	BKN-475 & BK-56
November 10, 2016	23534P	1BKNG315A	BKN-475 & BK-56
November 11, 2016	23536P	1BKNDE316A	BKN-475 & BK-56
November 12, 2016	23540P	1BKNE317A	BKN-475 & BK-56
November 13, 2016	23544P	1BKNE318A	BKN-475 & BK-56
November 13, 2016	23546P	1BKNE319A	BKN-475 & BK-56
November 14, 2016	23548P	1BLK64A320A	BKN-475 & BK-56

Table 9. Ground control points used during LiDAR data acquisition.

2.3 Flight Missions

Two (2) missions under DREAM program covered around three hundred fourteen (314) square kilometers (Table 10) within Upper Pulangi river basin. Eighteen (18) missions were conducted to complete the LiDAR data acquisition in Upper Pulangi floodplain, for a total of seventy four hours and seven minutes (74+07) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 12 presents the actual parameters used during the LiDAR data acquisition.

Flight Number	Mission Name	Area Surveyed within the Floodplain (km²)
388G	2TAGWA224A	158.77
396G	2TAGWD226A	155.32
TO	314.09	

Table 10. Flight missions under DREAM program which covers part of Upper Pulangi river basin.

Table 11. Flight missions for LiDAR data acquisition in Upper Pulangi floodplain

Date	Flight	Flight Plan	Surveyed	Area Surveyed	Area Surveyed outside	No. of	Flying Hours	
Surveyed	Number	Area (km²)	Area (km²)	within the Floodplain (km ²)	the Floodplain (km ²)	Images (Frames)	Hr	Min
May 27, 2014	1517P	522.19	164.99	0	164.99	NA	4	23
June 9, 2014	1569P	340.82	289.86	0	289.86	NA	4	18
June 16, 2014	1597P	522.19	155.21	0	155.21	NA	4	0
June 24, 2014	1629P	182.55	223.66	0	223.66	527	3	47
July 10, 2014	1693P	522.19	196.80	0	196.80	NA	3	11
October 23, 2016	23486P	182.55	86.52	0	86.52	NA	3	41
October 24, 2016	23488P	133.31	155.98	0	155.98	NA	4	29
October 25, 2016	23492P	242.43	207.05	84.49	122.56	NA	4	23
November 6, 2016	23516P	235.81	177.38	96.66	80.72	NA	5	16
November 6, 2016	23518P	235.81	94.78	50.45	44.33	NA	2	29
November 7, 2016	23520P	381.09	252.33	132.96	119.37	NA	4	11
November 8, 2016	23524P	164.60	124.87	101.04	23.83	NA	4	29
November 10, 2016	23534P	145.29	50.15	11.36	38.79	NA	4	05
November 11, 2016	23536P	164.60	105.80	35.01	70.79	NA	4	23
November 12, 2016	23540P	242.43	96.13	20.24	75.89	NA	4	11
November 13, 2016	23544P	242.43	189.41	110.73	78.68	NA	4	11
November 13, 2016	23546P	145.29	136.72	101.20	35.52	NA	4	11
November 14, 2016	23548P	235.81	197.42	99.44	97.98	NA	4	29
TOTAL		4841.39	2905.06	843.58	2061.48	527	74	07

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1517P	900	30	50	200	30	130	5
1569P	1000	30	50	200	30	130	5
1597P	800	30	50	200	30	130	5
1629P	1200	30	50	200	30	130	5
1693P	1100	30	50	200	30	130	5
23486P	800	30	50	200	30	130	5
23488P	800	30	50	200	30	130	5
23492P	1000	30	50	200	30	130	5
23516P	1000	30	50	200	30	130	5
23518P	1000	30	50	200	30	130	5
23520P	1200	30	50	200	30	130	5
23524P	1200	30	50	200	30	130	5
23534P	1200	30	50	200	30	130	5
23536P	1200	30	50	200	30	130	5
23540P	1200	30	50	200	30	130	5
23544P	1200	30	50	200	30	130	5
23546P	1200	30	50	200	30	130	5
23548P	1200	30	50	200	30	130	5

Table 12. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

Upper Pulangi floodplain is located in the province of Bukidnon with majority of the floodplain situated within the City of Valencia and Malaybalay. Municipality of Manolo Fortich is mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 13. The actual coverage of the LiDAR acquisition for Upper Pulangi floodplain is presented in Figure 10.

Province	Municipality/City	Area of Municipality/City (km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed
	Manolo Fortich	350.15	249.97	71.39%
	Libona	282.23	182.47	64.63%
	Valencia City	726.07	393.05	54.13%
	Sumilao	259.26	119.07	45.935
	Maramag	323.88	91.75	28.32%
Bukidnon	Lantapan	290.82	80.20	27.58%
	Malaybalay City	1,115.98	281.10	25.19%
	Malitbog	359.59	38.81	10.79%
	Quezon	641.25	38.25	5.97%
	Impasug-Ong	854.63	29.11	3.41%
	Baungon	331.88	3.97	1.20%
	Villanueva	46.05	32.51	70.60%
	Jasaan	68.33	44.11	64.56%
Missoria Origental	Tagoloan	55.72	19.10	34.27%
Misamis Oriental	Cagayan de Oro City	440.17	147.73	33.56%
	Claveria	768.95	28.33	3.68%
	Balingasag	125.59	1.37	1.09
TOTAL		7,040.55	1,780.9	31.54%

Table 13. List of municipalities and cities surveyed during Upper Pulangi floodplain LiDAR survey.

Figure 10. Actual LiDAR survey coverage for Upper Pulangi floodplain.

CHAPTER 3: LIDAR DATA PROCESSING FOR UPPER PULANGI FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Alex John B. Escobido , Engr. Ma. Ailyn L. Olanda, Engr. Mark Joshua A. Salvacion, Jovy Anne S. Narisma , Engr. Jommer M. Medina, Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 LiDAR Data Processing for Upper Pulangi Floodplain

3.1.1 Overview of the LiDAR Date Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

LIDAR Surveys and Flood Mapping of Upper Pulangi River

Figure 11. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Upper Pulangi floodplain can be found in ANNEX 5. Data Transfer Sheets. Missions flown during the first survey conducted on August 2013 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini system while missions acquired during the second and third surveys on May 2014 and October 2016, respectively, were flown using the Pegasus system over Valencia City, Bukidnon. The Data Acquisition Component (DAC) transferred a total of 418.63 Gigabytes of Range data, 4.96 Gigabytes of POS data, 2807.02 Megabytes of GPS base station data, and 79.66 Gigabytes of raw image data to the data server on September 4, 2013 for the first survey, August 6, 2014 for the second survey and November 24, 2016 for the third survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Upper Pulangi was fully transferred on November 24, 2016, as indicated on the Data Transfer Sheets for Upper Pulangi floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 1629P, one of the Upper Pulangi flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on June 24, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metric Parameters of Upper Pulangi Flight 1629P.

The time of flight was from 180,500 seconds to 189,500 seconds, which corresponds to afternoon of June 24, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 1.70 centimeters, the East position RMSE peaks at 1.60 centimeters, and the Down position RMSE peaks at 4.60 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Upper Pulangi Flight 1629P.

The Solution Status parameters of flight 1629P, one of the Upper Pulangi flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 8. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Upper Pulangi flights is shown in Figure 14.

Figure 14. The best estimated trajectory of the LiDAR missions conducted over the Upper Pulangi floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 276 flight lines, with each Gemini flight line containing one channel, and each Pegasus flight line containing two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Upper Pulangi floodplain are given in Table 14.

Table 14. Self-Calibration	Results v	alues for	Upper I	ulangi flights

Parameter		Acceptable Value
Boresight Correction stdev	(<0.001degrees)	0.000102
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000381
GPS Position Z-correction stdev	(<0.01meters)	0.0073

The optimum accuracy values for all Upper Pulangi flights were calculated based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the ANNEX 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Upper Pulangi Floodplain is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data over Upper Pulangi Floodplain

The total area covered by the Upper Pulangi missions is 2,772.84 sq.km that is comprised of twenty (20) flight acquisitions grouped and merged into nineteen (19) blocks as shown in Table 15.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Tagoloan_396G	396G	142.86	
Tagoloan_388G	388G	150.69	
	1569P	429.95	
NorthernMindanao_RX_BlkE_additional	1597P		
	1629P		
	1693P		
NorthernMindanao_RX_BlkE	1517P	91.47	
NorthernMindanao_RX_BlkE_additional2	1569P	226.25	
	1597P		
	1629P		
	1693P		
Bukidnon_Blk64A	23492P	227.37	
Bukidnon_Blk64A_additional	23534P	21.72	
Bukidnon_Blk64A_supplement	23536P	80.87	
Bukidnon_Blk64B_supplement2	23540P	262.4	
	23544P	203.4	
Bukidnon_Blk64B	23516P	244.68	
	23518P		
	23520P		
Bukidnon_Blk64B_supplement	23548P	172.64	
Bukidnon_Blk64C	23520P	159.70	
	23516P		
Bukidnon_Blk64C_additional	23534P	55.92	
Bukidnon_Blk64C_supplement	23546P	119.87	
Bukidnon_Blk64D	23524P	80.72	
Bukidnon_Blk64D_additional	23524P	75.71	
Bukidnon_Blk64D_supplement	23536P	23.74	
Bukidnon_Blk64E	23488P	156.01	
Bukidnon_Blk64E_supplement	23486P	49.27	
TOTAL		2,772.84 sq.km	

Table 15. List of LiDAR blocks for Upper Pulangi floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines. While for the Pegasus system which employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Upper Pulangi floodplain.

The overlap statistics per block for the Upper Pulangi floodplain can be found in ANNEX 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 27.70% and 72.40% respectively, which passed the 25% requirement.
The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Upper Pulangi floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.23 points per square meter.

Figure 17. Density map of merged LiDAR data for Upper Pulangi floodplain.

LIDAR Surveys and Flood Mapping of Upper Pulangi River

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue area by more to be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation difference map between flight lines for Upper Pulangi floodplain.

A screen capture of the processed LAS data from Upper Pulangi flight 1629P loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for a Upper Pulangi flight 1629P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 16. Upper Pulang	classification	results in	TerraScan.
------------------------	----------------	------------	------------

Pertinent Class	Total Number of Points
Ground	3,857,468,123
Low Vegetation	2,850,039,233
Medium Vegetation	5,472,064,570
High Vegetation	5,504,381,780
Building	381,576,586

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Upper Pulangi floodplain is shown in Figure 20. A total of 3,754 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 1,590.61 meters and 65.84 meters respectively.

Figure 20. Tiles for Upper Pulangi floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of the last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Upper Pulangi floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 301 1km by 1km tiles of the block covering the Upper Pulangi floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Upper Pulangi floodplain survey attained a total of 240.922 km² in orthophotogaph coverage, comprised of 642 images. However, the block does not have a complete set of orthophotographs and no orthophotographs cover the area of the Upper Pulangi floodplain. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 24.

Figure 23. Available orthophotographs near Upper Pulangi floodplain.

Figure 24. Sample orthophotograph tiles near Upper Pulangi floodplain.

3.8 DEM Editing and Hydro-Correction

Nineteen (19) mission blocks were processed for Upper Pulangi flood plain. These blocks are composed of Bukidnon, Tagoloan and NorthernMindanao missions with a total area of 2,772.84 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Tagoloan_396G	142.86
Tagoloan_388G	150.69
NorthernMindanao_RX_BlkE_additional	429.95
NorthernMindanao_RX_BlkE	91.47
NorthernMindanao_RX_BlkE_additional2	226.25
Bukidnon_Blk64A	227.37
Bukidnon_Blk64A_additional	21.72
Bukidnon_Blk64A_supplement	80.87
Bukidnon_Blk64B_supplement2	263.4
Bukidnon_Blk64B	244.68
Bukidnon_Blk64B_supplement	172.64
Bukidnon_Blk64C	159.70
Bukidnon_Blk64C_additional	55.92
Bukidnon_Blk64C_supplement	119.87
Bukidnon_Blk64D	80.72
Bukidnon_Blk64D_additional	75.71
Bukidnon_Blk64D_supplement	23.74
Bukidnon_Blk64E	156.01
Bukidnon_Blk64E_supplement	49.27
TOTAL	2,772.84 sq.km

Table 17. LiDAR blocks with its corresponding area.

LIDAR Surveys and Flood Mapping of Upper Pulangi River

Portions of DTM before and after manual editing are shown in Figure 25. The bridge (Figure 25a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 25b) in order to hydrologically correct the river. This was done through interpolation process wherein a specific polygon determines the upstream and downstream elevation values to generate an interpolated portion of a river and eventually remove the bridge footprint. Another example of interpolation is to manually enclose a building footprint by a polygon to interpolate ground elevation values from the edges. A building that is still present in the DTM after classification (Figure 25c) have to be removed through manual editing (Figure 25d). On the other hand, object retrieval was done in areas which have been removed (Figure 25e) during classification process and have to be retrieved to complete the surface (Figure 25f).

Figure 25. Portions in the DTM of Upper Pulangi floodplain – a bridge and building footprint before (a, c) and after manual editing (b, d); and a paddy field before (e) and after (f) data retrieval.

3.9 Mosaicking of Blocks

The Bukidnon_Blk64C was used as the reference block for mosaicking of Bukidnon blocks while Northern Mindanao blocks used NorthernMindanao_RX_BlkE as reference. Table 18 shows the area of each LiDAR blocks and the shift values applied during mosaicking. Shifting values were derived from the height difference of the calibrated block and the overlapping adjacent block.

Mosaicked LiDAR DTM for Upper Pulangi floodplain is shown in Figure 26. It can be seen that the entire Upper Pulangi floodplain is 100% covered by LiDAR data.

	Shift Values (meters)					
MISSION BIOCKS	x	У	z			
Blocks in Bukidnon						
Bukidnon_Blk64A	0.00	0.00	-0.01			
Bukidnon_Blk64A-supplement	0.00	0.00	0.03			
Bukidnon_Blk64A_additional	0.00	0.00	-0.08			
Bukidnon_Blk64B	0.00	0.00	-0.16			
Bukidnon_Blk64B_supplement	0.00	0.00	-0.16			
Bukidnon_Blk64B_supplement2	0.00	0.00	-0.03			
Bukidnon_Blk64C	0.00	0.00	0.00			
Bukidnon_Blk64C_supplement	0.00	0.00	0.08			
Bukidnon_Blk64C_additional	0.00	0.00	0.17			
Bukidnon_Blk64D	0.00	0.00	0.02			
Bukidnon_Blk64D_supplement	0.00	0.00	-0.11			
Bukidnon_Blk64D_additional	0.00	0.00	-0.04			
Blocks in	Northern Mindana	D				
Bukidnon_Blk64E	0.00	0.00	0.63			
Bukidnon_Blk64E_supplement	0.00	0.00	-0.37			
NorthernMindanao_RX_BlkE	0.00	0.00	0.00			
NorthernMindanao_RX_BlkE_additional	0.00	0.00	-0.37			
NorthernMindanao_RX_BlkE_additional2	0.00	0.00	-0.48			

Table 18. Shift Values of each LiDAR Block of Upper Pulangi floodplain.

Figure 26. Map of Processed LiDAR Data for Upper Pulangi Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Upper Pulangi to collect points with which the LiDAR dataset is validated is shown in Figure 27. A total of 7,734 survey points were used for calibration and validation of Upper Pulangi LiDAR DTM. The 80% of the total survey points were extracted through equal selection at a certain interval, resulting to 7, 734 points. A total 4, 512 points were used for calibration within the available LiDAR Data. A good correlation between the uncalibrated LiDAR elevation values and the ground survey elevation values is shown in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration values is 0.38 meters with a standard deviation of 0.08 meters. Calibration of Upper Pulangi LiDAR data was done by subtracting the height difference value, 0.38 meters, to Upper Pulangi mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 27. Map of Upper Pulangi Flood Plain with validation survey points in green.

Figure 28. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.38
Standard Deviation	0.08
Average	-0.38
Minimum	-0.64
Maximum	0.56

The remaining 20% or the total points of every 5th interval of the total survey points, resulting to 825 points were used for the validation of calibrated Bukidnon block. A good correlation between the calibrated LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 29. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.19 meters with a standard deviation of 0.19 meters, as shown in Table 20.

Figure 29. Correlation plot between validation survey points and LiDAR data.

lable 20. Validation Statistical Measures	Table 20.	Validation	Statistical	Measures.
---	-----------	------------	-------------	-----------

Validation Statistical Measures	Value (meters)
RMSE	0.19
Standard Deviation	0.19
Average	0.00
Minimum	-0.38
Maximum	0.40

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, cross section data were available for Upper Pulangi with 5,490 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.33 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Upper Pulangi integrated with the processed LiDAR DEM is shown in Figure 30.

Figure 30. Map of Upper Pulangi Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Upper Pulangi floodplain, including its 200 m buffer, has a total area of 438.79 sq km. For this area, a total of 14.00 sq km, corresponding to a total of 3372 building features, are considered for QC. Figure 31 shows the QC blocks for Upper Pulangi floodplain.

Figure 31. Blocks (in blue) of the Upper Pulangi building features that were subjected to QC

Quality checking of Upper Pulangi building features resulted in the ratings shown in Table 21.

Table 21. Quality Checking Ratings for Upper Pulangi Building Features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Upper Pulangi	99.47	99.76	89.09	PASSED

3.12.2 Height Extraction

Height extraction was done for 28,044 building features in Upper Pulangi floodplain. Of these building features, none was filtered out after height extraction, resulting to 28,044 buildings with height attributes. Filtered features were the features with less than 2 meters high. The lowest building height is at 2.00 m, while the highest building is at 15.58 m.

3.12.3 Feature Attribution

Field data collection for the attribution process was done through Geotagging (point to a specific feature and shoot method) using a handheld GPS with a built-in camera. The x,y,z and the viewing direction of the GPS in 0-359 degrees during the photo capture were the essential information in the process. Using Arcmap's tool "Geotagged Photos to Points", the symbology of the imported point shapefile was set as "Airfield" and the viewing angle was set as "Direction". The "Path" is automatically created in the points' attribute table wherein the photo's directory is linked every after the "Identify" button is clicked to a specific point.

Table 22 summarizes the number of building features per type. From the total features identified, approximately 25, 409 of it are residential establishments while the commercial establishments are the most common in non-residential features. On the other hand, Table 23 shows the total length of each road type. Table 24 shows the water features (river and stream networks) within the flood palin.

Facility Type	No. of Features
Residential	25,409
School	538
Market	16
Agricultural/Agro-Industrial Facilities	9
Medical Institutions	46
Barangay Hall	20
Military Institution	0
Sports Center/Gymnasium/Covered Court	25
Telecommunication Facilities	0
Transport Terminal	6
Warehouse	248
Power Plant/Substation	0
NGO/CSO Offices	5
Police Station	1
Water Supply/Sewerage	0
Religious Institutions	203
Bank	6
Factory	5
Gas Station	39
Fire Station	1
Other Government Offices	162
Other Commercial Establishments	1305
Residential	0
Total	10,975

Table 22. Building Features Extracted for Upper Pulangi Floodplain.

Total Length of Extracted Roads for Upper Pulangi Floodplain.

	Road Network Length (km)					
Floodplain	Barangay Road	City/ Municipal Road	Provincial Road	National Road	Others	Total
Upper Pulangi	513	3.38	0	28.86	0	542.24

Table 23. Number of Extracted Water Bodies for Upper Pulangi Floodplain.

	Water Body Type					
Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Upper Pulangi	11	0	0	0	0	11

A total of 18 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 shows the Digital Surface Model (DSM) of Upper Pulangi floodplain overlaid with its ground features.

Figure 32. Extracted features for Upper Pulangi floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE UPPER PULANGI RIVER BASIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Alex John B. Escobido , Engr. Ma. Ailyn L. Olanda, Engr. Mark Joshua A. Salvacion, Jovy Anne S. Narisma , Engr. Jommer M. Medina, Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The project team conducted a field survey in Upper Pulangui River on April 6, 7, 11, 12, 17 to 30, 2016 and May 1 to 5, 7 to 10, 14, 16, 17, 20 and 21, 2016 with the following scope: reconnaissance; control survey; and cross-section and as-built survey at Valencia Bridge in Brgy. Sugod, City of Valencia, Bukidnon. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on August 11, 2016 using a Trimble[®] SPS 882 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Upper Pulangui River Basin area. The entire survey extent is illustrated in Figure 33.

Figure 33. Extent of the bathymetric survey (blue line) in Upper Pulangi River and the LiDAR data validation survey (red)

4.2 Control Survey

The GNSS network used for Upper Pulangui River is composed of two (2) loops established on August 10, 2016 occupying the following reference points: BK-56, a first-order BM, in Brgy. Sumpong, Malaybalay City, Bukidnon; and BKN-475 a second-order GCP, in Brgy. Linabo, Malaybalay City, Bukidnon.

Two (2) control points established in the area by ABSD were also occupied: UP_MAN-2 located near the approach of Manupali Bridge in Brgy. Bangcud, Malaybalay City, Province of Bukidnon, and UP_LUM-2 located near the Pulangui Diversion Dam in Brgy. Lumbayao, Valencia City, Province of Bukidnon.

The summary of reference and control points and its location is summarized in Table 25 while GNSS network established is illustrated in Figure 34.

Table 24. List of reference and control points used during the survey in Upper Pulangi River (Source: NAMRIA, UP-TCAGP)

		Geographic Coordinates (WGS UTM Zone 52N)						
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establish- ment		
BK-56	1 st order, BM	8° 9' 52.69903"N	125° 6' 54.60334"E	727.714	656.645	2008		
BKN-475	2 nd order, GCP	8° 3' 22.52096"N	125° 8' 4.12506"E	473.980	403.169	2007		
UP_MAN-2	Established	7° 59'16.34151"N	125° 8' 3.89549"E	394.653	322.44	02-10-15		
UP_LUM2	Established	7°56' 49.14628"N	125° 9' 40.23913"E	411.207	339.432	04-19-2016		

Figure 34. Upper Pulangi River Basin Control Survey Extent

The GNSS set-ups on recovered reference points and established control points in Upper Pulangi River are shown from Figure 35 to Figure 38.

Figure 35. GNSS receiver set up, Trimble® SPS 882, at BK--56, located at the west post of the welcome arc of Malaybalay City in Brgy. Sumpong, Bukidnon

Figure 36. GNSS receiver setup, BKN-475, located within the DPWH Compound in Brgy. Aglayan, Valencia City, Bukidnon.

Figure 37. GNSS receiver set up, Trimble® SPS 882, at UP_MAN -2, located near the approach of Manupali Bridge in Brgy. Bangcud, Malaybalay City, Province of Bukidnon

Figure 38. GNSS receiver serup, UP_LUM-2, located near the Pulangui Diversion Dam in Brgy. Lumbayao, Valencia City, Province of Bukidnon.

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Upper Pulangi River Basin is summarized in Table 26 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (m)
BK-56 BKN-475	8-10-2016	Fixed	0.007	0.024	169°55'49"	12174.173	-253.707
BK-56 UP_MAN-2	8-10-2016	Fixed	0.004	0.022	173°48'19	19664.461	-334.563
BKN-475 UP_MAN-2	8-10-2016	Fixed	0.004	0.015	180°03'12"	7562.993	-80.875
BK-56 UP_LUM-2	8-10-2016	Fixed	0.006	0.029	149°19'44"	27983.972	-318.479
BKN-475 UP_LUM-2	8-10-2016	Fixed	0.004	0.016	134°51'09"	17132.460	-253.707

Table 25. Baseline Processing Report for Upper Pulangi River Static Survey

As shown in Table 26, a total of five (5) baselines were processed with coordinate and ellipsoidal height values of BKN-475 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the squares of x and y must be less than 20 cm and z less than 10 cm in equation form:

$$\sqrt{((x_{e})^{2} + (y_{e})^{2})}$$
 < 20 cm and z_{e} < 10 cm

Where:

 x_{e} is the Easting Error, y_{e} is the Northing Error, and z_{e} is the Elevation Error

for each control point. See the Network Adjustment Report shown from Tables 23 to 25 for the complete details. Refer to ANNEX 11 for the computation for the accuracy of ABSD.

