HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Sawaga River

© University of the Philippines Diliman and Central Mindanao University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP)
College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and G.R. Puno, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Sawaga River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry — 275pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. George R. Puno

Project Leader, PHIL-LIDAR 1 Program Central Mindanao University Maramag, Bukidnon 8714 E-mail: geopuno@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines

ISBN: 978-621-430-018-1

TABLE OF CONTENTS

TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	vi
LIST OF ACRONYMS AND ABBREVIATIONS	ix
CHAPTER 1: OVERVIEW OF THE PROGRAM AND SAWAGA RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Sawaga River Basin	2
CHAPTER 2: LIDAR DATA ACQUISITION OF THE SAWAGA FLOODPLAIN	4
2.1 Flight Plans	4
2.2 Ground Base Stations	6
2.3 Flight Missions	15
2.4 Survey Coverage	17
CHAPTER 3: LIDAR DATA PROCESSING FOR SAWAGA FLOODPLAIN	19
3.1 LiDAR Data Processing for Sawaga Floodplain	19
3.1.1 Overview of the LiDAR Data Pre-Processing	19
3.2 Transmittal of Acquired LiDAR Data	21
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	25
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	32
3.7 LiDAR Image Processing and Orthophotograph Rectification	34
3.8 DEM Editing and Hydro-Correction	35
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR DEM	39
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SAWAGA RIVER BASIN	
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
4.6 Validation Points Acquisition Survey	
4.7 River Bathymetric Survey	
CHAPTER 5: FLOOD MODELING AND MAPPING	
5.1 Data Used for Hydrologic Modeling	
5.1.1 Hydrometry and Rating Curves	
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	
5.2 RIDF Station	
5.3 HMS Model	
5.4 Cross-section Data	
5.5 Flo 2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.8 River Analysis (RAS) Model Simulation	
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	114

REFERENCES	116
ANNEX	117
ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Sawaga Floodplain Su	rvey117
ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey	118
ANNEX 3. The LIDAR Survey Team Composition	125
ANNEX 4. Data Transfer Sheet for Sawaga Floodplain	126
ANNEX 5. Flight logs for the flight missions	133
ANNEX 6. Flight Status Reports	151
ANNEX 7. Mission Summary Reports	171
ANNEX 8. Sawaga Model Basin Parameters	256
ANNEX 9. Sawaga Model Reach Parameters	258
ANNEX 10. Sawaga Field Validation Points	259
ANNEX 11. Educational Institutions Affected by flooding in Sawaga Flood Plain	269
ANNEX 12 Health Institutions affected by flooding in Sawaga Flood Plain	273

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR system	4
Table 2. Details of the recovered NAMRIA horizontal control point MSE-19 used as base station for	
the LiDAR acquisition	7
Table 3. Details of the recovered NAMRIA horizontal control point MSE-20 used as base station for	
the LiDAR acquisition	8
Table 4. Details of the recovered NAMRIA horizontal control point MSE-3241used as base station for	
the LiDAR acquisition	9
Table 5. Details of the recovered NAMRIA horizontal control point MSE-3340 used as base station	
for the LiDAR acquisition.	. 10
Table 6. Details of the recovered NAMRIA horizontal control point BKN-475 used as base station for	
the LiDAR acquisition	. 11
\cdot	12
the LiDAR acquisitionTable 8. Details of the recovered NAMRIA benchmark BK-56 used as base station for the LiDAR	. 12
acquisition with processed coordinates	12
Table 9. Ground control points used during LiDAR data acquisition.	
Table 10. Flight missions under DREAM program which covers part of Sawaga river basin	
Table 11. Flight missions for LiDAR data acquisition in Sawaga floodplain	
Table 12. Actual parameters used during LiDAR data acquisition.	
Table 13. List of municipalities and cities surveyed during Sawaga floodplain LiDAR survey	
Table 14. Self-Calibration Results values for Sawaga flights	
Table 15. List of LiDAR blocks for Sawaga floodplain.	
Table 16. Sawaga classification results in TerraScan.	
Table 17. LiDAR blocks with its corresponding area.	
Table 18. Shift Values of each LiDAR Block of Sawaga floodplain	
Table 19. Calibration Statistical Measures	
Table 20. Validation Statistical Measures.	. 42
Table 21. Quality Checking Ratings for Sawaga Building Features	. 44
Table 22. Building Features Extracted for Sawaga Floodplain	. 45
Table 23. Total Length of Extracted Roads for Sawaga Floodplain	. 45
Table 24. Number of Extracted Water Bodies for Sawaga Floodplain	. 45
Table 25. List of reference and control points used during the survey in Sawaga River (Source:	
NAMRIA, UP-TCAGP)	
Table 26. Baseline Processing Report for Sawaga River Static Survey	
Table 27. Control Point Constraints	
Table 28. Adjusted Grid Coordinates	
Table 29. Adjusted Geodetic Coordinates	
Table 30. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	
Table 31. RIDF values for Malaybalay Rain Gauge computed by PAGASA	
Table 32. Range of calibrated values for the Sawaga River Basin	
Table 33. Summary the Efficiency Test of the Sawaga HMS Model	. 80
24-hour values	01
Table 35. Municipalities affected in Manupali-Sawaga-Upper Pulangi floodplain	
Table 36. Affected Areas in Lantapan, Bukidnon during 5-Year Rainfall Return Period	
Table 37. Affected Areas in Lantapan, Bukidnon during 5-Year Rainfall Return Period	
Table 38. Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period	
Table 39. Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period	
Table 40. Affected Areas in Maramag, Bukidnon during 5-Year Rainfall Return Period	
Table 41. Affected Areas in Quezon, Bukidnon during 5-Year Rainfall Return Period	
Table 42. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period	
Table 43. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period	
Table 44. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period	

Table 45. Affected Areas in Lantapan, Bukidnon during 25-Year Rainfall Return Period	99
Table 46. Affected Areas in Malaybalay City, Bukidnon during 25-Year Rainfall Return Period	. 100
Table 47. Affected Areas in Maramag, Bukidnon during 25-Year Rainfall Return Period	. 101
Table 48. Affected Areas in Quezon, Bukidnon during 25-Year Rainfall Return Period	. 102
Table 49. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period	. 103
Table 50. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period	. 104
Table 51. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period	. 105
Table 52. Affected Areas in Lantapan, Bukidnon during 100-Year Rainfall Return Period	. 106
Table 53. Affected Areas in Malaybalay City, Bukidnon during 100-Year Rainfall Return Period	. 107
Table 54. Affected Areas in Maramag, Bukidnon during 100-Year Rainfall Return Period	. 108
Table 55. Affected Areas in Quezon, Bukidnon during 100-Year Rainfall Return Period	. 109
Table 56. Affected Areas in Valencia City, Bukidnon during 100-Year Rainfall Return Period	. 110
Table 57. Affected Areas in Valencia City, Bukidnon during 100-Year Rainfall Return Period	. 111
Table 58. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period	. 112
Table 59. Areas covered by each warning level with respect to the rainfall scenarios	. 113
Table 60. Actual flood vs simulated flood depth at differnent levels in the Manupali-Sawaga-Upper	
Pulangi River Basin	. 115
Table 61. The summary of the Accuracy Assessment in the Manupali-Sawaga-Upper Pulangi River	
Basin Survey	. 115

LIST OF FIGURES

Figure 1. Map of the Sawaga River Basin in brown	2
Figure 2. Flight plans and base stations for Sawaga floodplain survey	5
Figure 3. GPS set-up over MSE-19 at the center island located at the road intersections going to	
Cagayan de Oro, Butuan City and Iligan City (a) and NAMRIA reference point MSE-19 (b) as recovered	
by the field team	7
Figure 4. GPS set-up over MSE-20 in front of Cagayan de Oro Gardens Memorial Park, located at	
Barangay Lumbia, Cagayan de Oro City (a) and NAMRIA reference point MSE-20 (b) as recovered by	
the field team	8
Figure 5. GPS set-up over MSE-3241 on a center island near a gasoline station beside	
SM Cagayan de Oro (a) and NAMRIA reference point MSE-3241 (b) as recovered by the field team	9
Figure 6. GPS set-up over MSE-3340 inside Agusan Barangay Plaza (a) and NAMRIA reference point	
MSE-3340 (b) as recovered by the field team	. 10
Figure 7. GPS set-up over NAMRIA reference point BKN-475 inside Agusan Barangay Plaza	. 11
Figure 8. GPS set-up over BKN-478 beside the basketball court of Purok 6, Brgy. Sinayawan, Valencia	
City (a) and NAMRIA reference point BKN-475 (b) as recovered by the field team	. 12
Figure 9. GPS set-up over NAMRIA benchmark BK-56 inside Agusan Barangay Plaza	. 13
Figure 10. Actual LiDAR survey coverage for Sawaga floodplain	. 18
Figure 11. Schematic Diagram for Data Pre-Processing Component	
Figure 12. Smoothed Performance Metric Parameters of Sawaga Flight 1693P	. 22
Figure 13. Solution Status Parameters of Sawaga Flight 1693P	. 23
Figure 14. The best estimated trajectory of the LiDAR missions conducted over the Sawaga floodplain	. 24
Figure 15. Boundary of the processed LiDAR data over Sawaga Floodplain	. 26
Figure 16. Image of data overlap for Sawaga floodplain	. 28
Figure 17. Density map of merged LiDAR data for Sawaga floodplain	. 29
Figure 18. Elevation difference map between flight lines for Sawaga floodplain	. 30
Figure 19. Quality checking for a Sawaga flight 1693P using the Profile Tool of QT Modeler	. 31
Figure 20. Tiles for Sawaga floodplain (a) and classification results (b) in TerraScan	. 32
Figure 21. Point cloud before (a) and after (b) classification	. 33
Figure 22. The production of the last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Sawaga floodplain	. 33
Figure 23. Available orthophotographs near Sawaga floodplain	. 34
Figure 24. Sample orthophotograph tiles near Sawaga floodplain	. 34
Figure 25. Portions in the DTM of Sawaga floodplain – Portions in the DTM of Sawaga floodplain – a	
bridge, abrupt elevation change along the tributaries and building footprint before (a), (c), (e) and	
after manual editing (b), (d), (f)	
Figure 26. Map of Processed LiDAR Data for Sawaga Flood Plain	
Figure 27. Map of Sawaga Flood Plain with validation survey points in green	
Figure 28. Correlation plot between calibration survey points and LiDAR data	
Figure 29. Correlation plot between validation survey points and LiDAR data	
Figure 30. Map of Sawaga Flood Plain with bathymetric survey points shown in blue	
Figure 31. Blocks (in blue) of the Sawaga building features that were subjected to QC	
Figure 32. Extracted features for Sawaga floodplain	. 46
Figure 33. Extent of the bathymetric survey (blue line) in Sawaga River and the LiDAR data validation	
survey (red)	
Figure 34. Sawaga River Basin Control Survey Extent	. 49
Figure 35. GNSS receiver set up, Trimble® SPS 882, at BK56, located at the west post of the	
welcome arc of Malaybalay City in Brgy. Sumpong, Bukidnon	. 50
Figure 36. GNSS receiver setup, BKN-475, located within the DPWH Compound in Brgy. Aglayan,	
Valencia City, Bukidnon	. 50
Figure 37. GNSS receiver set up, Trimble® SPS 882, at UP_MAN -2, located near the approach of	
Manupali Bridge in Brgy. Bangcud, Malaybalay City, Province of Bukidnon	. 51
Figure 38. GNSS receiver serup, UP_LUM-2, located near the Pulangui Diversion Dam in Brgy.	
Lumbayao, Valencia City, Province of Bukidnon	. 51

Figure 39.	Sawaga Bridge facing upstream	55
Figure 40.	As-built survey of Sawaga Bridge	55
Figure 41.	Sawaga Bridge Location Map	56
Figure 42.	Sawaga Bridge Cross-section Diagram	57
Figure 43.	Sawaga Bridge Data Sheet	58
	Sawaga Bridge facing upstream	
Figure 45.	Validation points acquisition survey set-up for Sawaga River	60
Figure 46.	Validation points acquisition covering the Sawaga River Basin Area	61
Figure 47.	Manual Bathymetric survey of ABSD at Sawaga River using Nikon® Total Station	62
Figure 48.	Gathering of random bathymetric points along Sawaga River	63
Figure 49.	Manual Bathymetric survey of ABSD at Sawaga River using Nikon® Total Station	64
Figure 50.	Quality checking points gathered along Sawaga River by DVBC	65
Figure 51.	Sawaga Riverbed Profile	66
Figure 52.	The location map of Sawaga HEC-HMS model used for calibration	68
_	The cross-section plot of the Sawaga Bridge	
	Rainfall and outflow data used for modeling	
Figure 55.	HQ Curve of HEC-HMS model	70
Figure 56.	Location of Malaybalay RIDF Station relative to Sawaga River Basin	71
Figure 57.	Synthetic storm generated for a 24-hr period rainfall for various return periods	72
	The soil map of the Sawaga River Basin	
	The land cover map of the Sawaga River Basin (Source: NAMRIA)	
Figure 60.	Slope Map of Sawaga River Basin	75
Figure 61.	Stream delineation map of Sawaga river basin	75
_	HEC-HMS generated Sawaga River Basin Model.	
Figure 63.	Sawaga River Cross-section generated using HEC GeoRAS tool.	77
Figure 64.	Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS P	ro78
_	Outflow Hydrograph of Sawaga produced by the HEC-HMS model compared with	
	outflow	_
_	Outflow hydrograph at Sawaga Station generated using Malaybalay RIDF simulated in HEC	
•	Sample output of Sawaga RAS Model	
_	100-year Flood Hazard Map for Manupali-Sawaga-Upper Pulangi Floodplain	
_	100-year Flood Depth Map for Manupali-Sawaga-Upper Pulangi Floodplain	
•	25-year Flood Hazard Map for Manupali-Sawaga-Upper Pulangi Floodplain	
_	25-year Flood Depth Map for Manupali-Sawaga-Upper Pulangi Floodplain	
_	5-year Flood Hazard Map for Manupali-Sawaga-Upper Pulangi Floodplain	
_	5-year Flood Depth Map for Manupali-Sawaga-Upper Pulangi Floodplain	
_	Affected Areas in Lantapan, Bukidnon during 5-Year Rainfall Return Period	
_	Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period	
_	Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period	
	Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period	
_	Affected Areas in Lantapan, Bukidnon during 5-Year Rainfall Return Period	
_	Affected Areas in Quezon, Bukidnon during 5-Year Rainfall Return Period	
_	Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period	
_	Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period	
_	Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period	
_	Affected Areas in Lantapan, Bukidnon during 25-Year Rainfall Return Period	
_	Affected Areas in Malaybalay City, Bukidnon during 25-Year Rainfall Return Period	
_	Affected Areas in Casasas Bukidaan during 25-Year Rainfall Return Period	
_	Affected Areas in Quezon, Bukidnon during 25-Year Rainfall Return Period	
_	Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period	
FIGURE XX	Afficient America Valencia City, Dubidacia dunito OF Vere Detectil Detection Detection	
_	Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period	. 104 105

Figure 90. Affected Areas in Lantapan, Bukidnon during 100-Year Rainfall Return Period	106
Figure 91. Affected Areas in Lantapan, Bukidnon during 25-Year Rainfall Return Period	107
Figure 92. Affected Areas in Maramag, Bukidnon during 100-Year Rainfall Return Period	108
Figure 93. Affected Areas in Quezon, Bukidnon during 100-Year Rainfall Return Period	109
Figure 94. Affected Areas in Valencia City, Bukidnon during 100-Year Rainfall Return Period	110
Figure 95. Affected Areas in Valencia City, Bukidnon during 100-Year Rainfall Return Period	111
Figure 96. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period	112
Figure 97. The Validation Points for a 5-year Flood Depth Map of the Manupali-Sawaga-Upper	
Pulangi Floodplain	114
Figure 98. Flood map depth vs actual flood depth	115

LIST OF ACRONYMS AND ABBREVIATIONS

Asian Aerospace Corporation				
abutment				
Airborne LiDAR Terrain Mapper				
automatic rain gauge				
Antique				
Automated Water Level Sensor				
Bridge Approach				
benchmark				
Computer-Aided Design				
Central Mindanao University				
Curve Number				
Chief Science Research Specialist				
Data Acquisition Component				
Digital Elevation Model				
Department of Environment and Natural Resources				
Department of Science and Technology				
Data Pre-Processing Component				
Disaster Risk and Exposure Assessment for Mitigation [Program]				
Disaster Risk Reduction and Management				
Digital Surface Model				
Digital Terrain Model				
Data Validation and Bathymetry Component				
Flood Modeling Component				
Field of View				
Grants-in-Aid				
Ground Control Point				
Global Navigation Satellite System				
Global Positioning System				
Hydrologic Engineering Center - Hydrologic Modeling System				
Hydrologic Engineering Center - River Analysis System				
High Chord				
Inverse Distance Weighted [interpolation method]				

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
LiDAR	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NAMRIA	National Mapping and Resource Information Authority			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
PPK	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UP- TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			
ADZU	Ateneo de Zamboanga University			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND SAWAGA RIVER

Enrico C. Paringit, Dr. Eng., and Dr. George R. Puno

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS" (Paringit, et. Al. 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the Central Mindanao State University (CMU). CMU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Region. The university is located in Maramag City in the province of Bukidnon.

1.2 Overview of the Sawaga River Basin

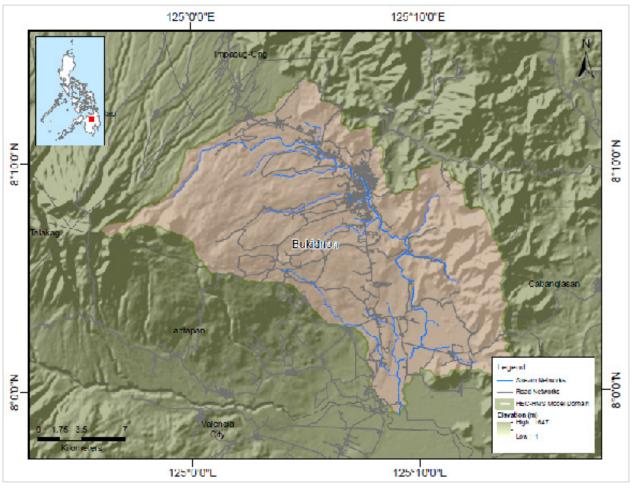


Figure 1. Map of the Sawaga River Basin in brown

Sawaga River Basin is situated in the heart of Bukidnon, in Malabalay City. It lies between the geographical coordinates of 7°58′38.93″ to 8°13′50.16″ north latitudes and 124°55′7.81″ to 125°14′26.85″ east longitudes. The basin has a total area of 42,692 hectares and comprises 40 barangay local government units; one (1) barangay belongs to the municipality of Cabanglasan, three (3) under Lantapan and 36 barangays within Malaybalay City. It traverses the barangays of Nabago, Mailag, and Colonia in the City of Valencia and Sto. Niño, Simaya, Managok and Violeta in the City of Malaybalay, Bukidnon. The DENR River Basin Control Office (RBCO) states that the Sawaga River Basin has a drainage area of 413.451 km² (RBCO, 2015).

The upper watershed is encompassed by Mount Kitanglad Mountain Range, a protected national park and the ancestral domain of the Talaandig Tribe of the province. It harbors natural mossy forest housing endangered Philippine Eagle and other threatened wildlife. The watershed of Sawaga provides the needs of the Talaandig community as well as take part in their cultural identity. The river feeds other ecological and economic services of downstream communities and the industries alike evident on the expanding banana, pineapple, sugarcane and corn agri-industrial plantations. Moreover, extensive irrigated rice fields are evident in the midstream section of Sawaga River.

The economy of the province of Bukidnon largely rests on agriculture particularly farming, fishing, trade, and commerce. The province is a major producer of rice, corn, sugar, coffee and cassava (Province of Bukidnon Brief Information, 2014). On January 19, 2017, the tail-end of a cold front triggered floods in parts of Mindanao, including eight (8) barangays in the City of Valencia in the Province of Bukidnon. (Lagsa, 2017).

Malaybalay City being the province's political and economic center has been experiencing problems of traffic congestion, pollution, waste management and flooding brought along by the rising urbanization. Flooding in particular mostly damaged the agricultural sector. Occurrences of flooding in the recent years were on December 2011 during Typhoon Sendong, December 2012 during Typhoon Pablo, October 2014, and December 2014 during Typhoon Seniang.

Its main stem, Sawaga River, partner HEI, Central Mindanao University. According to the 2015 national census of PSA, a total of 27,330 persons are residing in the barangays in the City of Malaybalay and Valencia which are within the immediate vicinity of the river.

Sawaga River was among is part of the twelve (12) river systems to be assigned to the Central Mindanao University (CMU) for the generation of flood hazard maps using Light Detection and Ranging (LiDAR) technology under the Phil-LiDAR Program. The activity involved flood modeling through the development of Hydrologic Engineering Center's - Hydrologic Model System (HEC-HMS) and River Analysis System (HEC-RAS) models for precipitation-runoff and flood depth simulations, respectively.

The basin model generated using Synthetic Aperture Radar (SAR) 10m Digital Elevation Model (DEM) and digitized river centerline consists of 29 sub basins, 15 reaches, and 13 junctions. The model was calibrated using the actual data during a rainfall event on May 31 to June 1, 2016 and was evaluated using statistical tests. Results revealed a satisfactory model performance fit for simulation use. Hypothetical discharge scenarios were simulated using the calibrated model and Rainfall Intensity Duration Frequency (RIDF) data of Philippines Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) taken at a 31-year historical data of Malaybalay rain gauge. Subsequent flood movement was simulated using LiDAR Digital Terrain Model (DTM) showing flood extent and depth information. Flood hazard maps generated project the flood scenarios for the 5-, 25-, and 100-year return periods.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE SAWAGA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat , Alex John B. Escobido , Engr. Ma. Ailyn L. Olanda, Engr. Ma. Joanne I. Balaga, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan , Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Sawaga floodplain in Misamis Oriental. These missions were planned for 12 lines that ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plan for Sawaga floodplain.

Table 1. Flight planning parameters for Pegasus LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
RX_BLKE	900	30	50	200	30	130	5
BLK 64A	900	30	50	200	30	130	5
BLK 64B	900	30	50	200	30	130	5
BLK 64C	900	30	50	200	30	130	5
BLK 64D	900	30	50	200	30	130	5
BLK 64E	900	30	50	200	30	130	5

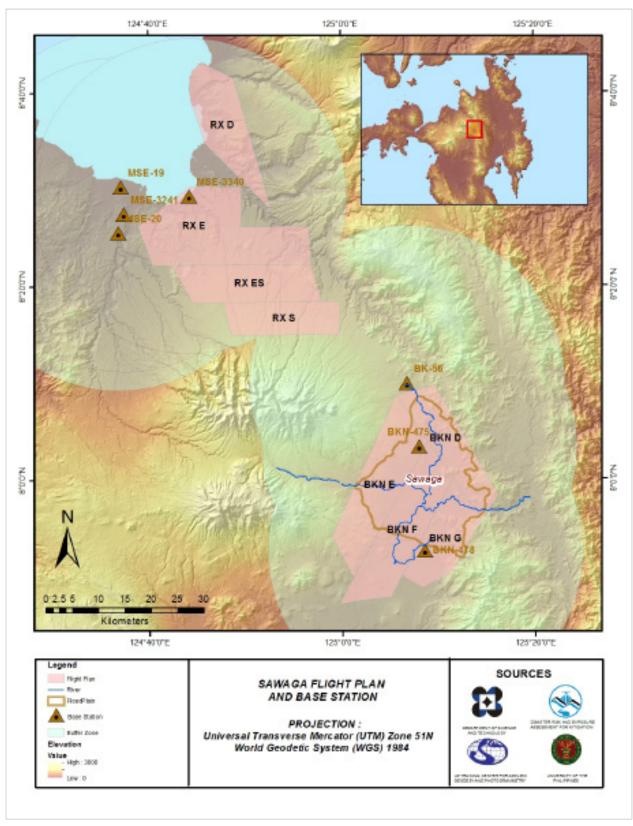


Figure 2. Flight plans and base stations for Sawaga floodplain survey

2.2 Ground Base Stations

The project team was able to recover six (6) NAMRIA ground control points: MSE-19, MSE-20, BKN-475 and BKN-478 which are of second (2nd) order accuracy; and MSE-3241, MSE-3340 which are of third (3rd) order accuracy. The team was also able to recover one (1) NAMRIA benchmark: BK-56 which is of first (1st) order vertical accuracy. The benchmark was used as vertical reference point and was also established as ground control point. The certifications for the NAMRIA reference points are found in ANNEX 2. These were used as base stations during flight operations for the entire duration of the survey (May 27 – July 10, 2014 and October 23 – November 14, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Sawaga floodplain are shown in Figure 2.

Figure 3 to Figure 9 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 8 show the details about the following NAMRIA control stations, while Table 9 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over MSE-19 at the center island located at the road intersections going to Cagayan de Oro, Butuan City and Iligan City (a) and NAMRIA reference point MSE-19 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point MSE-19 used as base station for the LiDAR acquisition.

Station Name	MSE-19			
Order of Accuracy	2 nd order			
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 30′ 19.11464″ North 124° 37′ 6.46518″ East 11.24200 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	457,992.786 meters 940,451.853 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 30' 15.52234" North 124° 37' 11.86795" East 78.72200 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	678,151.65 meters 940,474.22 meters		

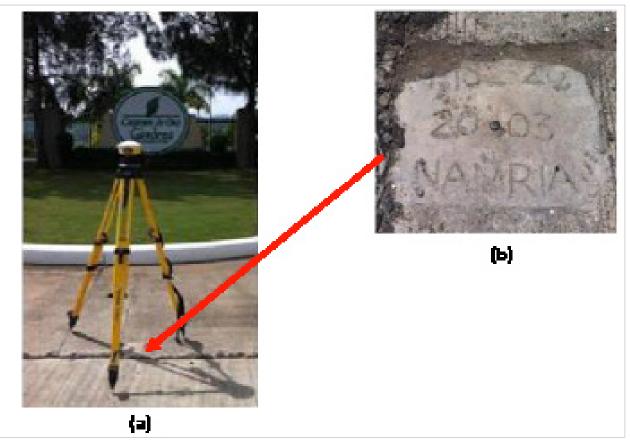


Figure 4. GPS set-up over MSE-20 in front of Cagayan de Oro Gardens Memorial Park, located at Barangay Lumbia, Cagayan de Oro City (a) and NAMRIA reference point MSE-20 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point MSE-20 used as base station for the LiDAR acquisition.

Station Name	N	1SE-20	
Order of Accuracy	2 nd order		
Relative Error (horizontal positioning)	1:	50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 25' 34.65372" North 124° 36' 50.02579" East 182.812 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	457481.339 meters 931713.993 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 25' 31.08192" North 124° 36' 55.43561" East 250.444 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	677685.12 meters 931773.67 meters	

Figure 5. GPS set-up over MSE-3241 on a center island near a gasoline station beside SM Cagayan de Oro (a) and NAMRIA reference point MSE-3241 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MSE-324 lused as base station for the LiDAR acquisition.

Station Name	MSE-3241		
Order of Accuracy	3 rd order		
Relative Error (horizontal positioning)	1:	20,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 27' 31.07607" North 124° 37' 23.18891" East 109.46700 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	458499.251 meters 935289.375 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 27' 27.49608" North 124° 37' 28.59587" East 177.055 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	678684.71 meters 935314.30 meters	

Figure 6. GPS set-up over MSE-3340 inside Agusan Barangay Plaza (a) and NAMRIA reference point MSE-3340 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point MSE-3340 used as base station for the LiDAR acquisition.

Station Name	M	SE-3340	
Order of Accuracy	3 rd order		
Relative Error (horizontal positioning)	1:	20,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 29' 23.43073" North 124° 44' 11.52934" East 5.996 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	470991.591 meters 983730.493 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 29' 19.85261" North 124° 44' 16.93252" East 73.801 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	691159.9 meters 938819.85 meters	

Figure 7. GPS set-up over NAMRIA reference point BKN-475 inside Agusan Barangay Plaza

Table 6. Details of the recovered NAMRIA horizontal control point BKN-475 used as base station for the LiDAR acquisition.

Station Name	BKN-475		
Order of Accuracy	2 nd order		
Relative Error (horizontal positioning)	1.	50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 3′ 25.94887″ North 125° 7′ 58.6868″ East 404.314 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	890880.244 meters 514656.29 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 3' 22.52096" North 125° 8' 4.12506" East 473.98 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	891179.54 meters 735073.78 meters	

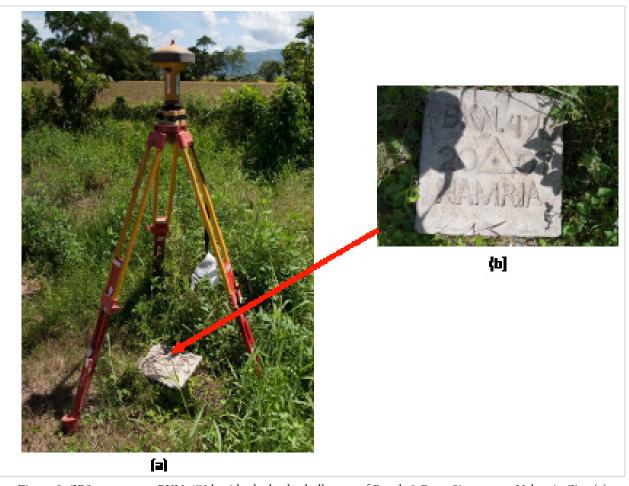


Figure 8. GPS set-up over BKN-478 beside the basketball court of Purok 6, Brgy. Sinayawan, Valencia City (a) and NAMRIA reference point BKN-475 (b) as recovered by the field team.

Table 7. Details of the recovered NAMRIA horizontal control point BKN-478 used as base station for the LiDAR acquisition.

Station Name	BKN-478				
Order of Accuracy	2 nd order				
Relative Error (horizontal positioning)	1:	50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 52′ 39.32095″ North 125° 8′ 33.26511″ East 302.837 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	871017.702 meters 515721.851 meters			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 52′ 35.94157″ North 125° 8′ 38.71964″ East 372.885 meters			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	871315.75 meters 736235.86 meters			

Figure 9. GPS set-up over NAMRIA benchmark BK-56 inside Agusan Barangay Plaza

Table 8. Details of the recovered NAMRIA benchmark BK-56 used as base station for the LiDAR acquisition with processed coordinates.

Station Name	BK-56		
Order of Accuracy	1 ^s	t order	
Relative Error (horizontal positioning)	1:	50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 9' 56.15912" North 125° 6' 49.1855" East 657.991 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 9' 52.70089" North 125° 8' 4.12506" East 473.98 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting 732882.695 meters Northing 903158.564 meters		
Elevation (mean sea level)	10.9546 meters		

Table 9. Ground control points used during LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 27,2014	1517P	1RXE147A	MSE-19 & MSE-3241
June 9, 2014	1569P	1BLKRXE160A	MSE-19 & MSE-3241
June 16, 2014	1597P	1BLKRXE167A	MSE-19 & MSE-3241
June 24,2014	1629P	1BLKRXES175A	MSE-20 & MSE-3340
July 10, 2014	1693P	1RXES191A	MSE-20 & MSE-3340
October 23, 2016	23486P	1BKND297A	BKN-478 & BK-56
October 24, 2016	23488P	1BKNDE298A	BKN-478 & BK-56
October 25, 2016	23492P	1BKNDE299A	BKN-475 & BK-56
November 6, 2016	23516P	1BKNF311A	BKN-475 & BK-56
November 6, 2016	23518P	1BKNF311B	BKN-475 & BK-56
November 7, 2016	23520P	1BKNF312A	BKN-475 & BK-56
November 8, 2016	23524P	1BKND313A	BKN-475 & BK-56
November 10, 2016	23534P	1BKNG315A	BKN-475 & BK-56
November 11, 2016	23536P	1BKNDE316A	BKN-475 & BK-56
November 12, 2016	23540P	1BKNE317A	BKN-475 & BK-56
November 13, 2016	23544P	1BKNE318A	BKN-475 & BK-56
November 13, 2016	23546P	1BKNE319A	BKN-475 & BK-56
November 14, 2016	23548P	1BLK64A320A	BKN-475 & BK-56

2.3 Flight Missions

Two (2) missions under DREAM program covered around three hundred fourteen (314) square kilometers (Table 10) within Sawaga river basin. Eighteen (18) missions were conducted to complete the LiDAR data acquisition in Sawaga floodplain, for a total of seventy four hours and seven minutes (74+07) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 12 presents the actual parameters used during the LiDAR data acquisition.

Table 10. Flight missions under DREAM program which covers part of Sawaga river basin.