The four (4) control points, BK-56, BKN-475, UP-MAN-2, and UP_LUM-2 were occupied and observed simultaneously to form a GNSS loop. The coordinates and ellipsoidal height of BKN-475 were held fixed during the processing of the control points as presented in Table 27. Through this reference point, the coordinates and ellipsoidal height of the unknown control points will be computed.

Point ID	Туре	North (Meter)	East (Meter)	Height (Meter)	Elevation (Meter)		
BK-56	Grid						
BKN-475	Global	Fixed	Fixed	Fixed			
Fixed = 0.000001(Meter)							

Table 26. Control Point Constraints

Table 27. Adjusted Grid Coordinates

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BK-56	733046.484	0.009	903110.050	0.007	656.645	?	е
BKN-475	735238.147	?	891131.322	?	403.210	0.057	LLh
UP_MAN-2	735270.463	0.009	883566.236	0.007	322.440	0.061	
UP_LUM-2	747450.236	0.009	879107.389	0.007	338.965	0.067	

With the mentioned equation, $\sqrt{((x_e)^2 + (y_e)^2)} < 20 \text{ cm}$ for horizontal and $z_e < 10 \text{ cm}$ for the vertical; the computation for the accuracy are as follows:

a. BK-56		c. UP_MAN-2	
horizontal accuracy	$= \sqrt{((0.9)^2 + (0.7)^2)^2}$ = $\sqrt{(0.81 + 0.49)^2}$	horizontal accuracy	$= \sqrt{((0.9)^2 + (0.7)^2)^2}$ = $\sqrt{(0.81 + 0.49)^2}$
	= 1.3 < 20 cm		= 1.3 < 20 cm
vertical accuracy	= Fixed	vertical accuracy	= 6.1 < 10 cm
b. BKN-475		d. UP_LUM-2	
horizontal accuracy	= Fixed	horizontal accuracy	$= \sqrt{((0.9)^2 + (0.7)^2)^2}$
vertical accuracy	= Fixed		= v (0.81 + 0.49)
			= 1.3 < 20 cm
		vertical accuracy	= 6.7 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the four (4) occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
BK-56	N8°09'52.69746"	E125°06'54.60518"	729.219	?	е
BKN-475	N8°03'22.52096"	E125°08'04.12506"	475.526	0.057	LLh
UP_MAN-2	N7°59'16.33836"	E125°08'03.89549"	394.653	0.061	
UP_LUM-2	N7°56'49.14664"	E125°14'40.69052"	410.740	0.067	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 29. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 30.

Table 20 Defenses and sentenal	and the second and the last street	(Comment NIANADIA UD TCACD)	
Table 29. Reference and control	points used and its location (Source. NAMIKIA, UP-ICAGP)	Į.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BK-56	1 st order, BM	8°9'52.69903"N	125°6'54.60334"E	727.714	903110.046	733046.488	656.645
BKN-475	2 nd order, GCP	8°3'22.52096"N	125° 8' 4.12506"E	473.980	891131.322	735238.147	403.175
UP_MAN-2	Established	7°59'16.34151"N	125° 8' 3.89549"E	394.653	883566.236	735270.463	322.44
UP_LUM-2	Established	7°56'49.14628"N	125°9'40.23913"E	411.207	879107.378	747450.247	339.432

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on April 27, 2016 at the upstream side of Upper Pulangi Bridge in Brgy. Violeta, City of Malaybalay as shown in Figure 39. Nikon[®] Total Station was utilized for this survey as shown in Figure 40.

Figure 39. Upstream side of Valencia Bridge

Figure 40. As-built survey of Valencia Bridge

The cross-sectional line of Valencia Bridge is about 288.633 m with sixty-two (62) cross-sectional points using the established control points by ABSD, UP_VAL-1 and UP_VAL-2 as the GNSS base stations. The location map, cross-section diagram, and the bridge data form are shown in Figure 41 to Figure C- 43.

Figure 41. Valencia Bridge Location Map

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 42. . Valencia Bridge Cross-section Diagram

Note: Observer should be facing downstream

Figure 43. Valencia Bridge Data Sheet

Water surface elevation of Upper Pulangui River was determined by a Nikon[®] Total Station on May 1, 2016 at 3:00 PM at Valencia Bridge area with a value of 298.227 m in MSL as shown in Figure 42. This was translated into marking on the bridge's abutment as shown in Figure 44. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Upper Pulangui River, Central Mindanao University.

Figure 44. Water-level markings on Valencia Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC from August 12, 2016 using a survey grade GNSS Rover receiver, Trimble® SPS 882, mounted on a range pole which was attached at the back of the vehicle as shown in Figure 45.It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 2.235 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with PLW-48 occupied as the GNSS base station in the conduct of the survey.

Figure 45. Validation points acquisition survey set-up for Upper Pulangi River

The survey started from Brgy. Basak, Municipality of Lantapan, Bukidnon going southeast along the national highway and ended in Brgy. Dologon, City of Valencia, Bukidnon. A total of 9,668 points were gathered with an approximate length of 54 km using UP_MAN-2 as GNSS base station for the entire extent of validation points acquisition survey as illustrated in the map in Figure 46.

Figure 46. Validation points acquisition covering the Upper Pulangi River Basin Area

4.7 River Bathymetric Survey

Manual bathymetric survey was executed on April 7, 17, 20 to 30, 2016 and May 1 to 5, 2016 using a Nikon[®] Total Station as illustrated in Figure 47. The survey started downstream in Brgy. Dologon, Municipality of Maramag with coordinates 7° 48' 44.11772"N, 125°4' 21.49423"E, going upstream in Brgy. Iba, Municipality of Cabanglasan, Province of Bukidnon, with coordinates 8°6'9.48096"N, 125°20'5.62831"E as illustrated in Figure 48. The established control points established by ABSD, AB-29P and AB-30P, were used as GNSS base station all throughout the entire survey.

Gathering of random points for the checking of ABSD's bathymetric data was performed by DVBC on August 11, 2016 using a Trimble[®] SPS 882 GNSS PPK survey technique, see Figure 48. A map showing the DVBC bathymetric checking points is shown in Figure 50.

Linear square correlation (R2) and RMSE analysis were performed on the two (2) datasets. The linear square coefficient range is determined to ensure that the submitted data of the contractor is within the accuracy standard of the project which is ±20 cm and ±10 cm for horizontal and vertical, respectively. The R2 value must be within 0.85 to 1. An R2 approaching 1 signifies a strong correlation between the vertical (elevation values) of the two datasets. A computed R2 value of 0.996 was obtained by comparing the data of the contractor and DVBC; signifying a strong correlation between the two (2) datasets.

In addition to the Linear Square correlation, Root Mean Square (RMSE) analysis is also performed in order to assess the difference in elevation between the DVBC checking points and the contractor's. The RMSE value should only have a maximum radial distance of 5 m and the difference in elevation within the radius of 5 meters should not be beyond 0.50 m. For the bathymetric data, a computed value of 0.173 was acquired. The computed R2 and RMSE values are within the accuracy requirement of the program.

Figure 47. Manual Bathymetric survey of ABSD at Upper Pulangi River using Nikon® Total Station

Figure 48. Gathering of random bathymetric points along Upper Pulangui River

The manual bathymetric survey for Upper Pulangui River gathered a total of 12,299 points covering an approximate of 71 km of the river traversing Brgy. Catumbalon, Lumbo, Pinatilan, Poblacion, Batangan, Bagontaas, Sugod, Nabago, Vintar, San Isidro, Sinabuagan, and Lumbayao in the City of Valencia, Bukidnon, Brgy. Santo Niño in the City of Malaybalay, Bukidnon, Brgy. Malayanan and Tugop in the Municipality of San Fernando, Bukidnon, Brgy. Jasaan, Paradise, Anlogan, Mandahikan and Iba in the Municipality of Cabanglasan, Bukidnon, Brgy. Dologon in the Municipality of Maramag, Bukidnon, and Brgy. Paitan in the Municipality of Quezon, Bukidnon. A CAD drawing was also produced to illustrate the riverbed profile of Upper Pulangui River. As shown in Figure 51, the highest and lowest elevation has a 126-m difference. The highest elevation observed was 407.435 m above MSL located in Brgy. Dologon, Municipality of Cabanglasan, Bukidnon while the lowest was 281.657 m above MSL located in Brgy. Iba, Municipality of Cabanglasan, Bukidnon.

Figure 49. Bathymetric survey of Upper Pulangui River

Figure 50. Quality checking points gathered along Upper Pulangui River by DVBC

Figure 51. Upper Pulangi Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat , Alex John B. Escobido , Engr. Ma. Ailyn L. Olanda, Engr. Mark Joshua A. Salvacion, Jovy Anne S. Narisma , Engr. Jommer M. Medina, Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Upper Pulangi River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Upper Pulangi River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation is one of the hydrologic data required for watershed model calibration. It is used to simulate the relationship of rainfall event to discharge and water level changes at the point of observation.

The precipitation data was taken from 3 Automatic Rain Gauges (ARGs) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI) and 4 digital rain gauges installed by CMU all over the watershed (see Figure 52). The Tropical Depression Carina (TD Carina) event on July 28-29, 2016 served as input data.

The total rainfall volume for the event is 389.5 mm which peaked at 46.8mm on July 28-29, 2016 at 1700. The lag time between the peak rainfall and discharge is ten (10) hours and fifty (50) minutes.

Figure 52. The location map of Upper Pulangi HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

Simultaneous with the rainfall event, is the measurement of water level and velocity at the flow site. Flow measurements specifically conducted at the Sugod Bridge at Barangay Sugod, Valencia City, Bukidnon (7°56'24.74"N, 125°7'34.10"E). These flow data are necessary in the calculation of river discharge. During the event, the peak discharge is 400.70 m³/s on 29 July 2016 at 0350. Figure 54 shows river discharge as affected by the rainfall. The TD Carina event resulted to 1.6 meter of water level rise.

Figure 53. The cross-section plot of the Upper Pulangi (Sugod) Bridge

Figure 54. Rainfall and outflow data used for modeling.

The river outflow data were then used to generate rating curve. The curve gives the relationship between the observed water level and river outflow at the flow site location. It is expressed in the form of the following equation:

Q=a^{nh}

where,

Q:	Discharge (m3/s),
h:	Gauge height (reading from Riverside staff gauge), and
a and n:	Constants.

The Rating Curve for the data collected at the Upper Pulangi flow site is expressed as Q=8E-145e^{1.1249x} as shown in Figure 55. This equation is helpful in calculating discharge using water level data.

Figure 55. HQ Curve of HEC-HMS model.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Malaybalay Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Manupali watershed. The extreme values for this watershed were computed based on a 31-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	17.9	28.5	35.6	47.8	63.7	73.5	90.2	103.4	112.8
5	26.7	45.3	57.9	78.4	100.8	114.3	130.2	143.2	153.6
10	32.5	56.5	72.7	98.6	125.3	141.4	156.7	169.6	180.7
15	35.8	62.8	81	110	139.1	156.6	171.6	184.4	195.9
20	38.1	67.2	86.8	117.9	148.8	167.3	182.1	194.8	206.6
25	39.9	70.6	91.3	124.1	156.3	175.5	190.1	202.8	214.8
50	45.4	81	105.1	143	179.3	200.9	214.9	227.5	240.2
100	50.8	91.4	118.8	161.8	202.2	226	239.5	252	265.3

Table 30. RIDF values for Malaybalay Rain Gauge computed by PAGASA

Figure 56. Location of Malaybalay RIDF Station relative to Upper Pulangi River Basin

Figure 57. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil shapefile (dated pre-2004) was taken from the Bureau of Soils and Water Management under the Department of Agriculture. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Upper Pulangi River Basin are shown in Figures 58 and 59, respectively.

Figure 58. The soil map of the Upper Pulangi River Basin

Figure 59. The land cover map of the Upper Pulangi River Basin (Source: NAMRIA)

For Upper Pulangi, four soil classes were identified. These are clay loam, clay, silty clay loam, and undifferentiated soil. Moreover, eight land cover classes were identified. These are built-up, cultivated area, forest plantation, grassland, open forest, shrubland, closed canopy and fishpond

Figure 60. Slope Map of Upper Pulangi River Basin

Figure 61. Stream delineation map of Upper Pulangi river basin

Using ArcMap 10.1 with HEC-GeoHMS version 10.1 extension, the drainage system of Upper Pulangi river was delineated using the river's centreline and SAR-DEM 10m resolution as primary input data. Delineated drainage system includes the basin boundary, subbasin and the stream networks. The river centreline was digitized starting from upstream towards downstream in Google Earth (2014).

Using the 10m SAR-DEM with default threshold area of 500 hectares, the delineated drainage system of Upper Pulangi Watershed generated 174 sub-basins, 88 reaches and 88 junctions including the main outlet of the watershed (Figure 62).

Figure 62. HEC-HMS generated Upper Pulangi River Basin Model.

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived ufrom the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 63. Upper Pulangi River Cross-section generated using HEC GeoRAS tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northwest of the model to the southeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 28.32373 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m^2/s .

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 30 871 500.00 m².

There is a total of 208 903 237.15 m³ of water entering the model. Of this amount, 11 957 813.56 m³ is due to rainfall while 196 945 423.58 m³ is inflow from other areas outside the model. 3 829 085.00 m³ of this water is lost to infiltration and interception, while 2 099 733.22 m³ is stored by the flood plain. The rest, amounting up to 202 974 422.96 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Upper Pulangi HEC-HMS river basin model, its accuracy was measured against the observed values (see ANNEX 9: Upper Pulangi Model Basin Parameters). Figure 64 shows the comparison between the two discharge data.

Figure 64. Outflow Hydrograph of Upper Pulangi produced by the HEC-HMS model compared with observed outflow.

Table 32 shows adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
		SCS Curve number	Initial Abstraction (mm)	3 - 48
	LUSS	SCS Curve number	Curve Number	62 - 97
Docin	Transform	Clark Unit	Time of Concentration (hr)	0.01667 - 6
Basin	Iransiorm	Hydrograph	Storage Coefficient (hr)	0.01667 - 7
	Deceflow	Decession	Recession Constant	0.0001 - 1
	Basellow	Recession	Ratio to Peak	0.0001 - 1
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.0001

Table 31. Range of calibrated values for the Upper Pulangi River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 3mm to 48mm signifies that there is minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 62 to 97 for contains the advisable range for Philippine watersheds (70 to 80) depending on the soil and land cover of the area (Horritt, personal communication, 2012). For Upper Pulangi, the basin mostly consists of cultivated area and shrubland; the soil consists mostly of clay and undifferentiated soil.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.01667 hours to 7 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events, while ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge. Ratio to peak of 0.0001 indicates a steeper receding limb of the outflow hydrograph.

The basin was calibrated with Manning's roughness coefficient of 0.0001. The Manning's value corresponding to the land cover of Upper Pulangi watershed is 0.04 for land cultivated with mature field crops (Brunner, 2010)

Accuracy measure	Value
RMSE	49.2
۲²	0.7
NSE	0.76
PBIAS	-11.98
RSR	0.49

Table 32. Summary the Efficiency Test of the Upper Pulangi HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 49.2 (m³/s).

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.7.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.76.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -11.98.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.49.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 65) shows the Upper Pulangi River outflow using the Malaybalay Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 65. Outflow hydrograph at Upper Pulangi Station generated using Malaybalay RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Upper Pulangi discharge using the Malaybalay Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 34.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m³/s)	Time to Peak	Lag Time
5-yr	153.6	26.7	10587.1	3 hours, 20 minutes	1 hour 10 minutes
10-yr	180.7	32.5	14049.34	3 hours	1 hour 10 minutes
25-yr	214.8	39.9	19148.81	2 hours, 50 minutes	1 hour 10 minutes
50-yr	240.2	45.4	22887.1	2 hours, 50 minutes	1 hour 10 minutes
100-yr	265.3	50.8	26693.93	2 hours, 40 minutes	1 hour 10 minutes

Table 33. Peak values of the Upper Pulangi HEC-HMS Model outflow using the Malaybalay RIDF 24-hour values.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Upper Pulangi River using the calibrated HMS base flow is shown in Figure 66.

Figure 66. Sample output of Upper Pulangi RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 65 to Figure 70 shows the 5-, 25-, and 100-year rain return scenarios of the Manupali-Sawaga-Upper Pulangi floodplain. The floodplain, with an area of 732.86 sq. km., covers the municipalities of Lantapan, Maramag, Quezon, and San Fernando and the cities of Malaybalay and Valencia. Table 35 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Lantapan	355.91	81.26	22.83%
Malaybalay City	1004.67	259.22	25.80%
Maramag	320.61	10.19	3.18%
Quezon	647.63	6.02	0.93%
San Fernando	605.87	0.49	0.08%
Valencia City	668.14	375.69	56.23%

Table 34. Municipalities affected in Manupali-Upper Pulangi-Upper Pulangi floodplain

Moreover, the generated flood hazard maps for the Manupali-Upper Pulangi-Upper Pulangi Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps ("Low", "Medium", and "High"), the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 10-year).

Table 35. Areas covered by each warning level with respect to the rainfall scenarios

Marning Loval	Area Covered in sq. km.	ı.	
warning Level	5 year	25 year	100 year
Low	72.25	67.13	68.35
Medium	87.85	98.40	97.07
High	68.99	126.61	152.82
TOTAL	229.09	292.14	318.24

Of the 115 identified Education Institute in Manupali-Upper Pulangi-Upper Pulangi Flood plain, 20 schools were discovered exposed to Low-level flooding during a 5-year scenario, while 25 schools were found exposed to Medium-level flooding and 12 schools were discovered exposed to High-level flooding in the same scenario.

In the 25-year scenario, 23 schools were found exposed to Low-level flooding, while 28 schools were discovered exposed to Medium-level flooding. In the same scenario, 24 schools were found exposed to High-level flooding.

For the 100-year scenario, 19 schools were discovered exposed to Low-level flooding, while 26 schools were exposed to Medium-level flooding. In the same scenario, 33 schools were found exposed to High-level flooding. See Appendix D for a detailed enumeration of affected education institutes in the Manupali-Upper Pulangi-Upper Pulangi floodplain.

Apart from this, 34 Medical Institutions were identified in the Manupali-Upper Pulangi-Upper Pulangi Floodplain. Five (5) of these medical institutions were found exposed to Low-level flooding during a 5-year scenario, while 10 were discovered exposed to Medium-level flooding. In the same scenario, two (2) hospitals were found exposed to High-level flooding.

In the 25-year scenario, seven (7) medical institutions were discovered exposed to Low-level flooding, while 10 were found exposed to Medium-level flooding. In the same scenario, seven (7) hospitals were discovered exposed to High-level flooding.

For the 100-year scenario, eight (8) medical institutions were found exposed to Low-level flooding, while 10 were discovered exposed to Medium-level flooding. In the same scenario, eight (8) hospitals were found exposed to High-level flooding. See Appendix E for a detailed enumeration of the affected medical institutions in the Manupali-Upper Pulangi-Upper Pulangi floodplain.

LIDAR Surveys and Flood Mapping of Upper Pulangi River

5.10 Inventory of Areas Exposed to Flooding

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, a validation survey work was performed. Field personnel gathered data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through the help of a local DRRM office to obtain maps or situation reports about the past flooding events and through interviews with some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 404 points randomly selected all over the Manupali-Sawaga-Upper Pulangi flood plain. It has an RMSE value of 1.69. The field validation points can be found in ANNEX 11.

Figure 67. The Validation Points for a 5-year Flood Depth Map of the Manupali-Sawaga-Upper Pulangi Floodplain

Figure 68. Flood map depth vs actual flood depth

Table 36. Actual flood vs simulated flood depth at differnent l	evels in the Manupali-Sawaga-Upper Pulangi River
Basin.	

Upp	per Pulangi		MODELED FLOOD DEPTH (m)					
	BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
	0-0.20	141	27	22	46	30	8	274
(E	0.21-0.50	10	5	5	15	10	2	47
epth	0.51-1.00	9	4	3	12	16	1	45
D bod	1.01-2.00	9	5	3	7	9	0	33
al Flo	2.01-5.00	0	1	0	1	3	0	5
Actu	> 5.00	0	0	0	0	0	0	0
	Total	169	42	33	81	68	11	404

On the whole, the overall accuracy generated by the flood model is estimated at 39.36% with 159 points correctly matching the actual flood depths. In addition, there were 67 points estimated one level above and below the correct flood depths while there were 67 points and 107 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 42 points were underestimated in the modelled flood depths of Manupali-Upper Pulangi-Upper Pulangi. Table 43 depicts the summary of the Accuracy Assessment in the Manupali-Upper Pulangi-Upper Pulangi River Basin Survey.

Table 37. The summary of the Accuracy Assessment in the Manupali-Upper Pulangi-Upper Pulangi River Basin Survey

	No. of Points	%
Correct	159	39.36
Overestimated	203	50.25
Underestimated	42	10.40
Total	404	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagsa, B. (2017). Floods hit Lanao del Sur, Bukidnon; Cagayan de Oro still on alert. Rappler.com.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Province of Bukidnon Brief Information. (2014). Bukidnon Brief Information. Retrieved from Official Website of the Province of Bukidnon: http://www.bukidnon.gov.ph/home/index.php/about-bukidnon/ about-bukidnon

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEX

ANNEX 1. Technical Specifications of the LiDAR Sensors Used in the Manupali Floodplain Survey

Table 1: Technical Specifications of the LiDAR Sensors Used in the Manupali Floodplain Survey

Table A-1.1 Parameters and Specification of Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75°
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1 st , 2 nd , 3 rd , and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg; Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size \geq laser footprint5 Dependent on system configuration

ANNEX 2. NAMRIA Certification of Reference Points Used in the LiDAR

Survey

Table 2: NAMRIA Certification of Reference Points Used in the LiDAR Survey 1. MSE-19

Figure A-2.1 MSE-19

2. MSE-20

Pepublic of I Department NATIONA	e Philippinas (Environment and Natural Resources , MAPPING AND RESOURCE INFORMATION	AUTHORITY
		July 11, 2014
	CERTIFICATION	
whom it may concern: This is to certify that accordit	ig to the records on file in this office, the re-	quested survey information is as follows
	Province: MISAMIS ORIENTAL Station Name: MSE-20	
	Order: 2nd	Revenue L UNIQIA
sland: MINDANAQ Junicipality: CAGAYAN DE	DRO	MSL Elevation:
	PRS92 Coordinates	Cilleraldal Unit del 04000 es
attude: 8º 25' 34,65372"	Longitudo: 124*36.60.02579*	Empedideringt 162.61200 m.
	WGS84 Coordinates	
atitude: 8º 25' 31.08192"	Longitude: 124º 36' 55.43561"	Elipsoidal Hgt: 250.44400 m.
	PTM / PRS92 Coordinates	
Vorthing: 931713.993 m.	Easting: 457481.339 m.	Zone: 5
Vorthing: 931,733.67	UTM / PRS92 Coordinates Easting: 677,685.12	Zone: 51
drive from Cagayan de Oro Gardens Memorial Park, ab Jof S gate. Station mark is th criptions, MSE-20, 2003 NAM questing Party: UP TCAGP pose: Reference Number: 8796507 A L: 2014-1597	fowards Talakag, and about 7 min. drive fr out 2.3m WNW of center curb, about 9m E e head of a 4° copper nail, set on the centr RIA. / Engr. Christopher Cruz Direc	om SM mall. The station is in front of SE of road centerline, and about 14m er of a Som x 8cm cement putty, with RUEL DM. BELEN, MNSA tor, Mapping, And Geodesy Branch
	Particles OFFICES Main Lawren Roman For Bonfacia, 1934 Teppig Day, Philophies Ten Bondo, 421 Sensor S. Bonfacias Romanda, Philophie Ten Na R Werk, et ammilia, gov.pb 190 S001:2008 CERTIFIED FOR NARPING PriO (2005PRTIAL NPO	AG: 1612; PD-4687 16 P1 E22; 241-564 16 P8 RMRT(ON MANAGEVENT

3. MSE-3241

						444 10 2012
						April 10, 2013
		CER	TIFICATION			
To whom it may	concern:					
This is to ce	intily that according to	the records on t	ite in this office, the requ	lested survey	interma	ation is as follows -
		Province: MI	SAMIS ORIENTAL			
		Station Na	ame: MSE-3241			
Island: MINDANAO		Order	Urger, and		Barangay: BARANGAY 10 (POB	
Municipality:	(CAPITAL)	PRS	92 Coordinates			
Latitude: 8ª	27' 31.07607"	Longitude:	124º 37' 23.18891"	Ellipsoid	al Hgt.	109.46700 m.
		WGS	84 Coordinates			
Latitude: 8º	27' 27,49608"	Longitude:	124° 37" 28.59587"	Ellipsoid	al Hgt:	177.05500 m.
		PTA	f Coordinates			
Northing: 93	5289.375 m.	Easting:	458499.251 m.	Zane:	5	
Marthian		UTI	Coordinates	-		
Noroning. B.	00,014.00	Easong.	678,604.71	Zone:	51	
s located at the Suppole Bida, at	center island along M nd Suner Mart Mail, a	Jacapagal Rd., I about 20 m. facin	Brgy. 10 (Pob.). Cagayar	n de Oro City	It is sit	uated between
s located at the Bungole Bidg, a embedded on a Requesting Part	center island along A nd Super Mart Mall, a 25 cm. x 25 cm. con y: UP DREAM/ Me	Macapagal Rd., I bout 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241	n de Oro City rk is the hear 2007 NAMR	. It is sib d of a 4 IA*.	uated between in, copper nall
s located at the sungole Bldg, a mbedded on a Requesting Part Pupose:	center island along A nd Super Mart Mall, a 25 cm. x 25 cm. con y: UP DREAM/ Me Reference	Macapagal Rd., I about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagaya g the mall entrance. Ma inscriptions "MSE-3241	n de Oro City rk is the hear 2007 NAMR	. It is sib d of a 4 IA*.	uated between in, copper nail
s located at the Sungole Bidg, at imbedded on a Requesting Part Pupose OR Number: 'N.:	center island along M nd Super Mart Mall, a 25 cm. x 25 cm. cond y: UP DREAM/ Me Reference 3943540 B 2013-0311	Macapagal Rd., I about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagaya g the mail entrance. Ma inscriptions "MSE-3241	n de Oro City rk is the hear 2007 NAMR	. It is sib d of a 4 IA*.	uated between in. copper nail
s located at the Sungole Bidg, at mbedded on a Requesting Part Supose: DR Number: N.:	center island along M nd Super Mart Mall, a 25 cm. x 25 cm. cont y: UP DREAM/ Me Reference 3943540 8 2013-0311	Macapagal Rd., I about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 MSE-3241 R Director, M	n de Oro City rk is the hear 2007 NAMR 2007 NAMR UEL DM. BE Napping and	LEN, M	uated between in. copper nail NSA y Department,
s located at the Sungole Bidg, at mbedded on a Requesting Part Pupose: DR Number: "N."	center island along A nd Super Mart Mall, a 25 cm. x 25 cm. con y: UP DREAM/ Me Reference 3943540 B 2013-0311	Macapagal Rd., 1 about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 MSE-3241 Director, M	n de Oro City rk is the hear 2007 NAMR 2007 NAMR	Lt is sib d of a 4 IA [*] .	uated between in, copper nail INSA y Department _i
s located at the Sungole Bidg, a mbedded on a Requesting Part Pupose: OR Number: 'N.:	center island along A nd Super Mart Mall, a 25 cm. x 25 cm. conv y: UP DREAM/ Me Reference 3943540 B 2013-0311	Macapagal Rd., 1 about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai inscriptions "MSE-3241 REPORT	n de Oro City rk is the hear 2007 NAMR WEL DM. BE Japping and	Lt is sib d of a 4 IA [*] .	uated between in, copper nail INSA y Departmenty
s located at the Sungole Bidg, at mbedded on a Requesting Part OR Number: N.:	center island along A nd Super Mart Mall, a 25 cm. x 25 cm. cont y: UP DREAM/ Mel Reference 3943540 8 2013-0311	Jacapagal Rd., I bout 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 MSE-3241 Director, M	n de Oro City rk is the hear 2007 NAMR WEL DM. BE Aapping and	Lt is sib d of a 4 IA [*] .	uated between in. copper nail INSA y Department _i
s located at the Sungole Bidg, a mbedded on a Requesting Part Pupose: OR Number: 'N.:	center island along A nd Super Mart Mall, a 25 cm. x 25 cm. conv y: UP DREAM/ Me Reference 3943540 B 2013-0311	Macapagal Rd., 1 about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 R Director, M	n de Oro City rk is the heat 2007 NAMR WEL DM. BE Napping and	. It is sib d of a 4 IA*. LEN, M Geodes	uated between in, copper nail INSA y Departmenty
s located at the sungole Bldg, a mbedded on a lequesting Part upose: DR Number: N.:	center island along A nd Super Mart Mail, a 25 cm. x 25 cm. cont y: UP DREAM/ Me Reference 3943540 B 2013-0311	Macapagal Rd., I about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 R Director, M	n de Oro City rk is the hear 2007 NAMR UEL DM. BE Japping and	Lt is sib d of a 4 IA*.	uated between in. copper nail
s located at the longole Bidg, a mbedded on a lequesting Part pose: DR Number: N.:	center island along A nd Super Mart Mall, a 25 cm. x 25 cm. cont y: UP DREAM/ Mel Reference 3943540 B 2013-0311	Jacapagal Rd., I bout 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 R Director, M	n de Oro City rk is the hear 2007 NAMR	Lt is sib of a 4 IA".	uated between in. copper nail
s located at the Sungole Bidg, a mbedded on a Requesting Part Pupose: DR Number: 'N.'	center island along A nd Super Mart Mall, a 25 cm. x 25 cm. conv y: UP DREAM/ Me Reference 3943540 B 2013-0311	Acapagal Rd., I bout 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 R Director, M	n de Oro City rk is the hear 2007 NAMR	LEN, M Geodes	uated between in, copper nail
s located at the Sungole Bidg, a mbedded on a Requesting Part Pupose: OR Number: 'N.:	center island along A nd Super Mart Mail, a 25 cm. x 25 cm. cont y: UP DREAM/ Mel Reference 3943540 B 2013-0311	Acapagal Rd., I about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 Director, M	the Oro City rk is the heat 2007 NAMR	LEN, M Geodes	uated between in. copper nail
I located at the ungole Bldg, a mbedded on a equesting Part upose: IR Number: N.:	Center Island along A nd Super Mart Mail, a 25 cm. x 25 cm. cons y: UP DREAM/ Me Reference 3943540 B 2013-0311	Macapagal Rd., I about 20 m. facin crete block, with Ichor Nery	Brgy, 10 (Pob.), Cagayai g the mail entrance. Ma inscriptions "MSE-3241 Director, M	n de Oro City rk is the hear 2007 NAMR	LEN, M Geodes	uated between in, copper nail

Figure A-2.3 MSE-3241

4. MSE-3340

Figure A-2.4 MSE-3340

5. BKN-475

						1	February 11, 2015
			CER	TIFICATION			
unio anna lit an							
This is to	certify	that according to the	records on f	ile in this office, the requ	uested survey	informa	ation is as follows -
			Province	BUKIDNON			
		Station N	ame: BKN-475				
			Order	: 2nd			
Island: MII	NDANA	0	Barangay:	AGLAYAN			
Municipality: CITY OF MALAYBALAY (CAPITAL)		PITAL)	MSL Elevation: PRS92 Coordinates				
Latitude:	8º 3'	25.94887"	Longitude:	125° 7' 58.68680"	Ellipsoida	al Hat:	404.31400 m.
	an contra		Wee	Rd Coordinates	1990	and the second se	
Latitude:	8° 3'	22.52096"	Longitude	125° 8' 4.12506"	Ellipsoid	al Hot:	473,98000 m
			DTM / D	PS02 Coordinatos	Linpoord	a rigi	
Northina:	89088	0.244 m.	Easting:	514656.29 m.	Zone:	5	
				DE02 Constantes			
u converce u			UIM/P	RS92 Coordinates			
Northing:	891,1	79.54	Easting:	735,073.78	Zone:	51	
Northing:	891,1	79.54	Easting: Locat	735,073.78 ion Description	Zone:	51	
Northing: N-475 om Malayb ation is loca 1. concrete questing P rpose:	891,1 alay Cil ated ins block, arty:	79.54 ty Proper, travel along ide the DPWH comp with inscriptions "BKI AB Surveying & Der Reference	Easting: Locat the Nat'l. R ound. Mark N-475 2007	735,073.78 ion Description Road going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb	51 ning Brg edded c	y. Aglayan. on a 30 cm. x 30
Northing: N-475 om Malayb ation is loca . concrete questing P rpose: Number:	891,1 alay Cil ated ins block, arty:	79.54 ty Proper, travel along ide the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I	Easting: Locat g the Nat'l. R ound. Mark N-475 2007	735,073.78 ion Description Road going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb	51 ning Brg edded o	y. Aglayan. in a 30 cm. x 30
Northing: N-475 om Malayb ation is loca i. concrete questing P rpose: R Number: N.:	891,1 alay Cil ated ins block, arty:	ty Proper, travel along ide the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat g the Nat'l. R ound. Mark N-475 2007	735,073.78 ion Description Road going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb	51 ing Brg edded c	y. Aglayan. on a 30 cm. x 30
Northing: N-475 pm Malayb ation is loca i. concrete questing P rpose: t Number: N.:	891,1 alay Cli ated ins block, arty:	79.54 ty Proper, travel along ide the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat g the Nat'l. R ound. Mark N-475 2007 v*t.	735,073.78 ion Description toad going to Valencia C is the head of a 4 in. co NAMRIA". R Director	Zone: Dity until reach pper nail emb	51 hing Brg edded c	y. Aglayan. in a 30 cm. x 30 NSA esy Branch
Northing: N-475 om Malayb ation is loca to concrete questing P rpose: t Number: t.:	891,1 alay Cil ated ins block, 'arty:	ty Proper, travel along ide the DPWH comp with inscriptions "BKY AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat g the Nat'l. R ound. Mark N-475 2007	735,073.78 ion Description Road going to Valencia C is the head of a 4 in. co NAMRIA". R	Zone: City until reach pper nail emb Augent DM. BE Mapping An	51 edded c	y. Aglayan. on a 30 cm. x 30 NSA esy Branch
Northing: M-475 m Malayb ation is loca . concrete questing P rpose: t Number: t.:	891,1 alay Cil ated ins block, arty:	79.54 ty Proper, travel along ide the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat g the Nat'l. R ound. Mark N-475 2007 v*t.	735,073.78 ion Description toad going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb RUEL DM. BE Mapping An	51 edded o	y. Aglayan. on a 30 cm. x 30 NSA esy Branch
Northing: N-475 om Malayb ation is loca i. concrete questing P rpose: t Number: I.:	891,1 alay Cil ated ins block, arty:	ty Proper, travel along side the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat g the Nat'l. R ound. Mark N-475 2007	735,073.78 ion Description toad going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb RUEL DM. BE Mapping An	51 hing Brg edded c	y. Aglayan. in a 30 cm. x 30 NSA esy Branch
Northing: N-475 om Malayb tition is loca . concrete questing P rpose: t Number: t.:	891,1 alay Cli ated ins block, 'arty:	ty Proper, travel along ide the DPWH comp with inscriptions "BKY AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat g the Nat'l. R ound. Mark N-475 2007	735,073.78 ion Description Road going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb Auer Mapping An	51 edded c	y. Aglayan. n a 30 cm. x 30 NSA esy Branch
Northing: M-475 m Malayb tion is loca . concrete questing P rpose: Number: I.:	891,1	ty Proper, travel along side the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat of the Nat'l. Round, Mark N-475 2007	735,073.78 ion Description toad going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb	51 hing Brg edded c	y. Aglayan. in a 30 cm. x 30 NSA esy Branch
Northing: M-475 m Malayb tion is loca . concrete questing P rpose: t Number: t.	891,1	ty Proper, travel along side the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat to the Nat'l. Found. Mark N-475 2007	735,073.78 ion Description Road going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb RUEL DM. BE Mapping An	51 aing Brg edded c	y. Aqlayan. on a 30 cm. x 30 NSA esy Branch
Northing: M-475 m Malayb ition is loca concrete questing P rpose: t Number: I.:	891,1	ty Proper, travel along side the DPWH comp with inscriptions "BKY AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat the Nat'l. R ound. Mark N-475 2007	735,073.78 Ion Description toad going to Valencia C is the head of a 4 in. co NAMRIA". R Director	Zone: City until reach pper nail emb Auer DM. BE Mapping An	51 aing Brg edded c	y. Aglayan. in a 30 cm. x 30 NSA esy Branch G
Northing: N-475 om Malayb ation is loca . concrete questing P rpose: Number: N.:	891,1	ty Proper, travel along side the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat to the Nat'l. Round. Mark N-475 2007	735,073.78 ion Description Road going to Valencia C is the head of a 4 in. co NAMRIA".	Zone:	51 hing Brg edded c	y. Aqlayan. on a 30 cm. x 30 NSA esy Branch
Northing: N-475 om Malayb ation is loca concrete questing P rpose: Number: J.:	891,1	ty Proper, travel along side the DPWH comp with inscriptions "BKI AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat the Nat'l. Found. Mark N-475 2007 v't.	735,073.78 Ion Description toad going to Valencia C is the head of a 4 in. co NAMRIA". R Director	Zone:	51	y. Aglayan. in a 30 cm. x 30 NSA esy Branch G
Northing: N-475 pm Malayb ation is loca questing P rpose: R Number: N.:	891,1 alay Cli ated ins block, 'arty:	AB Surveying & Der Reference 8077642 I 2015-0286	Easting: Locat to the Nat'l. Fo ound, Mark N-475 2007 v*t.	T35,073.78 ion Description Road going to Valencia C is the head of a 4 in. co NAMRIA".	Zone: City until reach pper nail emb Additional RUEL DM. BE Mapping An Mapping An (632) 810-4831 to 41 241-3494 to 88	51	y. Aqlayan. on a 30 cm. x 30

Figure A-2.5 BKN-475

6. BKN-478

	November 14, 2
	CERTIFICATION
To whom it may concern:	
This is to certify that according to the	the records on file in this office, the requested survey information is as folio
	Province: BUKIDNON
	Station Name: BKN-478
Island: MINDANAO	Order: 2nd
Municipality: CITY OF VALENCIA	MSL Elevation: PRS92 Coordinates
Latitude: 7º 52' 39.32095"	Longitude: 125° 8" 33.26511" Ellipsoidal Hgt: 302.83700 m
	WGS84 Coordinates
Latitude: 7º 52' 35.94157"	Longitude: 125° 8' 38.71964" Ellipsoidal Hat: 372 88500 m
	PTM / PRS92 Coordinates
Northing: 871017.702 m.	Easting: 515721.851 m. Zone: 5
	UTM / PRS92 Coordinates
Northing: 871,315.75	Easting: 736,235.86 Zone: 51
I located beside the basketball court of mbedded on a 30 cm. x 30 cm. concret equesting Party: Phil Lidar 1 urpose: Reference R Number: FREE ISSUE N.: 2016-2056	f Purok 6, Brgy. Sinayawan. Mark is the head of a 4 in. copper nail ete block, with inscriptions "BKN-478 2007 NAMRIA". RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

Figure A-2.6 BKN-478

7. BK-56

			February 11, 2015
		CERTIFICATION	
o whom it may co	ncern:	CERTIFICATION	
This is to certify	that according to th	e records on file in this office, the reque	ested survey information is as follows -
		Province: BUKIDNON	
		Station Name: BK-56	
Island: Mindana	10	Municipality: MALAYBALAY	Barangay: KALASUNGAY
Elevation: 656.64	448 +/- 0.00	Order: 1st Order	Datum: Mean Sea Level
Latitude:		Longitude:	
3K-56 Station is located highway. Mark is th with the inscription	at the west post o he head of 4" copp " BMBK-56, 2008, t	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cemen NAMRIA"./	about 7m. from the centerline of the tited on top of a 15x15 cm. cement ptty
BK-56 Station is located highway. Mark is th with the inscription Requesting Party:	at the west post o he head of 4" copp " BMBK-56, 2008, f AB Surveying &	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cemen NAMRIA" Dev't.	about 7m. from the centerline of the ted on top of a 15x15 cm. cement ptty
BK-56 Station is located highway. Mark is th with the inscription Requesting Party: Purpose: DR Number: N -	at the west post o he head of 4" copp " BMBK-56, 2008, f AB Surveying & Reference 8077642 1 2015-0285	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cemen NAMRIA" Dev't.	about 7m. from the centerline of the ted on top of a 15x15 cm. cement ptty
BK-56 Station is located highway. Mark is th with the inscription Requesting Party: Purpose: DR Number: F.N.:	at the west post o he head of 4" copp " BMBK-56, 2008, f AB Surveying & Reference 8077642 1 2015-0285	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cemen NAMRIA" Dev't.	d about 7m. from the centerline of the tited on top of a 15x15 cm. cement ptty
BK-56 Station is located highway. Mark is th with the inscription Requesting Party: Purpose: DR Number: F.N.:	at the west post o he head of 4" copp " BMBK-56, 2008, f AB Surveying & Reference 8077642 I 2015-0285	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cemen NAMRIA" Dev't. RUEL D Director, Mapp	a about 7m. from the centerline of the nted on top of a 15x15 cm. cement ptty M. BELEN, MNSA bing And Geodesy Branch
BK-56 Station is located highway. Mark is th with the inscription Requesting Party: Purpose: Purpose: DR Number: I.N.:	at the west post o he head of 4" copp " BMBK-56, 2008, f AB Surveying & Reference 8077642 I 2015-0285	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cemen NAMRIA" Dev't. RUEL D Director, Mapp	A about 7m. from the centerline of the need on top of a 15x15 cm. cement ptty M. BELEN, MNSA ing And Geodesy Branch
BK-56 Station is located highway. Mark is th with the inscription Requesting Party: Purpose: DR Number: T.N.:	at the west post o he head of 4" copp " BMBK-56, 2008, f AB Surveying & Reference 8077642 I 2015-0285	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cemen VAMRIA" Dev't. RUEL D Director, Mapp	A about 7m. from the centerline of the ted on top of a 15x15 cm. cement ptty M. BELEN, MNSA ang And Geodesy Branch
BK-56 Station is located highway. Mark is th with the inscription Requesting Party: Purpose: DR Number: T.N.:	at the west post o he head of 4" copp " BMBK-56, 2008, f AB Surveying & Reference 8077642 I 2015-0285	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cemen VAMRIA" Dev't. RUEL D Director, Mapp	A about 7m. from the centerline of the ted on top of a 15x15 cm. cement ptty M. BELEN, MNSA ing And Geodesy Branch
BK-56 Station is located highway. Mark is th with the inscription Requesting Party: Purpose: DR Number: F.N.:	at the west post o he head of 4" copp " BMBK-56, 2008, f AB Surveying & Reference 8077642 I 2015-0285	Location Description f the welcome arc of Malaybalay, and er nail set on a drilled hole and cement VAMRIA" Dev't. RUEL D Director, Mapp	A about 7m. from the centerline of the ted on top of a 15x15 cm. cement ptty M. BELEN, MNSA ing And Geodesy Branch

Figure A-2.7 BK-56

ANNEX 3. Baseline Processing Reports of Control Points Used in the LiDAR

Survey Table 3: Baseline Processing Reports of Control Points Used in the LiDAR Survey

Table A-3.1 []

ANNEX 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency / Affiliation				
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG					
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO					
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP				
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA					
	Research Specialist (Supervising SRS)	LOVELYN ASUNCION	-				
FIELD TEAM							
	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR					
		PAULINE ARCEO					
LiDAR Operation		GRACE SINADJAN	-				
	Research Associate	ENGR. IRO NIEL ROXAS					
	(RA)	REGINA FELISMINO	UP-ICAGP				
		NICHOLAS ILEJAY					
Ground Survey, Data Download and Transfer		LANCE KERWIN CINCO					
	KA	BRYLLE DE CASTRO	-				
LiDAR Operation	Airborne Security	SSG. LEE JAY PUNZALAN	PHILIPPINE AIR FORCE (PAF)				
		CAPT. JEFFREY JEREMY ALAJAR					
	Pilot	CAPT. CESAR ALFONSO III	ASIAN AEROSPACE				
	rnot	CAPT. ANTON DAYO	(AAC)				
		CAPT. ERNESTO SAYSAY JR.					