Flight Number	Mission Name	Area Surveyed within the Floodplain (km²)
388G	2TAGWA224A	158.77
396G	2TAGWD226A	155.32
TO [*]	314.09	

Table 11. Flight missions for LiDAR data acquisition in Sawaga floodplain

Date	Flight Flight Plan	Flight Plan	Surveyed	Area Surveyed	Area Surveyed outside	No. of	Flying Hours	
Surveyed	Number	Area (km²)	Area (km²)	within the Floodplain (km²)	the Floodplain (km²)	Images (Frames)	Hr	Min
May 27, 2014	1517P	522.19	164.99	0	164.99	NA	4	23
June 9, 2014	1569P	340.82	289.86	0	289.86	NA	4	18
June 16, 2014	1597P	522.19	155.21	0	155.21	NA	4	0
June 24, 2014	1629P	182.55	223.66	0	223.66	527	3	47
July 10, 2014	1693P	522.19	196.80	0	196.80	NA	3	11
October 23, 2016	23486P	182.55	86.52	0	86.52	NA	3	41
October 24, 2016	23488P	133.31	155.98	0	155.98	NA	4	29
October 25, 2016	23492P	242.43	207.05	84.49	122.56	NA	4	23
November 6, 2016	23516P	235.81	177.38	96.66	80.72	NA	5	16
November 6, 2016	23518P	235.81	94.78	50.45	44.33	NA	2	29
November 7, 2016	23520P	381.09	252.33	132.96	119.37	NA	4	11
November 8, 2016	23524P	164.60	124.87	101.04	23.83	NA	4	29
November 10, 2016	23534P	145.29	50.15	11.36	38.79	NA	4	05
November 11, 2016	23536P	164.60	105.80	35.01	70.79	NA	4	23
November 12, 2016	23540P	242.43	96.13	20.24	75.89	NA	4	11
November 13, 2016	23544P	242.43	189.41	110.73	78.68	NA	4	11
November 13, 2016	23546P	145.29	136.72	101.20	35.52	NA	4	11
November 14, 2016	23548P	235.81	197.42	99.44	97.98	NA	4	29
TOTAL		4841.39	2905.06	843.58	2061.48	527	74	07

Table 12. Actual parameters used during LiDAR data acquisition.

Tuble 12. Nectual parameters used during EID/IN duct dequisition.							
Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1517P	900	30	50	200	30	130	5
1569P	1000	30	50	200	30	130	5
1597P	800	30	50	200	30	130	5
1629P	1200	30	50	200	30	130	5
1693P	1100	30	50	200	30	130	5
23486P	800	30	50	200	30	130	5
23488P	800	30	50	200	30	130	5
23492P	1000	30	50	200	30	130	5
23516P	1000	30	50	200	30	130	5
23518P	1000	30	50	200	30	130	5
23520P	1200	30	50	200	30	130	5
23524P	1200	30	50	200	30	130	5
23534P	1200	30	50	200	30	130	5
23536P	1200	30	50	200	30	130	5
23540P	1200	30	50	200	30	130	5
23544P	1200	30	50	200	30	130	5
23546P	1200	30	50	200	30	130	5
23548P	1200	30	50	200	30	130	5

2.4 Survey Coverage

Sawaga floodplain is located in the province of Bukidnon with majority of the floodplain situated within the City of Valencia and Malaybalay. Municipality of Manolo Fortich is mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 13. The actual coverage of the LiDAR acquisition for Sawaga floodplain is presented in Figure 10.

Table 13. List of municipalities and cities surveyed during Sawaga floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed
	Manolo Fortich	350.15	249.97	71.39%
	Libona	282.23	182.47	64.63%
	Valencia City	726.07	393.05	54.13%
	Sumilao	259.26	119.07	45.935
	Maramag	323.88	91.75	28.32%
Bukidnon	Lantapan	290.82	80.20	27.58%
	Malaybalay City	1,115.98	281.10	25.19%
	Malitbog	359.59	38.81	10.79%
	Quezon	641.25	38.25	5.97%
	Impasug-Ong	854.63	29.11	3.41%
	Baungon	331.88	3.97	1.20%
	Villanueva	46.05	32.51	70.60%
	Jasaan	68.33	44.11	64.56%
Missonia Oviental	Tagoloan	55.72	19.10	34.27%
Misamis Oriental	Cagayan de Oro City	440.17	147.73	33.56%
	Claveria	768.95	28.33	3.68%
	Balingasag	125.59	1.37	1.09
TOTAL		7,040.55	1,780.9	31.54%

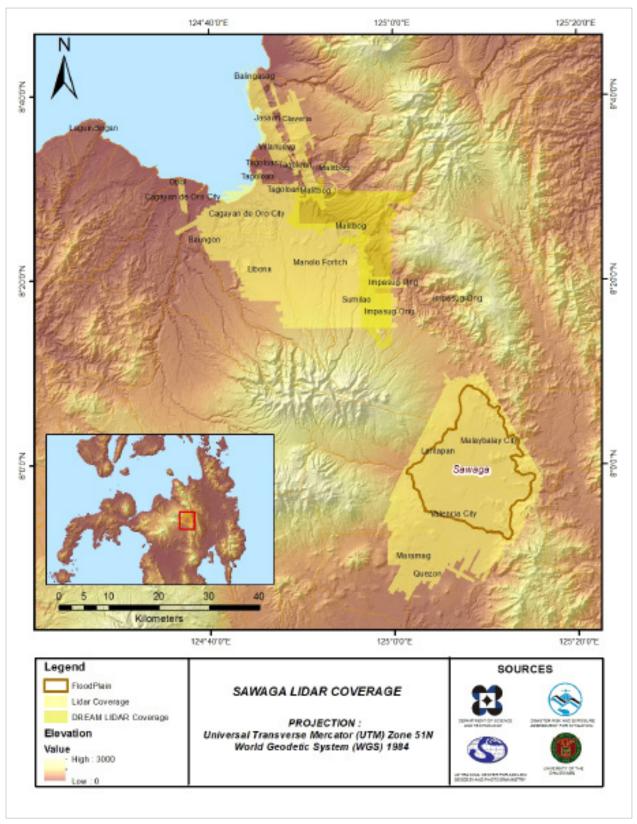


Figure 10. Actual LiDAR survey coverage for Sawaga floodplain.

CHAPTER 3: LIDAR DATA PROCESSING FOR SAWAGA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat, Alex John B. Escobido, Engr. Ma. Ailyn L. Olanda, Engr. Ma. Joanne I. Balaga, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan, Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 LiDAR Data Processing for Sawaga Floodplain

3.1.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

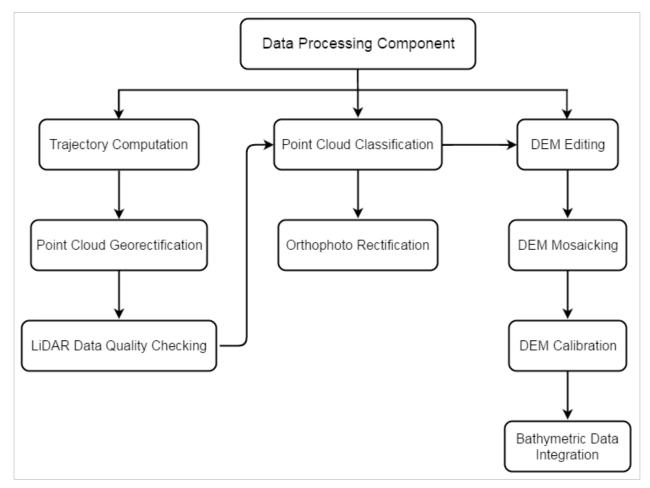


Figure 11. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Sawaga floodplain can be found in ANNEX 5. Missions flown during the first survey conducted on August 2013 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Gemini system while missions acquired during the second survey on November 2016 were flown using the Pegasus system over Malaybalay City, Bukidnon. The Data Acquisition Component (DAC) transferred a total of 418.93 Gigabytes of Range data, 4.98 Gigabytes of POS data, 2822.86 Megabytes of GPS base station data, and 79.66 Gigabytes of raw image data to the data server on August 9, 2013 for the first survey and November 15, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Sawaga was fully transferred on November 24, 2016, as indicated on the Data Transfer Sheets for Sawaga floodplain.

3.3 Trajectory Computation

The *Smoothed Performance Metric* parameters of the computed trajectory for flight 1693P, one of the Sawaga flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on July 10, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

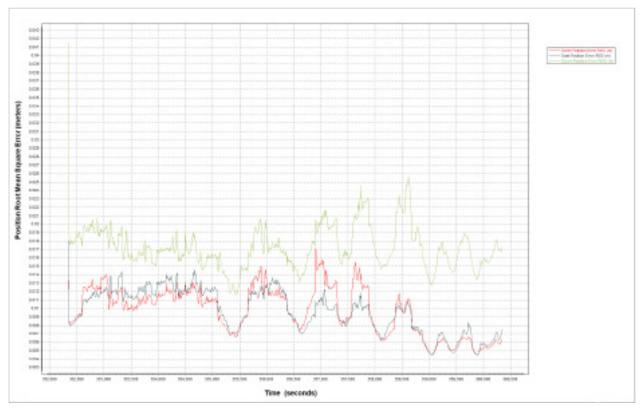


Figure 12. Smoothed Performance Metric Parameters of Sawaga Flight 1693P.

The time of flight was from 352000 seconds to 360500 seconds, which corresponds to morning of July 10, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 1.80 centimeters, the East position RMSE peaks at 1.50 centimeters, and the Down position RMSE peaks at 2.60 centimeters, which are within the prescribed accuracies described in the methodology.

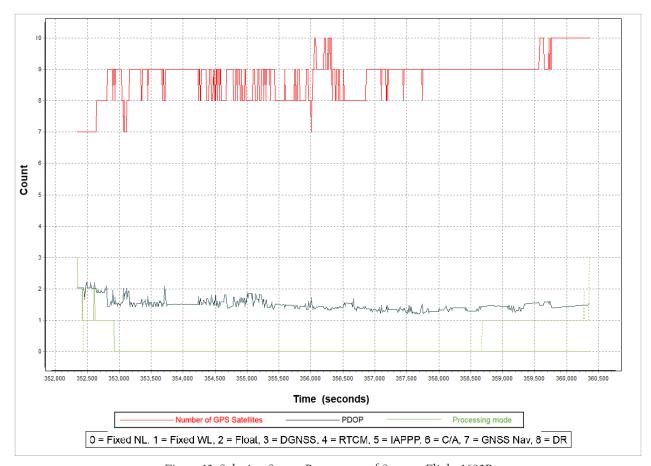


Figure 13. Solution Status Parameters of Sawaga Flight 1693P.

The *Solution Status* parameters of flight 1693P, one of the Sawaga flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 7 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Sawaga flights is shown in Figure 14.

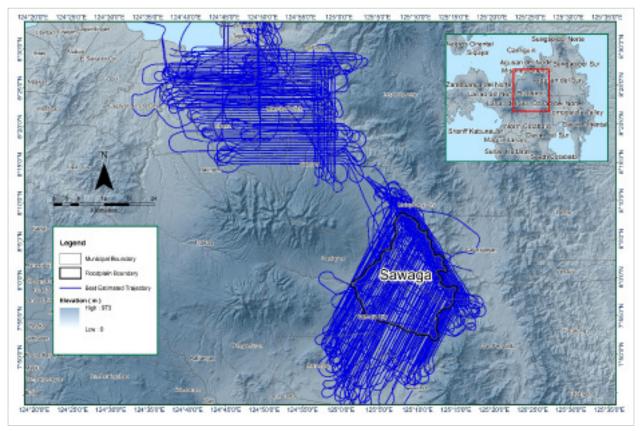


Figure 14. The best estimated trajectory of the LiDAR missions conducted over the Sawaga floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 274 flight lines, with each flight line containing one channel for flights using Gemini system and two channels for flights using Pegasus system. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Sawaga floodplain are given in Table 14.

Table 14. Self-Calibration Results values for Sawaga flights.

Parameter		Acceptable Value
Boresight Correction stdev	(<0.001degrees)	0.000586
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000953
GPS Position Z-correction stdev	(<0.01meters)	0.0087

The optimum accuracy values were obtained for all Sawaga flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the ANNEX 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Sawaga Floodplain is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

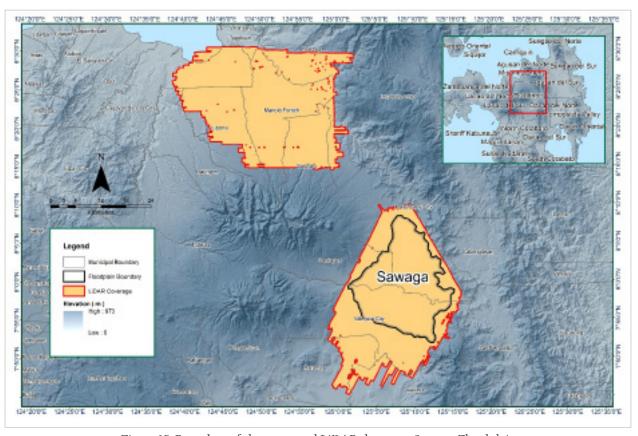


Figure 15. Boundary of the processed LiDAR data over Sawaga Floodplain

The total area covered by the Sawaga missions is 2772.84 sq.km that is comprised of nineteen (19) flight acquisitions grouped and merged into nineteen (19) blocks as shown in Table 15.

Table 15. List of LiDAR blocks for Sawaga floodplain.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Tagoloan_Blk396G	396G	142.86
Tagoloan_Blk388G	388G	150.69
	1569P	
Nowthough divide and DV DILE additional	1597P	420.05
NorthernMindanao_RX_BlkE_additional	1629P	429.95
	1693P	
NorthernMindanao_RX_BlkE	1517P	91.47
	1569P	
Nouthous Nindones DV DUE additional	1597P	226.25
NorthernMindanao_RX _BlkE_additional2	1629P	226.25
	1693P	
Bukidnon_Blk64A	23492P	227.37
Bukidnon_Blk64A_additional	23534P	21.72
Bukidnon_Blk64A_supplement	23536P	80.87
D. Lister Bill CAD and the cate	23540P	262.4
Bukidnon_Blk64B_supplement2	23544P	263.4
	23516P	
Bukidnon_Blk64B	23518P	244.68
	23520P	
Bukidnon_Blk64B_supplement	23548P	172.64
Bukidaan Blk64C	23520P	159.70
Bukidnon_Blk64C	23516P	159.70
Bukidnon_Blk64C_additional	23534P	55.92
Bukidnon_Blk64C_supplement	23546P	119.87
Bukidnon_Blk64D	23524P	80.72
Bukidnon_Blk64D_additional	23524P	75.71
Bukidnon_Blk64D_supplement	23536P	23.74
Bukidnon_Blk64E	23488P	156.01
Bukidnon_Blk64E_supplement	23486P	49.27
TOTAL	2,772.84 sq.km	

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines. While for the Pegasus system which employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value or 3 (yellow) or more for areas with three or more overlapping flight lines.

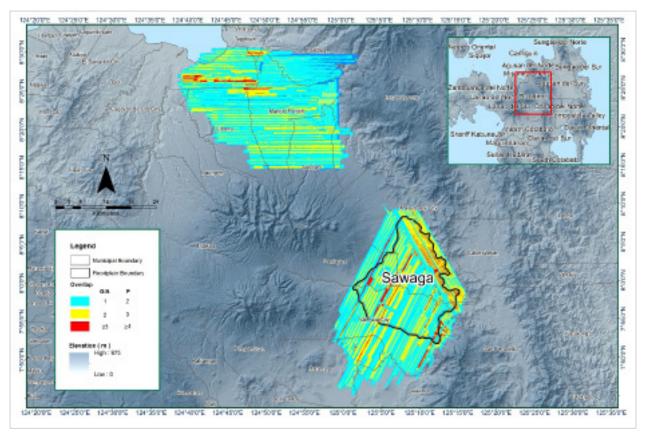


Figure 16. Image of data overlap for Sawaga floodplain.

The overlap statistics per block for the Sawaga floodplain can be found in ANNEX 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 27.70% and 72.40% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Sawaga floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.23 points per square meter.

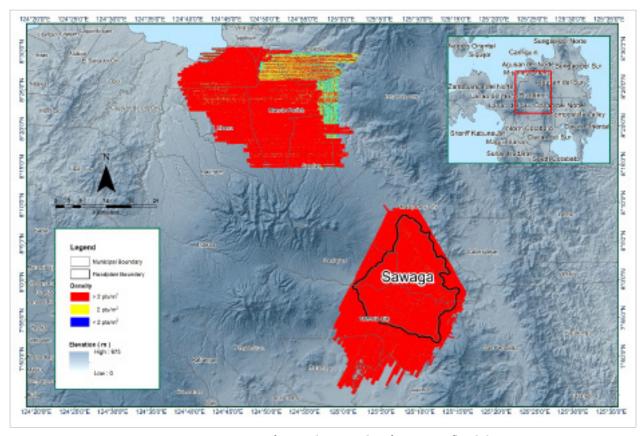


Figure 17. Density map of merged LiDAR data for Sawaga floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

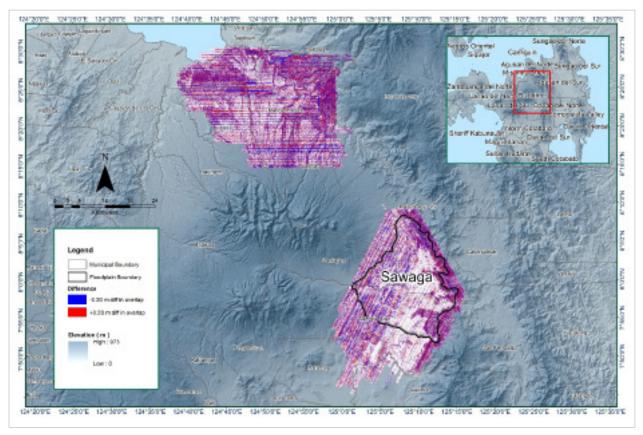


Figure 18. Elevation difference map between flight lines for Sawaga floodplain.

A screen capture of the processed LAS data from a Sawaga flight 1693P loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

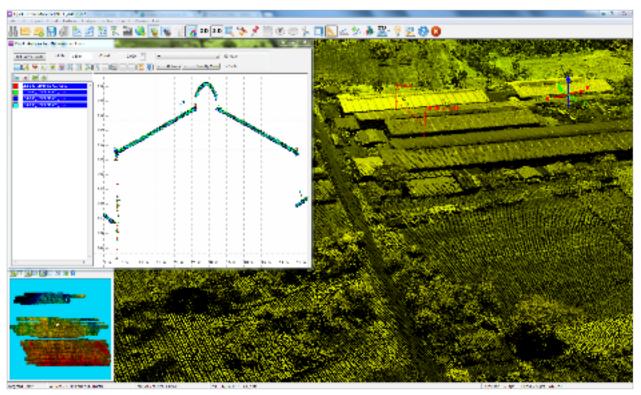


Figure 19. Quality checking for a Sawaga flight 1693P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 16. Sawaga classification results in TerraScan.

Pertinent Class	Total Number of Points
Ground	3,857,468,123
Low Vegetation	2,850,039,233
Medium Vegetation	5,472,064,570
High Vegetation	5,504,381,780
Building	381,576,586

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Sawaga floodplain is shown in Figure 20. A total of 3,754 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 1,590.61 meters and 65.84 meters respectively.

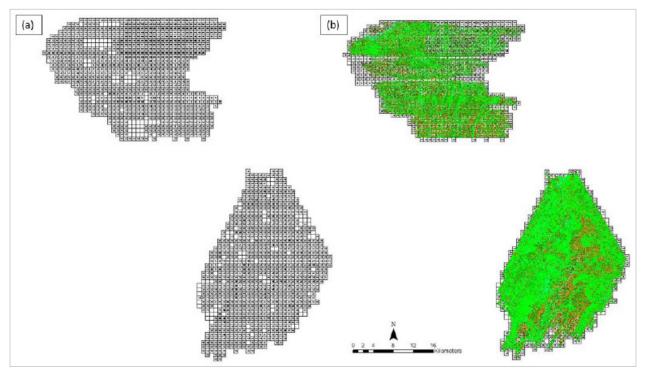


Figure 20. Tiles for Sawaga floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

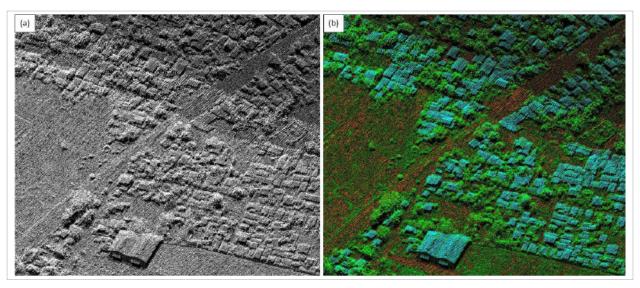


Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

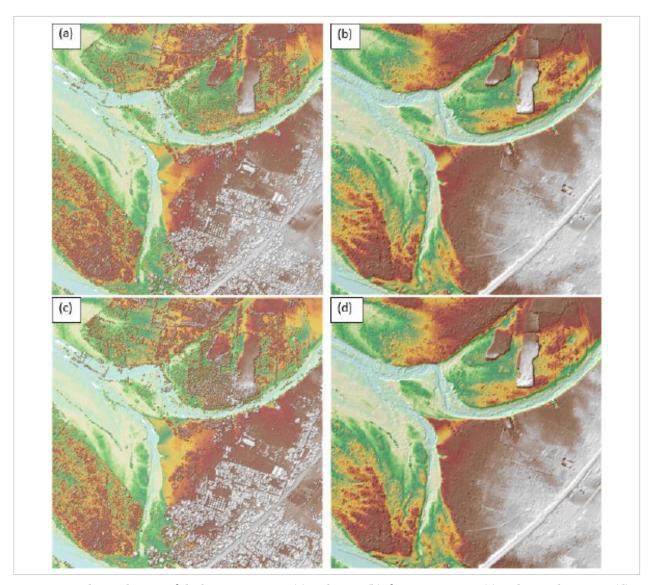


Figure 22. The production of the last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Sawaga floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 301 km by 1km tiles of the block covering the Sawaga floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The block covering the Sawaga floodplain survey attained a total of 240.922 km² in orthophotograph coverage, comprised of 642 images. However, the block does not have a complete set of orthophotographs and no orthophotographs cover the area of the Sawaga floodplain. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 24.

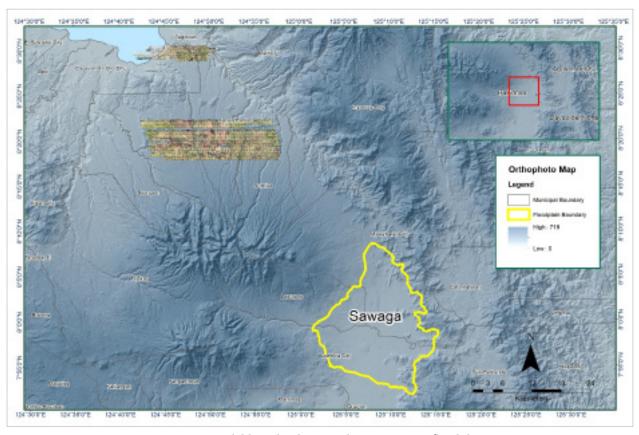


Figure 23. Available orthophotographs near Sawaga floodplain.

Figure 24. Sample orthophotograph tiles near Sawaga floodplain.

3.8 DEM Editing and Hydro-Correction

Nineteen (19) mission blocks were processed for Sawaga flood plain. These blocks are composed of Bukidnon, Tagoloan and NorthernMindanao missions with a total area of 2,772.84 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

Table 17. LiDAR blocks with its corresponding area.

LiDAR Blocks	Area (sq.km)
Tagoloan_396G	142.86
Tagoloan_388G	150.69
$Northern Mindanao_RX_BlkE_additional$	429.95
NorthernMindanao_RX_BlkE	91.47
NorthernMindanao_RX_BlkE_additional2	226.25
Bukidnon_Blk64A	227.37
Bukidnon_Blk64A_additional	21.72
Bukidnon_Blk64A_supplement	80.87
Bukidnon_Blk64B_supplement2	263.4
Bukidnon_Blk64B	244.68
Bukidnon_Blk64B_supplement	172.64
Bukidnon_Blk64C	159.70
Bukidnon_Blk64C_additional	55.92
Bukidnon_Blk64C_supplement	119.87
Bukidnon_Blk64D	80.72
Bukidnon_Blk64D_additional	75.71
Bukidnon_Blk64D_supplement	23.74
Bukidnon_Blk64E	156.01
Bukidnon_Blk64E_supplement	49.27
TOTAL	2,772.84 sq.km

Portions of DTM before and after manual editing are shown in Figure 25. The bridge (Figure 25a) and abrupt elevation change through presence of high portions along the tributaries (Figure 25c) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 25b and Figure 25d) in order to hydrologically correct the river. This was done through interpolation process wherein a specific polygon determines the upstream and downstream elevation values to generate an interpolated portion of a river and eventually remove the bridge footprint. Another example in is the interpolation of a building footprint (Figure 25e) which has to be removed in a DTM (Figure 25f).

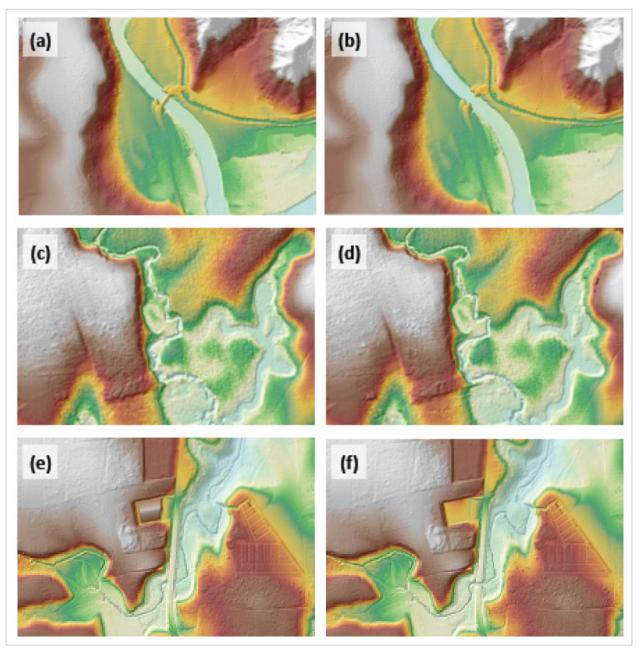


Figure 25. Portions in the DTM of Sawaga floodplain – Portions in the DTM of Sawaga floodplain – a bridge, abrupt elevation change along the tributaries and building footprint before (a), (c), (e) and after manual editing (b), (d), (f)

3.9 Mosaicking of Blocks

The Bukidnon_Blk64C was used as the reference block for mosaicking of Bukidnon blocks while Northern Mindanao blocks used NorthernMindanao_RX_BlkE as reference. Table 18 shows the area of each LiDAR blocks and the shift values applied during mosaicking. Shifting values were derived from the height difference of the calibrated block and the overlapping adjacent block.

Mosaicked LiDAR DTM for Sawaga floodplain is shown in Figure 26. It can be seen that the entire Sawaga floodplain is 100% covered by LiDAR data.

Table 18. Shift Values of each LiDAR Block of Sawaga floodplain.

	Shift Values (meters)					
Mission Blocks	x	У	z			
Blocks in Bukidnon						
Bukidnon_Blk64A	0.00	0.00	-0.01			
Bukidnon_Blk64A-supplement	0.00	0.00	0.03			
Bukidnon_Blk64A_additional	0.00	0.00	-0.08			
Bukidnon_Blk64B	0.00	0.00	-0.16			
Bukidnon_Blk64B_supplement	0.00	0.00	-0.16			
Bukidnon_Blk64B_supplement2	0.00	0.00	-0.03			
Bukidnon_Blk64C	0.00	0.00	0.00			
Bukidnon_Blk64C_supplement	0.00	0.00	0.08			
Bukidnon_Blk64C_additional	0.00	0.00	0.17			
Bukidnon_Blk64D	0.00	0.00	0.02			
Bukidnon_Blk64D_supplement	0.00	0.00	-0.11			
Bukidnon_Blk64D_additional	0.00	0.00	-0.04			
Blocks in	Northern Mindana	0				
Bukidnon_Blk64E	0.00	0.00	0.63			
Bukidnon_Blk64E_supplement	0.00	0.00	-0.37			
NorthernMindanao_RX_BlkE	0.00	0.00	0.00			
NorthernMindanao_RX_BlkE_additional	0.00	0.00	-0.37			
NorthernMindanao_RX_BlkE_additional2	0.00	0.00	-0.48			

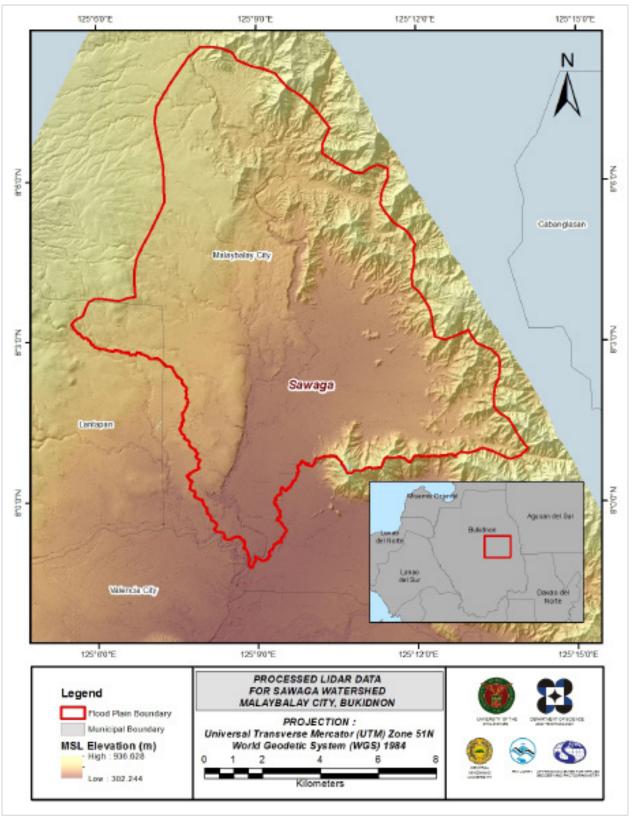


Figure 26. Map of Processed LiDAR Data for Sawaga Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Sawaga to collect points with which the LiDAR dataset is validated is shown in Figure 27. A total of 7,734 survey points were used for calibration and validation of Sawaga LiDAR data. Random selection of 80% of the survey points, resulting to 4,512 points, were used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.38 meters with a standard deviation of 0.08 meters. Calibration of Sawaga LiDAR data was done by subtracting the height difference value, 0.38 meters, to Sawaga mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

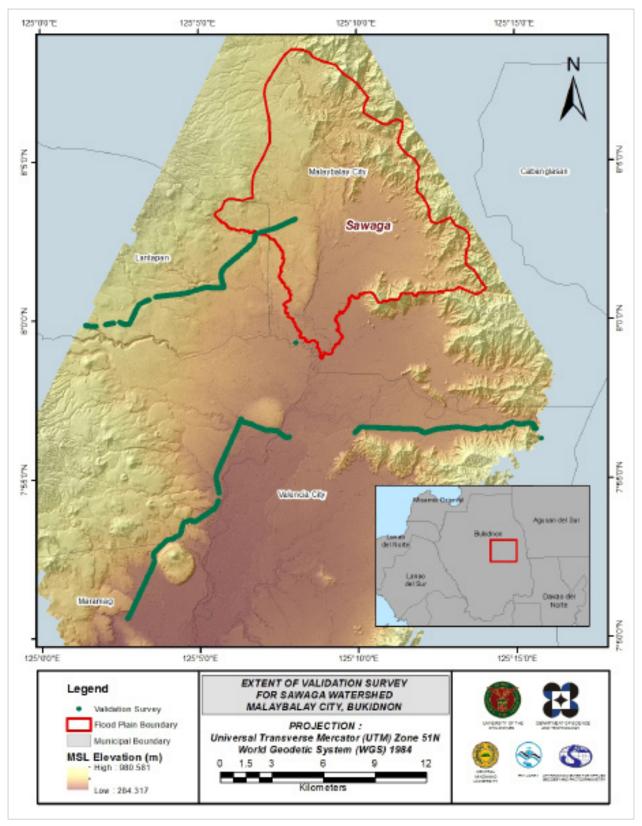


Figure 27. Map of Sawaga Flood Plain with validation survey points in green.

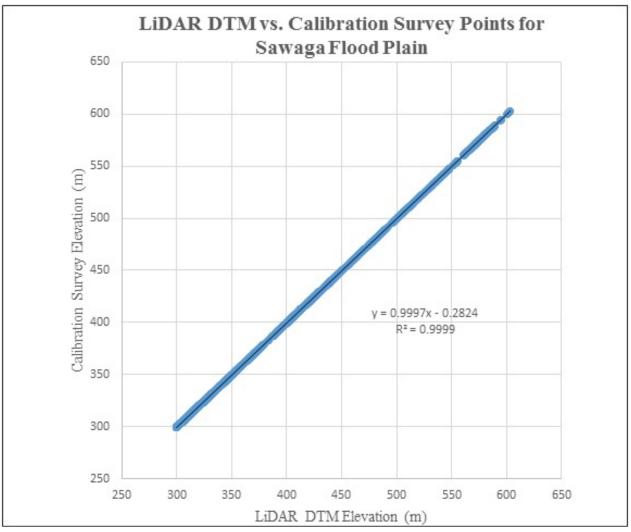


Figure 28. Correlation plot between calibration survey points and LiDAR data.

Table 19. Calibration Statistical Measures.

Calibration Statistical Measures	Value (meters)
Height Difference	0.38
Standard Deviation	0.08
Average	-0.38
Minimum	-0.64
Maximum	0.56

The remaining 20% of the total survey points, resulting to 825 points, were used for the validation of calibrated Sawaga DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 29. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.19 meters with a standard deviation of 0.19 meters, as shown in Table 20.