Table A-4.1 The LiDAR Survey Team Composition
ANNEX 5. Data Transfer Sheet for Upper Pulangi Floodplain Table 3: Data Transfer Sheet for Upper Pulangi Floodplain

NO. No. Output LAS KML (swath) Origination Signature FLECASI LOGS No. Dot Net Stations Base infor (tx) (OPLOG) Actual KML LOCATION (477) 5/22/2014 1497P 1BLK67B142A PEGASUS 1.8 1342 8.61 201 31.8 221 19.1 NA 5.19 1KB 1KB 49 NA 2/Alforma_ 497P 5/22/2014 1501P 1BLK67B142A PEGASUS 3 1221 14.1 271 77.3 539 29.5 NA 7.61 1KB 59/58 NA 2/Alforma_ 501P 5/22/2014 1505P 1BLK67BC144A PEGASUS 2.25 759 10 212 46.7 340 21.8 NA 7.68 1KB 1KB 97 NA 2/Alforma_ 503P 5/25/2014 1509P 1RDXE145A PEGASUS 2.74 1497 12 235 NA NA 2.77 NA 9.7 1KB 1KB 78/72 NA <td< th=""><th>DATE</th><th>FLIGHT</th><th>MISSION NAME</th><th>SENSOR</th><th>RA</th><th>WLAS</th><th>LOGS(MB)</th><th>POS</th><th>RAW</th><th>MISSION</th><th>PANCE</th><th>DIGITIZER</th><th>BASE ST</th><th>ATION(S)</th><th>OPERATOR LOGS</th><th>FLIGHT</th><th>PLAN</th><th>SERVER</th></td<>	DATE	FLIGHT	MISSION NAME	SENSOR	RA	WLAS	LOGS(MB)	POS	RAW	MISSION	PANCE	DIGITIZER	BASE ST	ATION(S)	OPERATOR LOGS	FLIGHT	PLAN	SERVER
5/22/2014 1497P 1BLK67B142A PEGASUS 1.8 1342 8.61 201 31.8 221 19.1 NA 5.19 1KB 1KB 49 NA 2.Valrborne_ 497P 5/23/2014 1501P 1BLK67C143A PEGASUS 3 1221 14.1 271 77.3 539 29.5 NA 7.61 1KB 1KB 59.56 NA 2.Valrborne_ 50/2 5/24/2014 1505P 1BLK67BC144A PEGASUS 2.25 759 10 212 46.7 340 21.8 NA 7.68 1KB 1KB 97 NA 2.Valrborne_ 503P 20.9 5/25/2014 1506P 1RDXE145A PEGASUS 2.4 338 11.2 254 NA NA 2.62 NA 4.96 1KB 1KB 5043 NA 2.Valrborne_ 508P 5/27/2014 1517P 1RXE147A PEGASUS 2.39 490 12 252 NA NA 2.54 NA 5.54 1KB 1KB 1KB 2.2 NA 2.Valrborne_ 502P 5/		NO.			Output LAS	KML (swath)	2000(1112)	100	SI	FILE/CASI LOGS	RANGE	DIGITIZER	BASE STATION(S)	Base Info (.txt)	(OPLOG)	Actual	KML	LOCATION
5/23/2014 1501P 1BLK67C143A PEGASUS 3 121 14.1 271 77.3 539 29.5 NA 7.61 1KB 1KB 59/56 NA 21/Airborne_ 501P 5/24/2014 1505P 1BLK67BC144A PEGASUS 2.25 759 10 212 46.7 340 21.8 NA 7.68 1KB 1KB 97 NA 21/Airborne_ 505P 5/25/2014 1509P 1RDXE145A PEGASUS 2.4 338 11.2 254 NA ^{31,4} 21.8 NA 7.68 1KB 1KB 97 NA 21/Airborne_ 505P 5/25/2014 1509P 1RDXE145A PEGASUS 2.4 338 11.2 254 NA ^{31,4} 24.2 NA 4.96 1KB 1KB NA 21/Airborne_ 505P 505P 5/27/2014 1517P 1RXE147A PEGASUS 2.39 490 12 252 NA NA 27.4 NA 2.4/Airborne_ 502P 5.54 1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB	5/22/2014	1497P	1BLK67B142A	PEGASUS	1.8	1342	8.61	201	31.8	221	19.1	NA	5.19	1KB	1KB	49	NA	Z:\Airborne_Raw\
5/24/2014 1505P 1BLK67BC144A PEGASUS 2.25 759 10 212 46.7 340 21.8 NA 7.68 1KB 1KB 97 NA 2Vairborne_ 505P 5/25/2014 1509P 1RDXE145A PEGASUS 2.4 338 11.2 254 NA 21.8 NA 7.68 1KB 1KB 97 NA 2Vairborne_ 505P 5/25/2014 1509P 1RDXE145A PEGASUS 2.4 338 11.2 254 NA 21.8 NA 4.96 1KB 1KB 50/43 NA 2Vairborne_ 505P 5/27/2014 1517P 1RXE147A PEGASUS 2.74 1497 12 235 NA NA 27.7 NA 9.7 1KB 1KB 78/72 NA 2Vairborne_ 517P 5/28/2014 1521P 1RXC148A PEGASUS 2.39 490 12 252 NA NA 28 NA 5.54 1KB 1KB 1KB 2K NA 2Vairborne_ 521P Signature Name J01DA SPKIETO Signatu	5/23/2014	1501P	1BLK67C143A	PEGASUS	3	1221	14.1	271	77.3	539	29.5	NA	7.61	1KB	1KB	59/56	NA	Z:VAirborne_RawV
5/25/2014 1509P 1RDXE145A PEGASUS 2.4 338 11.2 254 MA*22 34.872 26.2 NA 4.96 1KB 1KB 50/43 NA 509P 5/27/2014 1517P 1RXE147A PEGASUS 2.74 1497 12 235 NA NA 27.7 NA 9.7 1KB 1KB 78/72 NA 27.4 5/28/2014 1521P 1RXC148A PEGASUS 2.39 490 12 252 NA NA 28 NA 5.54 1KB 1KB 52 NA 27.4/informe_50P 5/28/2014 1521P 1RXC148A PEGASUS 2.39 490 12 252 NA NA 28 NA 5.54 1KB 1KB 52 NA 27.4/informe_52P 5/28/2014 1521P 1RXC148A PEGASUS 2.39 490 12 252 NA NA 28 NA 5.54 1KB 1KB 1KB 20.10A 21.10 21.10 21.10 21.10 21.10 21.10 21.10	5/24/2014	1505P	1BLK67BC144A	PEGASUS	2.25	759	10	212	46.7	340	21.8	NA	7.68	1KB	1KB	97	NA	Z:VAirborne_Raw
5/27/2014 1517P 1RXE147A PEGASUS 2.74 1497 12 235 NA NA 27.7 NA 9.7 1KB 1KB 78/72 NA 21/01/01/01/01/01/01/01/01/01/01/01/01/01	5/25/2014	1509P	1RDXE145A	PEGASUS	2.4	338	11.2	254	NA 22	31.6/22 NA	26.2	NA	4.96	1КВ	1KB	50/43	NA	Z:\Airborne_Raw\
5/28/2014 1521P 1RXC148A PEGASUS 2.39 490 12 252 NA NA 28 NA 5.54 1KB 1KB 52 NA ZWirborne_521P Received from Received from Name JOIDA PRIETO VIII/2014 Position VIIII Signature VIIIIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	5/27/2014	1517P	1RXE147A	PEGASUS	2.74	1497	12	235	NA	NA	27.7	NA	9.7	1KB	1KB	78/72	NA	Z:\Airborne_Raw\
Received from Received by Name C - Stanuly Name JOIDA SPRIETO Position Fosition Signature Signature Signature	5/28/2014	1521P	1RXC148A	PEGASUS	2.39	490	12	252	NA	NA	28	NA	5.54	1KB	1KB	52	NA	Z:\Airborne_Raw\
			Name Position Signature	C-Sol	mun M				Received I Name Position Signature	JOIDA	SPR IE	10 15	6/10/2014					

Figure A-5.1 Transfer Sheet for Upper Pulangi Floodplain - A

							D/ 07/28/20	ATA TRANSFI 14(Northern M	ER SHEET lindanao - read	dy)							
DATE	FLIGHT NO.	MISSION NAME	SENSOR	RAW	LAS	LOGS(MB)	POS	RAW	MISSION LOG	RANGE	DIGITIZED	BASE ST	ATION(S)	OPERATOR	FLIGHT	PLAN	SERVER
				Output LAS	KML (swath)			IMAGES/CASI	LOGS	THINGE	DIGITIZER	BASE STATION(S)	Base Info	(OPLOG)	Actual	KML	LOCATION
6/8/2014	1565P	1BLK71B159A	Pegasus	NA	16	6.93	168	NA	NA	13.3	NA	7.75	1KB	1KB	36	NA	Z:\Airborne_
6/9/2014	1569P	1BLKRXE160A	Pegasus	4.16	832	16.5	290	8.86	62	38.5	NA	10	1KB	1KB	95	NA	Raw Z:\Airborne
6/16/2014	1597P	1BLKRXE167A	Pegasus	2.18	332	10.5	237	NA	NA	21.3	NA	7 52	1KB	11/2	00	N/A	Raw Z:\Airborne
6/19/2014	1609P	1RXS170A	Pegasus	2.16	526	11.2	259	45.3	309	22.1	NA	7.02	4140	ind	68	NA	Raw 7:1Airborne
6/20/2014	1613P	1BLK71G171A	Pegasus	3.44	177	13.7	258	67.3	437	22.1		7.07	168	1KB	77/76	NA	Raw
6/23/2014	1625P	1BLK67BC174A	Pegasus	3.09	1112	11.7	200	60.2		33.2	INA	5.92	1KB	1KB	46	NA	Z:VAirborne_ Raw
6/24/2014	16200	1011000000000			1112	11.7	212	60.3	415	29.4	86.6	4.97	1KB	1KB	52/56	NA	Z:VAirborne_ Raw
0/24/2014	1029P	IBLKRXES1/5A	Pegasus	2.79	370	10.7	187	36.3	268	26.1	NA	4.45	1KB	1KB	73	NA	Z:VAirborne_
6/27/2014	1641P	1BLK68A178A	Pegasus	2.94	1995	12.6	268	57.4	398	28.9	57.2	7.7	1KB	1KB	65/65/60/ 58	NA	Z:\Airborne_ Raw
6/27/2014	1643P	1BLK67ABS178E	Pegasus	532	95	4.33	119	NA	NA	5.65	NA	77	1KB	1KB	49	NA	Z:\Airborne_
5/28/2014	1645P	1BLK71C179A	Pegasus	2.84	NA	11.4	242	51.8	375	27.4	NA	6.25	1KB	1KB	59/68	NA	Z:\Airborne_
		Received from						Received by									Raw
		Name Position Signature	IN AND RA	VAYA				Name Position Signature	JOINA P	RETO 1 28/14	Hi	t	•				

Figure A-5.2 Transfer Sheet for Upper Pulangi Floodplain - B

				RAW	LAS					MISSION LOG			BASE ST/	ATION(S)	OPERATOR	FLIGHT PL	AN	CEDVED
DATE	FLIGHT NO.	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS(MB)	SHP	POS	RAW IMAGES/CASI	FILE/CASI LOGS	RANGE	DIGITIZER	BASE STATION(S)	Base info (.txt)	LOGS (OPLOG)	Actual	KML	LOCATION
7/3/2014	1665P	1BLK71ES184A	Pegasus	606	93	4.69	94.5	169	NA	NA	6.77	NA	6.94	1KB	1KB	35	NA	Z:VAirborne Raw
7/5/2014	1673P	1BLK71ES186A	Pegasus	1.05	379	7.58	335	190	22.4	167	12.5	27.8	5.09	1KB	1KB	92/84	NA	Z:Wirborne Raw
7/6/2014	1677P	1BLK71S187A	Pegasus	695	68	5.33	188	141	11.2	86	7.79	NA	4.94	1KB	1KB	130	NA	Z:Wirborne Raw
7/8/2014	1685P	1BLK71S189A	Pegasus	2.31	515	11	578	242	37	288	22.4	47.4	4.39	1KB	1KB	184	NA	Z:VAirborne Raw
7/8/2014	1687P	1BLK71S189B	Pegasus	749	79	4.81	176	136	NA	NA	7.47	NA	4.39	1KB	1KB	NA	NA	Z:Wirborne Raw
7/9/2014	1689P	1BLK71S190A	Pegasus	2.56	156	12.6	740	257	NA	NA	27.1	NA	3.68	1KB	1KB	196/207	NA	Z:VAirborne Raw
7/10/2014	1693P	1RXES191A	Pegasus	1.78	551	8.11	448	175	NA	NA	16.9	NA	4.08	1KB	1KB	53	NA	Z:Wirborne Raw
		Received from Name 11 Position Signature	N ANDAT	λ		é			Received by Name Position Signature	Joip	A F. F. F.	PRIETO	8/0/19	ł				

Figure A-5.3 Transfer Sheet for Upper Pulangi Floodplain - C

DATA TRANSFER SHEET BUKIDNON 11/14/2016

DATE	FLICHT NO.	MISSION	SENSOR	RAM	LAS	1005		BAW	MISSION LOG			BASE ST	ATION(8)	OPERATOR	FLIGH	PLAN	
		NAME	JENGON	Output LAS	KML (swath)	Lous	POS	IMAGES/CAS	LOOS	RANGE	DIGITIZER	BASE STATION(S)	Base info-(.tel)	LOG8 (OPLOG)	Actual	KML	LOCATION
October 23, 2016	23486P	18KND297 A	PEGASUS	1.22	215	8.14	208	NA	NA.	13.2	NA	210	1KB	1143	1.29	NA	ZIDACIRAW
October 24, 2016	23488P	1BKNDE29 8A	PEGASUS	2.11	363	11.4	255	NA	NA	21	NA	272	168	1163	457	NA	Z'IDACIRAIN DATA

Received from

Received by

R. Puests Name Position RA Signature Ale

AC BONINT Name Position SSR Signature 11/6/11 ACB

Figure A-5.4 Transfer Sheet for Upper Pulangi Floodplain - D

BURENON (11 /07 / 2014)

				RAW	LAS			Rew	MISSION LOG			BASE ST	ATION(8)	OPERATOR	FLIGHT	PLAN	
DATE	PUGHT NO.	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS	POS	IMAGESICASI	PILEICASI	RANSE	DIGITIZER	BASE STATION(S)	Base Info (.txt)	LOGS (OPLOS)	Actual	KML	LOCATION
October 25, 2016	23492P	18KNDE299A	PEGASUS	2.2 GB-	290H03 /	9.91 MB	230 MB	NA.	NA.	20.9 GB	NA	217 MB	SKB	NA	NA	NA.	Z-IDAC/RMW

Received from

Received by

Name R. PUNTO Position Signature

Je Borg at Name Position Mully Signature MB.

Figure A-5.5 Transfer Sheet for Upper Pulangi Floodplain - E

DATA TRANSFER SHEET BUKIDNON 11/14/2016

DATE	0.0000.000			RAN	V LAS			Baw	MISSION LOG			BASE ST	ATION(5)	OPERATOR	FLIGH	TPLAN	
	PERSHIT NO.	NISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS	POS	MAGESCASI	LOGS	RANCE	ONGITUDER	BASE STATION(S)	Basa Isfo (Jul)	LOGS (DPLOG)	Actual	KINI.	LOCATION
November 06, 2016	23516P	1BKNF311A	PEGASUS	2.41	N4	11.9	269	NA	NA	22.5	NA	283	168	168	715	NA	ZOACRAW
November 06, 2016	23518P	10KNF311B	PEGASUS	873	NA	4.96	105	NA	NA	8.86	N4	283	1K8	1KB	857	NA	ZIDACIRAN
November 07, 2016	23520P	1BKNF312A	PEGASUS	2.63	NA	13.1	274	NA	NA	24.5	144	158	1148	168	595	29.5	Z'DACIRAW
November 08, 2016	23524P	1BKNF313A	PEGASUS	2.91	NA	12.1	237	NA	NA.	27	NA	141	168	168	505	12.6	2/DACRAW DATA

23524P

Received from

Received by

Name R. PHATS Position Signature

AC Bongat Name Position 11/14/16 Signature

Figure A-5.6 Transfer Sheet for Upper Pulangi Floodplain - F

DATA	RANSFER SHEET
BUK	OMON 11/21/2016

		MISSION		RAV	VLAS				MISSION LOS			BASE IT	ATION(S)	OPERATOR	FLIGH	T PLAN	1
DATE	PLIGHT NO.	NAME	SENSOR	Output LAS	KML (swath)	LOGS	POS	MAGESICASI	FLEICAB	RANCE	DIGITIZER	BASE	Rose Info (.txt)	LDGS (DPLOG)	Actual	KML	LOCATION
November 10, 2016	23534P	18KNG31 5A	PEGASUS	1.61	NA	8	255	NA	NA	18.6	N45	136	1825	188	NA	NA	23DACRAW
November 11, 2016	23536P	18KNDE3 16A	PEGASUS	2.45	NA	10.6	236	NA	NA	22.9	NA	145	168	1KB	596	548	ZIDACIRAIA
November 12, 2016	23540P	1BKNE317 A	PEGASUS	2.3	NA	9.76	263	NA	NA	21.4	NA	131	183	188	646	NA	Z'DACRAM DATA
November 13, 2016	23544P	1BKNE318 A	PEGASUS	2.61	NA	10.B	230	N4.	NA	24.3	NA	299	163	1103	585	N4	Z'DACRAW
November 13, 2016	23546P	18KNG31 88	PEGASUS	1.95	NA	9.55	262	NA.	NA	18.1	NA	299	1143	1KB	554	NA	2-DACRAW
November 14, 2016	23548P	1BKNEF31 9A	PEGASUS	2.86	NA	12	268	NA	NA	28.7	NA	208	1625	1835	554	NIA.	ZIDACIRAW
November 15, 2016	23552P	1BLK64A3 20A	PEGASUS	2.1	NA	10.5	261	NA	NA	20.6	NA	150	168	1KB	174	NA.	ZIDAC/RAIN DATA

Received from

Received by

R.PMNTD Name Paston Signature

Name A. Boneral Position SCRS Kang 1/24/2014 Signature

Figure A-5.7 Transfer Sheet for Upper Pulangi Floodplain - G

ANNEX 6. Flight Logs for the Flight Missions Table 6: Flight Logs for the Flight Missions

1. Flight Log for Mission 1517P

	the second s			
DREAM Data Acquisition Flight Log			•	Flight Log No.:
1 LiDAR Operator: J. Roxas 2 ALTI	M Model: Pegagus 3 Mission Name: IRXE (1	4 Type: VFR	5 Aircraft Type: Cesnn	aT206H 6 Aircraft Identification: RP-
7 Pilot: J. Alajour 8 Co-Pilot:	C.A. franso 9 Route: CDD			
10 Date: May 27, 2014 12 Air	port of Departure (Airport, City/Province):	12 Airport of Arrival		
13 Engine On: 14 Engine Of	f: 15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
0702ff 1123	54 4123			
19 Weather	cloudy			
20 Remarks:	1			
Contractor	half of DVD 1	10 1 01	cral cam.	
gurveyed	and rexp and r	ralf of RA	E at 800m	, 1000 m then 900 m
	camera stylus in l	C l'and A		
	The mat	functiona	_	
21 Problems and Solutions:				
21 Problems and Solutions:				
21 Problems and Solutions:				
21 Problems and Solutions:		3		
21 Problems and Solutions:				
21 Problems and Solutions:				
21 Problems and Solutions:				
21 Problems and Solutions:	Acquisition Elicht Certified by	Pilot-in-Comm	nand	Lidar Operator
21 Problems and Solutions:	Acquisition Flight Certified by	Pilot-in-Com	nand	Lidar Operator
21 Problems and Solutions: Acquisition Flight Äpproved by	Acquisition Flight Certified by	Pilot-in-Comm	nand	Lidar Operator
21 Problems and Solutions : Acquisition Flight Äpproved by Acquisition Flight Äpproved by Signature over Printed Name	Acquisition Flight Certified by	Pilot-in-Comm	nand	Lidar Operator
21 Problems and Solutions : 21 Problems and Solutions : Acquisition Flight Äpproved by Acquisition Flight Äpproved by Signature over Printed Name (End User Representative)	Acquisition Flight Certified by SSE LAE TAA PUMPALAM Signature over Printed Name (PAF Representative)	Pilot-in-Comm	nand AJAK r Printed Name	Lidar Operator
21 Problems and Solutions : Acquisition Flight Äpproved by Acquisition Flight Approved by Signature over Printed Name (End User Representative)	Acquisition Flight Certified by SSE LAE TAM PURPALAM Signature over Printed Name (PAF Representative)	Pilot-in-Comm J.J. Signature ove	nand aJak r Printed Name	Lidar Operator
21 Problems and Solutions : Acquisition Flight Äpproved by Acquisition Flight Äpproved by Signature over Printed Name (End User Representative)	Acquisition Flight Certified by SSELEE THE PURPHAN Signature over Printed Name (PAF Representative)	Pilot-in-Comm J.J. Signature ove	nand aJak r Printed Name	Lidar Operator May May Signature over Printed Name
21 Problems and Solutions: Acquisition Flight Äpproved by Acquisition Flight Äpproved by Signature over Printed Name (End User Representative)	Acquisition Flight Certified by SSG LEE TA PURCHAAN Signature over Printed Name (PAF Representative)	Pilot-in-Cornn J.J. Signature ove	nand a Jak ar Printed Name	Lidar Operator Margue Signature over Printed Name
21 Problems and Solutions: Acquisition Flight Äpproved by Acquisition Flight Äpproved by Signature over Printed Name (End User Representative)	Acquisition Flight Certified by SSG LEE TA PURCHAM Signature over Printed Name (PAF Representative)	Pilot-in-Corn J.J. Signature ove	nand a Jak ar Printed Name	Lidar Operator Jungue Signature over Printed Name DREAM

Figure A-6.1 Flight Log for Mission 1517P

2. Flight Log for Mission 1569P

Flight Log No.: 15 6 gra Citz AM Buts Acquisition Hight Log S Aircraft Type: Cesnna T206H 6 Aircraft Identification: AST CROP 4 Type (VER) S BOAR Operator in Guardian 2 ACTAN Model: The a tree & Mussion Name: 1249-000-04 Scotlat: A Com 9 Revie: C20-C/20 7 Net: C. Allward 12 Airport of Arrival (Airport, Gty/Prevince): L2 Meport of Departure (Asport, Oty/Province): 10 Date 9. Toly 000 600 18 Total Flight Time I 36 Take off: 17 Landing: 15 Total Engine Tenet 34 Engline Official 11 Engine On: Beech Migo H 49.15 15 Weather 20 Bernarka: pression successful ; gaps dow to have 21 Penhinten and Solutions : course assertion finded - restanted Lider Operator **Files-in-Command** Acquisition Flight Certified by Acceletion Flight Asserbird by £18/A5254a/ (Chart See Signals discover Printed Marrie Signature over Privited North January over Printed Name Superinters page Printed Name (MI Representative) (final these the presentative) DREA **Disaster Risk and Exposure Assessment for Mitigation**

Figure A-6.2 Flight Log for Mission 1569P

3. Flight Log for Mission 1597P

Right Log No.: (5777 101 **DREAM Data Acquisition Flight Log** 6 Aircraft Identification: AT - CR0 2.2. 5 Aircraft Type: CtsanaT206H S. Straffer 2 ATM Medels Parces 3 Mission Namesilla Bells & 4 Type: MPR 1 UDAR Operator: 9 house: 7090 - 0.00 Sto-Pilet: J. Lin. FRIGE L. ALLOW ST. 12 Airport of Arrival (Airport, City/Province): 12 Airport of Departure (Airport, Gits/Province): 50 Bate: Time 16, 2014 18 Yotal Flight Time: 16 Take off. 17 08/0410401 15 Total Engine Time: 14 Engline Offi-13 English Oik: 4+0[2.57.3]もをつが Assertar 2.0 Weather 20 Berrierist vaission successful; filled gups in RXE 21 Projet errors and Solutions: Udar Operator **FileHis Command** Acquisition (Sight Cardined by Assubition Hight Approved by usBatural Signation over Edited Horne Signations over Printed Name Manual Anna Printed Martiel Signature pres Printed Name (Fol Representative) [End User Regnes extail/vel] DREA Disaster Risk and Exposure Assessment for Mitigation

Figure A-6.3 Flight Log for Mission 1597P

4. Flight Log for Mission 1629P

Flight Log No.276 2457 DREAM Data Acquisition Flight Log. 5 Alwraft Identification: PP- Cover 2 ALTIM Model: The same S Alizoraft Type : Cestrino 12084 B Mission Names, second strength 4 Type: VIR LUDAR Operator G. Signaling Storphers John 9 Rowbe: Philds C. Albert CD = CD = CD = CD = D12 Airpert of Anival (Airport, City/Province): 12 Airport of Departure (Airport, Oty/Prevince): 20 Dates ... 1990 G James 39, 2014 6000 18 Total Flight Time: 16 Take off: 17 Landing: 13 Engline On: 14 Engline Off: 15 Total Engine Time: 18 cc 14 医外外突 07191 anth develo 39 Weather 20 Remarks: Aconicia merempet at 1200 Age 21 Problems and Solutions: Saft moments problem before flight Appyintion Fight Cartified by Rights Command Urlan Operator Apparition Flaht Approved by Signature lights/ highter brains Spectrate down Printed Name on many Debalant Name Spainsed. or Deleted by (NP Representative) [Cod they Represented by] Disaster Risk and Exposure Assessment for Mitigation

Figure A-6.4 Flight Log for Mission 1629P

5. Flight Log for Mission 1693P

Flight Log Man /6934P SRIAM Data Acquisition Flight Log 5 Alircraft Type: CeluminaT3064 5 Aircraft Identification: 39 -098 4 Type: VFR 3 Mission Name: 1/068//81/4 2 ALTER Model: Pige 1 UDAR Operator J. A. UPW 9 Roytes 0.00 I DO-PHON OT. 7 Filed: A Pann Linns 12 Airport of Avrival (Airport, City/Province): (Airport, Oby/Province): 12 Airport of Departure 10-Date:1 July 10, 2013 COO18 Total Flight Time: 17 Landing: p6 Tailos offic 15 Tetal Engine Time: 14 Engine Off: 13 Engine On 3. do 1 22744 nqEas 19 West there 28 Barnaria filled gaps in RXE; started at 1200m then 1400m over RXE ext. 23 Problems and Solutions: Pilopin-Comband Udar Operator Acquisition Juggs Certified by Assuminies flight Approved by Alberton Signature over Minted Norma Signations over Polosed Name Signature over Mirstel Name Significant over Printed Name. (19/ Representative) (Ked Base Lepton actal/web DRE Disaster Risk and Exposure Assessment for Mitigation