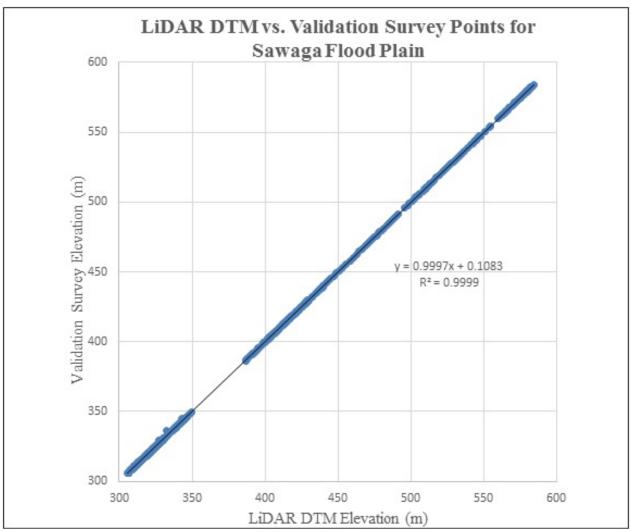


Figure 29. Correlation plot between validation survey points and LiDAR data.

Table 20. Validation Statistical Measures.

Validation Statistical Measures	Value (meters)
RMSE	0.19
Standard Deviation	0.19
Average	0.00
Minimum	-0.38
Maximum	0.40

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, cross section data were available for Sawaga with 2,034 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.31 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Sawaga integrated with the processed LiDAR DEM is shown in Figure 30.

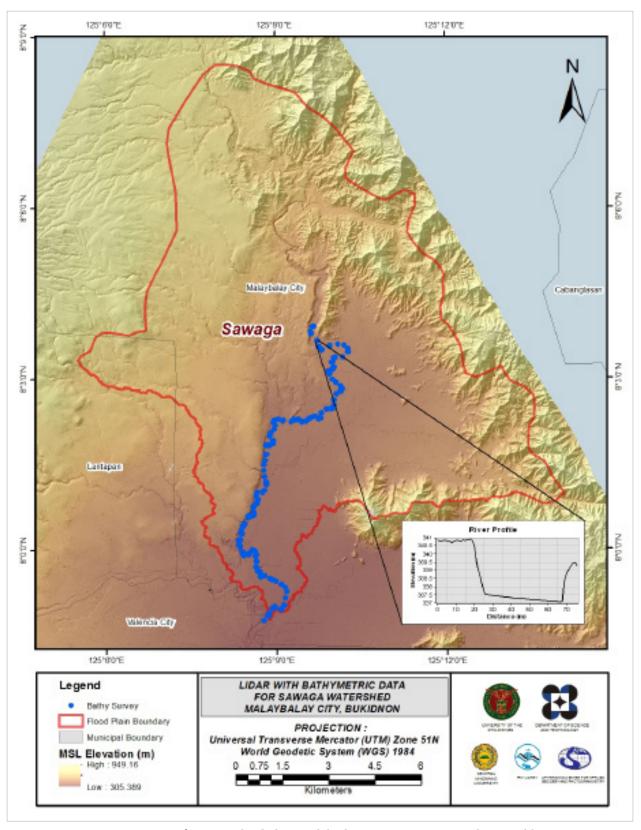


Figure 30. Map of Sawaga Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Sawaga floodplain, including its 200 m buffer, has a total area of 438.79 sq km. For this area, a total of 14.00 sq km, corresponding to a total of 3372 building features, are considered for QC. Figure 31 shows the QC blocks for Sawaga floodplain.

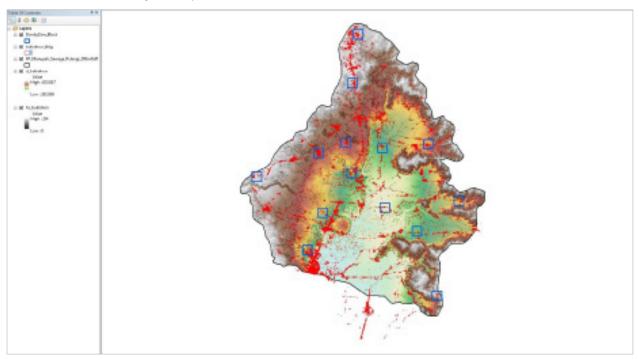


Figure 31. Blocks (in blue) of the Sawaga building features that were subjected to QC

Quality checking of Sawaga building features resulted in the ratings shown in Table 21.

FLOODPLAINCOMPLETENESSCORRECTNESSQUALITYREMARKSSawaga99.4799.7689.09PASSED

Table 21. Quality Checking Ratings for Sawaga Building Features.

3.12.2 Height Extraction

Height extraction was done for 14,606 building features in Sawaga floodplain. Of these building features, 150 were filtered out after height extraction, resulting to 14,456 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 7.16 m.

3.12.3 Feature Attribution

Field data collection for the attribution process was done through Geotagging (point to a specific feature and shoot method) using a handheld GPS with a built-in camera. The x,y,z and the viewing direction of the GPS in 0-359 degrees during the photo capture were the essential information in the process. Using Arcmap's tool "Geotagged Photos to Points", the symbology of the imported point shapefile was set as

"Airfield" and the viewing angle was set as "Direction". The "Path" is automatically created in the points' attribute table wherein the photo's directory is linked every after the "Identify" button is clicked to a specific point.

Table 22 summarizes the number of building features per type. On the other hand, Table 23 shows the total length of each road type, while Table 24 shows the number of water features extracted per type.

Table 22. Building Features Extracted for Sawaga Floodplain.

Facility Type	No. of Features
Residential	13, 577
School	213
Market	30
Agricultural/Agro-Industrial Facilities	2
Medical Institutions	17
Barangay Hall	9
Military Institution	0
Sports Center/Gymnasium/Covered Court	11
Telecommunication Facilities	1
Transport Terminal	0
Warehouse	112
Power Plant/Substation	0
NGO/CSO Offices	3
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	66
Bank	1
Factory	0
Gas Station	13
Fire Station	1
Other Government Offices	78
Other Commercial Establishments	321
City Hall	1
Total	14,456

Table 23. Total Length of Extracted Roads for Sawaga Floodplain.

Road Network Length (km)						
Floodplain	Barangay City/ Municipal Road Road		Provincial Road	National Road	Others	Total
Sawaga	254.00		0	19.39	0	273.39

Table 24. Number of Extracted Water Bodies for Sawaga Floodplain.

Water Body Type							
Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total	
Sawaga	4	0	0	0	0	4	

A total of 12 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 shows the Digital Surface Model (DSM) of Sawaga floodplain overlaid with its ground features.

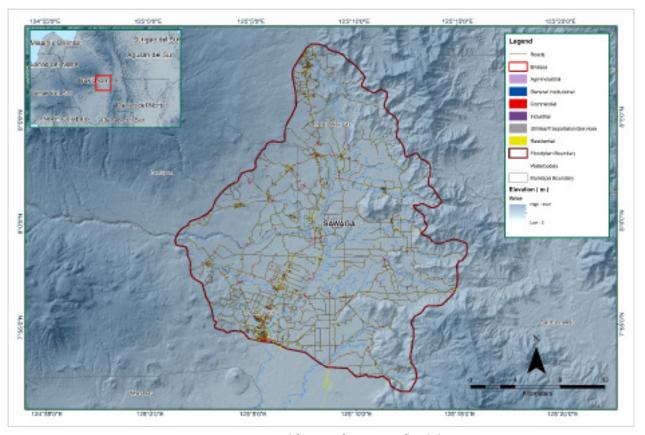


Figure 32. Extracted features for Sawaga floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SAWAGA RIVER BASIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat, Alex John B. Escobido, Engr. Ma. Ailyn L. Olanda, Engr. Ma. Joanne I. Balaga, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan, Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The project team conducted a field survey in Sawaga River on April 7, 11, 12, to 14, 19 to 23 and 27, 2016, May 8 to 10, 13, 14 and 16, 2016 with the following scope: reconnaissance; control survey; and cross-section and as-built survey at Sawaga Bridge in Brgy. Violeta, City of Malaybalay, Bukidnon. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on August 11, 2016 using a Trimble® SPS 882 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Sawaga River Basin area. The entire survey extent is illustrated in Figure 33.



Figure 33. Extent of the bathymetric survey (blue line) in Sawaga River and the LiDAR data validation survey (red)

4.2 Control Survey

The GNSS network used for Sawaga River is composed of two (2) loops established on August 10, 2016 occupying the following reference points: BK-56, a first-order BM, in Brgy. Sumpong, Malaybalay City, Bukidnon; and BKN-475 a second-order GCP, in Brgy. Linabo, Malaybalay City, Bukidnon.

Two (2) control points established in the area by ABSD were also occupied: UP_MAN-2 located near the approach of Manupali Bridge in Brgy. Bangcud, Malaybalay City, Province of Bukidnon, and UP_LUM-2 located near the Pulangui Diversion Dam in Brgy. Lumbayao, Valencia City, Province of Bukidnon.

The summary of reference and control points and its location is summarized in Table 25 while GNSS network established is illustrated in Figure 34.

Table 25. List of reference and control points used during the survey in Sawaga River (Source: NAMRIA, UP-TCAGP)

		Geographic Coordinates (WGS UTM Zone 52N)					
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establish- ment	
BK-56	1 st order, BM	8° 9' 52.69903"N	125° 6' 54.60334"E	727.714	656.645	2008	
BKN-475	2 nd order, GCP	8° 3' 22.52096"N	125° 8' 4.12506"E	473.980	403.169	2007	
UP_MAN-2	Established	7° 59'16.34151"N	125° 8' 3.89549"E	394.653	322.44	02-10-15	
UP_LUM2	Established	7°56' 49.14628"N	125° 9' 40.23913"E	411.207	339.432	04-19-2016	

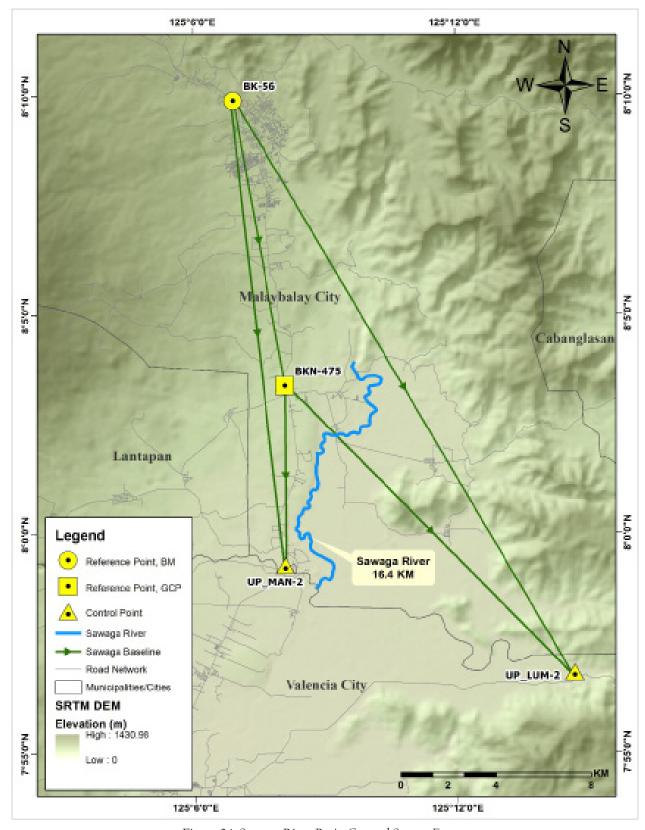


Figure 34. Sawaga River Basin Control Survey Extent

The GNSS set-ups on recovered reference points and established control points in Sawaga River are shown from Figure 35 to Figure 38.

Figure 35. GNSS receiver set up, Trimble® SPS 882, at BK~56, located at the west post of the welcome arc of Malaybalay City in Brgy. Sumpong, Bukidnon

Figure 36. GNSS receiver setup, BKN-475, located within the DPWH Compound in Brgy. Aglayan, Valencia City, Bukidnon.

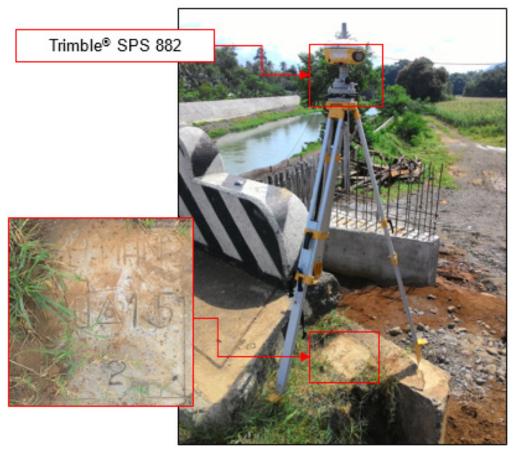


Figure 37. GNSS receiver set up, Trimble® SPS 882, at UP_MAN -2, located near the approach of Manupali Bridge in Brgy. Bangcud, Malaybalay City, Province of Bukidnon

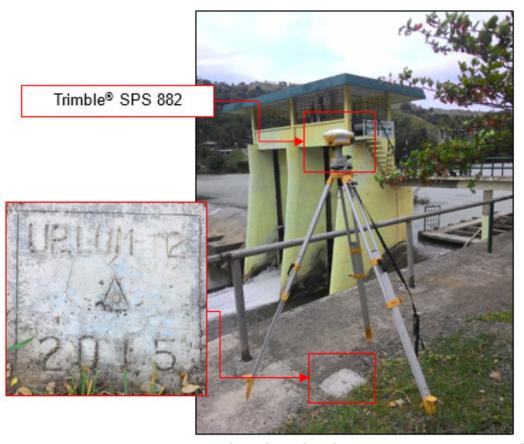


Figure 38. GNSS receiver serup, UP_LUM-2, located near the Pulangui Diversion Dam in Brgy. Lumbayao, Valencia City, Province of Bukidnon.

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Sawaga River Basin is summarized in Table 26 generated by TBC software.

Table 26. Baseline Processing Report for Sawaga River Static Survey

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (m)
BK-56 BKN-475	8-10-2016	Fixed	0.007	0.024	169°55'49"	12174.173	-253.707
BK-56 UP_MAN-2	8-10-2016	Fixed	0.004	0.022	173°48'19	19664.461	-334.563
BKN-475 UP_MAN-2	8-10-2016	Fixed	0.004	0.015	180°03'12"	7562.993	-80.875
BK-56 UP_LUM-2	8-10-2016	Fixed	0.006	0.029	149°19'44"	27983.972	-318.479
BKN-475 UP_LUM-2	8-10-2016	Fixed	0.004	0.016	134°51'09"	17132.460	-253.707

As shown in Table 26, a total of five (5) baselines were processed with coordinate and ellipsoidal height values of BKN-475 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the squares of x and y must be less than 20 cm and z less than 10 cm in equation form:

$$\sqrt{((x)^2 + (y)^2)}$$
 < 20 cm and z < 10 cm

Where:

 x_e is the Easting Error, y_e is the Northing Error, and

 z_e is the Elevation Error

for each control point. See the Network Adjustment Report shown from Tables 23 to 25 for the complete details. Refer to ANNEX 11 for the computation for the accuracy of ABSD.

The four (4) control points, BK-56, BKN-475, UP-MAN-2, and UP_LUM-2 were occupied and observed simultaneously to form a GNSS loop. The coordinates and ellipsoidal height of BKN-475 were held fixed during the processing of the control points as presented in Table 27. Through this reference point, the coordinates and ellipsoidal height of the unknown control points will be computed.

North **East** Height Elevation **Point ID** Type (Meter) (Meter) (Meter) (Meter) BK-56 Grid BKN-475 Global Fixed Fixed Fixed Fixed = 0.000001(Meter)

Table 27. Control Point Constraints

Table 28. Adjusted Grid Coordinates

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BK-56	733046.484	0.009	903110.050	0.007	656.645	?	е
BKN-475	735238.147	?	891131.322	?	403.210	0.057	LLh
UP_MAN-2	735270.463	0.009	883566.236	0.007	322.440	0.061	
UP_LUM-2	747450.236	0.009	879107.389	0.007	338.965	0.067	

With the mentioned equation, الرباء (الالماء) حوالا المادية for horizontal and المادية for the vertical; the computation for the accuracy are as follows:

a. BK-56 horizontal accuracy	= $\sqrt{((0.9)^2 + (0.7)^2}$ = $\sqrt{(0.81 + 0.49)}$ = 1.3 < 20 cm	c. UP_MAN-2 horizontal accuracy	= $V((0.9)^2 + (0.7)^2$ = $V(0.81 + 0.49)$ = 1.3 < 20 cm
vertical accuracy	= Fixed	vertical accuracy	= 6.1 < 10 cm
b. BKN-475		d. UP_LUM-2	
horizontal accuracy vertical accuracy	= Fixed = Fixed	horizontal accuracy	$= \sqrt{((0.9)^2 + (0.7)^2}$ $= \sqrt{(0.81 + 0.49)}$ $= 1.3 < 20 \text{ cm}$
		vertical accuracy	= 6.7 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the four (4) occupied control points are within the required precision.

Table 29. Adjusted Geodetic Coordinates

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
BK-56	N8°09'52.69746"	E125°06'54.60518"	729.219	?	е
BKN-475	N8°03'22.52096"	E125°08'04.12506"	475.526	0.057	LLh
UP_MAN-2	N7°59'16.33836"	E125°08'03.89549"	394.653	0.061	
UP_LUM-2	N7°56'49.14664"	E125°14'40.69052"	410.740	0.067	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 29. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 30.

Table 30. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BK-56	1 st order, BM	8°9'52.69903"N	125°6'54.60334"E	727.714	903110.046	733046.488	656.645
BKN-475	2 nd order, GCP	8°3'22.52096"N	125° 8' 4.12506"E	473.980	891131.322	735238.147	403.175
UP_MAN-2	Established	7°59'16.34151"N	125° 8' 3.89549"E	394.653	883566.236	735270.463	322.44
UP_LUM-2	Established	7°56'49.14628"N	125°9'40.23913"E	411.207	879107.378	747450.247	339.432

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on April 27, 2016 at the upstream side of Sawaga Bridge in Brgy. Violeta, City of Malaybalay as shown in Figure 39. Nikon® Total Station was utilized for this survey as shown in Figure 40.

Figure 39. Sawaga Bridge facing upstream

Figure 40. As-built survey of Sawaga Bridge

The cross-sectional line of Sawaga Bridge is about 104.524 m with twenty-seven (27) cross-sectional points using the control points UP_SAW-1 and UP_SAW-2 as the GNSS base stations. The location map, cross-section diagram, and the bridge data form are shown in Figure 41 to Figure 43, respectively.

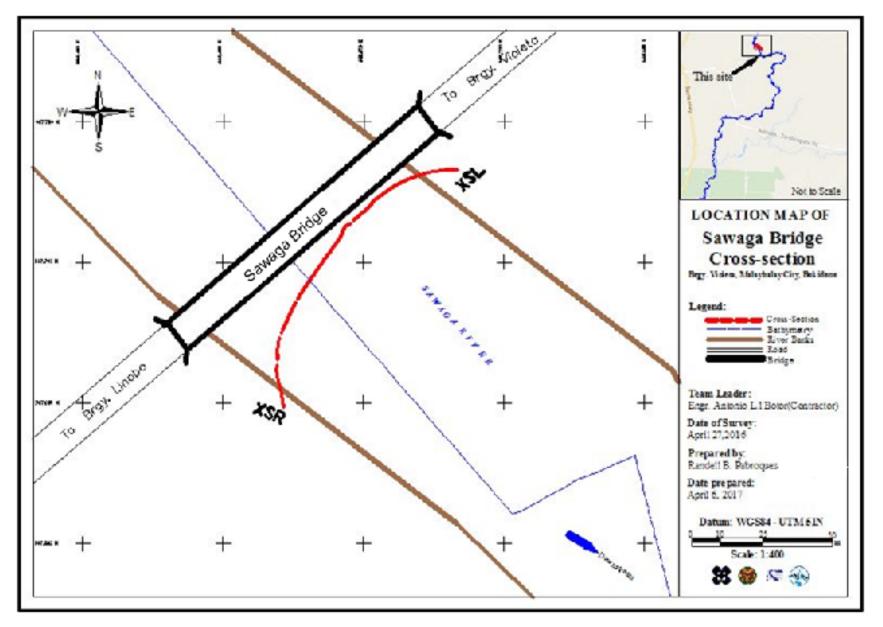


Figure 41. Sawaga Bridge Location Map

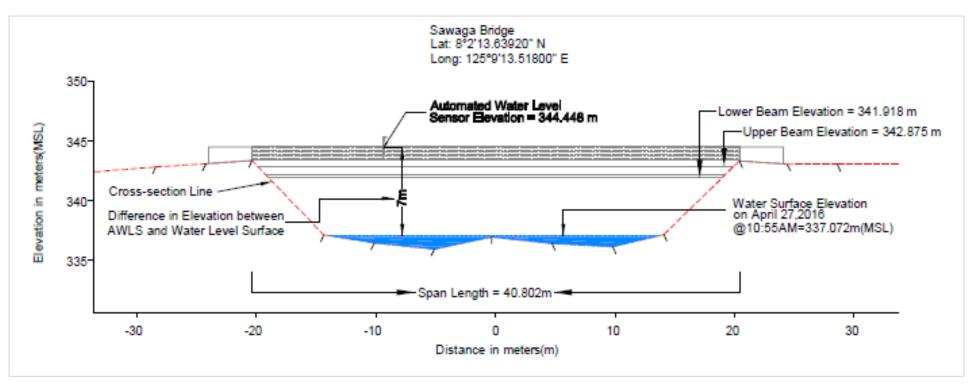
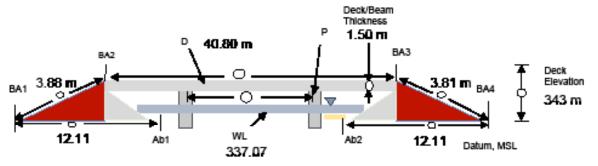



Figure 42. Sawaga Bridge Cross-section Diagram

Bridge Data Form

Bridge Name	SAGAWA BRIDGE				
River Name:	SAGAWA RIVER				
Location (Brgy, City, Region): Brgy, Violeta, Malaybalay City, Bultidnon					
Survey Team:	Jerby Galkesa				
Date and Time:	and Time:April 27, 2018; 10:55 A.M.				
Flow Condition:	low normed high				
Weather Condition	en: fair rainy				

Cross-sectional View (not to essie)

Legend:

BA = Bridge Approach

P = Pier

Ab = Abulment

D = Deck

WL = Water Level/Surface

MSL = Mean Sea Level

= Measurement Value

Line Segment	Measurement (m)	Remarks
1. BA1-BA2	3.88 m	
2 BA2-BA3	40.80 m	
3. BA3-BA4	3.81 m	
4. BA1-Ab1	12.11 m	
5. Ab2-BA4	12.11 m	
6. Deck/beam	1.50 m	
thickness		
7. Deck elevation	343 m	

Note: Charver should be facing downstream

Figure 43. Sawaga Bridge Data Sheet

Water surface elevation of Sawaga River was determined by a Nikon® Total Station on April 27, 2016 at 10:55 AM at Sawaga Bridge area with a value of 337.07 m in MSL as shown in Figure 42. This was translated into marking on the bridge's abutment as shown in Figure 44. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Sawaga River, Central Mindanao University.

Figure 44. Sawaga Bridge facing upstream

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC from August 12, 2016 using a survey grade GNSS Rover receiver, Trimble® SPS 882, mounted on a range pole which was attached at the back of the vehicle as shown in Figure 45. It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 2.235 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with PLW-48 occupied as the GNSS base station in the conduct of the survey.

Figure 45. Validation points acquisition survey set-up for Sawaga River

The survey started from Brgy. Basak, Municipality of Lantapan, Bukidnon going southeast along the national highway and ended in Brgy. Dologon, City of Valencia, Bukidnon. A total of 9,668 points were gathered with an approximate length of 54 km using UP_MAN-2 as GNSS base station for the entire extent of validation points acquisition survey as illustrated in the map in Figure 46.



Figure 46. Validation points acquisition covering the Sawaga River Basin Area

4.7 River Bathymetric Survey

Manual bathymetric survey was executed on April 12-14, 2016 using a Nikon® Total Station as illustrated in Figure 47. The survey started downstream in Brgy. Colonia, City of Valencia, Bukidnon with coordinates 7° 58′ 44.72870″N, 125° 8′ 46.05364″E and ended upstream in Brgy. Violeta, City of Malaybalay, Bukidnon, with coordinates 8° 3′ 55.15445″N, 125° 9′ 38.69823″E. The control points UP_SAW-1 and UP_SAW-2 were used as GNSS base station all throughout the entire survey.

Gathering of random points for the checking of ABSD's bathymetric data was performed by DVBC on August 11, 2016 using a Trimble® SPS 882 GNSS PPK survey technique, see Figure 48. A map showing the DVBC bathymetric checking points is shown in Figure 50.

Linear square correlation (R2) and RMSE analysis were performed on the two (2) datasets. The linear square coefficient range is determined to ensure that the submitted data of the contractor is within the accuracy standard of the project which is ± 20 cm and ± 10 cm for horizontal and vertical, respectively. The R2 value must be within 0.85 to 1. An R2 approaching 1 signifies a strong correlation between the vertical (elevation values) of the two datasets. A computed R2 value of 0.998 was obtained by comparing the data of the contractor and DVBC; signifying a strong correlation between the two (2) datasets.

In addition to the Linear Square correlation, Root Mean Square (RMSE) analysis is also performed in order to assess the difference in elevation between the DVBC checking points and the contractor's. The RMSE value should only have a maximum radial distance of 5 m and the difference in elevation within the radius of 5 meters should not be beyond 0.50 m. For the bathymetric data, a computed value of 0.148 was acquired. The computed R2 and RMSE values are within the accuracy requirement of the program.

Figure 47. Manual Bathymetric survey of ABSD at Sawaga River using Nikon® Total Station

Figure 48. Gathering of random bathymetric points along Sawaga River

The manual bathymetric survey for Sawaga River gathered a total of 2,679 points covering an approximate of 20 km of the river traversing Brgy. Colonia in the City of Valencia, Bukidnon and Brgy, Sto. Niño, Simaya, Managok and Violeta in the City of Malaybalay, Bukidnon. A CAD drawing was also produced to illustrate the riverbed profile of Sawaga River. As shown in Figure 51, the highest and lowest elevation has a 35-m difference. The highest elevation observed was 342.166 m above MSL located in Brgy. Violeta, Malaybalay City, Bukidnon while the lowest was 306.500 m above MSL located in Brgy. Nabago, Valencia City, Bukidnon.

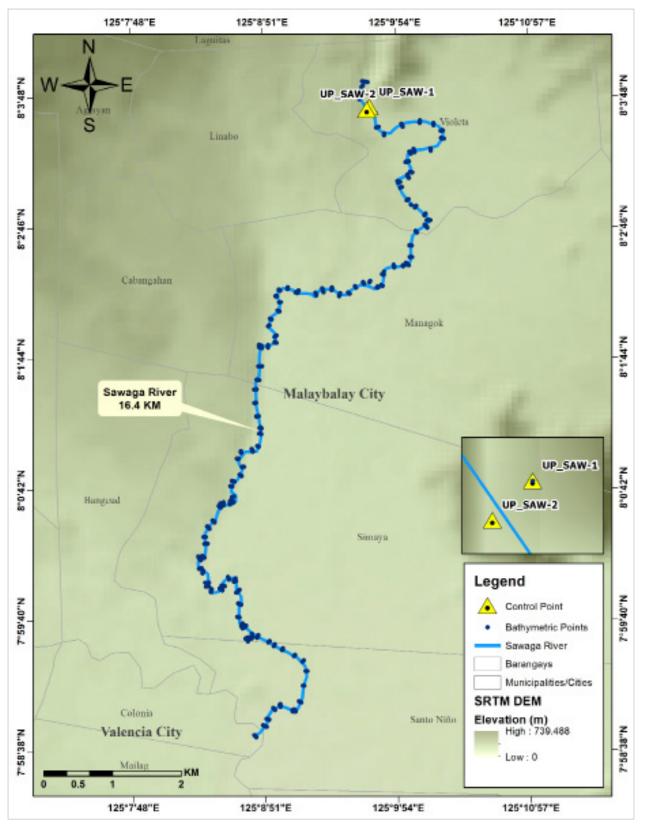


Figure 49. Manual Bathymetric survey of ABSD at Sawaga River using Nikon® Total Station

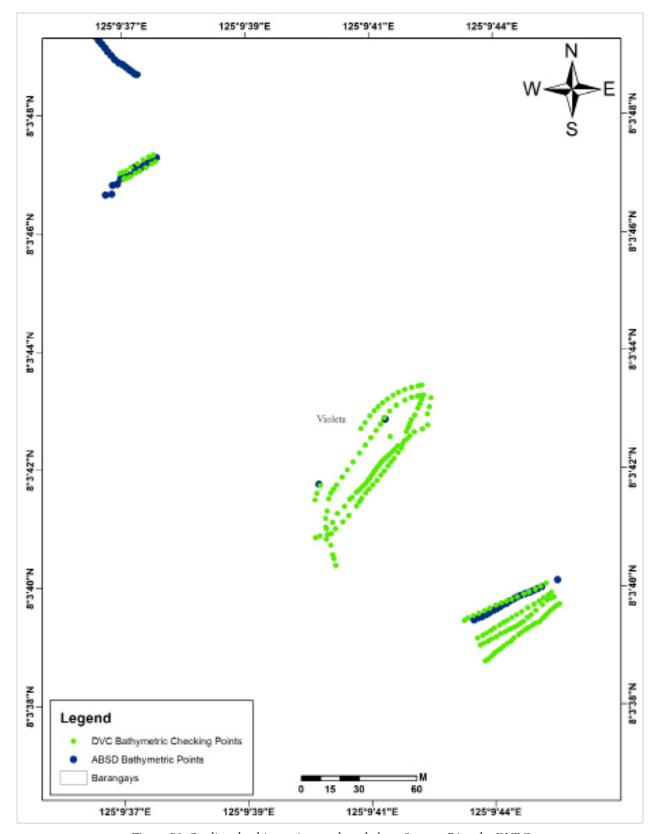


Figure 50. Quality checking points gathered along Sawaga River by DVBC

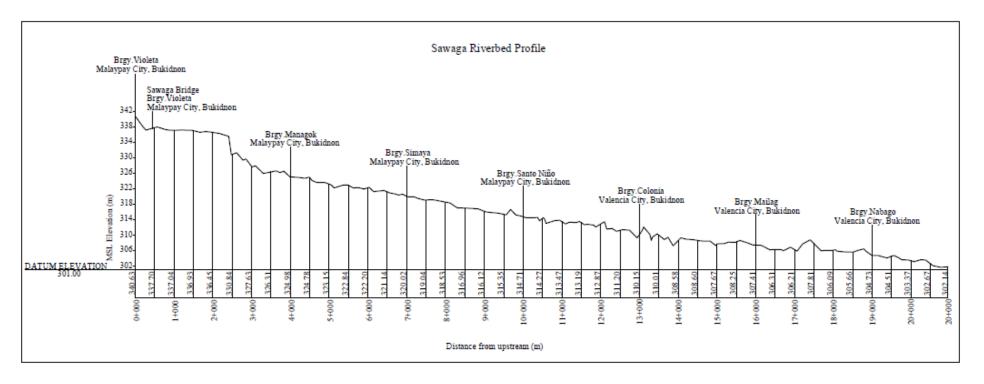


Figure 51. Sawaga Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat, Alex John B. Escobido, Engr. Ma. Ailyn L. Olanda, Engr. Ma. Joanne I. Balaga, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan, Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Sawaga River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Sawaga River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data is one input requirement for the HMS calibration. Two precipitation data were utilized for the basin calibration. These were taken at Barangay 1, Malaybalay City using an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI) and at Barangay San Jose, Malaybalay City using a manual rain gauge of Central Mindanao University. The location of the rain gauges is shown in Figure 52.

Total rain volume acquired from the two rain gauges is 44.9 mm. Peak rainfall for ARG at Barangay 1 is 9.4mm while for Barangay San Jose, peak rainfall is 4mm. It peaked on 31 May 2016 at 20:15 and 19:45, respectively. The lag time between the peak rainfall and discharge for Barangay 1 and Barangay San Jose is 4 hours and 15 minutes, and 4 hours and 45 minutes, respectively. Figure 54 shows the summary of the Sawaga river hydrometry.

Figure 52. The location map of Sawaga HEC-HMS model used for calibration $\,$

5.1.3 Rating Curves and River Outflow

The river velocity and water level change were used for the calculation of discharge, one of the required data for HMS model calibration. Velocity was measured at Cabacungan bridge of Barangay Linabo, Malaybalay City using a mechanical flow meter while water level was obtained from an Automated Water Level Sensor (AWLS) installed in the bridge. Acquired data was during a localized rainfall event on May 31 to June 1, 2016 from 1600 to 1140 hours. Peak discharge is 24.48 m³/s on June 1 at 0030hours. Figure 54 illustrates river discharge as influenced by the rate of the rainfall.

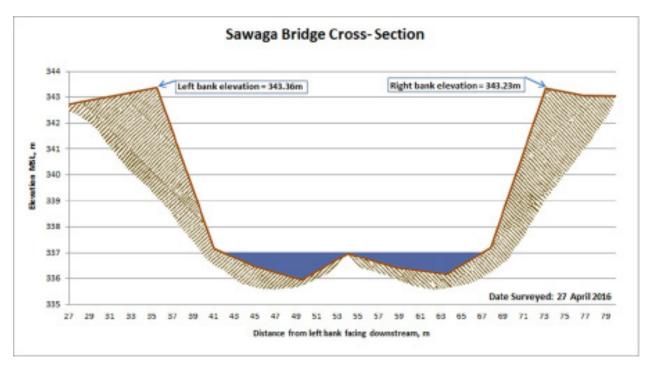


Figure 53. The cross-section plot of the Sawaga Bridge

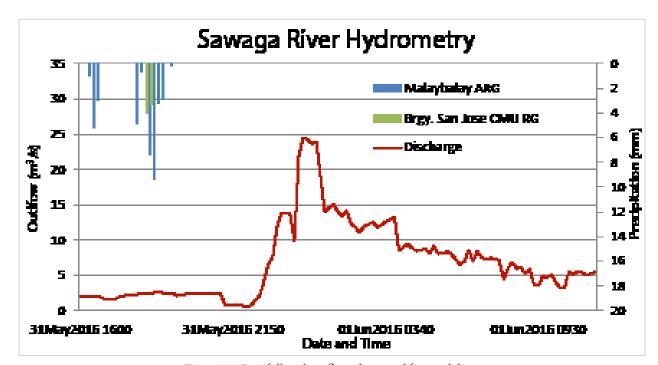


Figure 54. Rainfall and outflow data used for modeling.

Using the gathered stage and discharge data, a rating curve was developed to illustrate its relationship. Stage was determined by the tying up the water surface elevation and water level change measured using the AWLS. Meanwhile, discharge was calculated using the cross section area, stage, and river velocity measured using a mechanical flow meter. The relationship is expressed in the form of the equation below. For Cabacungan Bridge, the rating curve is expressed as Q = 42.706h2 - 71.741h + 30.34 as shown in Figure 55.

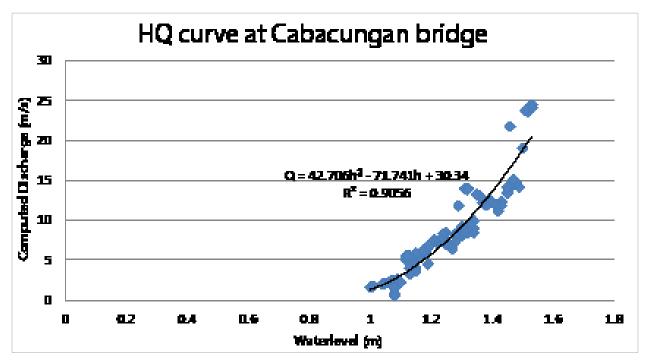


Figure 55. HQ Curve of HEC-HMS model.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Malaybalay Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Manupali watershed. The extreme values for this watershed were computed based on a 31-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION												
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs				
2	17.9	28.5	35.6	47.8	63.7	73.5	90.2	103.4	112.8				
5	26.7	45.3	57.9	78.4	100.8	114.3	130.2	143.2	153.6				
10	32.5	56.5	72.7	98.6	125.3	141.4	156.7	169.6	180.7				
15	35.8	62.8	81	110	139.1	156.6	171.6	184.4	195.9				
20	38.1	67.2	86.8	117.9	148.8	167.3	182.1	194.8	206.6				
25	39.9	70.6	91.3	124.1	156.3	175.5	190.1	202.8	214.8				
50	45.4	81	105.1	143	179.3	200.9	214.9	227.5	240.2				
100	50.8	91.4	118.8	161.8	202.2	226	239.5	252	265.3				

Table 31. RIDF values for Malaybalay Rain Gauge computed by PAGASA

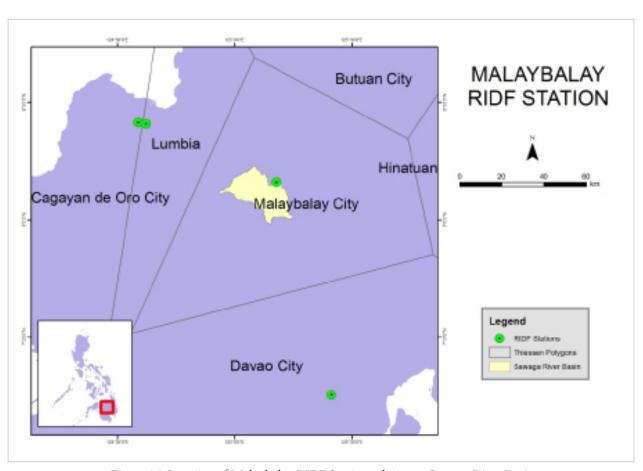


Figure 56. Location of Malaybalay RIDF Station relative to Sawaga River Basin

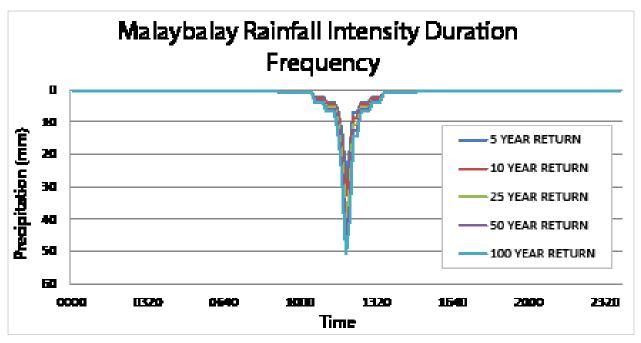


Figure 57. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil shapefile (dated pre-2004) was taken from the Bureau of Soils and Water Management under the Department of Agriculture. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Sawaga River Basin are shown in Figures 58 and 59, respectively.

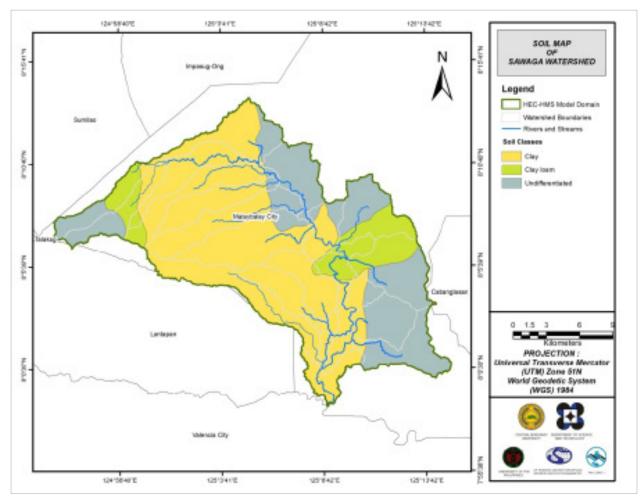


Figure 58. The soil map of the Sawaga River Basin

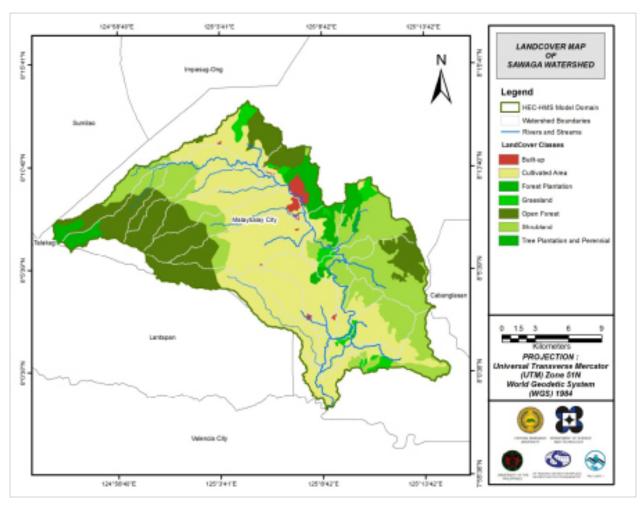


Figure 59. The land cover map of the Sawaga River Basin (Source: NAMRIA)

For Sawaga, three soil classes were identified. These are clay loam, clay, and undifferentiated soil. Moreover, seven land cover classes were identified. These are built-up, cultivated area, forest plantation, grassland, open forest, shrubland, and tree plantation and perennial.

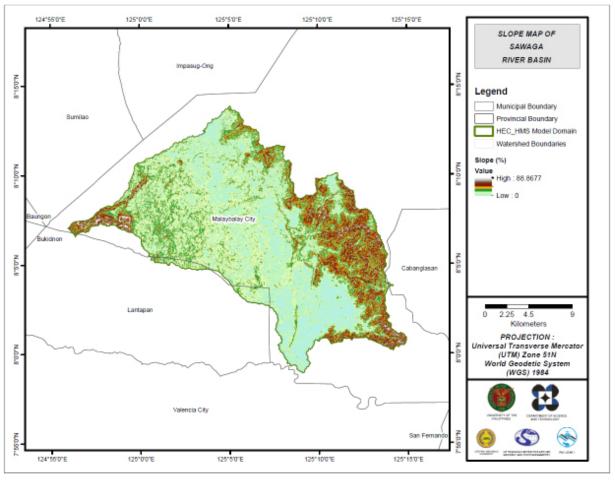


Figure 60. Slope Map of Sawaga River Basin

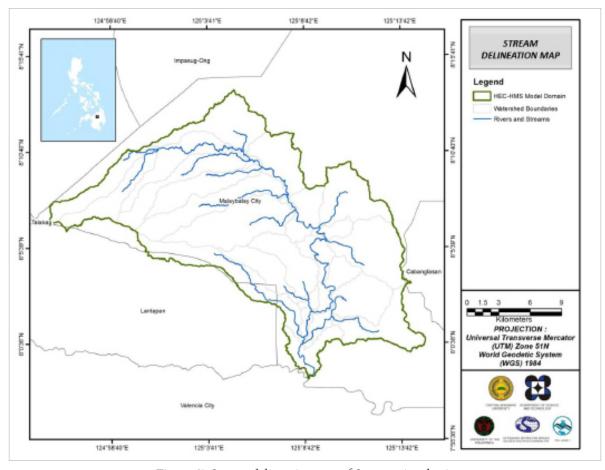


Figure 61. Stream delineation map of Sawaga river basin

Using ArcMap 10.1 with HEC-GeoHMS version 10.1 extension, the drainage system of Sawaga river was delineated using the river's centreline and SAR-DEM 10m resolution as primary input data. Delineated drainage system includes the basin boundary, subbasin and the stream networks. The river centreline was digitized starting from upstream towards downstream in Google Earth (2014).

Using the 10m SAR-DEM with default threshold area of 500 hectares, the delineated drainage system of Manupali Watershed generated twenty-six (26) sub-basins, thirteen (13) reaches and fourteen (14) junctions including the main outlet of the watershed (Figure 62).

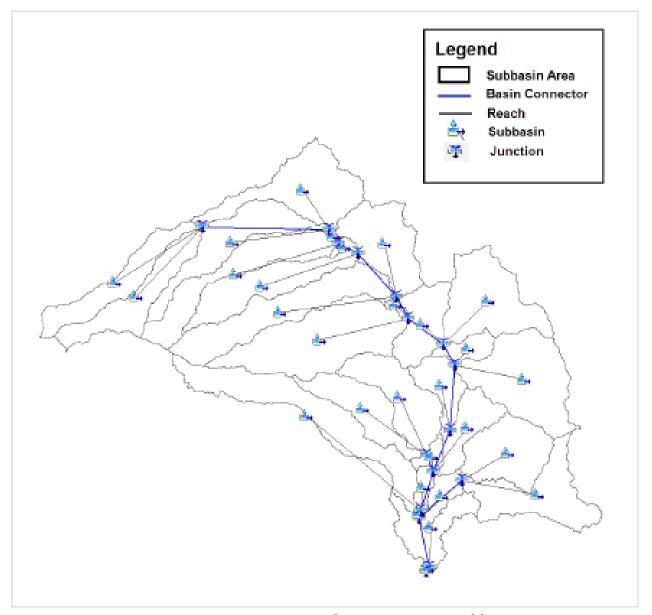


Figure 62. HEC-HMS generated Sawaga River Basin Model.

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

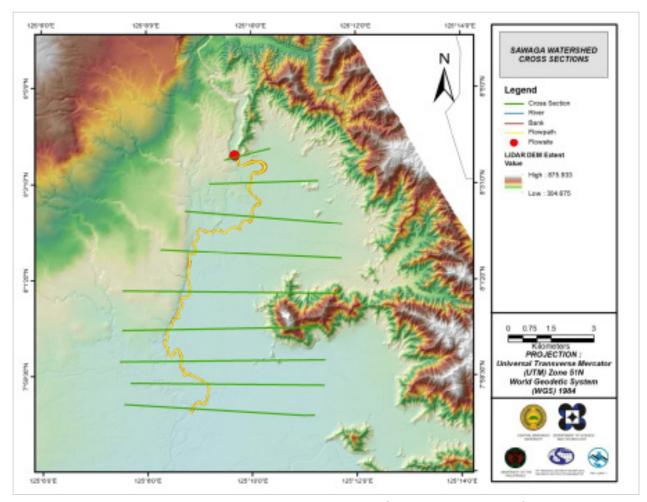


Figure 63. Sawaga River Cross-section generated using HEC GeoRAS tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northwest of the model to the southeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

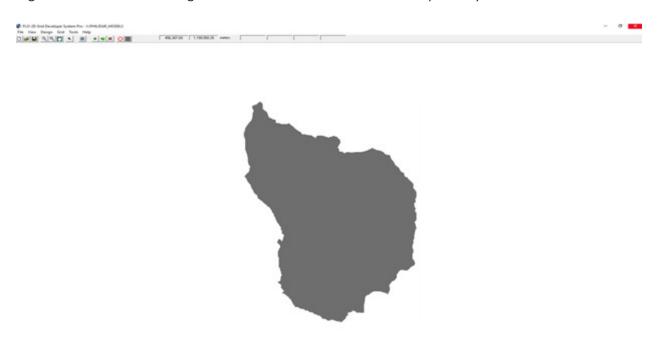


Figure 64. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 28.32373 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 30 871 500.00 m².

There is a total of 208 903 237.15 m³ of water entering the model. Of this amount, 11 957 813.56 m³ is due to rainfall while 196 945 423.58 m³ is inflow from other areas outside the model. 3 829 085.00 m³ of this water is lost to infiltration and interception, while 2 099 733.22 m³ is stored by the flood plain. The rest, amounting up to 202 974 422.96 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Sawaga HEC-HMS river basin model, its accuracy was measured against the observed values (see ANNEX 9: Sawaga Model Basin Parameters). Figure 64 shows the comparison between the two discharge data.

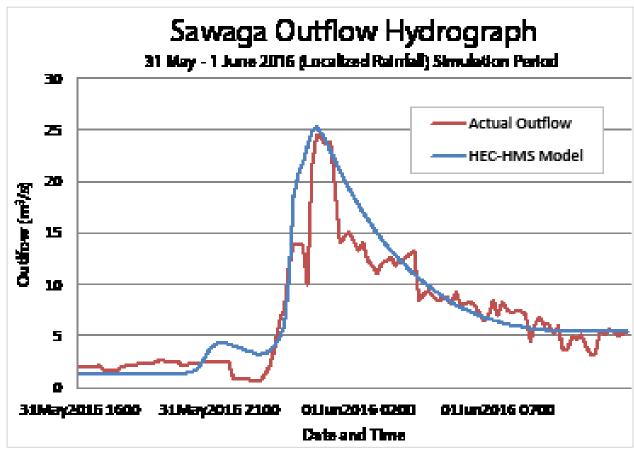


Figure 65. Outflow Hydrograph of Sawaga produced by the HEC-HMS model compared with observed outflow.

Table 32 shows adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Calculation Method **Parameter** Range of Calibrated **Element Values Type** Initial Abstraction (mm) 13 - 40 Loss SCS Curve number **Curve Number** 65 - 76 Time of Concentration (hr) 0.096 - 1Clark Unit Transform Basin Hydrograph Storage Coefficient (hr) 0.35 - 3.801 **Recession Constant** Baseflow Recession Ratio to Peak 0.15 Reach Routing Muskingum-Cunge Manning's Coefficient 0.0001 - 1

Table 32. Range of calibrated values for the Sawaga River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 13mm to 40mm signifies that there is minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 76 for curve number is less than the advisable range for Philippine watersheds (70 to 80) depending on the soil and land cover of the area (Horritt, personal communication, 2012). For Sawaga, the basin mostly consists of cultivated area and shrubland; the soil consists mostly of clay and undifferentiated soil.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.096 hours to 3.80 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events, while ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge. Ratio to peak of 0.15 indicates a steeper receding limb of the outflow hydrograph.

The basin was calibrated with Manning's roughness coefficient of 0.0001 - 1. The Manning's value corresponding to the land cover of Sawaga watershed is 0.04 for land cultivated with mature field crops (Brunner, 2010)

, , ,	0
Accuracy measure	Value
RMSE	2.4
r²	0.94
NSE	0.81
PBIAS	22.73
RSR	0.44

Table 33. Summary the Efficiency Test of the Sawaga HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 2.4 (m³/s).

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.94.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.81.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 22.73.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.44.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 65) shows the Sawaga River outflow using the Malaybalay Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

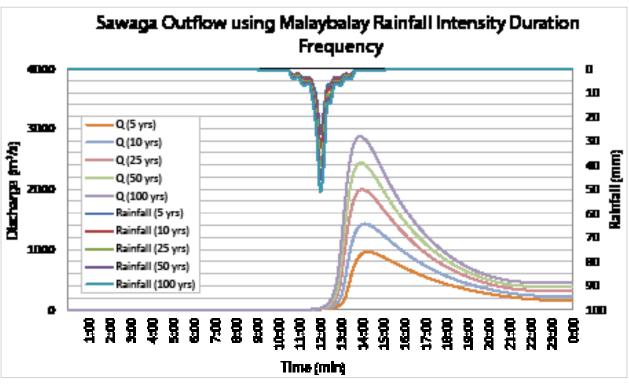


Figure 66. Outflow hydrograph at Sawaga Station generated using Malaybalay RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Sawaga discharge using the Malaybalay Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Figure 65.

Table 34 outlines the peak values of the Sawaga HEC-HMS Model outflow using the Malaybalay RIDF 24-hour values.

La	ble 34. Peak valu	les of the Sawaga	HEC-HMS Mod 24-hour value	del outflow using the Mala s	aybalay RIDF
	Total				

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m³/s)	Time to Peak	Lag Time
5-yr	153.6	26.7	959.7	2 hours, 20 mins	1 hour 10 minutes
10-yr	180.7	32.5	1422.4	2 hours, 10 mins	1 hour 10 minutes
25-yr	214.8	39.9	2001.8	2 hours	1 hour 10 minutes
50-yr	240.2	45.4	2432.4	2 hours	1 hour 10 minutes
100-yr	265.3	50.8	2869.5	1 hour, 50 mins	1 hour 10 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Sawaga River using the calibrated HMS base flow is shown in Figure 66.

Figure 67. Sample output of Sawaga RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 67 to Figure 72 shows the 5-, 25-, and 100-year rain return scenarios of the Manupali-Sawaga-Upper Pulangi floodplain. The floodplain, with an area of 732.86 sq. km., covers the municipalities of Lantapan, Maramag, Quezon, and San Fernando and the cities of Malaybalay and Valencia. Table 36 shows the percentage of area affected by flooding per municipality.

Table 35. Municipalities affected in Manupali-Sawaga-Upper Pulangi floodplain

Municipality	Total Area	Area Flooded	% Flooded
Lantapan	355.91	81.26	22.83%
Malaybalay City	1004.67	259.22	25.80%
Maramag	320.61	10.19	3.18%
Quezon	647.63	6.02	0.93%
San Fernando	605.87	0.49	0.08%
Valencia City	668.14	375.69	56.23%

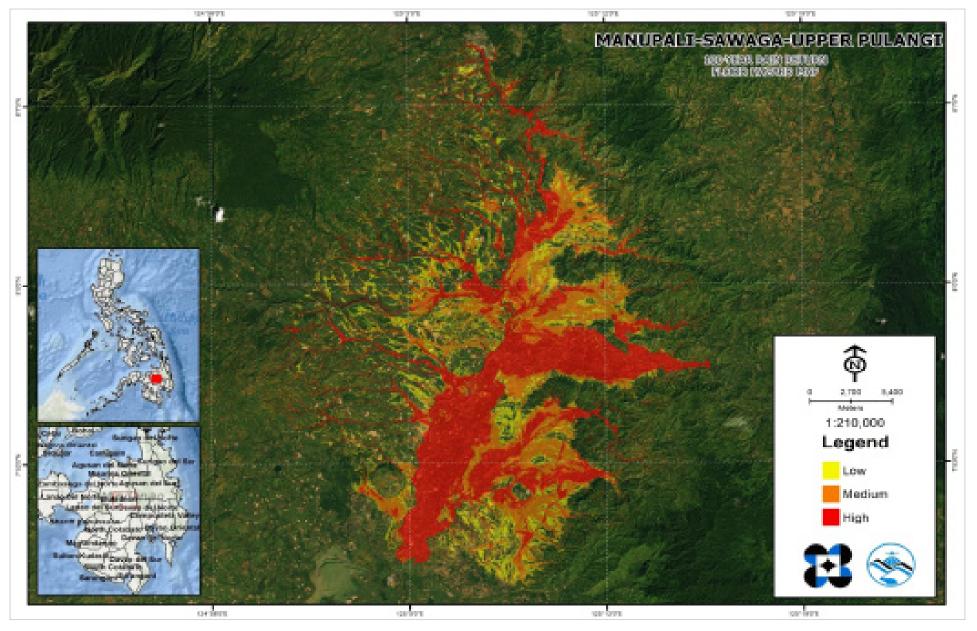


Figure 68. 100-year Flood Hazard Map for Manupali-Sawaga-Upper Pulangi Floodplain

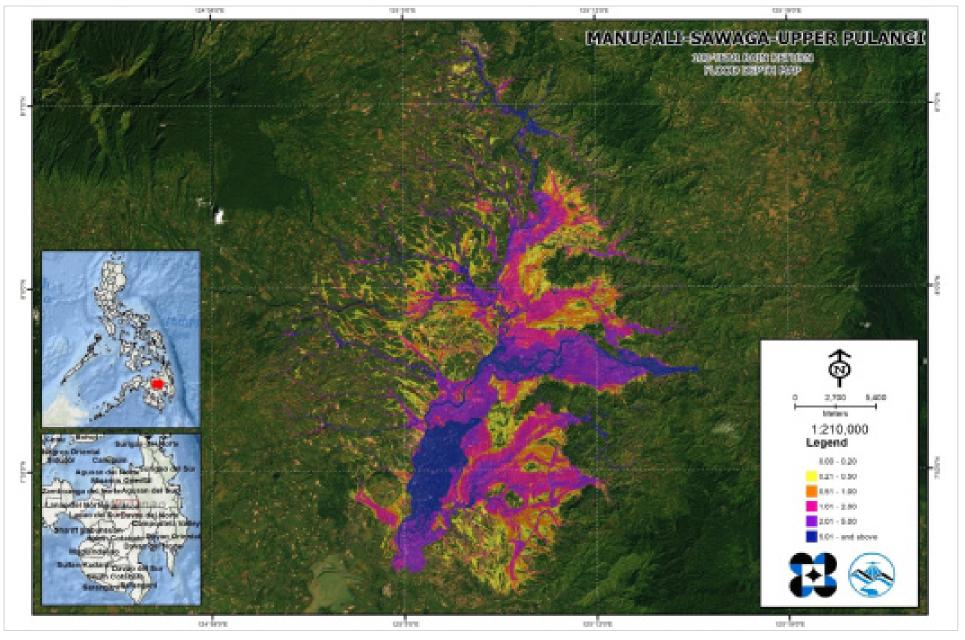


Figure 69. 100-year Flood Depth Map for Manupali-Sawaga-Upper Pulangi Floodplain

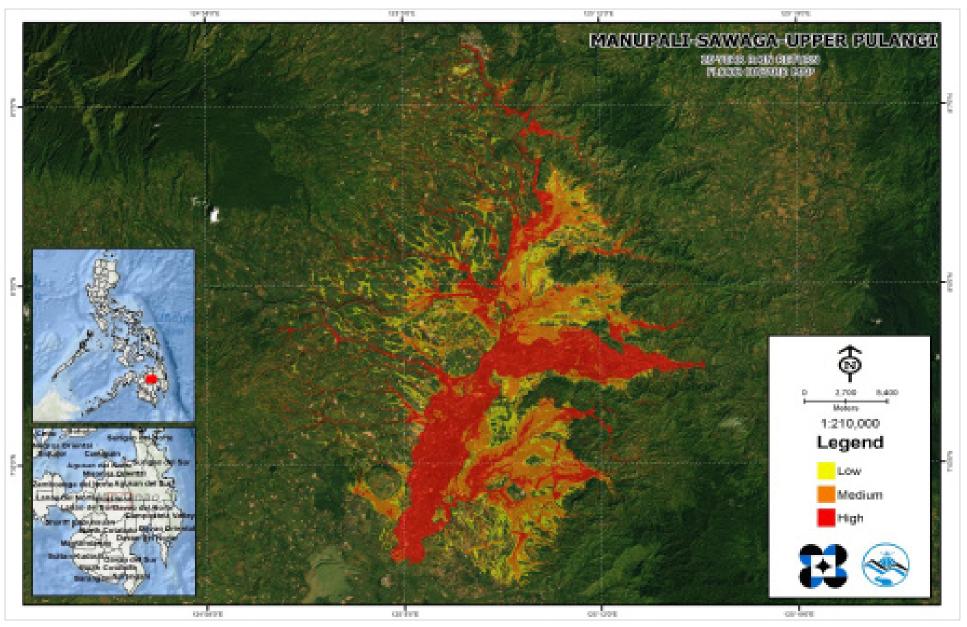


Figure 70. 25-year Flood Hazard Map for Manupali-Sawaga-Upper Pulangi Floodplain

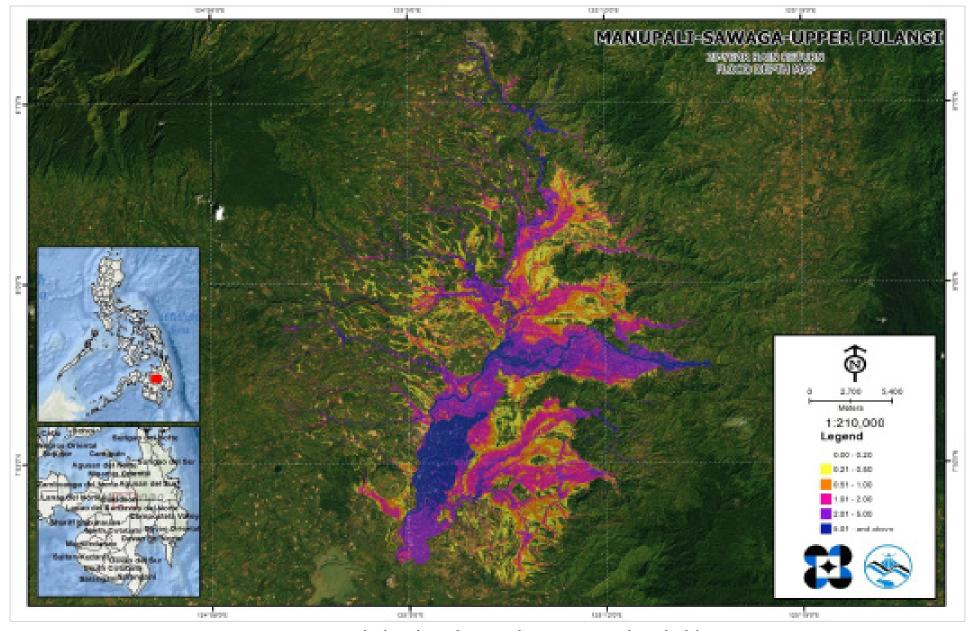


Figure 71. 25-year Flood Depth Map for Manupali-Sawaga-Upper Pulangi Floodplain

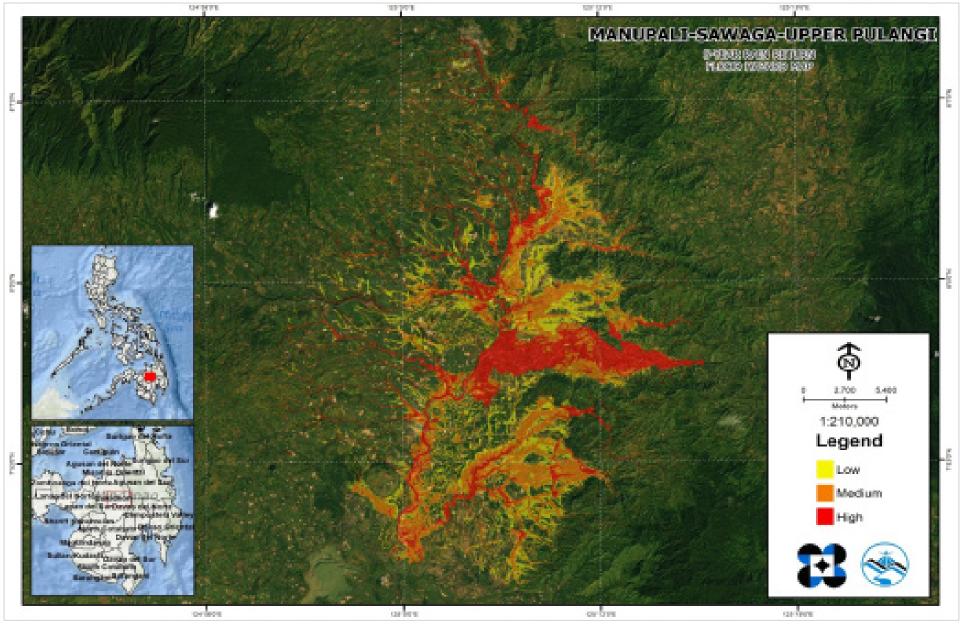


Figure 72. 5-year Flood Hazard Map for Manupali-Sawaga-Upper Pulangi Floodplain

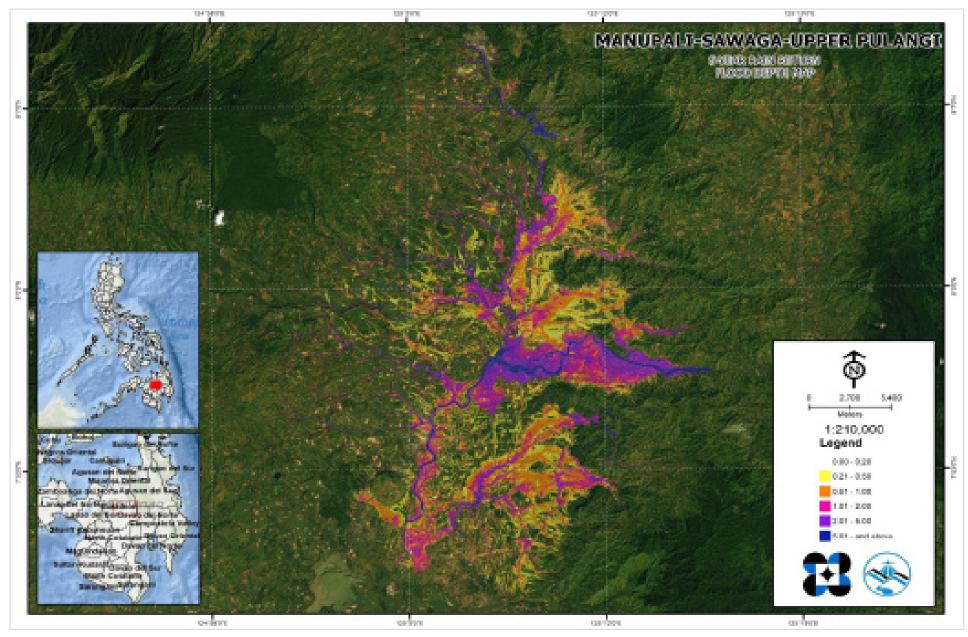


Figure 73. 5-year Flood Depth Map for Manupali-Sawaga-Upper Pulangi Floodplain

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Manupali-Sawaga-Upper Pulangi Floodplain, grouped by municipality, are listed below. For the said floodplain, five municipalities consisting of 66 barangays are expected to experience flooding when subjected to 5-, 25-, and 100-yr rainfall return period.