Figure A-6.5 Flight Log for Mission 1693P

6. Flight Log for Mission 23486P

 PHIL-LiDAR 1 Data Acquisition Flight Log

 1 LiDAR Operator: J. Alian 2 ALTM Model: Beasing 3 Mission Name: BKNS 2974 A Type: VFR 5 Aircraft Type: Cesnna

 7 Pilot: A. Jargo 8 Co-Pilot: C. Chi 9 Route: Lagundingen Lagundingen 10 Date: 2

 10 Date: 2

 11 Date: 2

 Flight Log No .: 23487. P 5 Aircraft Type: CesnnaT206H 6 Aircraft Identification: PP-curr Oct 23, 20/4 14 Engine Off: 18 Total Flight Time: 1534H 1155H 1200 /2 15314 3+41 3+31 19 Weather build travy 20 Flight Classification 21 Remarks Visual closing in target areas. transferred to Manulo Furtich (tagolon WS), surveyed tew at 1300 m MS2 20.a Billable 20.b Non Billable 20.c Others & Acquisition Flight O Aircraft Test Flight O LiDAR System Maintenance O Ferry Flight O AAC Admin Flight Aircraft Maintenance O System Test Flight O Others: Phil-LiDAR Admin Activities O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command LIDAR Operator Aircraft Mechanic/ LiDAR Ma ATU Signature over Printed Name Signature over Printed Name Signature over Printed Name ignature over Printed Name Signature over Printed Name (End User Representative) (PAF Representative)

Figure A-6.6 Flight Log for Mission 23486P

7. Flight Log for Mission 23488P

Flight Log No.: 23498P PHIL-LiDAR 1 Data Acquisition Flight Log

 1 LiDAR Operator:
 2 Quisa do 2 ALTM Model:
 Providence
 3 Mission Name:
 1/32/192 78/4 Type: VFR
 5 Aircraft Type: CesnnaT206H
 6 Aircraft Identification:
 6 Aircraft Identification:
 PP-Carr

 7 Pilot:
 A Pargo
 8 Co-Pilot:
 Curi of Departure (Airport, City/Province):
 9 Route:
 Lagrin dring Carrow dring Carrow dring 12 Airport of Departure (Airport, City/Province):
 12 Airport of Arrival (Airport, City/Province):
 12 Airport of Departure (Airport, City/Province):
 12 Airport of Arrival (Airport, City/Province):
 12 Airport of Arrival (Airport, City/Province):
 12 Airport of Arrival (Airport, City/Province):
 13 Engine On:
 14 Engine Off:
 15 Total Engine Time:
 16 Take off:
 17 Landing:
 18 Total Flight Time:

 0414 /7 1035H 1040H 4+29 OGUH 4+19 partly doudy to fir curry puild ups 19 Weather 20 Flight Classification 21 Remarks Closed/ Heavy build up over tayof area, surveyed Tasoloan watersched at 1700 MSL 20.a Billable 20.b Non Billable 20.c Others & Acquisition Flight Aircraft Test Flight O LiDAR System Maintenance O Ferry Flight O AAC Admin Flight Aircraft Maintenance O Others: Phil-LiDAR Admin Activities System Test Flight O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem Aircraft Problem O Pilot Problem O Others: LIDAR Operator Aircraft Mechanic/ LiDAR Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Kendusado MONTUNA RATE DAY Kenneth QUISOOR un a Signature over Printed Name (End User Representative) (PAF Representative)

Figure A-6.7 Flight Log for Mission 23488P

8. Flight Log for Mission 23492P

Flight Log No .: 23492P PHIL-LIDAR 1 Data Acquisition Flight Log 6 Aircraft Identification: 2P-C9122 5 Aircraft Type: CesnnaT206H 1 LiDAR Operator: K. Guisado 2 ALTM Model: 12 Cases 3 Mission Name: 184152991 4 Type: VFR
 Vilot:
 K. Christian
 9 Route:
 Carmindingen
 Laguindingen

 12 Airport of Departure (Airport, City/Province):
 12 Airport of Arrival (Airport, City/Province):

 12 airport of Departure (Airport, City/Province):
 12 Airport of Arrival (Airport, City/Province):

 12 airport of Departure (Airport, City/Province):
 12 Airport of Arrival (Airport, City/Province):

 13 airport of Departure (Airport, City/Province):
 12 Airport of Arrival (Airport, City/Province):

 17 Landing:
 15 Total Engine Time:

 16 Take off:
 17 Landing:
 7 Pilot: 8 Co-Pilot: A. 10 Date: At 75 2014 13 Engine On: 18 Total Flight Time: 14 Engine Off: 10354 0417 4 1030/7 4+23 OGRAH 4+13 19 Weather Soude dou Surveyed BKNE @ 1500 m MSL 20 Flight Classification 21 Remarks 20.a Billable 20.b Non Billable 20.c Others & Acquisition Flight O Aircraft Test Flight O LiDAR System Maintenance O Aircraft Maintenance O Ferry Flight O AAC Admin Flight O System Test Flight O Others: O Phil-LiDAR Admin Activities O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem Aircraft Problem O Pilot Problem O Others: LIDAR Operator Aircraft Mechanic/ LIDAR Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Cen Cenvado 11 MO SSG MONTUN SANTON. Signature over Printed Name (End User Representative) (PAF Representative)

Figure A-6.8 Flight Log for Mission 23492P

9. Flight Log for Mission 23516P

HIDAR Operator: F. SLESAY Pilot: A. OAYO 8 Co. 0 Date: Nov. 6, 20%	Pilot: E. SAYSAY	9 Route: VALENCIA	1 401900000		
Date: Nov. 6, 2016	Pilot E. SAYSAY	DITUTIC. VACAN			
Nov. 6, 2016	12 Airport of Departure (Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
sense and international sense in the sense of the sense o	LAGUIND	INGAN	LAGU I	17 Janding	18 Total Flight Time:
B Engine On: 14 Er 08 2-5	nginë Off: 12 48	15 Total Engine Time: 4 + 23	08 20	12 43	4 + 13
Weather CLO	du				
• • • • • • • • • • • • • • • • • • •		an (1)	21 Remark	<u>s</u>	
) Flight Classification			11 normana		
0.a Billable 20	h Non Billable	20.c Others	1	SUCCESSFUL PLIGHT; CON	ERED MANUPALI-SA GAWA
 Acquisition Flight 	 Aircraft Test Flight 	O LIDAR System Mainten	ance	PLOODPLAIN ; WITH VOID	s
• O Ferry Flight	 AAC Admin Flight 	O Aircraft Maintenance	itiac		
O System Test Flight	G Others:	O Phil-Lidak Admin Activ	Alles		
 Weather Problem System Problem Aircraft Problem 					
 Pilot Problem 					
O Others					
and a second					
Acquisition Flight Approved by	Acquistion Plight Certil	fied by Pilot-in-C	Kongha .	LiDAR Operator	Alrcraft Mechanic/ IIDAR Technician
Al	Add	, T	TS.	-toot -	- · · · · · · · · · · · · · · · · · · ·
RI ANGO	MIKE A DIRPH	4 1010	R PAYO	F. IVENAT	Signature over Printed Name
Signature over Printed Name	Signature over Printed	dame Signature	over Printed Name	- , algnature over Frinted Name	- gradie over tittles
IF LIL O HERE THEN	(PAF Representative	4			
[End User Representative]					

Figure A-6.9 Flight Log for Mission 23516P

10. Flight Log for Mission 23518P

Flight log No.: 23518P PHIL-LIDAR 1 Data Acquisition Hight Log 18KNOFISIB 111DAR Operator: 24 POLSMINO 2 ALIM Model: PEAKUS 3 Mission Name: 5 Aircra ft Type : CesnnaT20611 6 Aircraft Identification: RP-C9122 4 Type: VFR 9 Route: VALENUA 7 Pilot: 8 Co-Pilot: E. SAYSAY A. DAYO 12 Airport of Arrival (Airport, City/Province): 12 Airport of Departure (Airport, City/Province): 10 Date: LAGUINDINGAN Nov. 6, 2010 LAGUINDINGAN 18 Total Flight Time: 16 Take off: 17 Landing: 15 Total Engine Time: 13 Engine On: 14 Engine Off: 2+19 2+29 14 54 17 23 19 Weather FAIR 21 Remarks 20 Flight Classification MANUPAU - SAGAWA SUCCESSFUL FLIGHT; COVERED 20 h Non Billable 20.c Others 20.a Billable FLOODPLAIN O Alician Test Flight O LIDAR System Maintenance Acquisition Flight O Aircraft Maintenance O AAC Admin Flight . O Ferry Flight O Phil-LiDAR Admin Activities O System Test Flight O Others: O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others:_ Aircraft Mechanic/ HDAR Technician LIDAR Operator Certified by Acquisition Flight Approved by refeliemino PELISMINO RAC 100 Signature over Printed Name Signature over Printed Name Signature over Printed Name Signature over Printed Name er Printed N epresentative) (End User Representative)

Figure A-6.10 Flight Log for Mission 23518P

11. Flight Log for Mission 23520P

Flight log No.: 23520P PHIL-LIDAR I Data Acquisition Hight Log 10KNOF132A 6 Aircraft Identification: RP-Ca122 4 Type: VFR 5 Aircra ft Type : CesnnaT206H 2 At IM Model: PEGASUS 3 Mission Name: HIDAR Operator: F. JUESAY 9 Route: 7 Pilot: B CO-Pilot: E. SAYSAY VALENUA A. DAYO 12 Airport of Arrival (Airport, City/Province): 12 Aliport of Departure (Airport, City/Province): 10 Date: LAGUINDINGAN LAGUINDINGAN Nov. 7, 2016 18 Total Flight Time: 17 Landing: 15 Total Engine Time: 16 Take off: 14 Engine Off: 13 Engine On: 4+01 4 +11 12 32 08 21 FAIR 19 Weather 21 Remarks 20 Flight Classification GARS /VOIDS SUCCESSFUL FLIGHT, COVERED 20 b Non Billable 20.c Others 20.a Billable MANUPAU - SAGAWA FLOOD PLAIN OVER Acquisition Flight O Aircraft Test Flight O LIDAR System Maintenance O Aircraft Maintenance O Ferry Flight O AAC Admin Flight O Others: O Phil-LiDAR Admin Activities O System Test Flight O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Aircraft Mechanic/ HDAR Technician **Dertified** by Pilot-in-C Acquisition Flight Approved by PJ ANEICEO MIKE Signature over Printed Name Signature over Printed Name Signature over Printed Name Printed Nam Signature over Printed Name Signat/ire ove (PAFRepresentative) (End User Representative)

Figure A-6.11 Flight Log for Mission 23520P

12. Flight Log for Mission 23524P

HI-TIDAR J Data Acquisition R Apces HDAR Operator: 2, Apces Pilot: A. DAve Date: Nov. 9, 2010 3 Engine On: 8 \$1 9 Weather 9 Flight Classification).a Billable	In the second se	اللہ میں کہ	4 Type: VFf 12 Airport of Arri 446 16 Take off:	S Aircra ft Type : Cesnna ival (Airport, City/Province): א אשא ו סאור 17 Landing:	T20611 6 Aircraft Identification: 18 Total Filght Time: ၂ 수 년 역	RP-09172
Pilot: A. DAYO Pilot: A. DAYO Date: Nov. 9, 2010 3 Engine On: 8 si 9 Weather 9 Flight Classification).a Billable	LISMING ATTMINUTE: PEASUS 8 Co-Pilot: E. SAYSA 12 Amort of Departure 14 Engine Off: 13 20 FAIR	A Baute: אברי אברי (Alrport, City/Province): (Alrport, City/Province): אברי ואבי ואברי ואבי ואברי ו ואברי ואברי ואברי ואברי ואברי ואברי ואברי ואברי ואברי ואבי ו ואבי ואבי ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו	12 Airport of Arri AG 16 Take off:	ival (Airport, City/Province): אם שיו קאור (אוי באוי) 17 Landing:	18 Total Filght Time: 닉 + (9	
Princi: A. DAYO (Date: Nov. 9, 2010) 3 Engine On: _8 \$1) We ather) Flight Classification).a Billable	IZ Almont of Departure IZ Almont of Departure Lag 14 Engine Off: V3 20 PAIR	(Airport, City/Province): אור סוויס וועב אין ואר דער אור אין אור אין אור אין אין אור אין אין אין אין אין אין אין אין אין אין אין	12 Airport of Arr Arg 16 Take off:	ival (Airport, City/Province): אם שיו סאור (אוי באוי) 17 Landing:	18 Total Flight Time: 식 + (૧	
Nov. 9, 201 3 Engine On: 8 \$1 9 We ather 9 Flight Classification 0.a Billable	PAIR	ארא אין דער און דער און אין איז דער און	₩6 16 Take off:	אם שא ז קאוע און	18 Total Flight Time: 식 + (૧	
3 Engine On: 8 Si 9 Weather 9 Flight Classification).a tSillable	14 Engine Off. 13 20 PAIR	15 Total Engine Time: 4+ 29	16 Take off:	17 Landing:	18 total Fright fille. 4 + (9	
9 Weather 9 Hight Classification).a tSillable	13 20 FAIR	4+ 29				
9 Weather 9 Flight Classification).a tSillable	FAIR					
0 Flight Classification 3.a Billable	the second se					
0 Flight Classification 0.a Billable			21 801	natie		
).a Billable			21 Ken	10182		
u.a Dillable	20 b Nou Billable	20 c Others		SUCCESSPUL FLIGHT, 1	COVERED UPPER PULANGI	
				FLOOD PLAIN		
 Acquisition Flight 	 Aircraft Test Flight 	 IIDAR System Mainten 	ance	100001000		
· O Ferry Flight	 AAC Admin Flight 	 Aircraft Maintenance 	to be a			
 System Test Flight 	G Others:	O Phil-HDAR Admin Activ	ITIES			
 Calibration Flight 						
Weather Problem System Problem Aircraft Problem Pilot Problem						
O Phot Plotten						
C) Diners:						
O Others:					and the fact of the second	
O Others:		The second strength and share the second strength of the second stre				
O Uthers			0			
O Others			X	LIDAR Operator	Algoraft Mechanic/ 1104	AR Technician
Acquisition Flight Approved by	Acquisiyouriver	ified by Pilot-In-C	manten	LIDAR Operator	Aircraft Mechanic/1104	AR Technician
Acquisition Flight Approved by	Acquisiterrent	ified by Pilot-In-C	and an	LIDAR Operator	Aircraft Mechanic/ 110	AR Technician
Acquisitian Flight Approved by	Acquisito frite Cert	ified by Pilot-In-C	DATO	LIDAR Operator	Aircraft Mechanic/ 110, MINO	AR Technician
Acquisition Flight Approved by	Acquisinger Cert	Ified by Pilot-In-C	over Printed Name	LIDAR Operator Police Peters Signature over Printe	Aircraft Mechanic/ IID/ MINO Id Name Signature over Printed	AR Technician
Acquisition Flight Approved by	Acquisiver Fifth Cert Address	Ified by Pilot-In-C Pilot-In-C Ant Name Signature e)	over Printed Name	LIDAR Operator Phic Peus Signature over Printe	Alrcraft Mechanic/ IID/ MINO di Name Signature over Printed	AR Technician
	10 (and 10) (and 10)					

Figure A-6.12 Flight Log for Mission 23524P

13. Flight Log for Mission 23534P

Flight 1 og No.: 23534P PHIL-LIDAR 1 Data Acquisition Hight Log 18KNDDISSA 6 Aircraft Identification: \$2-09122 5 Aircra ft Type : CesnnaT206H 4 Type: VFR 2 ALIM Model: PEGASOS 3 Mission Name: HIDAR Operator: ILESAY 9 Route: VALEN UA 7 Pilot: A. OMO 8 Co-Pilol: E. SAYSAY 12 Airport of Arrival (Airport, City/Province): 10 Date: Nov. 18, 2010 12 Airport of Departure (Airport, City/Province): LAGUINDINGAN CAGUINDINGAN 18 Total Flight Time: 16 Take off: 17 Landing: 15 Total Engine Time: 13 Engine On: 14 Engine Off: 03 + 55 16 39 04105 12 34 19 Weather FAIR 21 Remarks 20 Flight Classification SUCCESSFUL FLIGHT 20 b Non Billable 20.c Others 20.a Billable O LIDAR System Maintenance O Aircraft Test Flight · Acquisition Flight O Aircraft Maintenance O AAC Admin Flight O Ferry Flight O Phil-LiDAR Admin Activities o Others: O System Test Flight O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Aircraft Mechanic/ HDAR Technician ctified by Acquisition Flight Approved by Acquisition RÍ Rece D 79 MAK Signature over Printed Name Signature over Printed Name Signature over Printed Name Printed N Signature over Frinted Name Slanatur (PAFRepresentative) (End User Representative)

Figure A-6.13 Flight Log for Mission 23534P

14. Flight Log for Mission 23536P

Flight Log No.: 235361 PHIL-LIDAR 1 Data Acguisition Flight Log IBKNDE310 6 Aircraft Identification: RP-C9122 5 Aircra ft Type : CesnnaT206H 4 Type: VFR 2 ALIM Model: PEGASUS 3 Mission Name: IIIDAR Operator: R. PEUSMINO 8 CO-PILOL: E. SAYSAY 9 Route: VALENUA 7 Pilot: A. DAYO 12 Airport of Arrival (Airport, City/Province): 12 Airport of Departure (Airport, City/Province): 10 Date: LAGUINDIN GAN LAGUINDINGAN Nov. 11, 2016 18 Total Flight Time: 17Landing: 15 Total Engine Time: 16 Take off: 14 Engine Off: 13 Engine On: 04+13 04 +23 08 49 13 12 19 Weather 21 Remarks 20 Flight Classification SUCLESSFUL FLIGHT 20.c Others 20 b Non Billable 20.a Billable O LIDAR System Maintenance O Aircraft Test Flight Acquisition Flight O Aircraft Maintenance O AAC Admin Flight . O Ferry Flight O Phil-LiDAR Admin Activities O Others: O System Test Flight ○ Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Aircraft Mechanic/ HDAR Technician LiDAR Operator Øertified by Acquisition Flight Approved by ochelumine nt RAC FELSMINO Ð ALCO D Signature over Printed Name Signature over Printed Name Signature over Printed Name ture over Printed Name Signature overPrinted Name PAFRepresentative) (End User Representative)

Figure A-6.14 Flight Log for Mission 23536P

15. Flight Log for Mission 23540P

Flight Log No.: 23540P PHIL-LIDAR 1 Data Acquisition Hight Log 6 Aircraft Identification: PP- 09122 2 At IM Model: PEGALUE 3 Mission Name: IBKNE 317A 5 Aircra ft Type: CesnnaT20611 4 Type: VFR 111DAR Operator: F. ILESAY B CO-PILOL: E. SAYSAY 9 Route: VALENUA 7 Pilot: A. DAYO 12 Airport of Arrival (Airport, City/Province): 12 Aliport of Departure (Airport, City/Province): 10 Date: LAGUINDINGAN LAGUINDINGAN Nov. 12, 2016 18 Total Flight Time: 16 Take off: 15 Total Engine Time: 17 Landing: 14 Engine Off: 13 Engine On: 04 + 01 14 30 04 +11 10 19 19 Weather PAIR 21 Remarks 20 Flight Classification 20.c Others 20.a Billable 20 b Non Billable SUCCESSPUL Surveyed gaps PUGHT O LIDAR System Maintenance o Aircraft Test Flight Acquisition Flight NSVO BKNE o AAC Admin Flight O Aircraft Maintenance .O Ferry Flight O Phil-LiDAR Admin Activities o Others: O System Test Flight O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Algoraft Mechanic/ HDAR Technician LIDAR Ope Acquisition Flight Approved by Pilot-in RI ATLED MIKE Signature over Printed Name Signature over Printed Name Signature over Printed Name dinted Man Signature ov Signature over Printed Name sentative) (End User Representative)

Figure A-6.15 Flight Log for Mission 23540P

16. Flight Log for Mission 23544P

Flight Log No.: 23544P PHIL-LIDAR 1 Data Acquisition Hight Log 2 ALIM Model: PEGACIS 3 Mission Name: 6 Aircraft Identification: 27 - (9) 22 4 Type: VFR 5 Aircra ft Type: CesnnaT20611 IIIDAR Operator: R. FEUSMINO 7 PiloL: A. DAYO 8 CO-Pilol: E . SASAY 9 Route: VALENUA 12 Airport of Arrival (Airport, City/Province): 12 Airport of Departure (Airport, City/Province): 10 Date: LAGUINDIN & AN LAGUINDINGAN NOV. 13, 2016 18 Total Flight Time: 15 Total Engine Time: 16 Take off: 17Landing: 14 Engine Off: 13 Engine On: 04 + 01 04 + 11 11 56 07 45 PAIR 19 Weather 21 Remarks 20 Flight Classification SUCCESSFUL PUGHT BKNE 20.c Others completed 20.a Billable 20 b Non Billable OVER O LIDAR System Maintenance O Aircraft Test Flight Valencia Acquisition Flight O Aircraft Maintenance O AAC Admin Flight O Ferry Flight O Phil-LiDAR Admin Activities O Others: O System Test Flight O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: 1 Aircraft Mechanic/ HDAR Technician LIDAR Operator ght Certified by Pilot-in-Ci Acquisition Flight Approved by holumino PAL PELICMINO EL ANGLASS Signature over Printed Name Signature over Printed Name Signature over Printed Name over Printed Name Signature overprinted Name (PAF Representative) (End User Representative)

Figure A-6.16 Flight Log for Mission 23544P

17. Flight Log for Mission 23546P

Flight Log No.: 23546 F PHIL-LIDAR 1 Data Acquisition Hight Log 6 Aircraft Identification: 29- 09122 5 Aircra ft Type : CesnnaT206H 2 AL IM Model: PEGASUS 3 Mission Name: IBKNP 388 4 Type: VFR ILIDAR Operator: F. JUESAW 8 Co-Pilot: E. SAYSAY 9 Route: VALENCIA 12 Aliport of Departure (Airport, City/Province): 9 Route: VALENUA 7 Pilot: A. DAYO 12 Airport of Arrival (Airport, City/Province): 10 Date: LA GUINDING AN LAGUINDINGAN Nov. 13, 2016 18 Total Flight Time: 17 Landing: 15 Total Engine Time: 16 Take off: 14 Engine Off: 13 Engine On: 04+09 12 53 04 +11 17 04 RAN SHOWERS 19 Weather CLOUD AND 21 Remarks 20 Flight Classification PLIGHT, Completed BKNF SUCCESSFUL 20.c Others 20 b Non Billable 20.a Billable Valencia NOLO O LIDAR System Maintenance o Aircraft Test Flight Acquisition Flight O Aircraft Maintenance o AAC Admin Flight . O Ferry Flight o Others: O Phil-LiDAR Admin Activities O System Test Flight O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: 1 Aircraft Mechanic/ HDAR Technician LIDAR ODETA Pilot-in rtified by Acquisition Flight Approved by RJ P DYA Signature over Printed Name Signature over Printed Name ure over Printed Name Signature over Printed Name Signature over Printed Name PAF Representative) (End User Representative)

Figure A-6.17 Flight Log for Mission 23546P

18. Flight Log for Mission 23548P

Flight log No.: 235481 PHIL-LIDAR 1 Data Acquisition Hight Log 6 Aircraft Identification: 2P- CAI 22 2 ALIM Model: PEGASUS 3 Mission Name: BENEP3MA 5 Aircra ft Type: CesnnaT20611 4 Type: VFR 111DAR Operator: F. SLESAY 9 Route: VALENUA 7 Pilot: A. DAYO 8 Co-Pilol: E.SAYSAY 12 Airport of Arrival (Airport, City/Province): 12 Airport of Departure (Airport, City/Province): 10 Date: LAGUINDIN GAN NOV. 14, 2016 LAGUINDINGAN 18 Total Flight Time: 17landing: 15 Total Engine Time: 16 Take off: 14 Engine Off: 13 Engine On: 04 + 19 12 48 04 +29 08 19 19 Weather CLOUD 21 Remarks 20 Flight Classification 20.c Others 20 b Non Billable 20.a Billable SULLESSPUL PUGHT O Aircraft Test Flight O LIDAR System Maintenance O Acquisition Flight O Aircraft Maintenance O AAC Admin Flight -O Ferry Flight O Phil-LiDAR Admin Activities o Others: O System Test Flight O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: 1 Aircraft Mechanic/ HDAR Technician LIDAR Operator Piloth Certified by Acquisition Flight Approved by Acouisition 1 PZ 10-1 MIK Signature over Printed Name Signature over Printed Name Signature over Printed Name ure over Printed Hame Signature over Printed Name PAF Representative) (End User Representative)