For the 5-year return period, 22.41% of the municipality of Lantapan with an area of 290.82 sq. km. will experience flood levels of less than 0.20 meters. 2.04% of the area will experience flood levels of 0.21 to 0.50 meters while 1.03%, 0.77%, 0.60%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected area	Area of affected barangays in Lantapan (in sq. km)										
(sq. km.) by flood depth (in m.)	Balila	Bantuanon	Bugcaon	Capitan Juan	Kulasihan	Poblacion					
0.03-0.20	0.064	24.75	12.6	6.14	13.03	8.58					
0.21-0.50	0	2.3	0.9	0.33	1.84	0.56					
0.51-1.00	0	1.28	0.38	0.2	0.85	0.29					
1.01-2.00	0	0.78	0.49	0.056	0.8	0.12					
2.01-5.00	0	0.71	0.51	0.0047	0.49	0.018					
> 5.00	0	0.046	0.062	0.0041	0.1	0					

Table 36. Affected Areas in Lantapan, Bukidnon during 5-Year Rainfall Return Period

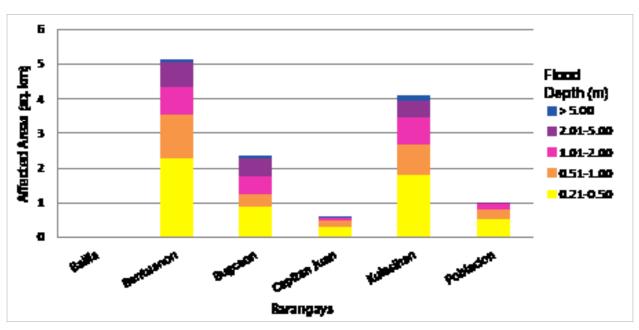


Figure 74. Affected Areas in Lantapan, Bukidnon during 5-Year Rainfall Return Period

For the 5-year return period, 17.48% of the municipality of Malaybalay City with an area of 1115.98 sq. km. will experience flood levels of less than 0.20 meters. 2.17% of the area will experience flood levels of 0.21 to 0.50 meters while 1.80%, 1.26%, 0.95%, and 0.29% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected area	Area of affected barangays in Malaybalay City (in sq. km)									
(sq. km.) by flood depth (in m.)	Aglayan	Apo Macote	Bangcud	Barangay 1	Barangay 2	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Barangay 7
0.03-0.20	11.63	4.77	3.45	2.25	0.48	0.28	0.33	0.34	3.06	0.68
0.21-0.50	0.56	0.16	0.78	0.071	0.022	0.014	0.018	0.013	0.077	0.058
0.51-1.00	0.39	0.084	0.32	0.055	0.0068	0.012	0.011	0.0059	0.049	0.012
1.01-2.00	0.35	0.068	0.72	0.058	0.014	0.0081	0.01	0.011	0.041	0.0077
2.01-5.00	0.16	0.087	1.1	0.076	0.058	0.0049	0.028	0.032	0.041	0.02
> 5.00	0.01	0.0079	0.21	0.031	0.061	0	0.005	0.02	0.04	0.0025

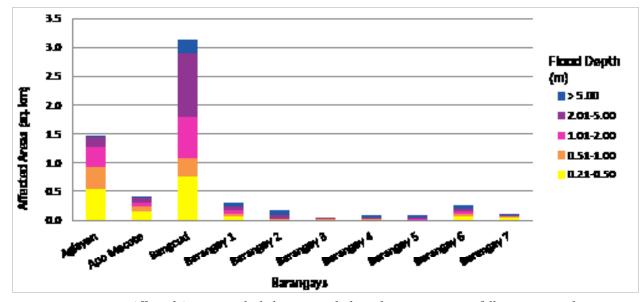


Figure 75. Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period

Table 38. Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period

Affected area	Area of affected barangays in Malaybalay City (in sq. km)									
(sq. km.) by flood depth (in m.)	Barangay 8	Barangay 9	Barangay 10	Barangay 11	Cabangahan	Canayan	Casisang	Laguitas	Linabo	Magsaysay
0.03-0.20	0.33	4.2	6.64	0.45	4.43	1.06	27.29	25.1	5.29	2
0.21-0.50	0.016	0.2	0.43	0.012	0.72	0.024	1.26	1.15	0.45	0.11
0.51-1.00	0.01	0.18	0.18	0.0081	0.37	0.018	0.86	0.73	0.22	0.055
1.01-2.00	0.0079	0.17	0.19	0.0029	0.23	0.012	0.89	0.73	0.27	0.021
2.01-5.00	0.01	0.058	0.1	0.000021	0.18	0.01	0.69	0.62	0.31	0.0043
> 5.00	0.028	0.066	0.0081	0	0.0011	0.0012	0.63	0.31	0.083	0

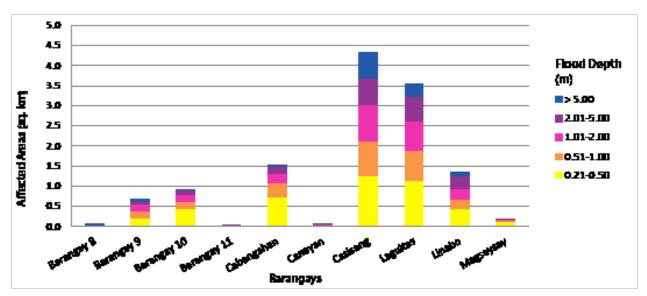


Figure 76. Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period

Table 39. Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period

Affected area	Area of affected barangays in Malaybalay City (in sq. km)									
(sq. km.) by flood depth (in m.)	Maligaya	Managok	Miglamin	San Jose	San Martin	Santo Niño	Simaya	Sinanglanan	Sumpong	Violeta
0.03-0.20	11.93	13.94	1.44	12.92	21.39	5.89	12.46	6.02	0.36	4.66
0.21-0.50	0.43	3.7	0.022	0.71	0.77	4.42	5.6	0.67	0.011	1.73
0.51-1.00	0.32	3.62	0.012	0.37	0.49	3.68	5.14	1.12	0.0051	1.72
1.01-2.00	0.36	2.9	0.01	0.24	0.38	2.19	2.08	1.11	0.0085	0.99
2.01-5.00	0.15	1.92	0.0093	0.2	0.23	2.47	0.98	0.39	0.01	0.68
> 5.00	0.0011	0.17	0.0002	0.66	0.0084	0.57	0.17	0	0.021	0.17

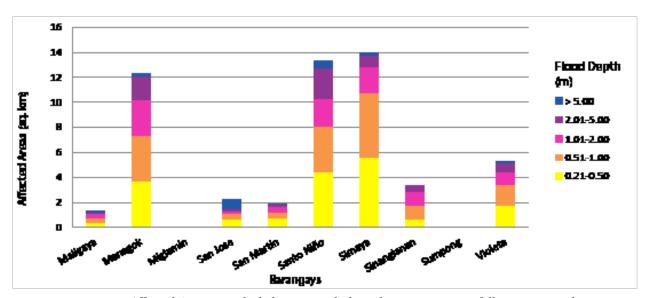


Figure 77. Affected Areas in Malaybalay City, Bukidnon during 5-Year Rainfall Return Period

For the 5-year return period, 3.20% of the municipality of Maramag with an area of 323.88 sq. km. will experience flood levels of less than 0.20 meters. 0.67% of the area will experience flood levels of 0.21 to 0.50 meters while 0.67%, 0.34%, 0.07%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 40. Affected Areas in Maramag, Bukidnon during 5-Year Rainfall Return Period

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Maramag (in sq. km) Dologon
0.03-0.20	10.38
0.21-0.50	2.18
0.51-1.00	2.18
1.01-2.00	1.09
2.01-5.00	0.23
> 5.00	0.18

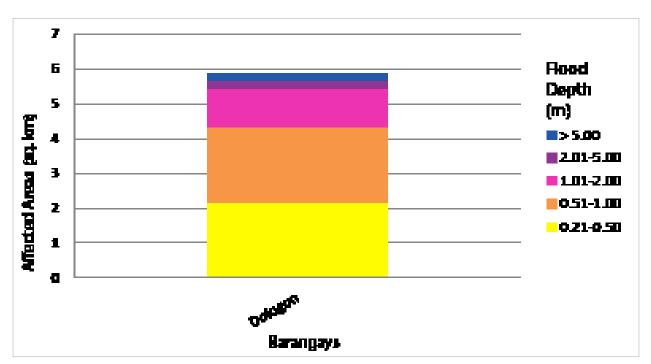


Figure 78. Affected Areas in Lantapan, Bukidnon during 5-Year Rainfall Return Period

For the 5-year return period, 0.60% of the municipality of Quezon with an area of 641.25 sq. km. will experience flood levels of less than 0.20 meters. 0.06% of the area will experience flood levels of 0.21 to 0.50 meters while 0.08%, 0.12%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 41. Affected Areas in (Duezon Bukidnon	during 5-Year	Rainfall Return Period

Affected area (sq. km.) by flood depth	Area of affected barangays in Quezon (in sq. km) Paitan					
(in m.)						
0.03-0.20	3.84					
0.21-0.50	0.4					
0.51-1.00	0.52					
1.01-2.00	0.77					
2.01-5.00	0.072					
> 5.00	0					

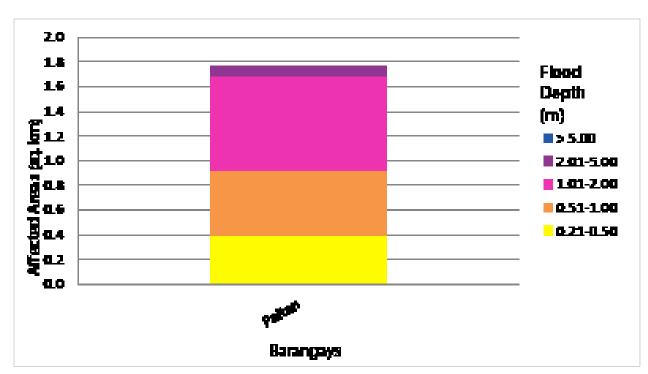


Figure 79. Affected Areas in Quezon, Bukidnon during 5-Year Rainfall Return Period

For the 5-year return period, 32.07% of the municipality of Valencia City with an area of 726.07 sq. km. will experience flood levels of less than 0.20 meters. 5.30% of the area will experience flood levels of 0.21 to 0.50 meters while 4.69%, 3.81%, 3.45%, and 1.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 42. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period
--

Affected area	Area of affected barangays in Valencia City (in sq. km)									
(sq. km.) by flood depth (in m.)	Bagontaas	Banlag	Barobo	Batangan	Catumbalon	Colonia	Concepcion	Dagat- Kidavao	Kahapunan	Laligan
0.03-0.20	20.71	14.12	12.48	5.92	2.96	0.85	10.22	21.25	1.28	5.34
0.21-0.50	3.59	3.09	0.46	1.94	1.55	0.67	0.28	4.94	0.2	2.82
0.51-1.00	1.92	3.09	0.37	0.94	2.36	0.59	0.18	2.47	0.34	5.9
1.01-2.00	1.28	1.5	0.33	0.43	3.22	0.5	0.15	0.93	1.03	2.38
2.01-5.00	1.21	0.34	0.21	0.24	0.5	0.31	0.19	0.2	1.72	0.71
> 5.00	0.19	0.0019	0.009	0.03	0.34	0.056	0.14	0.0003	0.023	0.018

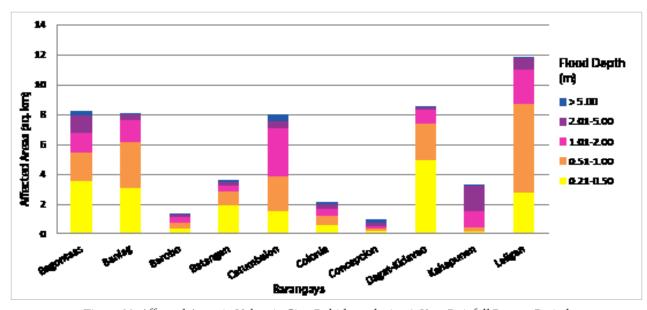


Figure 80. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period

Table 43. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period

Affected area									
(sq. km.) by flood depth (in m.)	Lumbayao	Lumbo	Lurogan	Maapag	Mabuhay	Mailag	Mt. Nebo	Nabago	Pinatilan
0.03-0.20	3.84	24.07	20.83	3.12	8.01	5.41	3.43	0.99	3.58
0.21-0.50	0.14	1.54	0.85	1.48	1.17	1.47	0.17	1.11	1.22
0.51-1.00	0.099	1.03	0.46	1.34	0.51	0.87	0.086	1.02	1.01
1.01-2.00	0.069	1.08	0.4	0.8	0.44	0.46	0.039	1.53	0.77
2.01-5.00	0.19	0.67	0.35	0.5	0.53	0.5	0.0064	4.42	0.12
> 5.00	0.55	0.31	0.02	0.13	0.12	0.44	0	1.58	0.18

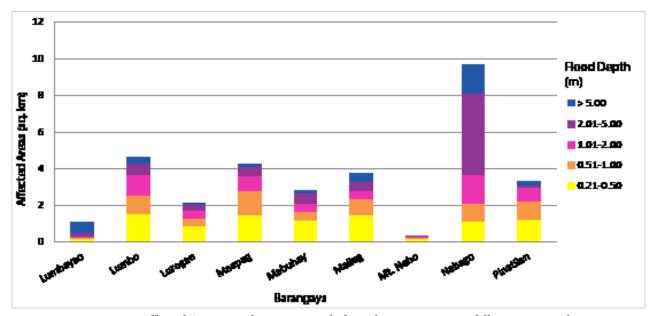


Figure 81. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period

Table 44. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period

Affected area	Area of affected barangays in Valencia City (in sq. km)									
(sq. km.) by flood depth (in m.)	Poblacion	San Carlos	San Isidro	Sinabuagan	Sinayawan	Sugod	Tongantongan	Tugaya	Vintar	
0.03-0.20	0.24	20.79	0.057	13.67	3.09	3.56	11.29	1.99	9.78	
0.21-0.50	0.12	1.53	0.11	1.03	1.77	0.57	2.97	0.1	1.56	
0.51-1.00	0.2	0.63	0.41	0.91	2.42	0.75	2.75	0.059	1.35	
1.01-2.00	0.31	0.42	2.24	1.6	1.6	1.2	0.96	0.014	1.95	
2.01-5.00	0.23	0.43	2.62	3.55	1.2	1.55	0.9	0.0001	1.66	
> 5.00	0.15	0.091	0.37	0.93	0.12	0.7	0.11	0	0.66	

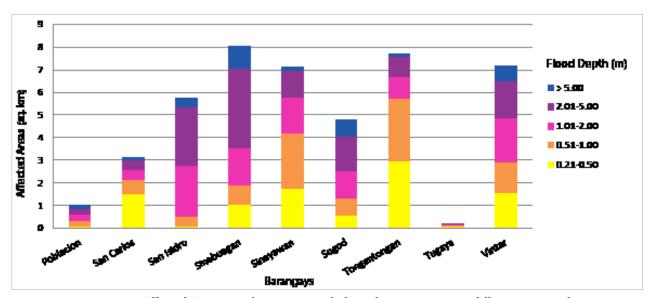


Figure 82. Affected Areas in Valencia City, Bukidnon during 5-Year Rainfall Return Period

For the 25-year return period, 20.82% of the municipality of Lantapan with an area of 290.82 sq. km. will experience flood levels of less than 0.20 meters. 2.47% of the area will experience flood levels of 0.21 to 0.50 meters while 1.42%, 0.99%, 1.01%, and 0.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 45. Affected	Areas in Lantanan	Rukidnon duri	ng 25-Vear	Rainfall Return	Period
Table 40. Affected	Areas in Lantaban	. bukianon auri	ng zo-rear	Raimian Return	Perioa

Affected area	Area of affected barangays in Lantapan (in sq. km)								
(sq. km.) by flood depth (in m.)	Balila	Bantuanon	Bugcaon	Capitan Juan	Kulasihan	Poblacion			
0.03-0.20	0.064	23.12	11.67	6	11.53	8.16			
0.21-0.50	0	2.69	1.19	0.34	2.17	0.78			
0.51-1.00	0	1.67	0.53	0.25	1.32	0.35			
1.01-2.00	0	1.15	0.52	0.12	0.87	0.23			
2.01-5.00	0	1.02	0.84	0.022	0.99	0.054			
> 5.00	0	0.23	0.2	0.0041	0.24	0.00063			

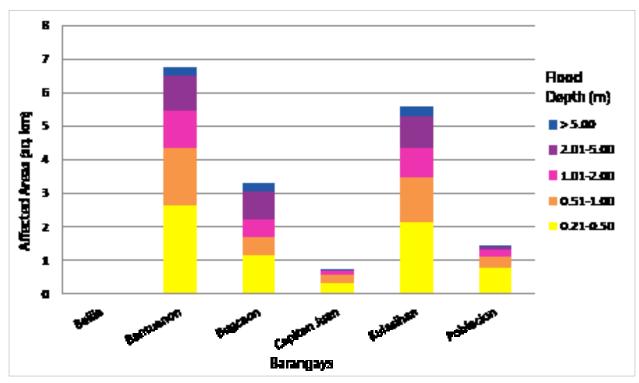


Figure 83. Affected Areas in Lantapan, Bukidnon during 25-Year Rainfall Return Period

For the 25-year return period, 3.37% of the municipality of Malaybalay City with an area of 1115.98 sq. km. will experience flood levels of less than 0.20 meters. 0.42% of the area will experience flood levels of 0.21 to 0.50 meters while 0.36%, 0.35%, 0.69%, and 0.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 46. Affected Areas in Malaybalay City, Bukidnon during 25-Year Rainfall Return Period

Affected area					Area of aff	ea of affected barangays in Malaybalay City (in sq. km)							
(sq. km.) by flood depth (in m.)	Aglayan	Apo Macote	Bangcud	Cabangahan	Casisang	Laguitas	Linabo	Magsaysay	San Jose	San Martin	Santo Niño	Simaya	Sinanglanan
0.03-0.20	10.37	4.65	1.97	1.76	2.05	0.9	0.0028	1.96	1.75	0.8	3.59	0.1	5.69
0.21-0.50	0.64	0.21	0.73	0.38	0.13	0.079	0	0.12	0.1	0.033	1.58	0.0071	0.52
0.51-1.00	0.4	0.11	0.28	0.17	0.09	0.045	0	0.07	0.079	0.017	1.9	0.0046	0.73
1.01-2.00	0.36	0.073	0.18	0.078	0.068	0.044	0	0.033	0.056	0.014	1.5	0.0098	1.47
2.01-5.00	0.26	0.1	1.01	0.12	0.02	0.035	0.31	0.0098	0.0055	0.011	2.29	0.0058	0.87
> 5.00	0.031	0.043	0.33	0.018	0.63	0.0027	0.083	0	0.00000031	0.0084	0.7	0.17	0.0059

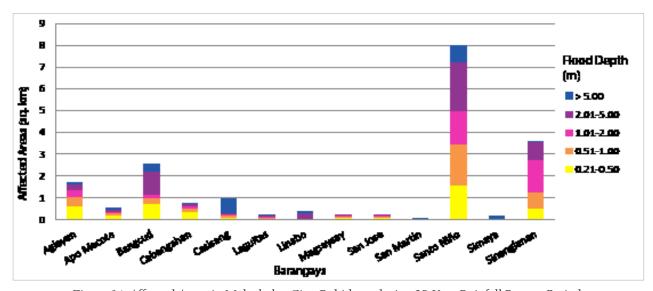


Figure 84. Affected Areas in Malaybalay City, Bukidnon during 25-Year Rainfall Return Period

For the 25-year return period, 2.61% of the municipality of Maramag with an area of 323.88 sq. km. will experience flood levels of less than 0.20 meters. 0.59% of the area will experience flood levels of 0.21 to 0.50 meters while 0.54%, 0.64%, 0.42%, and 0.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 47. Affected Areas in Maramag, Bukidnon during 25-Year Rainfall Return Period

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Maramag (in sq. km) Dologon
0.03-0.20	8.45
0.21-0.50	1.92
0.51-1.00	1.75
1.01-2.00	2.06
2.01-5.00	1.35
> 5.00	0.71

Figure 85. Affected Areas in Lantapan, Bukidnon during 25-Year Rainfall Return Period

For the 25-year return period, 0.53% of the municipality of Quezon with an area of 641.25 sq. km. will experience flood levels of less than 0.20 meters. 0.06% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03%, 0.05%, 0.20%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 48. Affected Areas in (Duezon, Bukidnon	during 25-Year I	Rainfall Return Period

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Quezon (in sq. km)
0.03-0.20	3.39
0.03-0.20	3.33
0.21-0.50	0.38
0.51-1.00	0.17
1.01-2.00	0.35
2.01-5.00	1.27
> 5.00	0.037

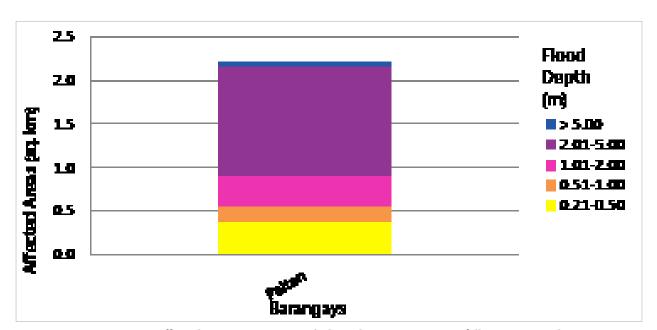


Figure 86. Affected Areas in Quezon, Bukidnon during 25-Year Rainfall Return Period

For the 25-year return period, 26.33% of the municipality of Valencia City with an area of 726.07 sq. km. will experience flood levels of less than 0.20 meters. 4.59% of the area will experience flood levels of 0.21 to 0.50 meters while 4.29%, 5.25%, 5.86%, and 3.85% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 49. Affected Areas in	Valencia Citv. Bukidn	on during 25-Year F	Rainfall Return Period

Affected area	Area of affected barangays in Valencia City (in sq. km)										
(sq. km.) by flood depth (in m.)	Bagontaas	Banlag	Barobo	Batangan	Catumbalon	Colonia	Concepcion	Dagat- Kidavao	Kahapunan	Laligan	
0.03-0.20	17.5	12.64	12.13	0.37	0.34	0.27	9.99	17.54	0.53	4.1	
0.21-0.50	4.57	2.24	0.49	0.44	0.18	0.22	0.32	6.12	0.44	1.71	
0.51-1.00	2.48	3.3	0.38	0.7	0.22	0.49	0.21	4.05	0.34	4.12	
1.01-2.00	1.78	3.26	0.4	2.14	0.22	0.72	0.18	1.66	0.93	5.95	
2.01-5.00	1.97	0.7	0.4	3.03	5.12	0.27	0.22	0.41	2.25	1.24	
> 5.00	0.59	0.0051	0.059	2.81	4.84	0.021	0.24	0.0005	0.11	0.033	

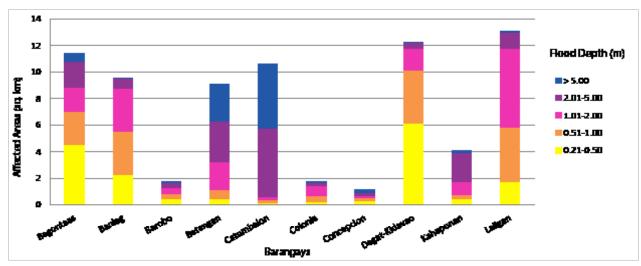


Figure 87. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period

Table 50. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period

Affected area	Area of affected barangays in Valencia City (in sq. km)										
(sq. km.) by flood depth (in m.)	Lumbayao	Lumbo	Lurogan	Maapag	Mabuhay	Mailag	Mt. Nebo	Nabago	Pinatilan		
0.03-0.20	3.7	22.7	19.95	0.49	6	3.93	3.19	0.011	0.0012		
0.21-0.50	0.15	1.77	1.12	0.5	2.01	1.64	0.2	0.076	0.0078		
0.51-1.00	0.12	1.08	0.52	1.07	1.15	1.27	0.11	0.93	0.12		
1.01-2.00	0.081	0.67	0.44	2.42	0.77	1.09	0.11	2.13	0.25		
2.01-5.00	0.13	0.75	0.64	1.46	0.68	0.66	0.13	5.01	0.38		
> 5.00	0.72	1.73	0.23	1.45	0.18	0.58	0.0001	2.51	6.12		

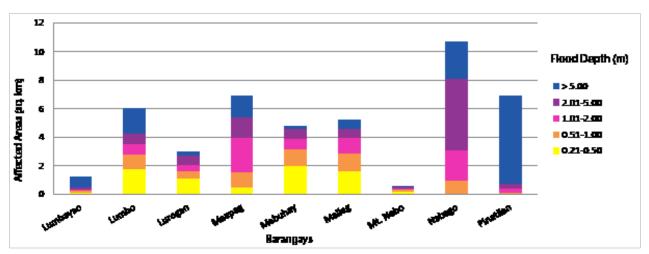


Figure 88. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period

Table 51. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period

Affected area	Area of affected barangays in Valencia City (in sq. km)									
(sq. km.) by flood depth (in m.)	Poblacion	San Carlos	San Isidro	Sinabuagan	Sinayawan	Sugod	Tongantongan	Tugaya	Vintar	
0.03-0.20	0.092	19.37	0.019	13	1.27	2.65	9.5	1.92	7.97	
0.21-0.50	0.068	2.1	0.024	1.04	0.8	0.31	3.05	0.097	1.65	
0.51-1.00	0.087	0.93	0.1	0.73	1.99	0.35	2.51	0.078	1.74	
1.01-2.00	0.22	0.6	0.93	1.2	3.93	1.33	2.57	0.049	2.12	
2.01-5.00	0.22	0.53	4.14	3.88	1.99	2.78	1.13	0.014	2.45	
> 5.00	0.56	0.36	0.58	1.85	0.23	0.91	0.22	0	1.02	

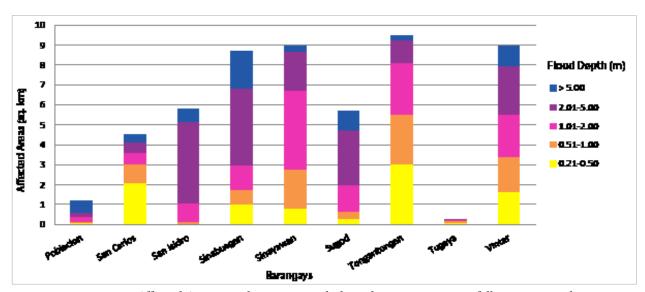


Figure 89. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period

For the 100-year return period, 0.02% of the municipality of Lantapan with an area of 290.82 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 52. Affected Areas in Lantapan, Bukidnon during 100-Year Rainfall Return Period

Affected area (sq. km.) by	Area of affected barangays in Lantapan (in sq. km)
flood depth (in m.)	Bantuanon
0.03-0.20	0.056
0.21-0.50	0.001
0.51-1.00	0.001
1.01-2.00	0.002
2.01-5.00	0.0053
> 5.00	0.012

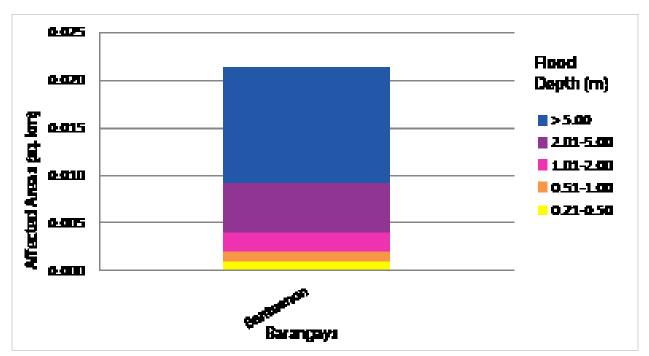


Figure 90. Affected Areas in Lantapan, Bukidnon during 100-Year Rainfall Return Period

For the 100-year return period, 0.15% of the municipality of Malaybalay City with an area of 1115.98 sq. km. will experience flood levels of less than 0.20 meters. 0.10% of the area will experience flood levels of 0.21 to 0.50 meters while 0.20%, 0.15%, 0.13%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 53. Affected Areas in Malaybalay City, Bukidnon during 100-Year Rainfall Return Period

Affected area	Area of affected barangays in Malaybalay City (in sq. km)						
(sq. km.) by flood depth (in m.)	Apo Macote	Santo Niño					
0.03-0.20	0	1.71					
0.21-0.50	0	1.1					
0.51-1.00	0	2.18					
1.01-2.00	0	1.67					
2.01-5.00	0	1.48					
> 5.00	0.0011	0.69					

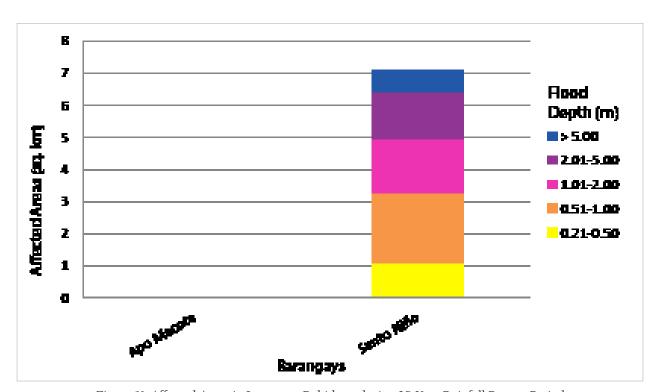


Figure 91. Affected Areas in Lantapan, Bukidnon during 25-Year Rainfall Return Period

For the 100-year return period, 2.38% of the municipality of Maramag with an area of 323.88 sq. km. will experience flood levels of less than 0.20 meters. 0.61% of the area will experience flood levels of 0.21 to 0.50 meters while 0.53%, 0.78%, 0.43%, and 0.28% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 54. Affected Areas in Maramag, Bukidnon during 100-Year Rainfall Return Period

Affected area (sq. km.) by	Area of affected barangays in Maramag (in sq. km)
flood depth (in m.)	Dologon
0.03-0.20	7.71
0.21-0.50	1.97
0.51-1.00	1.73
1.01-2.00	2.53
2.01-5.00	1.38
> 5.00	0.92

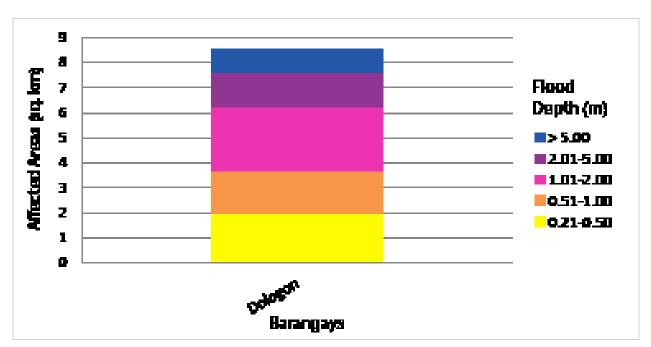


Figure 92. Affected Areas in Maramag, Bukidnon during 100-Year Rainfall Return Period

For the 100-year return period, 0.49% of the municipality of Quezon with an area of 641.25 sq. km. will experience flood levels of less than 0.20 meters. 0.08% of the area will experience flood levels of 0.21 to 0.50 meters while 0.02%, 0.05%, 0.22%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 55. Affected Areas in Quezon, Bukidnon during 100-Year Rainfall Return Period

Affected area (sq. km.) by	Area of affected barangays in Quezon (in sq. km)
flood depth (in m.)	Paitan
0.03-0.20	3.17
0.21-0.50	0.54
0.51-1.00	0.16
1.01-2.00	0.29
2.01-5.00	1.4
> 5.00	0.038

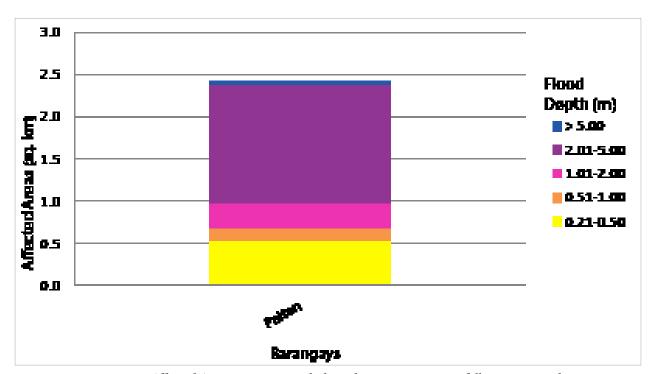


Figure 93. Affected Areas in Quezon, Bukidnon during 100-Year Rainfall Return Period

For the 100-year return period, 23.11% of the municipality of Valencia City with an area of 726.07 sq. km. will experience flood levels of less than 0.20 meters. 4.54% of the area will experience flood levels of 0.21 to 0.50 meters while 3.78%, 5.55%, 6.57%, and 4.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected area		Area of affected barangays in Valencia City (in sq. km)											
(sq. km.) by flood depth (in m.)	Bagontaas	Banlag	Barobo	Batangan	Catumbalon	Colonia	Concepcion	Dagat- Kidavao	Kahapunan	Laligan	Santo Niño	Simaya	Sinanglanan
0.03-0.20	14.56	11.91	11.9	0.26	0.21	0.22	9.83	15.26	0.23	3.53	3.59	0.1	5.69
0.21-0.50	4.64	1.97	0.53	0.36	0.12	0.085	0.36	6.81	0.3	1.3	1.58	0.0071	0.52
0.51-1.00	2.19	2.85	0.4	0.24	0.25	0.15	0.22	4.7	0.59	3.06	1.9	0.0046	0.73
1.01-2.00	1.65	3.87	0.43	1.75	0.25	0.16	0.19	2.42	0.86	7.04	1.5	0.0098	1.47
2.01-5.00	2.1	1.53	0.5	4.05	4.1	0.046	0.25	0.59	2.41	2.17	2.29	0.0058	0.87
> 5.00	0.83	0.013	0.12	2.84	5.98	0.021	0.31	0.0013	0.22	0.05	0.7	0.17	0.0059

Figure 94. Affected Areas in Valencia City, Bukidnon during 100-Year Rainfall Return Period

Table 57. Affected Areas in Valencia City, Bukidnon during 100-Year Rainfall Return Period

Affected area	Area of affected barangays in Valencia City (in sq. km)										
(sq. km.) by flood depth (in m.)	Lumbayao	Lumbo	Lurogan	Maapag	Mabuhay	Mailag	Mt. Nebo	Nabago	Pinatilan		
0.03-0.20	0.59	21.92	16.13	0.15	4.55	3.74	2.13	0.0038	0		
0.21-0.50	0.013	2	1.04	0.19	2.61	1.9	0.15	0.0089	0.00037		
0.51-1.00	0.0044	1.21	0.55	0.74	1.29	1.45	0.09	0.27	0.0021		
1.01-2.00	0.0016	0.82	0.4	2.62	1.27	0.85	0.082	2.68	0.28		
2.01-5.00	0.0035	0.91	0.52	1.96	0.82	0.56	0.13	4.62	0.25		
> 5.00	0.0009	1.85	0.3	1.72	0.22	0.61	0.0038	3.08	6.35		

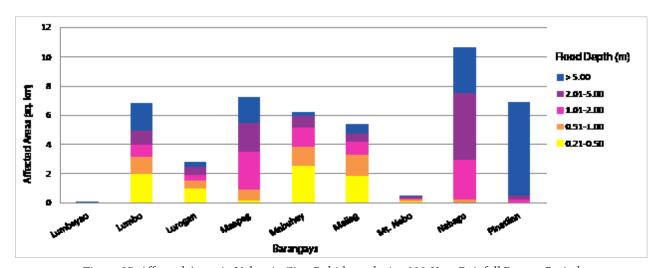


Figure 95. Affected Areas in Valencia City, Bukidnon during 100-Year Rainfall Return Period

Table 58. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period

Affected area	Area of affected barangays in Valencia City (in sq. km)									
(sq. km.) by flood depth (in m.)	Poblacion	San Carlos	San Isidro	Sinabuagan	Sinayawan	Sugod	Tongantongan	Tugaya	Vintar	
0.03-0.20	0.059	17.5	0.01	11.93	0.79	2.47	8.73	1.9	7.3	
0.21-0.50	0.04	2.3	0.013	1.02	0.48	0.4	2.82	0.096	1.39	
0.51-1.00	0.086	1.07	0.043	0.72	0.88	0.22	2.54	0.083	1.55	
1.01-2.00	0.19	0.7	0.43	0.77	4.25	1.11	3.25	0.061	1.94	
2.01-5.00	0.3	0.61	4.46	3.46	3.49	3.12	1.28	0.026	3.46	
> 5.00	0.57	0.44	0.77	1.33	0.31	1.01	0.37	0.0001	1.31	

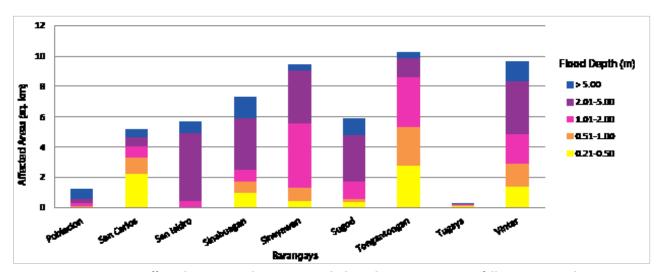


Figure 96. Affected Areas in Valencia City, Bukidnon during 25-Year Rainfall Return Period

Among the barangays in the municipality of Lantapan in Bukidnon, Bantuanon is projected to have the highest percentage of area that will experience flood levels at 10.27%. Meanwhile, Kulasihan posted the second highest percentage of area that may be affected by flood depths at 5.88%.