Figure A-6.18 Flight Log for Mission 23548P

ANNEX 7. Flight Status Reports Table 7: Flight Status Reports

NORTHERN MINDANAO

(May 27 – July 10, 2014 and October 23 – November 14, 2016)

Table A-7.1 Flight Status Report

Flight No	Area	Mission	Operator	Date Flown	Remarks
1517P	RX BLK D,E	1RXE147A	I. Roxas	May 27, 2014	Surveyed half of RX D and half of RX E at 800m, 1000m then 900m; cam stylus malfunctioned
1569P	RX BLK E	1BLKRXE160A	G.Sinadjan	June 9, 2014	Mission successful; gaps due to high terrain; camera assertion failed
1597P	RX BLK D,E	1BLKRXE167A	G.Sinadjan	June 16, 2014	Mission successful; filled gaps in RX E
1629P	RX BLK E	1BLKRXES175A	G.Sinadjan	June 24, 2014	Mission successful at 1400 AGL
1693P	RX BLK ES	1RXES191A	J. Alviar	July 10, 2014	Filled in gaps in RX E
23486P	MANOLO FORTICH BKN S2	1BKND297A	J Alviar	October 23,2014	Surveyed Manolo Fortich at 1300m MSL; heavy build up and precipitation in bukidnon
23488P	MANOLO FORTICH BKN S1	1BKNDE298A	K. Quisado	October 24,2014	Closed visual over target areas; surveyed Tagoloan watershed in Manolo Fortich at 1700m MSL
23492P	BKN E	1BKNDE299A	K Quisado	October 25,2014	Surveyed BKN E at 1500m MSL
23516P	VALENCIA BNK F	1BKNF311A	FN llejay	November6,2016	Surveyed Manupali- Upper Pulangi floodplain with voids due to build up and strong winds
23518P	VALENCIA BNK F	1BKNF311B	PJ Arceo RA Felismino	November6,2016	Surveyed only 4 lines over Manupali-Upper Pulangi floodplain due to time constraint
23520P	VALENCIA BKN F	1BKNF312A	FN llejay	November7,2016	Surveyed gaps over Manupali-Upper Pulangi floodplain
23524P	VALENCIA BKN D	1BKND313A	PJ Arceo RA Felismino	November8,2016	Surveyed Manupali- Upper Pulangi-Upper Pulangi floodplain

23534P	VALENCIA BNK G	1BKNGS315A	FN Ilejay	November 10, 2016	Surveyed Manupali- Upper Pulangi floodplain with voids due to build up and strong winds
23536P	VALENCIA BKN E	1BKNE317A	PJ Arceo, RA Felismino	November 11,2016	Surveyed gaps over Manupali-Upper Pulangi floodplain
23540P	VALENCIA BKN E	1BKNE317A	FN llejay	November 12, 2016	Surveyed gaps over Manupali-Upper Pulangi floodplain
23544P	VALENCIA BKN E	1BKNE318A	RA Felismino	November 13, 2016	Completed BKN E over Valencia
23546P	VALENCIA BKN G	1BKNG318B	FN Ilejay	November 13, 2016	COMPLETED BKN G OVER VALENCIA
23548P	VALENCIA BKN E,F	1BKNEF319A	FN Ilejay	November 14, 2016	Fill up gaps and voids over Malaybalay and Valencia

LAS BOUNDARIES PER FLIGHTFlight No. :1517PArea:RX D, RX EMission Name:1RXE147AParameters:State State Sta

ilers.					
Altitude:	900m;				
Scan Frequency: 30Hz;					
Scan Angle:	25deg;				
Overlap:	30%				

Figure A-7.1 Swath for Flight No. 1517P

Flight No.: 1569P Area: RX D Mission Name: 1BLKRXE160A Parameters: Altitude: 1000 m; Scan Frequency: 30Hz; Scan Angle: 25deg;

Figure A-7.2 Swath for Flight No. 1569P

LIDAR Surveys and Flood Mapping of Upper Pulangi River

Flight No. :	1597P				
Area:	RX D, RX E				
Mission Name: 1BLKRXE167A					
Parameters:					
Altitude	:: 800m;				
Scan Frequency: 30Hz;					
Scan An	gle: 25 deg;				
Overlap	: 30%				

Figure A-7.3 Swath for Flight No. 1597P

Flight No.:1629PArea:RX EMission Name:1BLKRXE175AParameters:Altitude:Altitude:1400m;Scan Frequency:30Hz;Scan Angle:25 deg;Overlap:30%

Figure A-7.4 Swath for Flight No. 1629P

LIDAR Surveys and Flood Mapping of Upper Pulangi River

Flight No.:1693PArea:RX ESMission Name:1RXES191AParameters:Altitude:Altitude:1200m;Scan Frequency:30Hz;Scan Angle:25 deg;Overlap:30%

Figure A-7.5 Swath for Flight No. 1693P

Flight No.: 23486P Area: BKN S2 Mission Name: 1BKND297A Parameters: Altitude: 1300m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

Figure A-7.6 Swath for Flight No. 23486P

LIDAR Surveys and Flood Mapping of Upper Pulangi River

Flight No.:23488PArea:BKN S1Mission Name:1BKNDE298AParameters:Altitude:Altitude:1700m;Scan Frequency:30Hz;Scan Angle:25 deg;Overlap:30%

Figure A-7.7 Swath for Flight No. 23488P

Flight No.: 23492≻ Area: BKN E Mission Name: 1BKNDE299A Parameters: Altitude: 1500m; Scan Frequency: 30Hz; Scan Angle: 25 deg;

Figure A-7.8 Swath for Flight No. 23492P

LIDAR Surveys and Flood Mapping of Upper Pulangi River

Flight No.:23516PArea:VALENCIA BKN FMission Name:1BKNF311AParameters:1000m;Altitude:1000m;Scan Frequency:30Hz;Scan Angle:25 deg;Overlap:30%

Figure A-7.9 Swath for Flight No. 23516P
Flight No. : 23518P Area: BKN F Mission Name: 1BKNF311B Parameters: Altitude: 1000m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

Figure A-7.10 Swath for Flight No. 23518P

Figure A-7.11 Swath for Flight No. 23520P

Flight No. : 23524P Area: BKN D Mission Name: 1BKND313A Parameters: Altitude: 1200m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

Figure A-7.12 Swath for Flight No. 23524P

Flight No.:23534PArea:BKNGMission Name:1BKNGParameters:1BKNGAltitude:1200m;Scan Frequency:30HzOverlap:30%

Figure A-7.13 Swath for Flight No. 23534P

Flight No. : 23536P Area: BKN E Mission Name: 1BKNE316A Parameters: Altitude: 1300m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

Figure A-7.14 Swath for Flight No. 23536P

Flight No.:23540PArea:BKN EMission Name:1BKNE3TAParameters:1BKNE3TAAltitude:1300m;Scan Frequency:30Hz;Scan Angle:25 deg;Overlap:30%

Figure A-7.15 Swath for Flight No. 23540P

Flight No. : 23544P Area: BKN E Mission Name: 1BKNE318A Parameters: Altitude: 1300m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

Figure A-7.16 Swath for Flight No. 23544P

Flight No.:23546PArea:BKN EMission Name:1BKNG T B BParameters:1BKNG T B BAltitude:1300m;Scan Frequency:30Hz;Scan Angle:25 deg;Overlap:30%

Figure A-7.17 Swath for Flight No. 23546P

Flight No. : 23548 Area: BKN E, F Mission Name: 1BKNEF319A Parameters: Altitude: 1300m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

Figure A-7.18 Swath for Flight No. 23548P

ANNEX 8. Mission Summary Reports

|--|

Flight Area	

ANNEX 9. Upper Pulangi Model Basin Parameters

Desia	SCS C	urve Numbe	r Loss	Clark Unit Hydrograph Transform		Recession Baseflow					
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M³/S)	Recession Constant	Threshold Type	Ratio to Peak	
W1720	13.4723	75.329	0	1.93783	0.62094	Discharge	0.81126	0.0001	Ratio to Peak	1	
W1730	13.1372	76.991	0	0.859933	0.01667	Discharge	0.48906	0.0001	Ratio to Peak	1	
W1740	13.4818	75.283	0	1.882216	0.53018	Discharge	0.4566	0.0001	Ratio to Peak	1	
W1750	13.4966	75.211	0	3.05378	2.44217	Discharge	0.80279	0.0001	Ratio to Peak	1	
W1760	13.7889	73.822	0	4.851849	5.37662	Discharge	1.2287	0.0001	Ratio to Peak	1	
W1770	13.1005	77.177	0	0.9032	0.01667	Discharge	0.636169	0.0001	Ratio to Peak	1	
W1780	13.3736	75.811	0	1.395221	0.01667	Discharge	0.2372	0.0001	Ratio to Peak	1	
W1790	13.8965	73.322	0	2.531159	1.58925	Discharge	1.5328	0.0001	Ratio to Peak	1	
W1800	13.7672	73.923	0	1.15595	0.01667	Discharge	0.3666	0.0001	Ratio to Peak	1	
W1810	13.8004	73.768	0	1.853663	0.48358	Discharge	0.39222	0.0001	Ratio to Peak	1	
W1820	14.3605	71.241	0	1.005014	0.01667	Discharge	0.22793	0.0001	Ratio to Peak	1	
W1830	13.6903	74.285	0	0.169861	0.01667	Discharge	0.17435	0.0001	Ratio to Peak	1	
W1840	13.878	73.407	0	1.447624	0.01667	Discharge	1.1008	0.0001	Ratio to Peak	1	
W1850	14.2919	71.541	0	0.091465	0.01667	Discharge	0.20499	0.0001	Ratio to Peak	1	
W1860	14.1591	72.13	0	2.164953	0.9916	Discharge	0.64424	0.0001	Ratio to Peak	1	
W1870	13.5996	74.716	0	0.664583	0.01667	Discharge	0.45899	0.0001	Ratio to Peak	1	
W1880	14.0429	72.653	0	2.053097	0.80905	Discharge	0.93748	0.0001	Ratio to Peak	1	
W1890	14.4082	71.033	0	0.054814	0.01667	Discharge	0.19323	0.0001	Ratio to Peak	1	
W1900	13.7718	73.901	0	0.343259	0.01667	Discharge	0.29915	0.0001	Ratio to Peak	1	
W1910	14.0684	72.538	0	1.096386	0.01667	Discharge	0.38296	0.0001	Ratio to Peak	1	

Table A-9.1 Upper Pulangi Model Basin Parameters

Pasin	SCS C	urve Numbe	r Loss	Clark Hydrograpl	c Unit h Transform			Recession	n Baseflow	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M³/S)	Recession Constant	Threshold Type	Ratio to Peak
W1920	13.35	75.8	0	0.01667	0.01667	Discharge	0.10506	0.0001	Ratio to Peak	1
W1930	13.9616	73.023	0	1.073136	0.01667	Discharge	0.65967	0.0001	Ratio to Peak	1
W1940	13.7967	73.785	0	0.86193	0.01667	Discharge	0.7947	0.0001	Ratio to Peak	1
W1950	13.4471	75.452	0	1.653367	0.1567	Discharge	0.69318	0.0001	Ratio to Peak	1
W1960	13.9869	72.908	0	0.301561	0.01667	Discharge	0.36227	0.0001	Ratio to Peak	1
W1970	13.2154	76.597	0	1.411858	0.01667	Discharge	0.7312	0.0001	Ratio to Peak	1
W1980	13.3591	75.883	0	2.007205	0.73416	Discharge	0.91931	0.0001	Ratio to Peak	1
W1990	12.0837	82.706	0	0.285757	0.01667	Discharge	0.25708	0.0001	Ratio to Peak	1
W2000	14.002	72.839	0	1.599877	0.0694	Discharge	0.76754	0.0001	Ratio to Peak	1
W2010	12.1991	82.04	0	0.01667	0.01667	Discharge	0.27221	0.0001	Ratio to Peak	1
W2020	12.9145	78.135	0	1.323547	0.01667	Discharge	0.7051	0.0001	Ratio to Peak	1
W2030	14.197	71.961	0	0.560117	0.01667	Discharge	0.39394	0.0001	Ratio to Peak	1
W2040	12.1535	82.302	0	0.01667	0.01667	Discharge	0.20393	0.0001	Ratio to Peak	1
W2050	11.55	85.8	0	0.01667	0.01667	Discharge	0.14875	0.0001	Ratio to Peak	1
W2060	12.1177	82.508	0	0.01667	0.01667	Discharge	0.15716	0.0001	Ratio to Peak	1
W2070	14.2689	71.643	0	1.0779	0.01667	Discharge	0.45854	0.0001	Ratio to Peak	1
W2090	12.4061	80.872	0	2.749482	1.94556	Discharge	0.3399	0.0001	Ratio to Peak	1
W2110	11.5701	85.797	0	1.389764	0.01667	Discharge	0.53387	0.0001	Ratio to Peak	1
W2140	12.9112	78.152	0	3.008288	2.36793	Discharge	0.17267	0.0001	Ratio to Peak	1
W2180	13.3846	75.758	0	0.294481	0.01667	Discharge	0.74521	0.0001	Ratio to Peak	1
W2210	13.994	72.875	0	1.829609	0.44432	Discharge	0.64951	0.0001	Ratio to Peak	1
W2250	13.7544	73.983	0	1.464796	0.01667	Discharge	0.967876	0.0001	Ratio to Peak	1

Desia	SCS C	urve Numbe	r Loss	Clark Unit Hydrograph Transform				Recession	Baseflow	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M³/S)	Recession Constant	Threshold Type	Ratio to Peak
W2260	14.1383	72.223	0	0.652135	0.01667	Discharge	0.39635	0.0001	Ratio to Peak	1
W2290	12.5027	80.338	0	2.095094	0.87759	Discharge	0.4986	0.0001	Ratio to Peak	1
W2300	11.5691	85.804	0	0.01667	0.01667	Discharge	0.65215	0.0001	Ratio to Peak	1
W2350	11.5083	86.185	0	0.095757	0.01667	Discharge	0.85244	0.0001	Ratio to Peak	1
W2380	13.1758	76.796	0	1.872336	0.51405	Discharge	0.51045	0.0001	Ratio to Peak	1
W2400	12.6318	79.634	0	2.074397	0.84382	Discharge	0.42523	0.0001	Ratio to Peak	1
W2480	12.4089	80.857	0	1.39405	0.01667	Discharge	0.45339	0.0001	Ratio to Peak	1
W2510	14.1697	72.083	0	3.959494	3.92029	Discharge	0.85326	0.0001	Ratio to Peak	1
W2610	12.5669	79.8	0	2.661391	1.80179	Discharge	0.10508	0.0001	Ratio to Peak	1
W2620	14.0364	72.683	0	2.010909	0.7402	Discharge	0.38433	0.0001	Ratio to Peak	1
W2630	11.5147	86.144	0	0.01667	0.01667	Discharge	0.14246	0.0001	Ratio to Peak	1
W2660	13.4786	75.299	0	2.559486	1.63548	Discharge	0.36025	0.0001	Ratio to Peak	1
W2680	2.9741	97.825	0	0.139294	0.01667	Discharge	0.1372	0.0001	Ratio to Peak	1
W2690	0.0806	92.723	80	0.053763	0.01667	Discharge	0.45635	0.15	Ratio to Peak	1
W2700	0.02	98.006	80	0.983627	0.01667	Discharge	0.66667	0.00048	Ratio to Peak	1
W2790	13.9693	72.988	0	1.450314	0.01667	Discharge	0.75455	0.0001	Ratio to Peak	1
W2820	11.896	83.81	0	1.576944	0.03197	Discharge	0.8373	0.0001	Ratio to Peak	1
W2830	14.6463	70.015	0	0.235192	0.01667	Discharge	0.49586	0.0001	Ratio to Peak	1
W2840	14.2547	71.705	0	2.899376	2.19018	Discharge	0.15455	0.0001	Ratio to Peak	1
W2860	13.36	75.8	0	10	10	Discharge	0.10864	1	Ratio to Peak	1
W2870	12.61	79.8	0	4.901835	5.4582	Discharge	0.43521	0.0001	Ratio to Peak	1
W2880	12.9481	77.96	0	3.363016	2.94684	Discharge	0.89907	0.0001	Ratio to Peak	1

Racin	SCS C	urve Numbe	r Loss	Clark Hydrograpl	d Unit h Transform			Recession	n Baseflow	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M³/S)	Recession Constant	Threshold Type	Ratio to Peak
W2890	12.1966	82.054	0	3.7106	3.5141	Discharge	1.688	0.0001	Ratio to Peak	1
W2900	14.6941	69.813	0	2.349031	1.29202	Discharge	0.28043	0.0001	Ratio to Peak	1
W2910	13.7591	73.961	0	1.863235	0.4992	Discharge	0.83949	0.0001	Ratio to Peak	1
W2920	12.3064	81.431	0	0.513168	0.01667	Discharge	0.35928	0.0001	Ratio to Peak	1
W2930	11.6078	85.563	0	2.071138	0.8385	Discharge	0.38019	0.0001	Ratio to Peak	1
W2940	13.5498	74.955	0	1.123268	0.01667	Discharge	0.11496	0.0001	Ratio to Peak	1
W2950	11.5538	85.899	0	1.876851	0.52142	Discharge	0.53497	0.0001	Ratio to Peak	1
W2970	14.0155	72.778	0	0.98142	0.01667	Discharge	0.54791	0.0001	Ratio to Peak	1
W2980	12.8096	78.685	0	1.913894	0.58188	Discharge	0.45645	0.0001	Ratio to Peak	1
W2990	11.5134	86.153	0	0.392914	0.01667	Discharge	0.26618	0.0001	Ratio to Peak	1
W3000	11.8589	84.032	0	2.475522	1.49845	Discharge	0.66634	0.0001	Ratio to Peak	1
W3010	14.2162	71.876	0	1.693447	0.22211	Discharge	0.39506	0.0001	Ratio to Peak	1
W3020	12.5461	80.1	0	0.731507	0.01667	Discharge	0.53402	0.0001	Ratio to Peak	1
W3030	11.55	85.8	0	0.01667	0.01667	Discharge	0.11787	0.0001	Ratio to Peak	1
W3040	11.9867	83.273	0	2.430238	1.42455	Discharge	0.26383	0.0001	Ratio to Peak	1
W3050	11.55	85.8	0	0.593396	0.01667	Discharge	0.80429	0.0001	Ratio to Peak	1
W3060	13.1578	76.887	0	0.253727	0.01667	Discharge	0.31384	0.0001	Ratio to Peak	1
W3070	14.0421	72.657	0	1.321438	0.01667	Discharge	0.58566	0.0001	Ratio to Peak	1
W3080	12.2801	81.579	0	0.969116	0.01667	Discharge	0.75153	0.0001	Ratio to Peak	1
W3090	13.32305	76.061	0	1.042587	0.01667	Discharge	0.12143	0.0001	Ratio to Peak	1
W3100	11.7856	84.473	0	3.118245	2.54738	Discharge	0.82759	0.0001	Ratio to Peak	0.0001
W3110	11.55	85.8	0	0.01667	0.01667	Discharge	0.64979	0.0001	Ratio to Peak	0.5

Decin	SCS Curve Number Loss Basin				Unit n Transform			Recessio	n Baseflow	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M³/S)	Recession Constant	Threshold Type	Ratio to Peak
W3120	11.9712	83.364	0	1.951256	0.64285	Discharge	0.145	0.0001	Ratio to Peak	0.0001
W3130	13.279	76.28	0	2.129664	0.93401	Discharge	0.7004	0.0001	Ratio to Peak	0.0001
W3140	14.65	69.8	0	0.01667	0.01667	Discharge	0.50004	0.0001	Ratio to Peak	0.0001
W3150	14.4052	71.046	0	1.201038	0.01667	Discharge	0.5108	0.0001	Ratio to Peak	0.0001
W3160	13.4939	75.224	0	1.441608	0.01667	Discharge	0.19082	0.0001	Ratio to Peak	0.0001
W3170	12.4865	80.427	0	0.843323	0.01667	Discharge	0.92822	0.0001	Ratio to Peak	1
W3180	11.9864	83.275	0	2.161504	0.98598	Discharge	0.3841	0.0001	Ratio to Peak	0.5
W3190	12.8735	78.349	0	2.043936	0.7941	Discharge	0.98466	0.0001	Ratio to Peak	1
W3200	11.55	85.8	0	0.01667	0.01667	Discharge	0.41395	0.0001	Ratio to Peak	0.0001
W3210	13.2036	76.656	0	0.01667	0.01667	Discharge	0.37688	0.0001	Ratio to Peak	0.0001
W3220	12.5937	79.841	0	0.505491	0.01667	Discharge	1.2022	0.0001	Ratio to Peak	0.0001
W3230	14.6972	69.8	0	1.964463	0.6644	Discharge	0.39182	0.0001	Ratio to Peak	0.0001
W3240	12.8804	78.313	0	1.014862	0.01667	Discharge	0.33754	0.0001	Ratio to Peak	0.0001
W3250	12.0062	83.158	0	1.071223	0.01667	Discharge	0.10823	0.0001	Ratio to Peak	0.0001
W3260	12.1582	82.275	0	2.072289	0.84038	Discharge	0.24546	0.0001	Ratio to Peak	0.0001
W3270	11.837	84.163	0	2.671886	1.81892	Discharge	0.91263	0.0001	Ratio to Peak	0.0001
W3280	11.9808	83.307	0	2.670978	1.81744	Discharge	0.12225	0.0001	Ratio to Peak	0.0001
W3290	11.6924	85.041	0	0.811105	0.01667	Discharge	0.35766	0.0001	Ratio to Peak	0.0001
W3300	11.6982	85.005	0	1.345745	0.01667	Discharge	0.1074	0.0001	Ratio to Peak	0.0001
W3310	11.55	85.8	0	1.884078	0.53322	Discharge	0.12946	0.0001	Ratio to Peak	0.0001
W3320	12.9965	77.71	0	3.144369	2.59001	Discharge	0.41781	0.0001	Ratio to Peak	0.0001
W3330	11.9357	83.574	0	2.503718	1.54447	Discharge	0.58289	0.0001	Ratio to Peak	0.0001

Decin	SCS C	urve Numbe	r Loss	Clark Unit Hydrograph Transform				Recession	n Baseflow	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M³/S)	Recession Constant	Threshold Type	Ratio to Peak
W3340	13.3931	75.716	0	3.603973	3.34008	Discharge	0.36018	0.0001	Ratio to Peak	0.0001
W3350	13.0465	77.453	0	0.770977	0.01667	Discharge	0.33009	0.0001	Ratio to Peak	0.0001
W3360	12.5293	80.192	0	0.01667	0.01667	Discharge	0.6107	0.0001	Ratio to Peak	0.0001
W3370	11.55	85.8	0	0.01667	0.01667	Discharge	0.3969	0.0001	Ratio to Peak	0.9
W3380	10.55	83.8	0	0.01667	0.01667	Discharge	0.92247	0.0001	Ratio to Peak	0.9
W3390	11.55	85.8	0	6.012075	7.27011	Discharge	0.52043	0.0001	Ratio to Peak	0.0001
W3400	11.6345	85.398	0	1.980763	0.691	Discharge	0.4205	0.0001	Ratio to Peak	0.0001
W3410	13.9245	72.8	0	15.17852	22.22975	Discharge	0.28871	0.0001	Ratio to Peak	0.0001
W3420	12.0332	83	0	0.168215	0.01667	Discharge	0.39107	0.0001	Ratio to Peak	0.0001
W3540	11.8643	84	0	3.252811	2.76699	Discharge	0.43768	0.0001	Ratio to Peak	0.0001
W3550	9.7392	84.755	0	1.092361	0.01667	Discharge	0.1691	0.0001	Ratio to Peak	0.0001

ANNEX 10. Upper Pulangi Model Reach Parameters

Reach			Muskingum Cu	nge Channel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R100	Automatic Fixed Interval	2552.1	0.0077483	0.0001	Trapezoid	115	1
R1050	Automatic Fixed Interval	3255.2	0.0024479	0.09	Trapezoid	115	1
R1070	Automatic Fixed Interval	360.25	0.0053912	0.1	Trapezoid	115	1
R1100	Automatic Fixed Interval	402.15	0.0080526	1	Trapezoid	115	1
R1150	Automatic Fixed Interval	1799	0.00808	0.04	Trapezoid	115	1
R1180	Automatic Fixed Interval	5028.6	0.0013264	0.17	Trapezoid	115	1
R1190	Automatic Fixed Interval	907.88	0.0134736	0.001	Trapezoid	115	1
R120	Automatic Fixed Interval	2866.9	0.018668	0.0001	Trapezoid	115	1
R1210	Automatic Fixed Interval	2773	0.0071525	1	Trapezoid	115	1
R1220	Automatic Fixed Interval	6784.3	0.001614	0.15	Trapezoid	115	1
R1230	Automatic Fixed Interval	25604	0.0016299	0.0005	Trapezoid	115	1
R1270	Automatic Fixed Interval	3331.7	0.0009922	0.0001	Trapezoid	115	1
R1280	Automatic Fixed Interval	10780	0.0170084	1	Trapezoid	115	1
R1290	Automatic Fixed Interval	305.16	0.0118679	1	Trapezoid	115	1
R1300	Automatic Fixed Interval	3910.2	0.0005418	0.0001	Trapezoid	115	1
R1320	Automatic Fixed Interval	3058.9	0.001402	1	Trapezoid	115	1
R1330	Automatic Fixed Interval	1448.2	0.015558	1	Trapezoid	115	1
R1340	Automatic Fixed Interval	2662.6	0.0043719	0.0001	Trapezoid	115	1
R1380	Automatic Fixed Interval	2026	0.0043425	0.0001	Trapezoid	115	1

Table A-10.1 Upper Pulangi Model Reach Parameters

Reach			Muskingum Cur	nge Channel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R1390	Automatic Fixed Interval	1509.1	0.0107024	0.0001	Trapezoid	115	1
R1420	Automatic Fixed Interval	12670	0.024652	0.0001	Trapezoid	115	1
R1450	Automatic Fixed Interval	7718.9	0.0057261	0.0001	Trapezoid	115	1
R1470	Automatic Fixed Interval	6685.4	0.0011424	0.0001	Trapezoid	115	1
R1490	Automatic Fixed Interval	7187.5	0.0004184	0.0001	Trapezoid	115	1
R150	Automatic Fixed Interval	10668	0.0127245	0.0001	Trapezoid	115	1
R1510	Automatic Fixed Interval	969.74	0.0035072	0.0001	Trapezoid	115	1
R1520	Automatic Fixed Interval	5676.9	0.0018084	0.0001	Trapezoid	115	1
R1530	Automatic Fixed Interval	8063.3	0.0037295	0.0001	Trapezoid	115	1
R1550	Automatic Fixed Interval	927.97	0.0003007	0.0001	Trapezoid	115	1
R1570	Automatic Fixed Interval	3717.9	0.0017678	0.0001	Trapezoid	115	1
R1580	Automatic Fixed Interval	402.65	0.0017678	0.0001	Trapezoid	115	1
R1590	Automatic Fixed Interval	916.5	0.0130132	0.0001	Trapezoid	115	1
R160	Automatic Fixed Interval	6185.5	0.0158513	0.0001	Trapezoid	115	1
R1620	Automatic Fixed Interval	4622.7	0.0503989	0.0001	Trapezoid	115	1
R1630	Automatic Fixed Interval	6646.9	0.0147259	0.0001	Trapezoid	115	1
R1690	Automatic Fixed Interval	3447.5	0.0427675	0.0001	Trapezoid	115	1
R170	Automatic Fixed Interval	2188	0.0043533	0.0001	Trapezoid	115	1
R1710	Automatic Fixed Interval	16398	0.0068574	0.0001	Trapezoid	115	1
R200	Automatic Fixed Interval	1479.3	0.0077707	0.0001	Trapezoid	115	1
R210	Automatic Fixed Interval	194.98	0.0663139	0.0001	Trapezoid	115	1
R230	Automatic Fixed Interval	6864.9	0.0042507	0.0001	Trapezoid	115	1

Reach			Muskingum Cur	nge Channel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R260	Automatic Fixed Interval	3297.1	0.0147763	0.0001	Trapezoid	115	1
R270	Automatic Fixed Interval	2483.3	0.0036237	0.0001	Trapezoid	115	1
R290	Automatic Fixed Interval	2551.5	0.0045115	0.0001	Trapezoid	115	1
R310	Automatic Fixed Interval	1263.6	0.0006206	0.0001	Trapezoid	115	1
R330	Automatic Fixed Interval	1787.2	0.0089677	0.0001	Trapezoid	115	1
R350	Automatic Fixed Interval	950.49	0.0001563	0.0001	Trapezoid	115	1
R3560	Automatic Fixed Interval	1603	0.0003835	0.0001	Trapezoid	115	1
R380	Automatic Fixed Interval	5124.2	0.0008477	0.0001	Trapezoid	115	1
R450	Automatic Fixed Interval	3196	0.0055487	0.0001	Trapezoid	115	1
R50	Automatic Fixed Interval	8659.5	0.016863	0.0001	Trapezoid	115	1
R520	Automatic Fixed Interval	8230.1	0.0064378	1	Trapezoid	115	1
R610	Automatic Fixed Interval	8038.8	0.002216	1	Trapezoid	115	1
R70	Automatic Fixed Interval	3616.8	0.0104034	0.0001	Trapezoid	115	1
R780	Automatic Fixed Interval	301.3	0.0554249	1	Trapezoid	115	1
R790	Automatic Fixed Interval	650.92	0.0255322	1	Trapezoid	115	1
R80	Automatic Fixed Interval	1576.4	0.0049634	0.0001	Trapezoid	115	1
R800	Automatic Fixed Interval	8455.2	0.0024382	0.038	Trapezoid	115	1
R870	Automatic Fixed Interval	8736.9	0.0051779	0.002	Trapezoid	115	1
R920	Automatic Fixed Interval	962.26	0.0064863	0.5	Trapezoid	115	1
R950	Automatic Fixed Interval	4951.4	0.0071325	1	Trapezoid	115	1

ANNEX 11. Upper Pulangi Field Validation Points

Point	Validation	Coordinates	Model	Validation		_	Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
1	8.11910	125.14531	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
2	8.11722	125.14577	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
3	8.12302	125.14084	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
4	8.12510	125.13943	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
5	8.12740	125.13881	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
6	8.13035	125.13678	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
7	8.13090	125.13519	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
8	8.13319	125.13446	0.23	0.00	-0.23	Pablo/4Dec2012	5YR
9	8.13437	125.13259	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
10	8.13739	125.13276	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
11	8.13914	125.13172	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
12	8.14126	125.13241	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
13	8.13748	125.12915	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
14	8.13560	125.12939	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
15	8.13131	125.13211	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
16	8.12689	125.12446	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
17	8.11489	125.13581	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
18	8.10075	125.14046	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
19	8.09839	125.14884	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
20	8.10009	125.15165	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
21	8.10318	125.15587	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
22	8.10182	125.16125	6.72	0.00	-6.72	Pablo/4Dec2012	5YR
23	8.10478	125.16039	4.50	0.00	-4.50	Pablo/4Dec2012	5YR
24	8.10193	125.15997	6.53	0.00	-6.53	Pablo/4Dec2012	5YR
25	8.09804	125.16442	12.05	0.30	-11.75	Pablo/4Dec2012	5YR
26	8.09711	125.16862	2.82	0.78	-2.04	Pablo/4Dec2012	5YR
27	8.09681	125.17267	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
28	8.09448	125.17560	1.48	0.80	-0.68	Pablo/4Dec2012	5YR
29	8.09497	125.17931	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
30	8.07839	125.14722	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
31	8.08218	125.14704	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
32	8.07978	125.16353	4.74	0.00	-4.74	Pablo/4Dec2012	5YR
33	8.07838	125.16082	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
34	8.08481	125.14996	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
35	8.03645	125.13822	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
36	8.02659	125.13947	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
37	8.02327	125.13928	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
38	8.02040	125.14146	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
39	8.01833	125.14197	0.06	0.00	-0.06	Pablo/4Dec2012	5YR

Table A-11.1 Upper Pulangi Field Validation Points

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
40	8.01795	125.14304	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
41	8.03065	125.14343	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
42	7.99650	125.15581	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
43	7.99528	125.14968	0.68	0.00	-0.68	Pablo/4Dec2012	5YR
44	7.99719	125.14723	0.89	0.00	-0.89	Pablo/4Dec2012	5YR
45	7.99126	125.14976	0.90	0.00	-0.90	Pablo/4Dec2012	5YR
46	7.98980	125.15284	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
47	7.98838	125.15510	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
48	7.98625	125.15622	0.31	0.00	-0.31	Pablo/4Dec2012	5YR
49	7.98136	125.14365	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
50	7.98018	125.14217	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
51	7.97815	125.14064	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
52	7.97404	125.13961	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
53	7.97057	125.13696	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
54	7.97309	125.11676	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
55	7.97843	125.12517	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
56	8.06459	125.16093	6.03	0.00	-6.03	Pablo/4Dec2012	5YR
57	8.06555	125.16147	4.50	0.00	-4.50	Pablo/4Dec2012	5YR
58	8.06092	125.17001	1.13	0.00	-1.13	Pablo/4Dec2012	5YR
59	8.05853	125.17349	0.37	0.20	-0.17	Pablo/4Dec2012	5YR
60	8.06132	125.16734	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
61	8.06265	125.16697	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
62	8.06410	125.16748	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
63	8.06134	125.16413	0.18	0.20	0.02	Pablo/4Dec2012	5YR
64	8.06077	125.16027	1.10	0.00	-1.10	Pablo/4Dec2012	5YR
65	8.05855	125.16120	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
66	8.05776	125.16339	1.49	0.40	-1.09	Pablo/4Dec2012	5YR
67	8.05728	125.16123	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
68	8.05782	125.15857	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
69	8.05577	125.15981	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
70	8.05218	125.16236	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
71	8.05065	125.16176	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
72	8.05001	125.16353	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
73	8.04957	125.16531	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
74	8.05116	125.16782	1.45	0.00	-1.45	Pablo/4Dec2012	5YR
75	8.05398	125.16925	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
76	8.05207	125.16554	9.15	0.15	-9.00	Pablo/4Dec2012	5YR
77	8.04899	125.16901	1.33	0.20	-1.13	Pablo/4Dec2012	5YR
78	8.04692	125.17067	1.19	0.30	-0.89	Pablo/4Dec2012	5YR
79	8.04548	125.17190	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
80	8.03973	125.16919	0.26	0.00	-0.26	Pablo/4Dec2012	5YR
81	8.04359	125.16815	2.30	0.20	-2.10	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
82	8.04239	125.16710	5.01	0.40	-4.61	Pablo/4Dec2012	5YR
83	8.04746	125.16826	2.43	0.15	-2.28	Pablo/4Dec2012	5YR
84	8.04123	125.16186	2.82	0.70	-2.12	Pablo/4Dec2012	5YR
85	8.03946	125.15835	3.31	0.40	-2.91	Pablo/4Dec2012	5YR
86	8.04065	125.16358	3.52	0.00	-3.52	Pablo/4Dec2012	5YR
87	8.04640	125.16200	0.42	0.00	-0.42	Pablo/4Dec2012	5YR
88	8.04716	125.16484	0.10	0.10	0.00	Pablo/4Dec2012	5YR
89	8.04475	125.15785	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
90	8.03956	125.15366	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
91	8.03639	125.15612	4.11	0.60	-3.51	Pablo/4Dec2012	5YR
92	8.03788	125.15645	5.79	0.10	-5.69	Pablo/4Dec2012	5YR
93	8.03708	125.16221	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
94	8.03793	125.16407	0.19	0.00	-0.19	Pablo/4Dec2012	5YR
95	8.03936	125.16648	0.55	0.00	-0.55	Pablo/4Dec2012	5YR
96	8.03181	125.16753	0.63	0.00	-0.63	Pablo/4Dec2012	5YR
97	8.03557	125.15395	0.74	0.00	-0.74	Pablo/4Dec2012	5YR
98	8.03406	125.14994	2.54	0.80	-1.74	Pablo/4Dec2012	5YR
99	8.03105	125.14989	3.00	0.80	-2.20	Pablo/4Dec2012	5YR
100	8.02995	125.14937	1.75	0.10	-1.65	Pablo/4Dec2012	5YR
101	8.02668	125.14816	1.19	0.00	-1.19	Pablo/4Dec2012	5YR
102	8.02300	125.14802	2.26	0.00	-2.26	Pablo/4Dec2012	5YR
103	8.02125	125.14812	3.17	0.10	-3.07	Pablo/4Dec2012	5YR
104	8.03125	125.15454	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
105	8.02699	125.15628	1.35	0.00	-1.35	Pablo/4Dec2012	5YR
106	8.02527	125.15412	1.78	0.10	-1.68	Pablo/4Dec2012	5YR
107	8.02517	125.15372	1.78	0.20	-1.58	Pablo/4Dec2012	5YR
108	8.02689	125.15657	0.81	0.10	-0.71	Pablo/4Dec2012	5YR
109	8.02570	125.15757	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
110	8.01648	125.14895	0.63	0.15	-0.48	Pablo/4Dec2012	5YR
111	8.01515	125.14595	1.02	0.60	-0.42	Pablo/4Dec2012	5YR
112	8.01591	125.14540	1.16	0.80	-0.36	Pablo/4Dec2012	5YR
113	8.01387	125.14555	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
114	8.01250	125.14459	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
115	8.00819	125.14260	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
116	8.00702	125.14186	0.06	0.10	0.04	Pablo/4Dec2012	5YR
117	8.00252	125.14074	1.79	0.10	-1.69	Pablo/4Dec2012	5YR
118	8.00567	125.14499	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
119	8.00427	125.14496	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
120	8.00483	125.15544	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
121	8.01515	125.15725	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
122	7.99258	125.12672	2.25	0.80	-1.45	Pablo/4Dec2012	5YR
123	7.99308	125.12504	0.47	0.40	-0.07	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
124	7.99294	125.12406	0.72	0.10	-0.62	Pablo/4Dec2012	5YR
125	7.99421	125.12166	1.64	0.96	-0.68	Pablo/4Dec2012	5YR
126	7.99581	125.12059	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
127	7.99590	125.11872	0.45	0.00	-0.45	Pablo/4Dec2012	5YR
128	7.99557	125.11600	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
129	7.99418	125.11554	0.59	0.00	-0.59	Pablo/4Dec2012	5YR
130	7.99558	125.11392	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
131	7.99586	125.11067	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
132	8.01231	125.13431	1.03	0.60	-0.43	Pablo/4Dec2012	5YR
133	8.00498	125.13331	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
134	8.00311	125.13001	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
135	8.00090	125.12741	0.09	0.17	0.08	Pablo/4Dec2012	5YR
136	7.99677	125.12931	2.49	1.24	-1.25	Pablo/4Dec2012	5YR
137	7.99687	125.12585	1.90	0.40	-1.50	Pablo/4Dec2012	5YR
138	8.00485	125.12197	5.76	0.20	-5.56	Pablo/4Dec2012	5YR
139	7.99875	125.13212	0.10	0.10	0.00	Pablo/4Dec2012	5YR
140	7.99578	125.13598	2.25	0.00	-2.25	Pablo/4Dec2012	5YR
141	7.99643	125.13770	0.93	0.00	-0.93	Pablo/4Dec2012	5YR
142	7.99252	125.13393	2.30	0.40	-1.90	Pablo/4Dec2012	5YR
143	7.99201	125.13215	1.56	0.60	-0.96	Pablo/4Dec2012	5YR
144	7.99292	125.13200	1.55	0.60	-0.95	Pablo/4Dec2012	5YR
145	7.99135	125.13454	3.64	2.14	-1.50	Pablo/4Dec2012	5YR
146	7.98912	125.13417	1.04	1.20	0.16	Pablo/4Dec2012	5YR
147	7.98544	125.13453	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
148	7.98383	125.13382	1.16	0.00	-1.16	Pablo/4Dec2012	5YR
149	7.96449	125.13688	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
150	7.96247	125.13878	2.92	0.70	-2.22	Pablo/4Dec2012	5YR
151	7.96688	125.14028	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
152	7.97043	125.14114	0.73	0.60	-0.13	Pablo/4Dec2012	5YR
153	7.98372	125.13671	0.18	0.00	-0.18	Pablo/4Dec2012	5YR
154	7.98643	125.14190	3.64	1.60	-2.04	Pablo/4Dec2012	5YR
155	7.98416	125.14119	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
156	7.98734	125.13901	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
157	7.98799	125.13904	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
158	7.98777	125.13914	0.06	0.20	0.14	Pablo/4Dec2012	5YR
159	7.98730	125.14025	0.06	1.60	1.54	Pablo/4Dec2012	5YR
160	7.98744	125.14081	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
161	7.98785	125.14010	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
162	7.98882	125.13994	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
163	7.98856	125.13893	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
164	7.98974	125.13871	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
165	7.99427	125.13838	1.59	0.00	-1.59	Pablo/4Dec2012	5YR

Point	Validation Coordinates Model Validation		Rain				
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
166	7.99361	125.13824	1.38	0.00	-1.38	Pablo/4Dec2012	5YR
167	7.99089	125.13784	0.52	0.00	-0.52	Pablo/4Dec2012	5YR
168	7.99070	125.13777	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
169	7.99272	125.13776	1.17	0.00	-1.17	Pablo/4Dec2012	5YR
170	7.99149	125.13666	1.12	0.00	-1.12	Pablo/4Dec2012	5YR
171	7.99229	125.13537	1.65	0.00	-1.65	Pablo/4Dec2012	5YR
172	7.99301	125.13614	1.88	0.00	-1.88	Pablo/4Dec2012	5YR
173	7.99307	125.13721	1.79	0.00	-1.79	Pablo/4Dec2012	5YR
174	7.99358	125.13397	1.34	0.00	-1.34	Pablo/4Dec2012	5YR
175	7.99549	125.13279	2.76	0.00	-2.76	Pablo/4Dec2012	5YR
176	7.99429	125.13361	1.28	0.70	-0.58	Pablo/4Dec2012	5YR
177	7.98243	125.07909	3.54	0.00	-3.54	Pablo/4Dec2012	5YR
178	7.98262	125.07904	0.08	1.20	1.12	Pablo/4Dec2012	5YR
179	7.98315	125.08058	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
180	7.98351	125.08204	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
181	7.98518	125.08515	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
182	7.98514	125.08594	0.10	0.10	0.00	Pablo/4Dec2012	5YR
183	7.98639	125.08502	0.65	0.14	-0.51	Pablo/4Dec2012	5YR
184	7.98771	125.08479	0.10	0.15	0.05	Pablo/4Dec2012	5YR
185	7.97813	125.05257	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
186	7.89410	125.07421	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
187	7.99016	125.10144	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
188	7.99107	125.10119	1.96	0.00	-1.96	Pablo/4Dec2012	5YR
189	7.99135	125.10132	1.83	0.00	-1.83	Pablo/4Dec2012	5YR
190	7.99045	125.10335	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
191	7.99264	125.10537	3.02	0.00	-3.02	Pablo/4Dec2012	5YR
192	7.99107	125.10503	1.16	0.00	-1.16	Pablo/4Dec2012	5YR
193	7.99049	125.10595	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
194	7.99012	125.10722	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
195	7.99006	125.10900	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
196	7.98922	125.11728	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
197	7.99282	125.11523	1.78	0.00	-1.78	Pablo/4Dec2012	5YR
198	7.99010	125.12104	0.39	0.00	-0.39	Pablo/4Dec2012	5YR
199	7.99219	125.12092	0.13	0.00	-0.13	Pablo/4Dec2012	5YR
200	7.99215	125.12229	1.62	0.00	-1.62	Pablo/4Dec2012	5YR
201	7.99208	125.12299	2.33	0.00	-2.33	Pablo/4Dec2012	5YR
202	7.98781	125.12911	1.05	0.00	-1.05	Pablo/4Dec2012	5YR
203	7.98893	125.13548	7.32	0.00	-7.32	Pablo/4Dec2012	5YR
204	7.99056	125.12930	2.76	0.10	-2.66	Pablo/4Dec2012	5YR
205	7.99028	125.12858	2.51	0.10	-2.41	Pablo/4Dec2012	5YR
206	7.99079	125.12677	0.98	0.00	-0.98	Pablo/4Dec2012	5YR
207	7.98736	125.06920	0.06	0.00	-0.06	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
208	7.99132	125.12676	3.06	0.00	-3.06	Pablo/4Dec2012	5YR
209	7.99132	125.12676	3.06	0.00	-3.06	Pablo/4Dec2012	5YR
210	7.98691	125.13239	1.63	0.00	-1.63	Pablo/4Dec2012	5YR
211	7.98669	125.13340	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
212	7.98668	125.13341	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
213	7.98677	125.13480	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
214	7.98730	125.13740	2.26	0.00	-2.26	Pablo/4Dec2012	5YR
215	7.98769	125.13789	2.59	0.00	-2.59	Pablo/4Dec2012	5YR
216	7.98646	125.13727	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
217	7.98547	125.13774	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
218	7.87500	125.19466	0.93	0.52	-0.41	Pablo/4Dec2012	5YR
219	7.87577	125.19654	5.89	0.90	-4.99	Pablo/4Dec2012	5YR
220	7.87584	125.19230	2.12	1.00	-1.12	Pablo/4Dec2012	5YR
221	7.87586	125.19238	2.62	0.00	-2.62	Pablo/4Dec2012	5YR
222	7.87784	125.19069	3.63	0.70	-2.93	Pablo/4Dec2012	5YR
223	7.87817	125.19091	5.39	0.00	-5.39	Pablo/4Dec2012	5YR
224	7.88078	125.18753	1.19	0.10	-1.09	Pablo/4Dec2012	5YR
225	7.88459	125.18764	1.70	0.20	-1.50	Pablo/4Dec2012	5YR
226	7.88499	125.18607	2.41	0.50	-1.91	Pablo/4Dec2012	5YR
227	7.88922	125.18310	2.04	0.00	-2.04	Pablo/4Dec2012	5YR
228	7.89267	125.17876	0.68	0.50	-0.18	Pablo/4Dec2012	5YR
229	7.90059	125.13093	0.39	0.20	-0.19	Pablo/4Dec2012	5YR
230	7.90086	125.12312	0.13	0.00	-0.13	Pablo/4Dec2012	5YR
231	7.90084	125.12313	0.15	0.30	0.15	Pablo/4Dec2012	5YR
232	7.93285	125.10162	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
233	7.93204	125.09364	0.26	0.20	-0.06	Pablo/4Dec2012	5YR
234	7.92029	125.09243	0.19	2.00	1.81	Pablo/4Dec2012	5YR
235	7.89537	125.17766	0.23	0.80	0.57	Pablo/4Dec2012	5YR
236	7.89589	125.17616	0.10	0.70	0.60	Pablo/4Dec2012	5YR
237	7.89853	125.17667	1.17	1.05	-0.12	Pablo/4Dec2012	5YR
238	7.90170	125.17512	0.06	0.80	0.74	Pablo/4Dec2012	5YR
239	7.90018	125.18051	0.21	0.00	-0.21	Pablo/4Dec2012	5YR
240	7.90643	125.17934	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
241	7.90523	125.17504	0.13	0.00	-0.13	Pablo/4Dec2012	5YR
242	7.90523	125.16772	0.23	0.42	0.19	Pablo/4Dec2012	5YR
243	7.90431	125.16518	0.87	0.45	-0.42	Pablo/4Dec2012	5YR
244	7.90359	125.16083	0.81	0.70	-0.11	Pablo/4Dec2012	5YR
245	7.90405	125.16003	0.06	0.30	0.24	Pablo/4Dec2012	5YR
246	7.90314	125.15760	0.21	0.48	0.27	Pablo/4Dec2012	5YR
247	7.90098	125.15694	0.45	0.40	-0.05	Pablo/4Dec2012	5YR
248	7.90093	125.15725	0.72	1.20	0.48	Pablo/4Dec2012	5YR
249	7.89833	125.14976	0.06	0.20	0.14	Pablo/4Dec2012	5YR