Among the barangays in the municipality of Malaybalay City in Bukidnon, Casisang is projected to have the highest percentage of area that will experience flood levels at 10.87%. Meanwhile, Laguitas posted the second highest percentage of area that may be affected by flood depths at 9.85%.

Brgy. Dologon is the only barangay affected in the municipality of Maramag in Bukidnon. The barangay is projected to experience flood in 5.58% of the municipality.

Brgy. Paitan is the only barangay affected in the municipality of Quezon in Bukidnon. The barangay is projected to experience flood in 1.93% of the municipality.

Among the barangays in the municipality of Valencia City in Bukidnon, Dagat-Kidavao is projected to have the highest percentage of area that will experience flood levels at 10.24%. Meanwhile, Bagontaas posted the second highest percentage of area that may be affected by flood depths at 9.94%.

Moreover, the generated flood hazard maps for the Manupali-Sawaga-Upper Pulangi Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps ("Low", "Medium", and "High"), the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 10-year).

,	0						
Manaina Laval	Area Covered in sq. km.						
Warning Level	5 year	25 year	100 year				
Low	72.25	67.13	68.35				
Medium	87.85	98.40	97.07				
High	68.99	126.61	152.82				
TOTAL	229.09	292.14	318.24				

Table 59. Areas covered by each warning level with respect to the rainfall scenarios

Of the 115 identified Education Institute in Manupali-Sawaga-Upper Pulangi Flood plain, 20 schools were discovered exposed to Low-level flooding during a 5-year scenario, while 25 schools were found exposed to Medium-level flooding and 12 schools were discovered exposed to High-level flooding in the same scenario.

In the 25-year scenario, 23 schools were found exposed to Low-level flooding, while 28 schools were discovered exposed to Medium-level flooding. In the same scenario, 24 schools were found exposed to High-level flooding.

For the 100-year scenario, 19 schools were discovered exposed to Low-level flooding, while 26 schools were exposed to Medium-level flooding. In the same scenario, 33 schools were found exposed to Highlevel flooding. See Appendix D for a detailed enumeration of affected education institutes in the Manupali-Sawaga-Upper Pulangi floodplain.

Apart from this, 34 Medical Institutions were identified in the Manupali-Sawaga-Upper Pulangi Floodplain. Five (5) of these medical institutions were found exposed to Low-level flooding during a 5-year scenario, while 10 were discovered exposed to Medium-level flooding. In the same scenario, two (2) hospitals were found exposed to High-level flooding.

In the 25-year scenario, seven (7) medical institutions were discovered exposed to Low-level flooding, while 10 were found exposed to Medium-level flooding. In the same scenario, seven (7) hospitals were discovered exposed to High-level flooding.

For the 100-year scenario, eight (8) medical institutions were found exposed to Low-level flooding, while 10 were discovered exposed to Medium-level flooding. In the same scenario, eight (8) hospitals were found exposed to High-level flooding. See Appendix E for a detailed enumeration of the affected medical institutions in the Manupali-Sawaga-Upper Pulangi floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, a validation survey work was performed. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through the help of a local DRRM office to obtain maps or situation reports about the past flooding events and through interviews of some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 404 points randomly selected all over the Manupali-Sawaga-Upper Pulangi flood plain. It has an RMSE value of 1.69. The validation points are found in ANNEX 11.

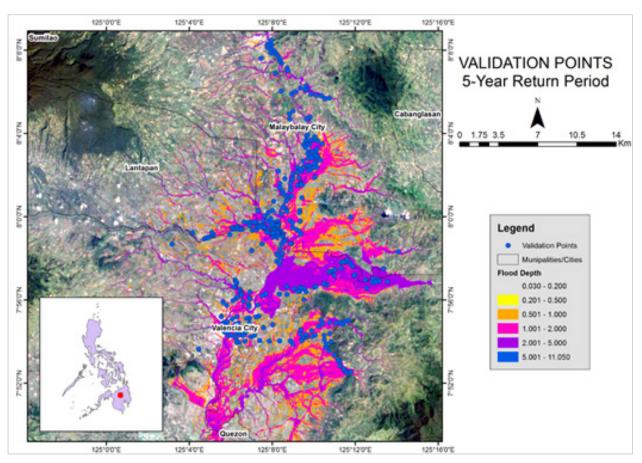


Figure 97. The Validation Points for a 5-year Flood Depth Map of the Manupali-Sawaga-Upper Pulangi Floodplain

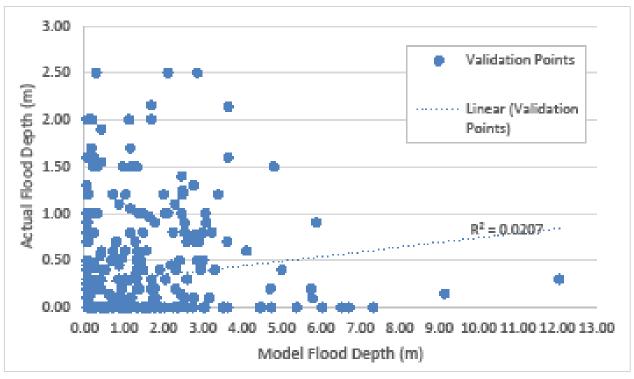


Figure 98. Flood map depth vs actual flood depth

Table 60. Actual flood vs simulated flood depth at differnent levels in the Manupali-Sawaga-Upper Pulangi River Basin.

S	SAWAGA	MODELED FLOOD DEPTH (m)									
	BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total			
	0-0.20	141	27	22	46	30	8	274			
(m)	0.21-0.50	10	5	5	15	10	2	47			
Depth	0.51-1.00	9	4	3	12	16	1	45			
Flood D	1.01-2.00	9	5	3	7	9	0	33			
al Flo	2.01-5.00	0	1	0	1	3	0	5			
Actual	> 5.00	0	0	0	0	0	0	0			
	Total	169	42	33	81	68	11	404			

On the whole, the overall accuracy generated by the flood model is estimated at 39.36% with 159 points correctly matching the actual flood depths. In addition, there were 67 points estimated one level above and below the correct flood depths while there were 67 points and 107 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 42 points were underestimated in the modelled flood depths of Manupali-Sawaga-Upper Pulangi. Table 43 depicts the summary of the Accuracy Assessment in the Manupali-Sawaga-Upper Pulangi River Basin Survey.

Table 61. The summary of the Accuracy Assessment in the Manupali-Sawaga-Upper Pulangi River Basin Survey

	No. of Points	%
Correct	159	39.36
Overestimated	203	50.25
Underestimated	42	10.40
Total	404	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G.H.2010a. HEC-RAS River Anaylysis System Hydraulic Reference Manuel. Davis, CA: U.S. Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagsa, B. (2017). Floods hit Lanao del Sur, Bukidnon; Cagayan de Oro still on alert. Rappler.com.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Province of Bukidnon Brief Information. (2014). *Bukidnon Brief Information*. Retrieved from Official Website of the Province of Bukidnon: http://www.bukidnon.gov.ph/home/index.php/about-bukidnon/about-bukidnon

ANNEX

ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Sawaga Floodplain Survey

Table A-1.1 Parameters and Specification of LiDAR Sensors used in the Sawag Floodplain Survey

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1 st , 2 nd , 3 rd , and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg; Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

¹ Target reflectivity ≥20%

 $^{2\} Dependent\ on\ selected\ operational\ parameters\ using\ nominal\ FOV\ of\ up\ to\ 40°\ in\ standard\ atmospheric\ conditions\ with\ 24-km\ visibility$

³ Angle of incidence ≤20°

⁴ Target size ≥ laser footprint5 Dependent on system configuration

ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. MSE-19

June 24, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		SAMIS ORIENTAL			
	Station	Name: MSE-19			
island: MINDANAO Vurricipality: CAGAYAN DE ORK		r: 2nd	Beranga	y: BULL	JA
	PRS	92 Coordinates			
.atitude: 8° 30' 19.11464"	Longitude	124° 37' 6.46518"	Ellipsoid	al Hgt:	11.24200 m.
	WG:	384 Coordinates			
atitude: 8° 30" 15.52234"	Langitude	124° 37' 11.86795"	Elipsoid	al Hgt:	78.72200 m.
	PT	M Coordinates			
Northing: 940451.853 m.	Easting:	457992.786 m.	Zone:	5	
	UT	M Coordinates			
Northing: 940,474.22	Easting:	678,151.65	Zone:	51	

Location Description

MSE-19

The station is located at the intersection of roads going to Cagayan de Oro City, Butuan City and Iligan City. It is situated on the center island between two triangular islands, about 14.5 m E of Bulua marker, about 21m W of black-tiled peace marker, about 10m S of road centerline, and about 3.5m S of the N end of the arc-shaped curb of the island. Statio mark is the head of a 4" copper nail set on the center of a 30cm. x 30 cm. x 60cm. concrete monument protruding by about 12cm, above the ground, with inscriptions, MSE-19, 2003 NAMRIA.

 Requesting Party:
 Engr. Cruz

 Pupose:
 Reference

 OR Number:
 8796376 A

 T.N.;
 2014-1437

RUEL DM. BELEN, MNSA
Director, Mapping And Geodesy Branch

Neerla of FIGES
Main: Javon Armus, Part Borilloio, 1654 Taguig City, Plasquaes. Tel. 86. (822) Figurati is dis
Rende: 451 Rendes St. San Mostes, 1910 Rende, Philippines. Tel. 50. (602) 341-3464 ti 88
Www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

2. MSE-20

July 11, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: MISAMIS ORIENTAL	
	Station Name: MSE-20	
Island: MINDANAO Municipality: CAGAYAN DE ORO	Order: 2nd	Barangay: LUMBIA MSL Elevation:
	PRS92 Coordinates	
Latitude: 8° 25" 34,65372"	Longitude: 124° 34' 60.02679"	Ellipsoidal Hgt: 182.81200 m.
	WGS84 Coordinates	
Latitude: 8° 25" 31.08192"	Longitude: 124° 35' 55.43561"	Elipsoidal Hgt: 250.44400 m.
	PTM / PRS92 Coordinates	
Northing: 931713,993 m.	Easting: 457481,339 m.	Zone: 5
	UTM / PRS92 Coordinates	
Northing: 931,733.67	Easting: 677,685.12	Zone: \$1

Location Description

MS E-20

The station is located at barangay Lumbia, Cagayan de Oro City. It is situated about 17m S of Km Post 1447, 10 Km. drive from Cagayan de Oro towards Talassag, and about 7 min. drive from SM mail. The station is in front of Oro Gasdens Mamorial Park, about 2.3m WMVI of center cut, about 8m ESE of road centerline, and about 14m NW of 3 gate. Station mark is the head of a 4" capper half, set on the center of a Som x Som cement putty, with inscriptions, MSE-20, 2003 NAMRIM.

Requesting Party: UP TCASP / Engr. Christopher Cruz

Reference Pupose: OR: Number: 8796507 A T.N.: 2014-1597

RUEZ DM. BEZEN, MNSA Director, Mapping And Geodesy Branch

Marx Essent Averus. For Boyleon 1554 Tapay Dig. Principles - 16, 543, 642, 652-667 to 91. Boyle: ACI Sensor Si San Rocke Stratilisms, Philosopes, Tie. No. 560 (91-549) 10.55 www.namria.gav.ph

DICTORIZED CHATERIO FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

3. MSE-3241

April 18, 2013

CERTIFICATION

To whom it may concern:

This is to contify that according to the receres on file in this effice, the requested survey information is as follows -

		Province: Mit	SAMIS ORIENTAL			
		Station Na	ame: MSE-3241			
	MINDANAO	Order	and and	Baranga	y: BAR	ANGAY 10 (POB
Municipal	(CAPITAL)		92 Coordinates			
Latitude:	8" 27" 31.07607"	Longitude	124° 37" 23.18891"	Etipsoid	al Hgt.	109.46700 m.
		WGS	84 Coordinates			
Latitude:	8* 27' 27,49608"	Longitude:	124° 37° 28.59587°	Ellipsoid	al Hgt.	177.05500 m.
		PTA	f Coordinates			
Northing:	935289.375 m.	Easting	458499.251 m.	Zone:	5	
		UTI	# Coordinates			
Northing:	935,314.30	Easting:	678,684.71	Zone:	51	

Location Description

MSE-3241

Is located at the center island along Macapagai Rd., Broy. 10 (Pob.), Cagayan de Oro City. It is situated between Sungole Bldg. and Super Mart Mail, about 20 m. facing the mail entrance. Mark is the head of a 4 in, copper nail embedded on a 25 cm. x 25 cm. concrete block, with inscriptions "MSE-3241 2007 NAMRIA".

Requesting Party: UP DREAM/ Melchor Nery

Pupose Reference

OR Number:

3943540 B

T.N.:

2013-0311

RUEL DM. BELEN, MNSA Director, Mapping and Geodesy Department

Water Constant Assesser, Foot Bundlerin, 1434 Tagging (My., Millippines: 14, No., (832) 310-4231 for 41 Bronth - 421 Bayers St. San Montes, 1890 Reinle, Philippines, Fel. No. (162):241-2494 to 96 errentamina.gov.ph

Figure A-2.3 MSE-3241

4. MSE-3340

July 11, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: MISAMIS ORIENTAL Station Name: MSH-3340 Order: 3rd. Barangay: AGUSAN Island: MINDANAO MSL Elevation: Municipality: CAGAYAN DE ORO CITY PRS92 Coordinates (CAPITAL) Ellipsoidal Hgt. 5,99600 m. Longitude: 124° 44" 11.52934" Latitude: 8° 29' 23.43073" WGS84 Coordinates 73.80100 m. Ellipsoidal Hgt: Longitude: 124° 44' 16.93252" Latitude: 8° 29' 19.85261" PTM / PRS92 Coordinates Zone: 5 Easting: 470991.591 m. Northing: 938730.493 m. UTM / PRS92 Coordinates Zone: 51 691,159.90 Easting: Northing: 938,819.85

Location Description

MSE-3340
MSE 3340 is located inside the Agusan Barangey Plaza, Agusan, Cagayan de Oro City. Mark is the rubber
MSE 3340 is located inside the Agusan Barangey Plaza, Agusan, Cagayan de Oro City. Mark is the rubber
engreved with bronze nail at the center of a concrete monuments with inscription " MSE 3340, 2008 LMS 10 " on

Requesting Party. UP TCAGP / Engr. Christopher Cruz

Pupose: Reference OR Number: 8796807 A T.N.: 2014-1598

RUEG DM. BELEN, MNSA Director Mapping And Gaodesy Branch

pountes, DEPOCES.

Tol. Nov. (EXX) 818-4821 (c.4)

Higher Landon Austrian, Print Benfacio, 1634 Tagasiy Dip, Prolopines. Tol. Nov. (EXX) 818-4821 (c.4)

Genral - 427 Bennack M. Sinn Nicoles, 1634 Marcha, Prolopines, Tol. Nov. (EXX) 201-3464 (c.4)

Waters, Told 1614 (c.4)

Waters, Told 1614 (c.4)

ISO MICH: SHIR CERTIFIED FOR MARPING KIND GROSPATIAL INFORMATION MANAGEMENT

Figure A-2.4 MSE-3340

5. BKN-475

Figure A-2.5 BKN-475

6. BKN-478

November 14, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the recerds on file in this office, the requested survey information is as follows -

	Province: BUKIDNON		
	Station Name: BKN-478		
Marian Commission	Order: 2nd		
Island: MINDANAO Municipality: CITY OF VALENCIA	Barangay SINAYAWAN MSL Elevation:		
	PRS92 Coordinates		
Latitude: 7° 52' 39.32095"	Longitude: 125° 8' 33.26511"	Elipsoidal Hgt	302.83700 m.
	WGS84 Coordinates		
Latitude: 7º 52' 35.94157"	Longitude: 125° If 38,71964°	Elipsoidal Hgt	372.88500 m.
	PTM / PRS92 Coordinates		
Northing: 871017,702 m.	Easting: 515721.851 m.	Zone: 5	
	UTM / PRS82 Coordinates		
Northing 871,316.76	Easting: 736,235.86	Zono: 51	

Location Description

BIKN-478 is located beside the basketbell court of Purok 6, Brgy. Singyawan. Mark is the head of a 4 in, copper nail ambedded on a 30 cm. x 30 cm. concrete block, with inscriptions "BKN-478 2007 NAMRIA".

Requesting Party: Phil Lidar 1 Reference OR Number: T.N.:

FREE IS SUE 2016-2056

> RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

AAACAA (SPECIES). NEKY Linder Parrice, Cod Bookado, MONTegają City, Philippines. Tel Acc (600) PO-8001 to Jol Blanck (AC) Barrices St. Santhinolou, NON March, Pubparises, Tel Ac. (500) PO-800 to 30 www.namria.gev.ph

ISO NID: 2016 CEPTIFIED FOR MAPPING AND SECSPATAL INFORMATION MANAGEMENT

7. BK-56

Figure A-2.7 BK-56

ANNEX 3. The LIDAR Survey Team Composition

Table A-3.1 The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency / Affiliation				
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG					
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO					
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP				
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA					
	Research Specialist (Supervising SRS)	LOVELYN ASUNCION					
		FIELD TEAM					
	Senior Science	JASMINE ALVIAR					
	Research Specialist (SSRS)	PAULINE ARCEO					
LiDAR Operation		GRACE SINADJAN					
LIDAN Operation	Research Associate	ENGR. IRO NIEL ROXAS					
	(RA)	UP-TCAGP					
		NICHOLAS ILEJAY					
Ground Survey, Data Download and	RA	LANCE KERWIN CINCO					
Transfer	KA	BRYLLE DE CASTRO					
	Airborne Security	SSG. LEE JAY PUNZALAN	PHILIPPINE AIR FORCE (PAF)				
		CAPT. JEFFREY JEREMY ALAJAR					
LiDAR Operation	Pilot	CAPT. CESAR ALFONSO III	ASIAN AEROSPACE CORPORATION				
	PIIOL	CAPT. ANTON DAYO	(AAC)				
		CAPT. ERNESTO SAYSAY JR.					

ANNEX 4. Data Transfer Sheet for Sawaga Floodplain

DATE	FLIGHT NO.	MISSION NAME	SEVSOR	R	WILKS	LOGS(NB)	POS	DOS MANGENER	LDG	FANGE	DIGITEER	BASE ST	ATTOM(S)	OPERATOR LOGS	FLICHT	PLAN	SERVER
	80.			Output LAS	KML (ewarth)		100	31	LOGS	TAR WALL	Later Line	BAJE STATION(S)	Cese (año (154)	(091,00)	Added	KML.	LOCATION
5/22/2014	1490%	19LK079142A	PERMELE	1.8	1342	6.61	201	31.8	721	19.1	NA.	5.19	1KB	168	40	NA.	ZMirome_Bavid 497P
5/23/2014	12011	1BLK67C143A	PEGASUS	2	1221	14.1	271	77.3	559	29.6	NA.	7.61	1KD	148	56/56	NA.	Z.Mircome_Rawin 601P
5/24/2014	1505P	18LK578C144A	PEGASUS	2.25	769	10	212	45.7	340	21.6	NA.	785	1KB	143	97	NA.	2 Wildome_Fourt
5/25/2014	1509P	1RDXE146A	PECASUS.	2.4	380	11.2	25/1	50 ² 22	34-059	36.2	NA.	4.90	SKR	148	50/42	NA.	Z.Wirtcome_Plan/1 500P
5/27/2014	1517P	1RXE147A	PEGARRIS.	2.74	1497	12	205	NA.	NA.	27.7	MA	9.7	rika:	1625	78/72	KA.	2 Wittome Raw! 517P
5/18/2014	152°P	1RXC148A	PEGASUS	2.29	450	12	252	NA.	NA:	26	N4	5.54	180	1KB	62	NA.	Z Wilbarne_Ravid 521P
		Received from Name Position Signature	C-JU	mur				Name Proton Synature	J010A	SERIE	10	6/10/2019					
					1												

Figure A-4.1 Transfer Sheet for Sawaga Floodplain - A

DATE	PLIGHT NO.	MASSION NAME	SENSOR	RAW	LAS	LOGS(VR)	POS	BAW	MISSION LOS PLEYCASI			DASE ST	разменти	OPERATOR	FLIGHT	PLAN	
				Output LAS	KNL (swath)		,,,,	IMAGESKASI	LOSS	RANGE	DIGITIZER	BASE STATION(3)	Base Info (Act)	(cured)	Actual	KWL	LOCATION
6/8/2014	1565P	1BLK71B159A	Paganus	NA.	16	6.93	168	NA.	NA.	13.3	Ald,	7.75	180	1KB	36	NA.	Z Wattome_
6/9/2014	3569P	1BLKRXE160A	Pegasus	4.16	832	15,5	290	3.96	52	38.5	NA.	10	1KB	183	85	NA	Flaw Z:\Airborne_
6/16/2014	1597P	1BLKRXE167A	Pegasus	2.18	332	10.5	237	NA	MA.	21.3	NA.	7.52	166	1KB		NA.	Z.Mirbons
6/19/2014	1603P	18XS170A	Pogasus	2.16	526	11.2	259	45.3	309	22.1					68		Raw Z Wittome
6/20/2014	1613P	18LK71G171A	Pegasus	3.44	177	13.7	258		437		_	7.07	1KB	1KB	77/76	NA	Raw
6/23/2014	1625P	1BLK67BC174A	Pageous	3.09		-				33.2		5.92	168	1KB	46	N/A	2:Wirborne_ Rew
517457044					1112	11.7	212	90.3	415	29.4	89.6	4.97	1100	168	52/56	NA	Z:/Airbome_ Raw
5/24/2014	1629P	1BLKRXES175A	Pegasus	2.79	370	10.7	187	96.5	268	26.1	NA.	4.45	1KB	1KB	73	NA	Z:\Airborne_ Raw
6/27/2014	1641P	18LK68A178A	Pagasus	2.94	1995	12.6	268	57.A	396	28.9	57.2	7.7	1103	1KB	65/65/60/ 58	NA	Z/Airbome_ Rau
5/27/2014	1643P	1B1K67ABS1788	Pegasus	532	95	4.33	119	NA.	NA.		NIA	7.7	1KB	1KB	48	NA	Z Whome_
6/28/2014	1645P	1BLK71C179A	Редикц	2.84	NA	11.4	242	91.6	375	27.4	NA.	6.25	1KD	188	59/68	NA	Z:Wirborne_ Raw
		Reserved from Name	IN AME	A'A				Received by	10104- 9	RIPTO !	0,	. 4					
		Name T Position Signature	All				1	notice:	1010A 9	28/14	SIT						

Figure A-4.2 Transfer Sheet for Sawaga Floodplain - B

				RAW	LAB					MISSIDVLOC	NUC		BASE STA	VITON(8)	OPERATOR.	FLISHT PL	AΝ	SERVER
DATE	FUSETNO.	MISSION NAME	SENSOR	Output LAS	KML (small)	LOGS(MIX)	SHP	POS	MAGGSSSAG	GUIDANESS	RANNE	CHATTER	вязе атупначазі	Sase into	TOCS TOCS	Actual	KNL	LOCATION
7/3/2014	1665P	18LK71ES164A	Programus	stie	93	4.69	94.5	180	NA.	NA.	6.77	NA.	5.94	1193	1KB	35	NA.	Z'Anborne, Ray
7/5/2014	1673P	18LK71ES186A	Pagasus	1.06	379	7.58	335	160	22.4	167		27.8	5.00	143	1100	62/84	NA	ZWittoms, Bay
7/5/2014	1677P	1BLK71S187A	Pagasus	606	68	5.33	188		112	00	7.79	NA	4.91	143	1KB	130	NA	Z/Aidone, Rev
7/R/2014	1685P	1BLK71S189A	Pagasus	2.31	515	11	578	242	37	269	22.4	47,4	4.39	193	188	184	NA	Z'Arbonii, Bay
7/8/2014	1687P	1BLK71S189B	Pegasus	749	79	4.81	176	136	NA	96	7.47	NA	4.39	183	1193	NA.	NA	Z'Airbont, Ray
7/9/2014	1689P	1BLK71S190A	Pagasus	2.56	156	12.6	740			94.	27.1	NA:	3.69	163	1103	196/207	NA	Z'Arbonn, Ray
7/10/2014	1693P	1RXES191A	Pegaeus	1.70	551	8.11	448	175		NA.	16.9	NA.	4.09	168	HIGO	53	NA	Z/Airborns Raw
		Received from Name 1) Foster Signstre	n ändagt Ba						Name Postan Streday		A F. 5585	RIETO	8/0/19	t				

Figure A-4.3 Transfer Sheet for Sawaga Floodplain - C

DATA TRANSFER SHEET BUKEDNON 11/14/2016

DATE	FLICHT NO.	MISSION	SENSOR	RAM	FLAS	Loca		BAW	MISSION LOG			BASE ST	ATION(8)	OPERATOR	FLIGHT	T PLAN	
	T.LIGHT IND.	NAME	SEMSON	Output LAS		LOGS	POS	IMAGES/CASI	LOGS	RANGE	DIGITIZER	BASE STATION(S)	Base info (tel)	(OPLOG)	Actual	KML	LOCATION
October 23, 2016	23486P	18KND297 A	PEGASUS	1-23	215	8.14	208	NA.	NA.	13.2	NA.	210	1KB	11/8	1.29	NA.	ZIDACIRAIA
October 24, 2016	23488P	1BKNDE29 BA	PEGASUS	2.11	363	11.4	255	NA.	NA.	21	NA	272	168	1103	457	NA.	Z'IDACRAN DATA

Received from

name 12. Parate

outline 12.

proton 55 ps

grature Jeffer

Signature Acapy 111/6/14

Figure A-4.4 Transfer Sheet for Sawaga Floodplain - D

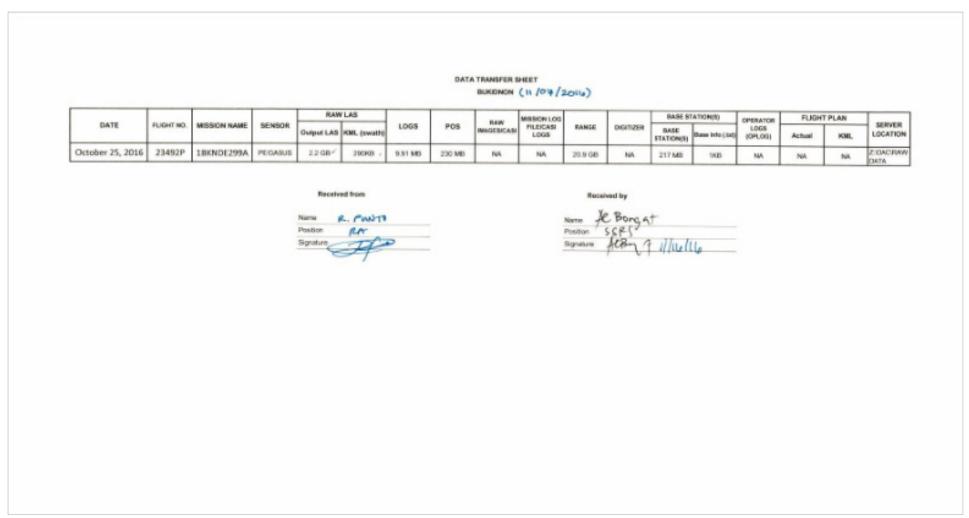


Figure A-4.5 Transfer Sheet for Sawaga Floodplain - E

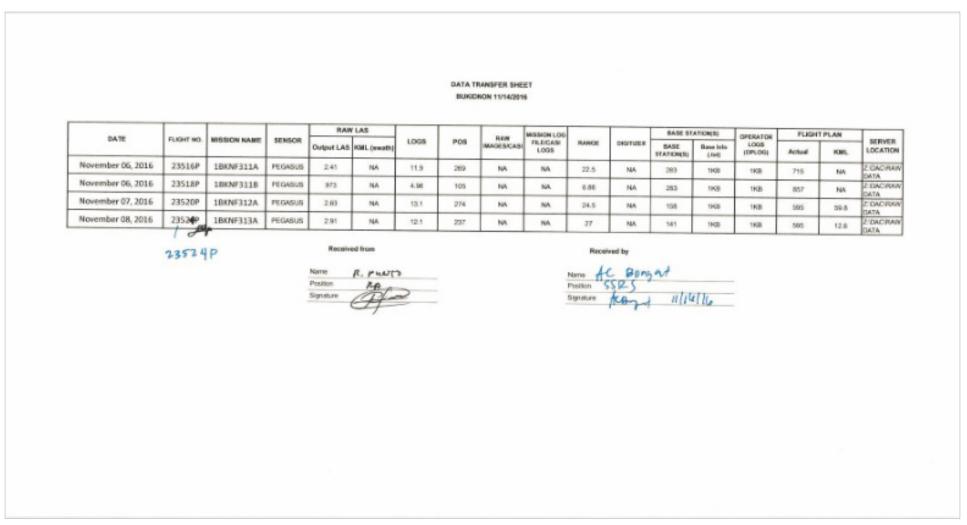


Figure A-4.6 Transfer Sheet for Sawaga Floodplain - F

DATA TRANSFER SHEET BUKIDNON 11/21/2016

DATE	#1 +#1 + #1 + #1 + #1 + #1 + #1 + #1 +	MISSION		RAV	/LAS			RAW	MISSION LOG	Contract of		BASE ST	(ATIONIS)	OPERATOR	FLIGHT	PLAN	T
DATE	FLIGHT NO.	HAME	SENSOR	Output LAS	KML (swath)	LOGS	POS	MAGESICASI	FLEICASI LOGS	HANGE	DISTRICER	BASE STATION(S)	Rase Info (3xt)	LDGS	Actual	KML	LOCATION
November 10, 2016	23534P	18KNG31 5A	PEGASUS	1.61	NA	8	255	NA.	NA	16.6	NA.	136	1835	160	NA.	NA.	2-DACIRAN DATA
November 11, 2016	23536P	18KNDE3 16A	PEGASUS	2.45	NA.	10.6	236	NA.	NA.	22.9	NA.	146	188	1KB	996	588	Z IDACIRAN DATA
November 12, 2016	23540P	1BKNE317 A	PEGASUS	2.3	NA	9.76	263	NA.	NA.	21.4	NA	131	183	168	646	NA.	Z'OACRAN
November 13, 2016	23544P	1BKNE318 A	PEGASUS	2.61	NA.	10.8	230	NA.	NA.	24.3	NA	299	168	1935	585	NA.	Z'DACIRAY DATA
Navember 13, 2016	23546P	18KNG31 88	PEGASUS	1.95	NA.	9.55	262	NA.	NA.	18.1	NA.	299	1103	188	554	NA	Z-DACIRAN DATA
November 14, 2016	23548P	1BKNEF31 9A	PEGASUS	2.86	NA	12	268	NA.	NA.	26.7	NA	208	1605	1835	554	NA.	Z DACIRAM DATA
November 15, 2016	23552P	1BLK64A3 20A	PEGASUS	2.1	NA	10.5	261	NA.	NA.	20.6	NA.	131	168	188	174	NA	ZIDACIRAII DATA

Received by

Received by

Received by

Name R Bowy 1

Position CAT

Gradure Signature Received by

Name A Bowy 1

Signature Received by

Figure A-4.7 Transfer Sheet for Sawaga Floodplain - G

ANNEX 5. Flight logs for the flight missions

1. Flight Log for Mission 1517P



Figure A-5.1 Flight Log for Mission 1517P

2. Flight Log for Mission 1569P

THE PERSON NAMED IN COLUMN TWO IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED A	Lamande Francis	Life exists Name (15)-15-4	TOTAL ATTEMPT ATTE	S administration of the Second Tables	Amenit Mentitronic Action Const.
Not: S. A. Stage	School of Cha	Steete care - car	100		17.
	12 Airport of Engantum	2 houte	EAR SPACE OF SWINS	(expert, Capitronnes):	
· · · · · · · · · · · · · · · · · · ·		20 July Degree Better	16 Take off;	13 Landing	\$8 Twist Flight Tone
Sugar On:	54 Empire CRI /	45/9			
3 Weather	- olenofy				
as problems and federale	gaurestal; gay				
c.	and another of	actus — per	Programme (Allen Will	tarcsow Quid and
mountary			The second secon	110404477 (d)	and the second of the second o

Figure A-5.2 Flight Log for Mission 1569P

3. Flight Log for Mission 1597P

And Core-Requisition/Flights		1997 S Mission Name (R. a. Co.)	No. 4 Pers VPA	S. Aircraft Topac Co LANS 12061	BANGUELLERS FOR DOCUMENT AT 1000
	#Dr Plati . Live	2 Feyle: /197 - 6-00			
Solitate:	In this report of Course	rose (Report, Blackrovinos)	(L) Airport of Arrival	[Auryort, Gry/Trownson):	
That he way	at an part of trape	(44)	604		htt Not all Hillight T. ma
EXEMPLES ON	14 Ingine Offs	B test trape their	Office off.	17 landing	as to straight 1 me
Eliter adher	- drug-				
20 Remorks :					
				·T	
	PRODUCTION SILC	correlation fished g	ands in R	CE.	
			7 7 7 7		
18 holdens and Sofution	live. I				
nana maja	Aggreement by	Acutamoving accordance of the Control of the Contro	Materiano	of Henry	Star Counter Star Star Star Star Star Star Star Star
	Approved by	4-4.	chie	A Charles	Harden Counties A Delta And Represent role februard Name

Figure A-5.3 Flight Log for Mission 1597P

4. Flight Log for Mission 1629P

DAN Data Appulation Highs		Action 1 Marshes No well (Applicate	and and A Tener William	S Alineath Propin German 19894	S Abords (Sent States Arthur)
	Street Street	# Bouts: gpus - a.o.	The same of the contract of	present because	
1909 6 Notice 2000 to	12 Airport of Began	eten (Arport 6 lythovino)	L) A part of Animal	(Alaport, City/New rece)	
13 legio e dec E 7 reg //	34 Singles (80)	15 Territ Englan Tiere:	LS Tate ort	17 Landing	16 Yesr i /Rg/n Time:
19 Westher	- gently close	G-			1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
20 hemadu:					
		I also down and			
-	transia menerafe	a me make			
2) People on and Social	PAL				
	ore ografia produtani	Sefere flight			
	ngeta prolitica	Suface flight	Mildrin Open	sand	Sider Operator
sassan riga. L. Alicia. Santan can ta	namenty	Association Engineered by CCS PURENCAN Speciation Protections	Char		Star Operator
Safet nasanannya. L. Briss	namenty	Associate Especial Control Con	Char	Ailmut	Carlots.

Figure A-5.4 Flight Log for Mission 1629P

5. Flight Log for Mission 1693P

CONTRACT CONTRACT		deli flor 3 Mindes Name: (ACE	(8) 4 Sans 711	5 Al cost Type Green	arrane B. Sarrach Identifications jago
1 UDAR Spervior 7.					
Street A Print		of the party to the speed, Garathard notice		(Alman, Chiffenino)	
Little 10	, ED [7	CAGO LES Testel Englise Pierres	(c.5)	I.TLanding:	18 To sel Flight, Yime:
DO D. B.	MERGRANT.	764 3+11			
25 West Day	Fair				
15 700001501					
36 Apprenti	- N I	and the finance of the			
	fillen e	gape in RXE; stort	ed of (200)	m thun 1400	OF CVI.
		ONE ort			
		Lever err			
2) Publicate and Sale	fers:				
2) Publishes and Selv	ri-ener				
It Publishes and Selv	riones				
It Publishes and Sale	riones				
21 Prebloms and Selv	riones				
It Preblems and Selve	riones				
23 Prebloms and Selv	riones				
21 Publicans and Sele	ri-ones				
2) Publicans and Sele	riones				
21 Publicans and Selection		Accustion pay plantified by	Pilopir-Geri	Anni E	Sides Operador
		Accustion Plans Section by	Pilopin-Geri	101 - 10 F	Strine Operador
		710.	rimir-turi	Alexander II	Sides Operador
J.A.	H Assessed by	Lo sensonan	down	All months	
Andrews To	M Assertant By	Lo con 3 co An	down	Anni All mark Str. All Str. or Str.	States Operados Signature source Debetant Norma
J.A.	M Assertant By	Lo sensonan	down	All months	
J. Al.	M Assertant By	Lo con 3 co An	down	All months	
SAL STORMER	M Assertant By	Lo con 3 co An	down	All months	
SAL STORMER	M Assertant By	Lo con 3 co An	down	All months	
SAL STORMER	M Assertant By	Lo con 3 co An	down	All months	

Figure A-5.5 Flight Log for Mission 1693P

6. Flight Log for Mission 23486P

PHIL-LIDAR 1 Data Acquisition Flight Log	Flight Log No.: 23 987 P
Commendance	A Type: VFR S. Aircraft Type: CesnnaT206H 6 Aircraft Identification: PP-CN-22 - Lacute General (Airport ClayProvince): Lacute General Lacute General Clay From State Clay State General Clay General C
19 Weather trans brild up if for	
20 Flight Classification 20.a Billable 20.b Non Billable 20.c Others Acquisition Flight O Aircraft Test Flight O LIDAR System Meintenance Ferry Flight O AAC Admin Flight O Aircraft Maintenance System Test Flight O Others: O Phil-LIDAR Admin Activities Calibration Flight	21 Remarks Visual closing in target areas; fransferred to Manulo Fortich (Tapolon WS), surreyed ten at 1300 m MSZ
O Weather Problem O System Problem O Alsoseft Problem O Pilot Problem O Others:	
O System Problem O Alsoseft Problem O Pilot Problem O Others: Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Common	and UDAR Operator Aircraft Mechanic/LIDAR
O System Problem O Alrosaft Problem O Pilot Problem O Others:	oxys Varian MA
O System Problem O Alexante Problem O Pilot Problem O Others: Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Commy Floatelature Signature Control Flight Approved Signature over Printed Name Signature over Printed Name Signature over Printed Name	OAYS Jawin MA

Figure A-5.6 Flight Log for Mission 23486P

7. Flight Log for Mission 23488P

HIL-LIDAR 1 Data Acquisition	Flight Log			Flight Log No.: 23998
LIDAR Operator: /2 Qu	154 662 ALTM Model: Programs	Mission Name://#/yszerA	4 Type: VFR 5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: PP-Cars 2
Pllot: A Ponge	8 Co-Pilot: K Clay 9	Route: Lagrin ding a	rport of Arrival (Airport, City/Province):	
Date of ver 701	12 Airport of Departure (Air	port, City/Profince): 12 Air	rport of Arrival (Airport, City/Province):	
3 Engine On:	14 Engine Off: 15	Total Engine Time: 16 Ta	ke off: 17 Landing:	38 Total Flight Time:
ough	104071	4+29	0614 H 1035 H	4+10
9 Westher nextly do	of to the early frild mys			
/ -	0		T	
0 Flight Classification			22 Remarks Closed / treasing trild area, surrayed To	40 000 4.
O,a Billable	20.b Non Billable 2	D.c Others	Closed / Heavy Filler	of the language
of succession their	o Alexander Treat Plants	- 11040 Control Malatan	area, surreyed 1	gelean workshed
Acquisition Flight Ferry Flight	 Aircraft Test Flight AAC Admin Flight 	 LiDAR System Maintenance Aircraft Maintenance 	at 1700 MSL	
System Test Flight	o Others:	 Phil-LiDAR Admin Activities 		
 Calibration Flight 				
22 Problems and Solutions				
Weather Problem				
 System Problem 				
 System Problem Aircraft Problem 				
 System Problem 				
System Problem Aircraft Problem Pilot Problem				
System Problem Aircraft Problem Pilot Problem				
System Problem Aircraft Problem Pilot Problem				
System Problem Aircraft Problem Pilot Problem Others:	v Acadolilan Flicht Certifie	if by Pilot-in-Corers	and/ LIDAR Operator	Aircraft Mechanic/ UDAR
System Problem Aircraft Problem Pilot Problem	y Acquisition Flight Certifie	d by Pilot-In-Consts	LIDAR Operator	Aircraft Mechanic/ UDAR
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved by	y Acquisition Flight Certifie	d by Pilot-In-Contra	LIBAR Operator Karana Kennangan	Aircraft Mechanic/ LIDAR
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved by	Acquisition Flight Certifile SSY MO OTUMA PAT	ilby Pilos In Comment	LOAK Operator FORTO CONTROL Kennoth Descondo	Alcorate Mechanic/ LIDAR
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved by	-k	H MAT ANTAN	Contro Kenneth Quisan	b 182
System Problem Aircraft Problem Pilot Problem Others: Acquisition Flight Approved beforeiden J. Mari or	ST MOOTHY BY	H MAT ANTAN	Cotto Kennerson	b 182
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved b Sechnides Signature over Printed Name Signature over Printed Name	SQ MO OTWA PLY Signature over Printed Na	H MAT ANTAL	Cotto Kennerson	b 182
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved b Sechnides Signature over Printed Name Signature over Printed Name	SQ MO OTWA PLY Signature over Printed Na	H MAT ANTAL	Cotto Kennerson	b 182
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved b Sechnides Signature over Printed Name Signature over Printed Name	SQ MO OTWA PLY Signature over Printed Na	H MAT ANTAL	Cotto Kennerson	b 182
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved b Sechnides Signature over Printed Name Signature over Printed Name	SQ MO OTWA PLY Signature over Printed Na	H MAT ANTAL	Cotto Kennerson	b 182
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved b Sechnides Signature over Printed Name Signature over Printed Name	SQ MO OTWA PLY Signature over Printed Na	H MAT ANTAL	Cotto Kennerson	b 182
System Problem Aircraft Problem Plot Problem Others: Acquisition Flight Approved b Sechnides Signature over Printed Name Signature over Printed Name	SQ MO OTWA PLY Signature over Printed Na	H MAT ANTAL	Cotto Kennerson	b 182

Figure A-5.7 Flight Log for Mission 23488P

8. Flight Log for Mission 23492P

IL-LIDAR 1 Data Acquisition Fli		Flight Log No.: 2.5 40 2/
LIDAR Operator: K. Guis,		4 4 Type: VFR 5 Aircraft Type: CesnnaT206H 6 Aircraft Identification: 27 - C9/2 2
Mot A. Vaga &	12 Airport of Departure (Airport, City/Province): 12 A	Nirport of Arrival (Airpôrt, City/Province):
Date 25 2016	Lacture of Departure (Airport, City/Hounte):	Comminders on
Engine On:	A Legine Off: 15 Total Engine Time: 367	Take off: 17 Landing: 18 Total Flight Time:
OGRAH	1025H 4+23	0917 4 1030 17 4+13
Weather	gently doudy to doudy	
Flight Classification	1 0 0	21 Remarks
right Casamonion		Surveyed BKNE @ 1500 as MSL
La Billoble	20.b Non Billable 20.c Others	Survey 1711
Acquisition Flight	Aircraft Test Flight	
Ferry Flight	AAC Admin Flight	
 System Test Flight 	Others: O Phil-LiDAR Admin Activities	5
Call bration Flight		
Problems and Solutions		
 Weather Problem 		
System Problem Alexanda Banklana		
 Aircraft Problem 		
Aircreft Problem Pilot Problem	Acquisition Flight Certified by Filet in Const	naggi LIDAR Operator Aircraft Muchanic/ LIDAR
Aircraft Problem Pilot Problem Others:	Acquisition Flight Cartified by Fillothin Control	nagd LIDAR Operator Aircraft Mechanic/ LIDAR
Aircraft Problem Pilot Problem Others:	Acquisition Flight Cartified by Fillothin Const	Head LIDAR Operator Aircraft Machanic/ LIDAR Ken/Quivo/Ke-
Aircraft Problem Pilot Problem Others:	Acquisition Flight Certified by Prior in Const.	Here Ken Carried & Machanic LIDAR LIDAYO (Crimoth Queado MA
Aircraft Problem Pilot Problem Others:	SSG WONTERS MED PAR PROPERTY	Head LIDAR Operator Aircraft Machanic/ LIDAR Hern Kew CALANS (Ko. LIDAY) LE Kew CALANS (Ko. LIDAY) Frinzed Name Signature over Frinzed Name Signature over Frinzed Name
Acquisition Flight Approved by	SSG WONTERS MED PAR PROPERTY	Spt70 Kenawada
Acquisition Flight Approved by Technidae	SSG WONTERS MAD PART Signature over Frinted Name Signature over	Spt70 Kenawada
Acquisition Flight Approved by Technidae	SSG WONTERS MAD PART Signature over Frinted Name Signature over	Spt70 Kenawada
Acquisition Flight Approved by Technidae	SSG WONTERS MAD PART Signature over Frinted Name Signature over	Spt70 Kenawada
Acquisition Flight Approved by Technidae	SSG WONTERS MAD PART Signature over Frinted Name Signature over	Spt70 Kenawada
Acquisition Flight Approved by Technidae	SSG WONTERS MAD PART Signature over Frinted Name Signature over	Spt70 Kenawada
Acquisition Flight Approved by Technidae	SSG WONTERS MAD PART Signature over Frinted Name Signature over	Spt70 Kenawada
Acquisition Flight Approved by Technidae	SSG WONTERS MAD PART Signature over Frinted Name Signature over	Spt70 Kenawada

Figure A-5.8 Flight Log for Mission 23492P

9. Flight Log for Mission 23516P

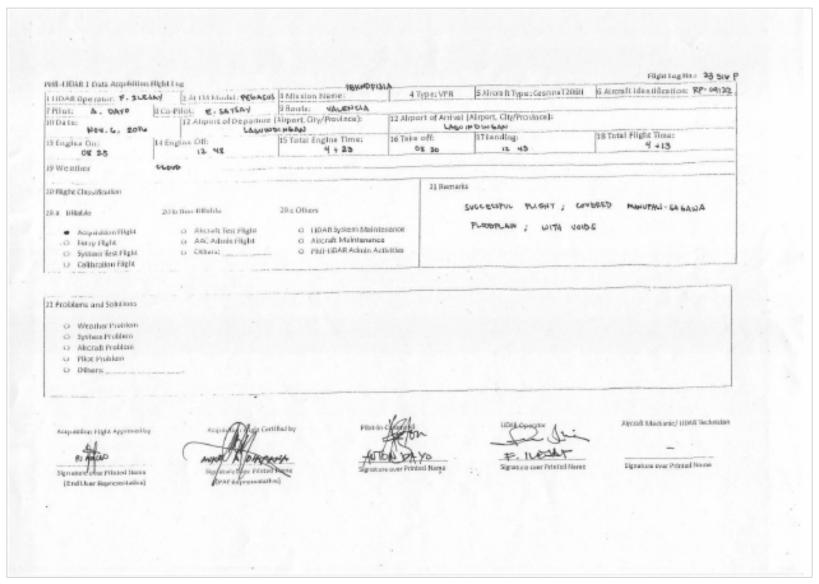


Figure A-5.9 Flight Log for Mission 23516P

10. Flight Log for Mission 23518P

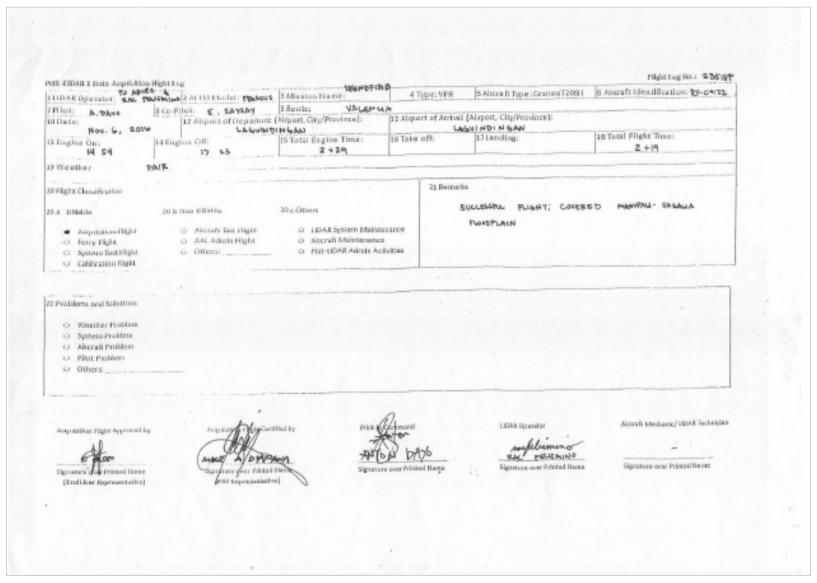


Figure A-5.10 Flight Log for Mission 23518P

11. Flight Log for Mission 23520P

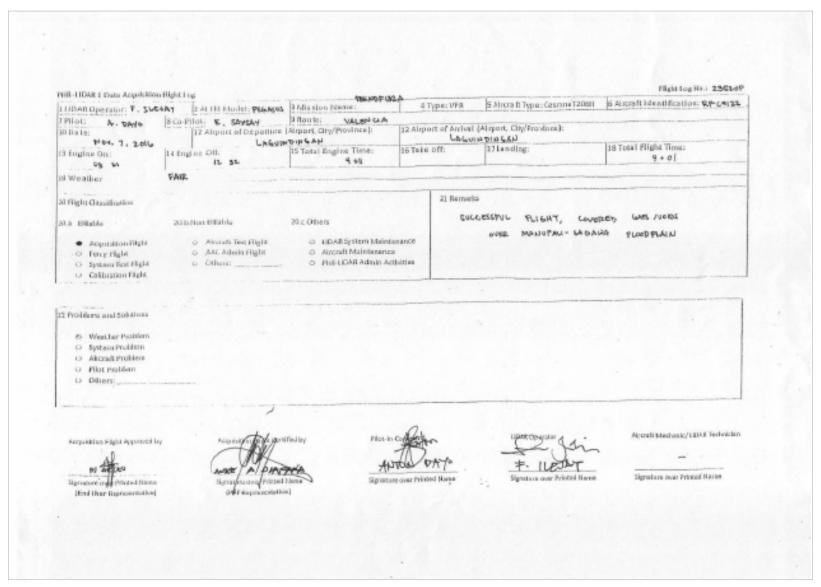


Figure A-5.11 Flight Log for Mission 23520P

12. Flight Log for Mission 23524P

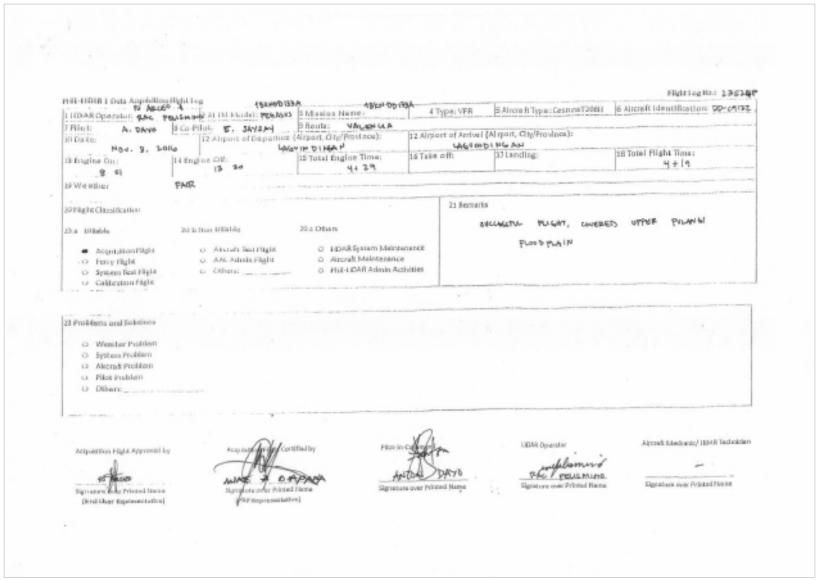


Figure A-5.12 Flight Log for Mission 23524P

13. Flight Log for Mission 23534P

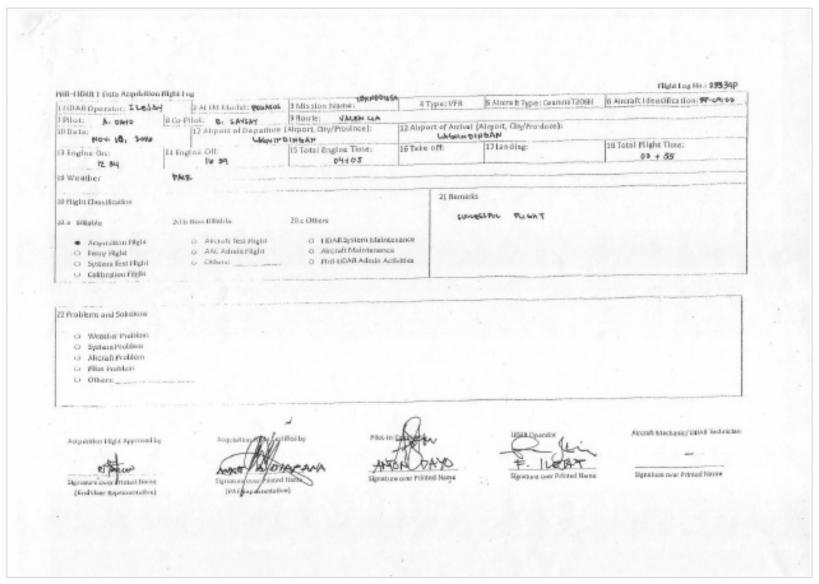


Figure A-5.13 Flight Log for Mission 23534P

14. Flight Log for Mission 23536P

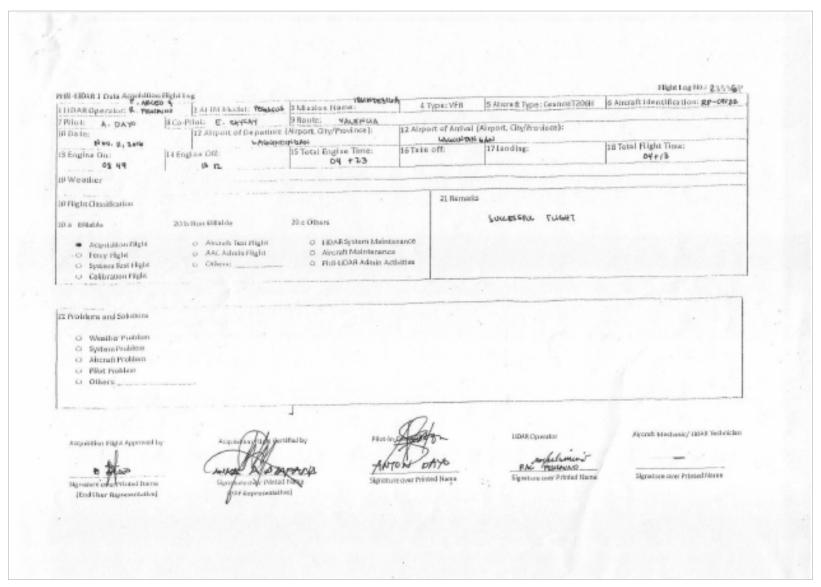


Figure A-5.14 Flight Log for Mission 23536P

15. Flight Log for Mission 23540P

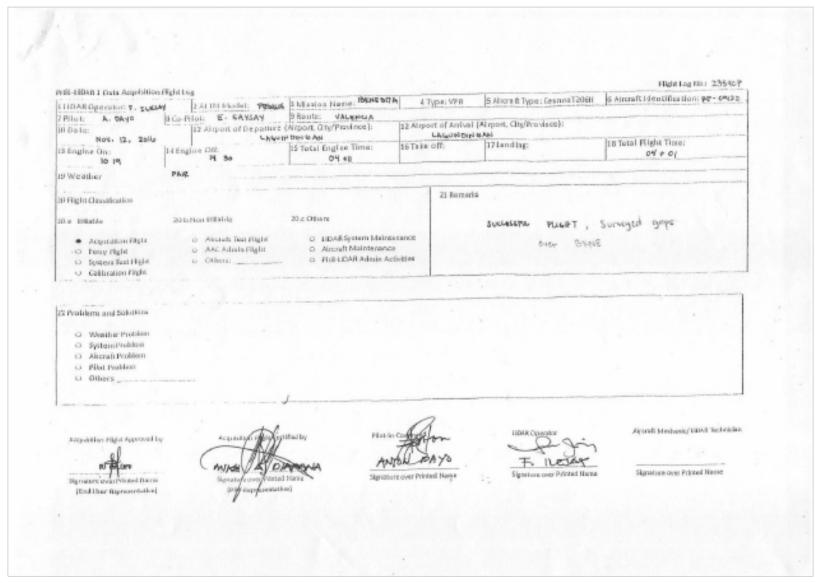


Figure A-5.15 Flight Log for Mission 23540P

16. Flight Log for Mission 23544P

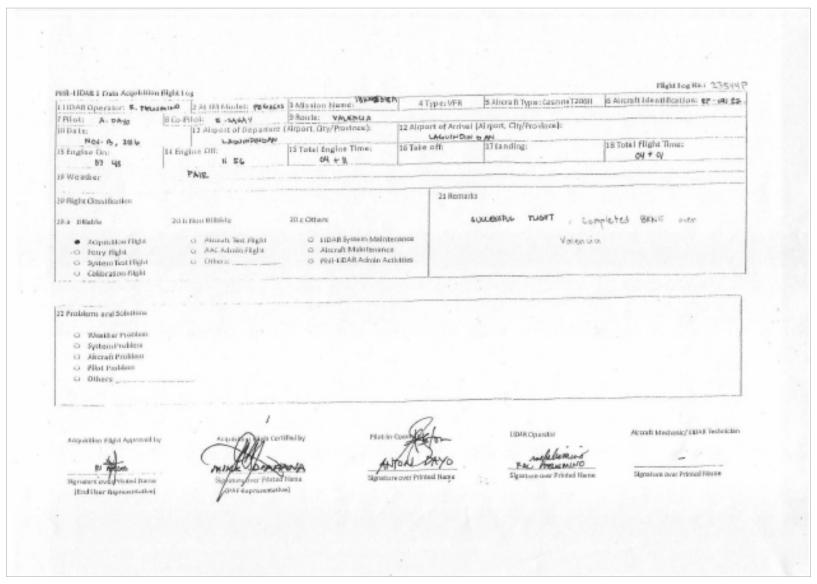


Figure A-5.16 Flight Log for Mission 23544P

17. Flight Log for Mission 23546P

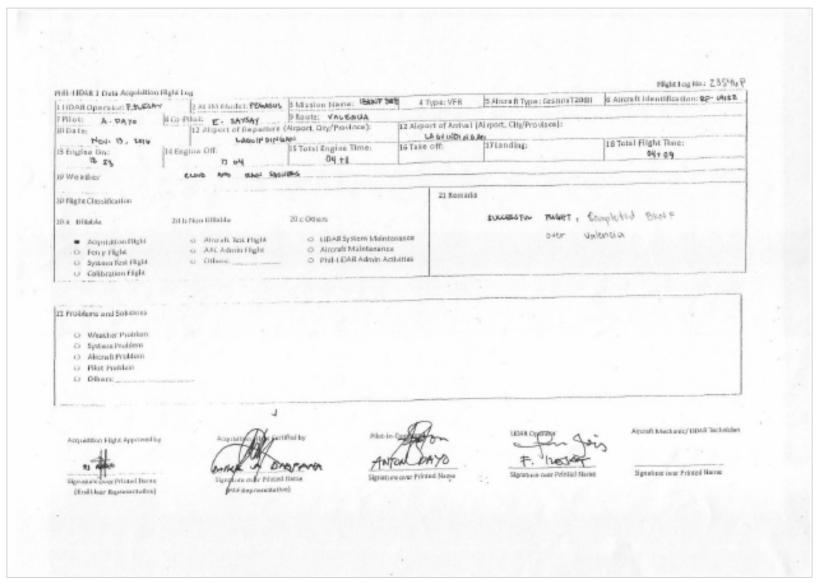


Figure A-5.17 Flight Log for Mission 23546P

18. Flight Log for Mission 23548P

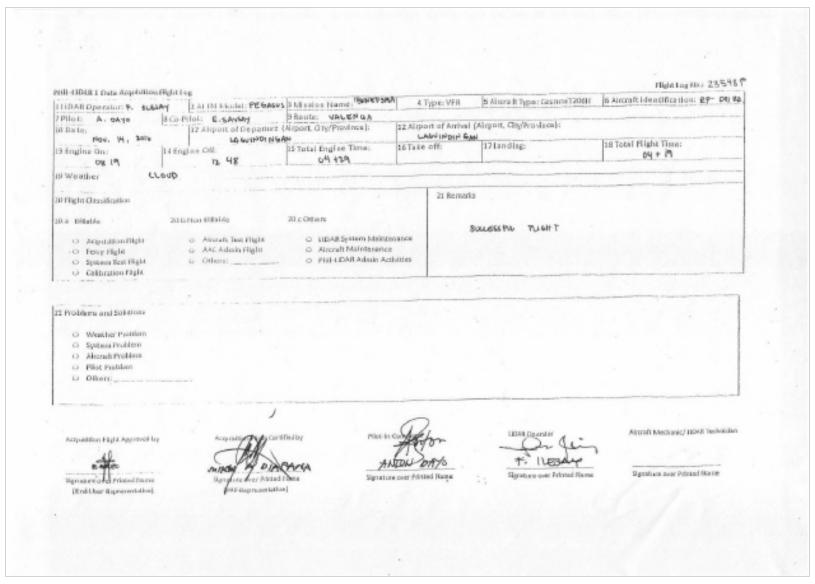


Figure A-5.18 Flight Log for Mission 23548P

ANNEX 6. Flight Status Reports

NORTHERN MINDANAO (May 27 – July 10, 2014 and October 23 – November 14, 2016)

Table A-6.1 Flight Status Report

Flight No	Area	Mission	Operator	Date Flown	Remarks
1517P	RX BLK D,E	1RXE147A	I. Roxas	May 27, 2014	Surveyed half of RX D and half of RX E at 800m, 1000m then 900m; cam stylus malfunctioned
1569P	RX BLK E	1BLKRXE160A	G.Sinadjan	June 9, 2014	Mission successful; gaps due to high terrain; camera assertion failed
1597P	RX BLK D,E	1BLKRXE167A	G.Sinadjan	June 16, 2014	Mission successful; filled gaps in RX E
1629P	RX BLK E	1BLKRXES175A	G.Sinadjan	June 24, 2014	Mission successful at 1400 AGL
1693P	RX BLK ES	1RXES191A	J. Alviar	July 10, 2014	Filled in gaps in RX E
23486P	MANOLO FORTICH BKN S2	1BKND297A	J Alviar	October 23,2014	Surveyed Manolo Fortich at 1300m MSL; heavy build up and precipitation in bukidnon
23488P	MANOLO FORTICH BKN S1	1BKNDE298A	K. Quisado	October 24,2014	Closed visual over target areas; surveyed Tagoloan watershed in Manolo Fortich at 1700m MSL
23492P	BKN E	1BKNDE299A	K Quisado	October 25,2014	Surveyed BKN E at 1500m MSL
23516P	VALENCIA BNK F	1BKNF311A	FN llejay	November6,2016	Surveyed Manupali- Sawaga floodplain with voids due to build up and strong winds
23518P	VALENCIA BNK F	1BKNF311B	PJ Arceo RA Felismino	November6,2016	Surveyed only 4 lines over Manupali-Sawaga floodplain due to time constraint
23520P	VALENCIA BKN F	1BKNF312A	FN Ilejay	November7,2016	Surveyed gaps over Manupali-Sawaga floodplain
23524P	VALENCIA BKN D	1BKND313A	PJ Arceo RA Felismino	November8,2016	Surveyed Manupali- Sawaga-Upper Pulangi floodplain