Point	Validation	n Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
250	7.90073	125.14791	0.39	0.30	-0.09	Pablo/4Dec2012	5YR
251	7.90071	125.13925	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
252	7.90662	125.15590	0.72	0.00	-0.72	Pablo/4Dec2012	5YR
253	7.90953	125.15612	0.86	0.30	-0.56	Pablo/4Dec2012	5YR
254	7.90978	125.15620	1.53	0.00	-1.53	Pablo/4Dec2012	5YR
255	7.90577	125.16048	0.38	0.55	0.17	Pablo/4Dec2012	5YR
256	7.90590	125.16044	0.31	0.00	-0.31	Pablo/4Dec2012	5YR
257	7.90891	125.16487	0.08	0.80	0.72	Pablo/4Dec2012	5YR
258	7.91271	125.17042	0.52	0.40	-0.12	Pablo/4Dec2012	5YR
259	7.91750	125.17247	0.16	0.16	0.00	Pablo/4Dec2012	5YR
260	7.91454	125.17368	0.52	0.00	-0.52	Pablo/4Dec2012	5YR
261	7.91528	125.17915	0.45	0.00	-0.45	Pablo/4Dec2012	5YR
262	7.91510	125.18481	0.97	0.00	-0.97	Pablo/4Dec2012	5YR
263	7.91557	125.18819	2.40	0.00	-2.40	Pablo/4Dec2012	5YR
264	7.91373	125.18992	0.40	0	-0.40	Pablo/4Dec2012	5YR
265	7.91645	125.19196	2.95	0.4	-2.55	Pablo/4Dec2012	5YR
266	7.91633	125.19207	2.47	1	-1.47	Pablo/4Dec2012	5YR
267	7.91724	125.19469	1.81	0.1	-1.71	Pablo/4Dec2012	5YR
268	7.94716	125.10493	0.08	0	-0.08	Pablo/4Dec2012	5YR
269	7.92931	125.09663	0.06	0	-0.06	Pablo/4Dec2012	5YR
270	7.92010	125.09236	0.10	0	-0.10	Pablo/4Dec2012	5YR
271	7.94416	125.10332	0.87	1.1	0.23	Pablo/4Dec2012	5YR
272	7.94398	125.10301	4.72	0.2	-4.52	Pablo/4Dec2012	5YR
273	7.94399	125.10292	4.80	1.5	-3.30	Pablo/4Dec2012	5YR
274	7.94909	125.10347	3.01	0.5	-2.51	Pablo/4Dec2012	5YR
275	7.94785	125.10430	2.48	1.2	-1.28	Pablo/4Dec2012	5YR
276	7.94193	125.10748	1.79	0.9	-0.89	Pablo/4Dec2012	5YR
277	7.94054	125.10749	1.38	0.45	-0.93	Pablo/4Dec2012	5YR
278	7.93916	125.10800	2.34	0.4	-1.94	Pablo/4Dec2012	5YR
279	7.93787	125.10852	1.04	0.3	-0.74	Pablo/4Dec2012	5YR
280	7.93759	125.10868	0.93	0.1	-0.83	Pablo/4Dec2012	5YR
281	7.93256	125.11006	1.07	0.3	-0.77	Pablo/4Dec2012	5YR
282	7.97220	125.23444	1.43	0.5	-0.93	Pablo/4Dec2012	5YR
283	7.95867	125.22288	0.10	0.25	0.15	Pablo/4Dec2012	5YR
284	7.94374	125.15541	3.23	0.8	-2.43	Pablo/4Dec2012	5YR
285	7.94065	125.15563	0.58	0	-0.58	Pablo/4Dec2012	5YR
286	7.96357	125.18858	1.38	0.2	-1.18	Pablo/4Dec2012	5YR
287	7.96468	125.19249	2.29	1.1	-1.19	Pablo/4Dec2012	5YR
288	7.89993	125.10539	0.22	1.6	1.38	Pablo/4Dec2012	5YR
289	7.90787	125.09480	0.41	0	-0.41	Pablo/4Dec2012	5YR
290	7.91003	125.09760	0.21	1.5	1.29	Pablo/4Dec2012	5YR
291	7.91004	125.09765	0.29	2.5	2.21	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
292	7.90783	125.09686	2.86	2.5	-0.36	Pablo/4Dec2012	5YR
293	7.91123	125.09332	1.17	0	-1.17	Pablo/4Dec2012	5YR
294	7.91231	125.09548	0.30	0	-0.30	Pablo/4Dec2012	5YR
295	7.91308	125.09681	0.42	1.9	1.48	Pablo/4Dec2012	5YR
296	7.91307	125.09684	0.42	0.6	0.18	Pablo/4Dec2012	5YR
297	7.91338	125.09642	0.06	0	-0.06	Pablo/4Dec2012	5YR
298	7.91427	125.09606	0.39	0	-0.39	Pablo/4Dec2012	5YR
299	7.91429	125.09611	0.32	1	0.68	Pablo/4Dec2012	5YR
300	7.91525	125.09529	1.35	0.6	-0.75	Pablo/4Dec2012	5YR
301	7.91526	125.09523	1.32	0.3	-1.02	Pablo/4Dec2012	5YR
302	7.91516	125.09413	0.42	0	-0.42	Pablo/4Dec2012	5YR
303	7.91357	125.09396	1.16	0	-1.16	Pablo/4Dec2012	5YR
304	7.98766	125.13781	2.60	0.3	-2.30	Pablo/4Dec2012	5YR
305	7.98747	125.13764	3.09	0.9	-2.19	Pablo/4Dec2012	5YR
306	7.99001	125.10896	0.06	0.3	0.24	Pablo/4Dec2012	5YR
307	7.98587	125.09918	0.06	0.3	0.24	Pablo/4Dec2012	5YR
308	7.99287	125.13769	1.34	0.2	-1.14	Pablo/4Dec2012	5YR
309	7.93698	125.12522	1.13	0.1	-1.03	Pablo/4Dec2012	5YR
310	7.92940	125.12175	1.10	0	-1.10	Pablo/4Dec2012	5YR
311	7.92038	125.12239	0.06	0	-0.06	Pablo/4Dec2012	5YR
312	7.91989	125.12042	0.06	0	-0.06	Pablo/4Dec2012	5YR
313	7.91501	125.11501	0.08	0	-0.08	Pablo/4Dec2012	5YR
314	7.91892	125.11500	0.06	0	-0.06	Pablo/4Dec2012	5YR
315	7.91906	125.11493	0.08	0	-0.08	Pablo/4Dec2012	5YR
316	7.91863	125.11286	0.10	0	-0.10	Pablo/4Dec2012	5YR
317	7.91992	125.10463	0.47	0	-0.47	Pablo/4Dec2012	5YR
318	7.90050	125.11138	0.06	0	-0.06	Pablo/4Dec2012	5YR
319	7.90390	125.11614	0.06	0	-0.06	Pablo/4Dec2012	5YR
320	7.90520	125.11918	0.06	0	-0.06	Pablo/4Dec2012	5YR
321	7.91155	125.12609	0.06	0	-0.06	Pablo/4Dec2012	5YR
322	7.91360	125.13369	0.09	0	-0.09	Pablo/4Dec2012	5YR
323	7.93993	125.16057	0.06	0	-0.06	Pablo/4Dec2012	5YR
324	7.94253	125.15861	4.45	0	-4.45	Pablo/4Dec2012	5YR
325	7.94309	125.15622	2.76	0	-2.76	Pablo/4Dec2012	5YR
326	7.94020	125.15426	0.13	0	-0.13	Pablo/4Dec2012	5YR
327	7.94029	125.15412	0.06	0.2	0.14	Pablo/4Dec2012	5YR
328	7.94238	125.15068	3.01	0	-3.01	Pablo/4Dec2012	5YR
329	7.94408	125.14477	3.64	0	-3.64	Pablo/4Dec2012	5YR
330	7.93382	125.15864	0.06	0	-0.06	Pablo/4Dec2012	5YR
331	7.93795	125.14506	0.10	0	-0.10	Pablo/4Dec2012	5YR
332	7.93811	125.13908	0.06	0	-0.06	Pablo/4Dec2012	5YR
333	7.93856	125.12827	1.62	0	-1.62	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
334	7.93988	125.11536	0.06	0	-0.06	Pablo/4Dec2012	5YR
335	7.93523	125.11494	1.13	0	-1.13	Pablo/4Dec2012	5YR
336	7.93428	125.11530	2.40	0	-2.40	Pablo/4Dec2012	5YR
337	7.92998	125.11416	0.06	0	-0.06	Pablo/4Dec2012	5YR
338	7.93004	125.11399	1.33	0	-1.33	Pablo/4Dec2012	5YR
339	7.92806	125.11451	1.70	0	-1.70	Pablo/4Dec2012	5YR
340	7.93486	125.10440	0.13	0	-0.13	Pablo/4Dec2012	5YR
341	7.93557	125.10533	0.93	0.25	-0.68	Pablo/4Dec2012	5YR
342	7.93560	125.10533	0.93	0	-0.93	Pablo/4Dec2012	5YR
343	7.96926	125.13745	0.39	0	-0.39	Pablo/4Dec2012	5YR
344	7.98717	125.13413	2.85	0.5	-2.35	Pablo/4Dec2012	5YR
345	7.90476	125.09809	2.12	2.5	0.38	Pablo/4Dec2012	5YR
346	7.90532	125.09986	1.69	2.15	0.46	Pablo/4Dec2012	5YR
347	7.90372	125.10327	0.06	0.9	0.84	Pablo/4Dec2012	5YR
348	7.90092	125.10483	0.16	1.7	1.54	Pablo/4Dec2012	5YR
349	7.89938	125.10635	0.13	1	0.87	Pablo/4Dec2012	5YR
350	7.89962	125.10470	0.42	1.55	1.13	Pablo/4Dec2012	5YR
351	7.90551	125.10738	0.06	0.9	0.84	Pablo/4Dec2012	5YR
352	7.90960	125.10865	0.06	0.4	0.34	Pablo/4Dec2012	5YR
353	7.90974	125.10853	0.06	0.2	0.14	Pablo/4Dec2012	5YR
354	7.90976	125.11195	0.06	0.5	0.44	Pablo/4Dec2012	5YR
355	7.90752	125.11193	0.13	0	-0.13	Pablo/4Dec2012	5YR
356	7.90517	125.11005	0.08	0.9	0.82	Pablo/4Dec2012	5YR
357	7.90513	125.11005	0.08	0.5	0.42	Pablo/4Dec2012	5YR
358	7.90741	125.10406	0.06	0.45	0.39	Pablo/4Dec2012	5YR
359	7.90787	125.10638	0.06	0.7	0.64	Pablo/4Dec2012	5YR
360	7.91071	125.10449	0.97	1.5	0.53	Pablo/4Dec2012	5YR
361	7.91387	125.10375	0.06	1.3	1.24	Pablo/4Dec2012	5YR
362	7.91475	125.10603	0.06	1	0.94	Pablo/4Dec2012	5YR
363	7.91819	125.10105	0.10	1.2	1.10	Pablo/4Dec2012	5YR
364	7.91594	125.09727	0.13	2	1.87	Pablo/4Dec2012	5YR
365	8.04938	125.16784	2.74	0	-2.74	Pablo/4Dec2012	5YR
366	8.04864	125.16915	1.71	0.3	-1.41	Pablo/4Dec2012	5YR
367	8.02570	125.15653	1.53	0	-1.53	Pablo/4Dec2012	5YR
368	8.02569	125.15662	1.15	0	-1.15	Pablo/4Dec2012	5YR
369	8.00326	125.15519	0.08	0	-0.08	Pablo/4Dec2012	5YR
370	7.97855	125.14886	1.49	0.4	-1.09	Pablo/4Dec2012	5YR
371	7.97849	125.14868	2.05	1	-1.05	Pablo/4Dec2012	5YR
372	7.97842	125.14835	1.29	0.35	-0.94	Pablo/4Dec2012	5YR
373	7.99980	125.19622	0.40	0.2	-0.20	Pablo/4Dec2012	5YR
374	7.94818	125.22582	1.50	0	-1.50	Pablo/4Dec2012	5YR
375	7.95010	125.21651	2.61	0.7	-1.91	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
376	7.94874	125.21925	3.39	1.2	-2.19	Pablo/4Dec2012	5YR
377	7.95049	125.21418	3.06	1	-2.06	Pablo/4Dec2012	5YR
378	7.94740	125.21376	2.76	1.3	-1.46	Pablo/4Dec2012	5YR
379	7.94797	125.21633	2.53	0.1	-2.43	Pablo/4Dec2012	5YR
380	7.94302	125.20920	1.17	0.3	-0.87	Pablo/4Dec2012	5YR
381	7.94971	125.20814	2.00	1.2	-0.80	Pablo/4Dec2012	5YR
382	7.95289	125.19914	1.19	1.5	0.31	Pablo/4Dec2012	5YR
383	7.95346	125.19940	1.16	1.7	0.54	Pablo/4Dec2012	5YR
384	7.95345	125.19939	1.16	0.1	-1.06	Pablo/4Dec2012	5YR
385	7.96064	125.19750	0.06	1.3	1.24	Pablo/4Dec2012	5YR
386	7.96065	125.19751	0.06	0.25	0.19	Pablo/4Dec2012	5YR
387	7.96274	125.19557	1.13	2	0.87	Pablo/4Dec2012	5YR
388	7.96448	125.19425	0.31	1.5	1.19	Pablo/4Dec2012	5YR
389	7.96554	125.19313	1.02	0.3	-0.72	Pablo/4Dec2012	5YR
390	7.96553	125.19320	0.94	0.2	-0.74	Pablo/4Dec2012	5YR
391	7.96346	125.19146	2.20	0.45	-1.75	Pablo/4Dec2012	5YR
392	7.96378	125.19139	2.53	0.9	-1.63	Pablo/4Dec2012	5YR
393	7.96400	125.18978	1.13	0	-1.13	Pablo/4Dec2012	5YR
394	7.95896	125.18883	1.33	0.4	-0.93	Pablo/4Dec2012	5YR
395	7.95744	125.18357	2.47	1.4	-1.07	Pablo/4Dec2012	5YR
396	7.95635	125.18054	1.33	0.5	-0.83	Pablo/4Dec2012	5YR
397	7.95643	125.18054	1.33	1.5	0.17	Pablo/4Dec2012	5YR
398	7.95602	125.17902	1.47	1	-0.47	Pablo/4Dec2012	5YR
399	7.95299	125.18290	1.36	1	-0.36	Pablo/4Dec2012	5YR
400	7.94553	125.17717	1.02	0	-1.02	Pablo/4Dec2012	5YR
401	7.94574	125.17572	0.93	0	-0.93	Pablo/4Dec2012	5YR
402	7.94649	125.17485	2.05	0.3	-1.75	Pablo/4Dec2012	5YR
403	7.94363	125.16718	0.06	2	1.94	Pablo/4Dec2012	5YR
404	7.94437	125.16824	1.70	2	0.30	Pablo/4Dec2012	5YR

ANNEX 12. Educational Institutions Affected by flooding in Upper Pulangi Flood Plain

Table A-12.1 Educational Institutions Affected by flooding in Upper Pulangi Flood Plain

Bukidnon							
Lan	tapan						
Duilding Name	D	Rainfall Scenario					
	вагапдау	5-year	25-year	100-year			
Bantuanon Elementary School	Bantuanon						
Bugcaon Elementary School	Bugcaon						
Bugcaon National High School	Bugcaon		Medium	Medium			
Elementary School	Kulasihan						
Valbueco Elementary School	Kulasihan		Low	High			
Lantapan Central Elementary School	Poblacion	Low	Low	Medium			

	Bukidnon			
Ν	Aalaybalay City			
Building Name	Barangay	R	ainfall Scenar	io
	Dataligay	5-year	25-year	100-year
Elementary School	Apo Macote			
Bangcud National High School	Bangcud	High	High	High
Tigre Day Care Center	Bangcud		Low	Medium
Casisang Elementary School	Barangay 7			
Natid Asan Elementary School	Barangay 9			
Agricultural Training Institute	Casisang			
Day Care Center	Casisang			
Jan Jose Elementary School	Casisang			
Mabuhay Elementary School	Casisang	Medium	High	High
Private School	Casisang			
Bishop Han Theological Seminary	Laguitas			
Laguitas Elementary School	Laguitas			
Laguitas Naional High School	Laguitas			
Aglayan Central School	Linabo	Medium	Medium	Medium
Aglayan National High School	Linabo			Low
Linabo Central Elementary School	Linabo			
Linabo Community Learning Center	Linabo			
Saint Micheal High Schoo	Linabo			

Day Carem Center	Managok	High	High	High
Managok Elementary School	Managok	Low	Low	Low
Managok National High School	Managok			
Upper Pulangi Elementary school	Managok	High	High	High
Day Care Center	San Jose	High	High	High
Mabuhay Elementary School	San Jose	High	High	High
Malaybalay Clty National High School	San Jose	Low	Low	Low
Nalapgap Day Care Center	San Martin	Low	Low	Low
Padernal Elementary School	Santo Niño		Low	Low
Bangcud Central School	Simaya	Medium	High	High
Binalbagan Day Care Center	Simaya		Low	Low
Binalbagan Elementary School	Simaya		Low	Low
Bukidnon Fundamental Baptist Seminary	Simaya			
Child Friendly Day Care Center	Simaya		Low	Low
Elementary School	Simaya			
Nalapgap Elementary School	Simaya	Medium	Medium	Medium
San Martin Agro-industrial High School	Simaya			
San Martin Day Care Center	Simaya	Medium	Medium	Medium
San Martin Elementary School	Simaya	Medium	Medium	Medium
Simaya Elementary School	Simaya			
Sinanglanan Day Care Center	Simaya		Low	Low
Soso-on Day Care Center	Simaya	Medium	Medium	Medium
St. Isidore Academy	Simaya		Low	Low
SunBeam Christian Academy of Bangcud	Simaya	Low	Medium	Medium
Apo Macote Day Care Center	Sinanglanan	Low	Medium	Medium
Apo Macote Elementary School	Sinanglanan	Low	Medium	Medium
Elementary School	Sinanglanan			
Sunshine Day Care Center	Violeta	Medium	High	High

Bukidnon					
Valencia City					
Building Name	Barangay		ainfall Scenario		
	Deservices	5-year	25-year	100-year	
	Bagontaas	High	High	High	
Bagontaas Adventist Elementary School	Bagontaas				
Bagontaas Central Elementary School	Bagontaas			Low	
Casiphia Baptist Christian Academ Inc.	Bagontaas	Low	Low	Low	
Central Mindanao Theological School	Bagontaas	Medium	High	High	
College	Bagontaas	Medium	High	High	
Day Care Center	Bagontaas				
First Fruit Christian Academy	Bagontaas				
Mountain View College ANNEX	Bagontaas	Low	Low	Low	
School	Bagontaas			Low	
Valencia Colleges	Bagontaas				
Batangan Central School	Batangan		Medium	High	
DayCare Center	Batangan		Medium	Medium	
Jupiter Day Care Center	Batangan		Medium	High	
Colonia elementary School	Colonia	Low	Medium	Medium	
Day Care Center	Colonia	Low	Medium	Medium	
Padernal Elementary School	Colonia			Low	
Day Care Center	Kahapunan	High	High	High	
Christian Learning Center	Laligan	Low	Medium	Medium	
Gold Day Care Center	Laligan	Medium	Medium	Medium	
Laligan Central School	Laligan	Medium	Medium	Medium	
Saint Joseph High School	Laligan	Medium	High	High	
Tongantongan National High School	Laligan	Medium	Medium	High	
Day Care Center	Lumbayao	High	High	High	
Lumbayao Elementary School	Lumbayao	High	High	High	
High School	Lumbo				
I.B.A College of Mindanao	Lumbo				
San Agustin Institute of Technology	Lumbo	Low	Low	Low	
San Agustin Institute of Technology ANNEX	Lumbo	Low	Low	Medium	
TESDA School	Lumbo	Low	Low	Medium	

Valencia National High School	Lumbo	Medium	Medium	Medium
Lurugan Elementary School	Lurogan			
Dabongdabong Elementary School	Mailag		Low	Low
Good Counsel High School	Mailag		Low	Low
Mailag Elementary School	Mailag		Low	
Seventh Day Adventist School	Mailag			
Nabag.O Elementary School	Nabago	Medium	Medium	High
Faith Christian School	Poblacion	Medium	Medium	High
High School	Poblacion	High	High	High
Review Center	Poblacion	Medium	High	High
STI	Poblacion		Medium	Medium
Valencia Baptist Christian Academy	Poblacion	Low	Low	Medium
Valencia City Adventist Elementary School	Poblacion	High	High	High
Valencia City Central School	Poblacion	Medium	High	High
Valencia National High School	Poblacion	Low	Medium	High
Lurugan Day Care Center	San Carlos			
Lurugan Elementary School	San Carlos			
Lurugan National High School	San Carlos			
San Carlos Elementary School	San Carlos			
San Isidro Elementary School	San Isidro	Medium	High	High
Valencia City High School	San Isidro	High	High	High
Sinabuagan Elementary School	Sinabuagan	Medium	High	High
Day Care Center	Sugod			
Scorpion Day Care Center	Sugod	Medium	Medium	Medium
Adarna Day Care Center	Tongantongan	Medium	High	High
Araneta Elementary School	Tongantongan			
Fundamental Baptist School	Tongantongan	Medium	Medium	Medium
Mecury Day Care Center	Tongantongan	Low	Low	Low
San Vicente Elementary School	Tongantongan		Low	Medium
Tongantongan Elementary School	Tongantongan	Low	Medium	Medium
Cidrec Cumlat Memorial Institute	Vintar	Medium	High	High
Kahaponan Elementary School	Vintar		Medium	High
Vintar Elementary School	Vintar	Low	Medium	High

ANNEX 13. Health Institutions affected by flooding in Upper Pulangi Flood Plain

Table A-13.1 Health Institutions affected by flooding in Malabalay City, Bukidnon in Upper Pulangi Flood Plain

Bukidnon				
Malaybalay City				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Provincial Hospital	Barangay 7	Low	Medium	Medium
Provincial Hospital Establishment	Barangay 7			
Provincial Hospital	Casisang	Low	Low	Low
Provincial Hospital Establishment	Casisang		Low	Low
Barangay Health Station	Linabo	Medium	Medium	Medium
Health Center	Managok			Low
Barangay Health Station	Santo Niño		Low	Low
Barangay Health Center	Simaya		Low	Low
Health Center	Simaya			
Barangay Health Station	Sinanglanan	Low	Medium	Medium

Bukidnon				
Valencia City				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Barangay Health Station	Bagontaas			
Valencia Polymedic General Hospital	Bagontaas	High	High	High
Health Center	Laligan	Medium	Medium	Medium
Blanco Hospital	Lumbo		Low	Low
Bukidnon Community Health Care Center	Lumbo			
City Health Office Of Valencia City	Lumbo			
Lavicaa General Hospital	Lumbo			
Shiphrah and Puah Maternity Clinic	Lumbo	Medium	Medium	High
Mailag Barangay Health Station	Mailag	Medium	High	Medium
Barangay Health Station	Nabago		Medium	Medium
Abella Midway Hospital	Poblacion	Medium	High	High
Blanco Hospital	Poblacion	Medium	Medium	Medium
Clinic	Poblacion			Low
Lavicaa General Hospital	Poblacion			

Sanitarium Hospital	Poblacion	Low	Medium	High
Urgent Care Clinic	Poblacion	Medium	High	High
Valencia Medical Hospital	Poblacion	Medium	High	High
Yap Building	Poblacion	Low	Low	Medium
DOH MPC	San Carlos			
Baranga Health Center	San Isidro	Medium	High	High
Sinabuagan Health Center	Sinabuagan	High	High	High
Barangay Health Center	Sugod		Low	Low
Barangay Health Center	Tongantongan	Medium	Medium	Medium
Barangay Health Station	Vintar		Medium	Medium