23534P	VALENCIA BNK G	1BKNGS315A	FN Ilejay	November 10, 2016	Surveyed Manupali- Sawaga floodplain with voids due to build up and strong winds
23536P	VALENCIA BKN E	1BKNE317A	PJ Arceo, RA Felismino	November 11,2016	Surveyed gaps over Manupali-Sawaga floodplain
23540P	VALENCIA BKN E	1BKNE317A	FN Ilejay	November 12, 2016	Surveyed gaps over Manupali-Sawaga floodplain
23544P	VALENCIA BKN E	1BKNE318A	RA Felismino	November 13, 2016	Completed BKN E over Valencia
23546P	VALENCIA BKN G	1BKNG318B	FN Ilejay	November 13, 2016	COMPLETED BKN G OVER VALENCIA
23548P	VALENCIA BKN E,F	1BKNEF319A	FN Ilejay	November 14, 2016	Fill up gaps and voids over Malaybalay and Valencia

LAS BOUNDARIES PER FLIGHT

Flight No.: 1517P
Area: RX D, RX E
Mission Name: 1RXE147A

Parameters:

Figure A-6.1 Swath for Flight No. 1517P

Flight No.: 1569P Area: RX D

Mission Name: 1BLKRXE160A

Parameters:

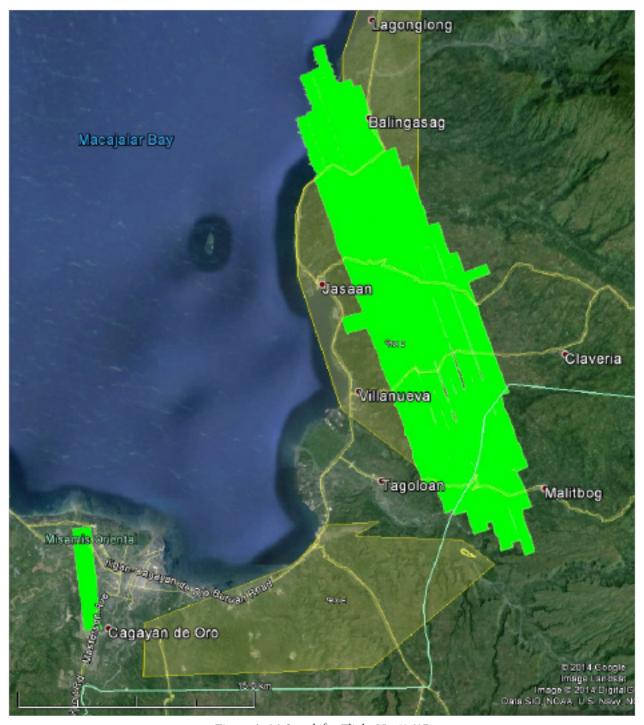


Figure A-6.2 Swath for Flight No. 1569P

Flight No.: **1597P**Area: RX D, RX E
Mission Name: 1BLKRXE167A

Parameters:

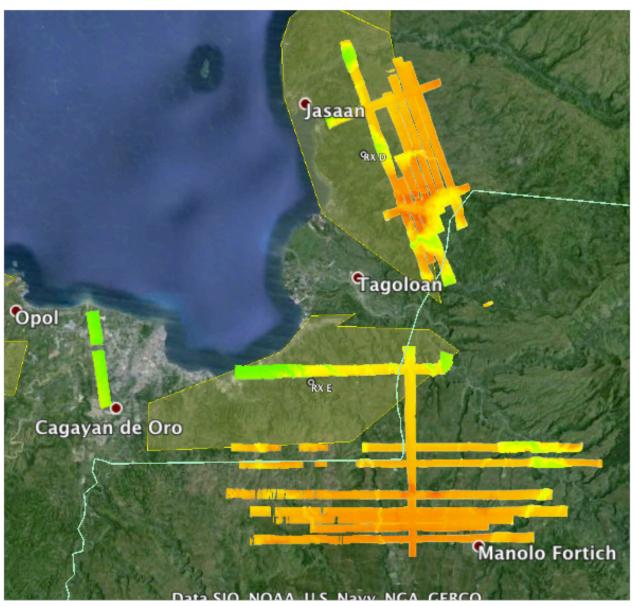


Figure A-6.3 Swath for Flight No. 1597P

Flight No. : 1629P Area: RX E

Mission Name: 1BLKRXE175A

Parameters:

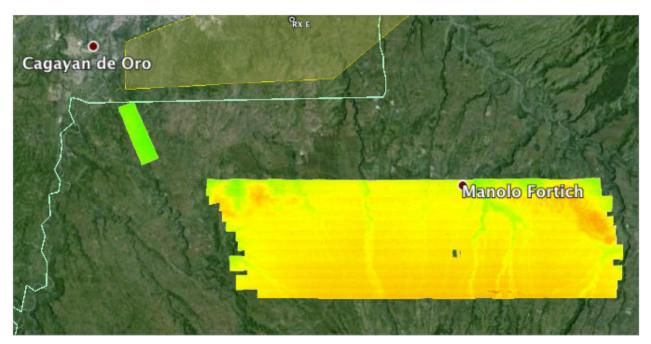


Figure A-6.4 Swath for Flight No. 1629P

Flight No.: 1693P
Area: RX ES
Mission Name: 1RXES191A

Parameters:

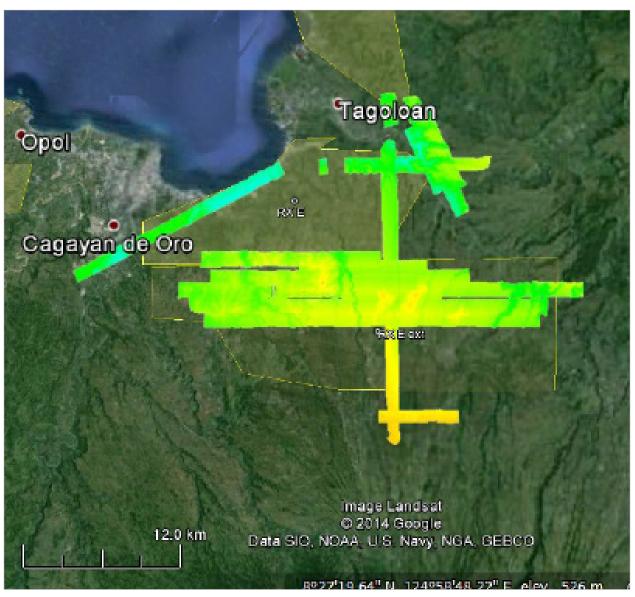


Figure A-6.5 Swath for Flight No. 1693P

Flight No.: 23486P
Area: BKN S2
Mission Name: 1BKND297A

Parameters:

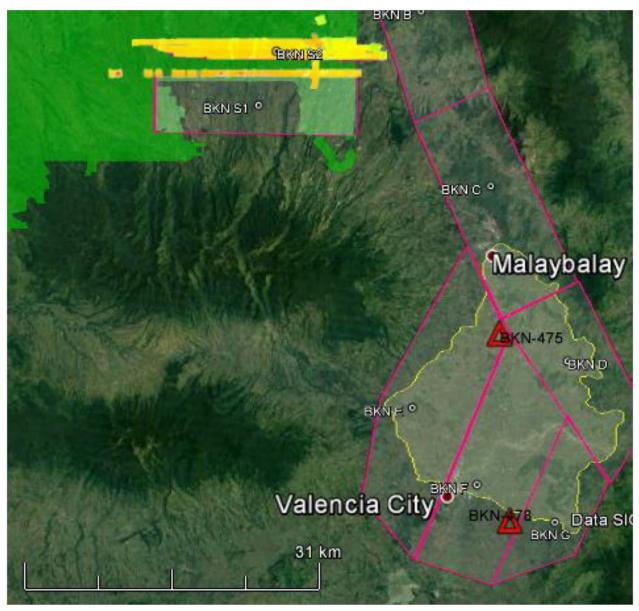


Figure A-6.6 Swath for Flight No. 23486P

Flight No.: 23488P
Area: BKN S1
Mission Name: 1BKNDE298A

Parameters:

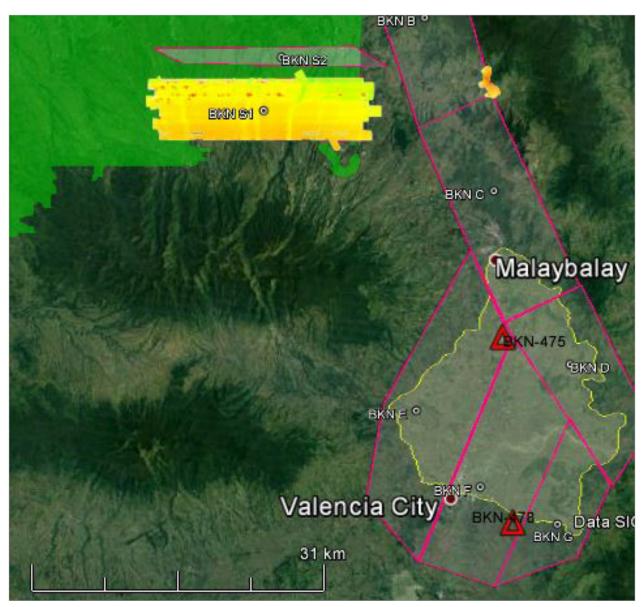


Figure A-6.7 Swath for Flight No. 23488P

Flight No.: 23492P Area: BKN E

Mission Name: 1BKNDE299A

Parameters:

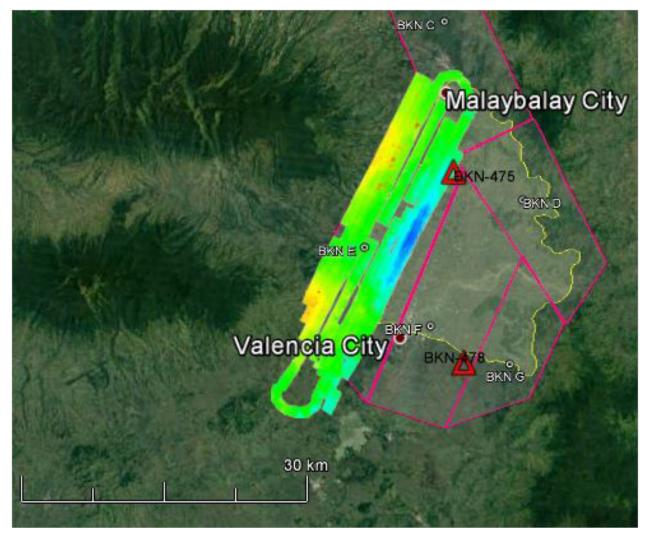


Figure A-6.8 Swath for Flight No. 23492P

Flight No.: 23516P

Area: VALENCIA BKN F Mission Name: 1BKNF311A

Parameters:

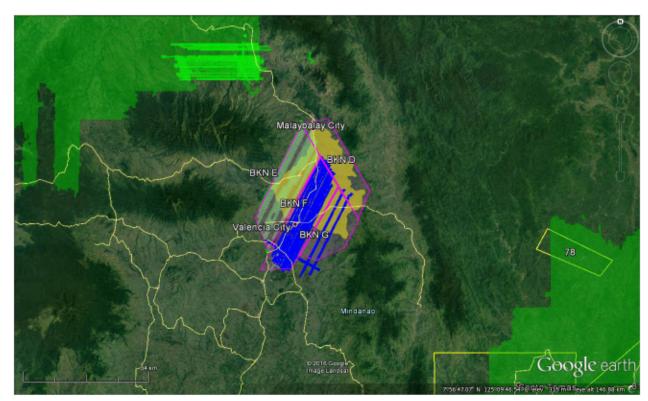


Figure A-6.9 Swath for Flight No. 23516P

Flight No.: 23518P
Area: BKN F
Mission Name: 1BKNF311B

Parameters:

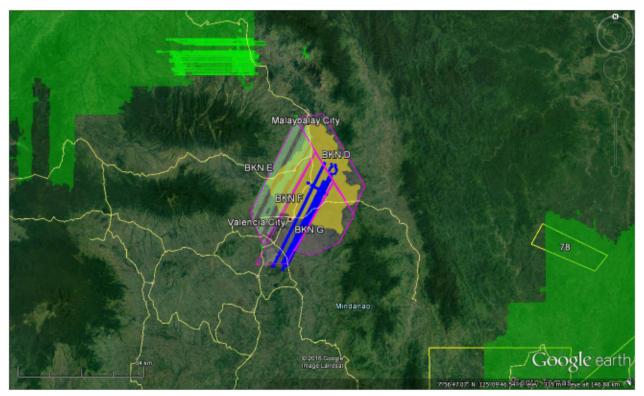


Figure A-6.10 Swath for Flight No. 23518P

Flight No.: 23520P Area: BKN F Mission Name: 1BKNF312A

Parameters:

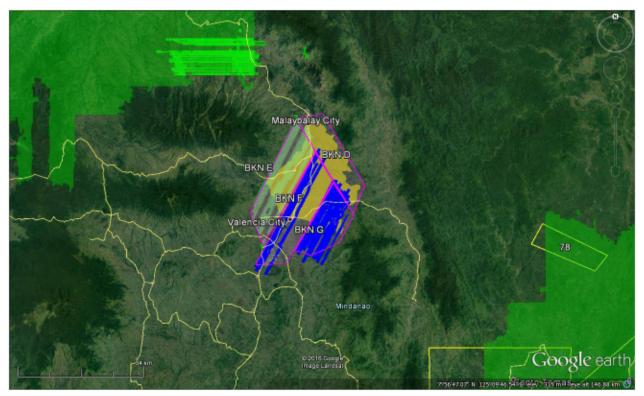


Figure A-6.11 Swath for Flight No. 23520P

Flight No.: 23524P
Area: BKN D
Mission Name: 1BKND313A

Parameters:

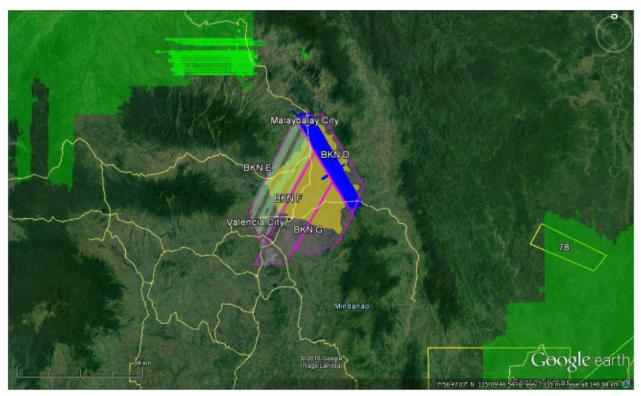


Figure A-6.12 Swath for Flight No. 23524P

Flight No.: 23534P
Area: BKN G
Mission Name: 1BKNG315A

Parameters:

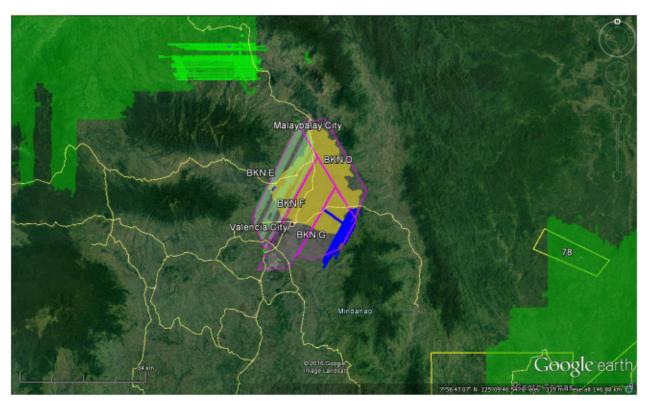


Figure A-6.13 Swath for Flight No. 23534P

Flight No.: 23536P Area: BKN E Mission Name: 1BKNE316A

Parameters:

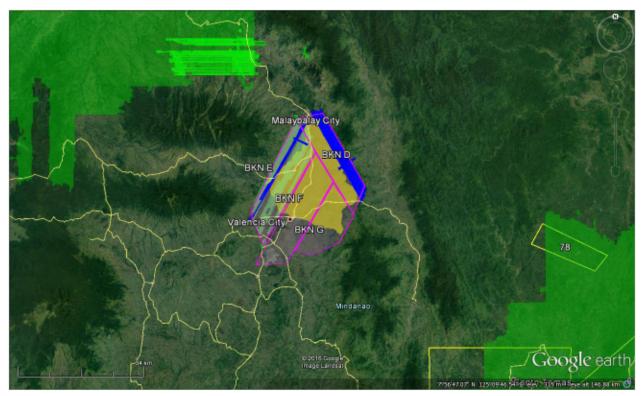


Figure A-6.14 Swath for Flight No. 23536P

Flight No.: 23540P Area: BKN E Mission Name: 1BKNE317A

Parameters:

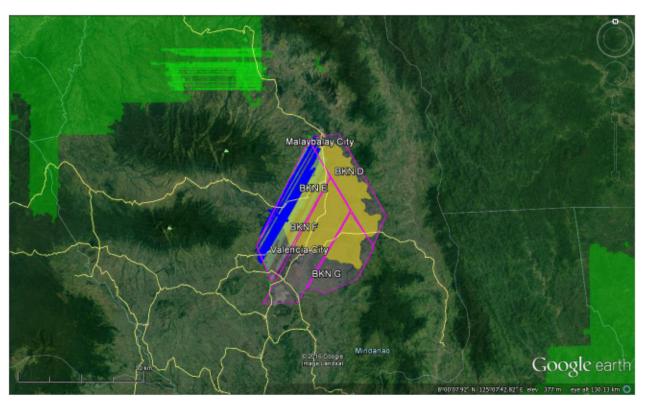


Figure A-6.15 Swath for Flight No. 23540P

Flight No.: 23544P
Area: BKN E
Mission Name: 1BKNE318A

Parameters:

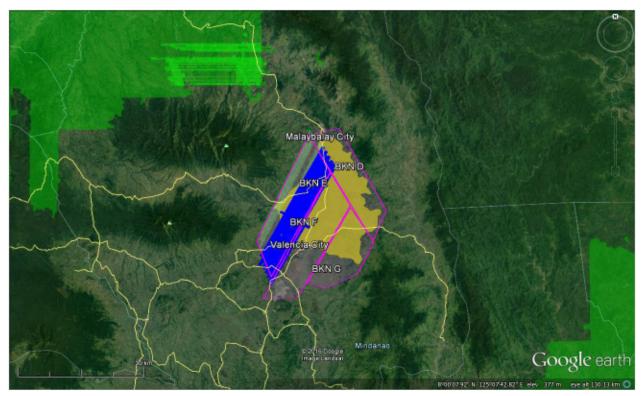


Figure A-6.16 Swath for Flight No. 23544P

Flight No.: 23546P Area: BKN E Mission Name: 1BKNG318B

Parameters:

Altitude: 1300m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

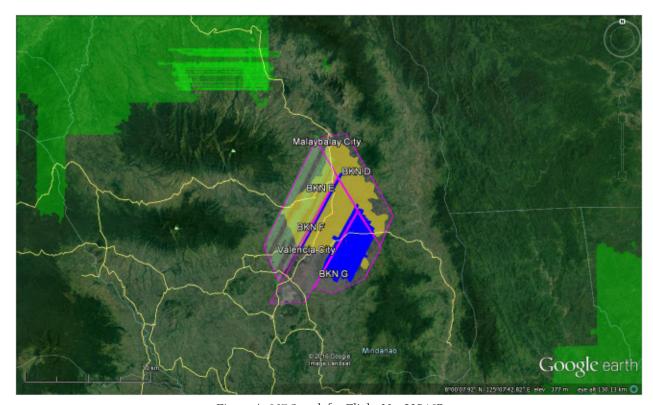


Figure A-6.17 Swath for Flight No. 23546P

Flight No.: 23548P
Area: BKN E, F
Mission Name: 1BKNEF319A

Parameters:

Altitude: 1300m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

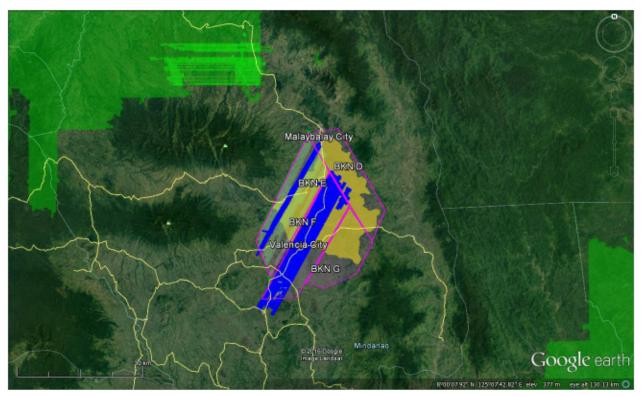


Figure A-6.18 Swath for Flight No. 23548P

ANNEX 7. Mission Summary Reports

Table A-7.1 Mission Summary Report for Mission RX_BlkE_additional

Flight Area	Northern Mindanao
Mission Name	RX_BlkE_additional
Inclusive Flights	1569P, 1597P, 1629P, 1693P
Range data size	102.8 GB
Base data size	26.05 MB
POS	889 MB
Image	45.16 GB
Transfer date	August 1 and August 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	4.5
Boresight correction stdev (<0.001deg)	0.000586
IMU attitude correction stdev (<0.001deg)	0.002822
GPS position stdev (<0.01m)	0.0158
,	
Minimum % overlap (>25)	27.70%
Ave point cloud density per sq.m. (>2.0)	3.07
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	542
Maximum Height	955.2
Minimum Height	68.58
Classification (# of points)	
Ground	311,248,111
Low vegetation	293,934,424
Medium vegetation	609,300,489
High vegetation	299,775,531
Building	11,325,562
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Mark Joshua Salvacion, Engr. Roa Shalemar Redo

Figure A-7.1 Solution Status

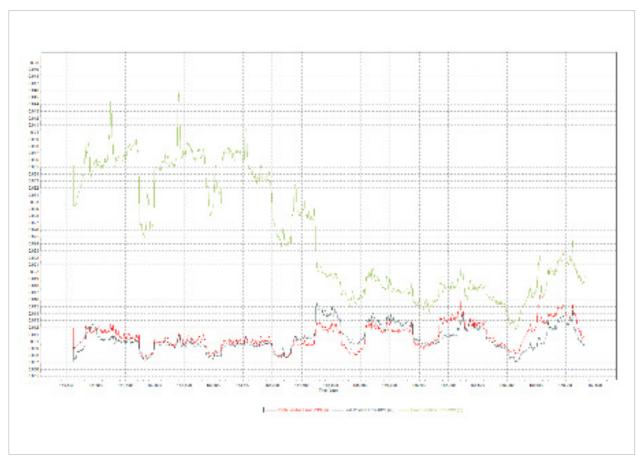


Figure A-7.2 Smoothed Performance Metric Parameters

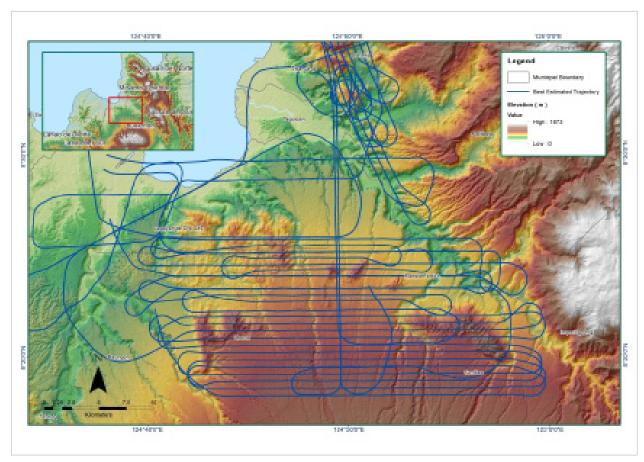


Figure A-7.3 Best Estimated Trajectory

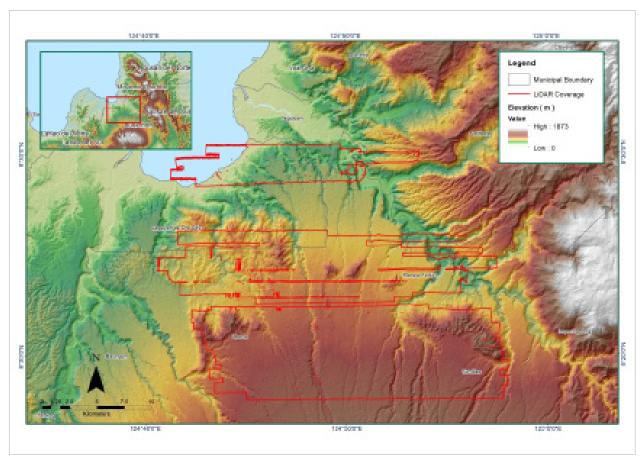


Figure A-7.4 Coverage of LiDAR data

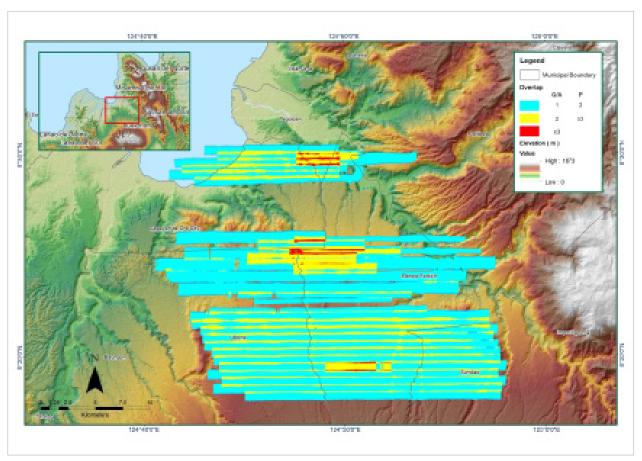


Figure A-7.5 Image of data overlap

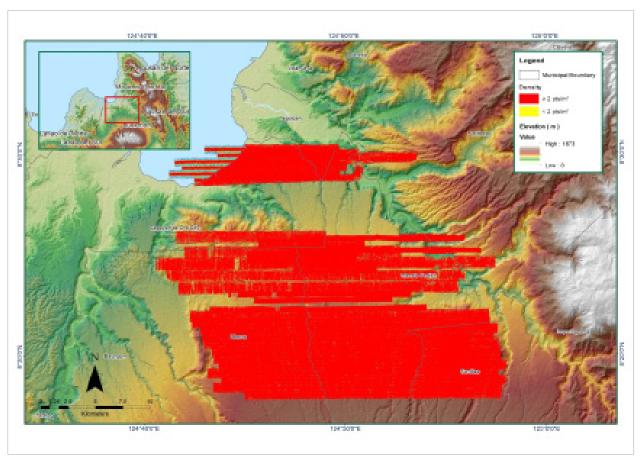


Figure A-7.6 Density map of merged LiDAR data

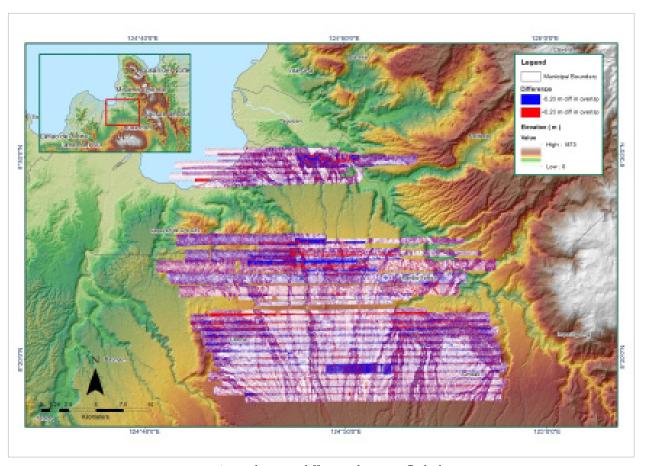


Figure A-7.7 Elevation difference between flight lines

Table A-7.2 Mission Summary Report for Mission RX_BlkE

Flight Area	Northern Mindanao
Mission Name	RX_BIkE
Inclusive Flights	1517P
Range data size	27.7 GB
Base data size	9.7 MB
POS	235 MB
Image	n/a
Transfer date	June 10, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.45
RMSE for Down Position (<8.0 cm)	2.6
Boresight correction stdev (<0.001deg)	0.000196
IMU attitude correction stdev (<0.001deg)	0.000571
GPS position stdev (<0.01m)	0.0068
Minimum % overlap (>25)	52.88%
Ave point cloud density per sq.m. (>2.0)	5.82
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	116
Maximum Height	665.98 m
Minimum Height	69.67 m
Classification (# of points)	
Ground	129,890,323
Low vegetation	122,339,927
Medium vegetation	238,939,048
High vegetation	182,392,328
Building	11,325,562
Orthophoto	No
Processed by	Engr. Jommer Medina, Engr. Antonio Chua Jr, Engr. Gladys Mae Apat

Figure A-7.8 Solution Status

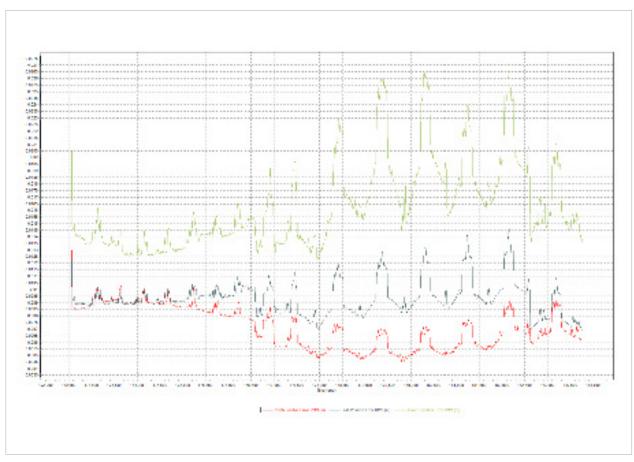


Figure A-7.9 Smoothed Performance Metric Parameters

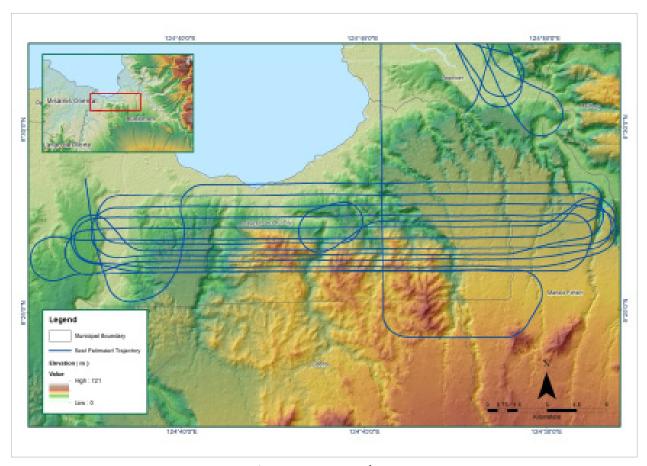


Figure A-7.10 Best Estimated Trajectory

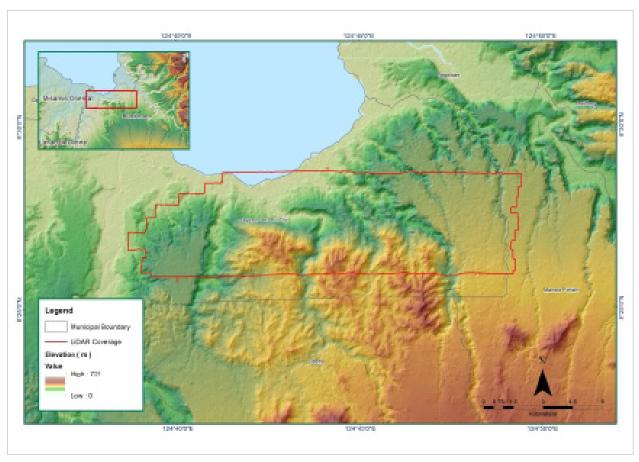


Figure A-7.11 Coverage of LiDAR data

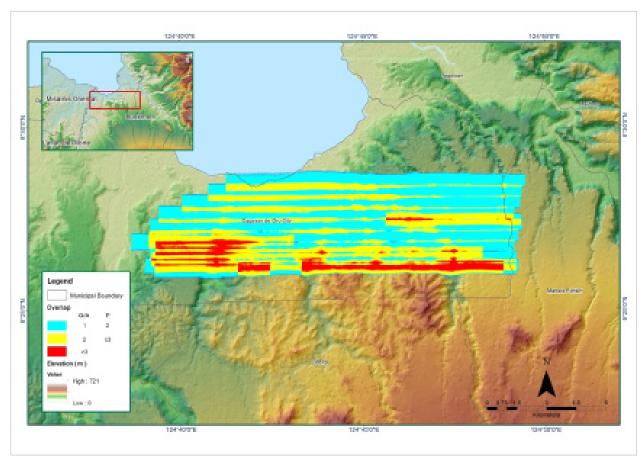


Figure A-7.12 Image of data overlap

Figure A-7.13 Density map of merged LiDAR data

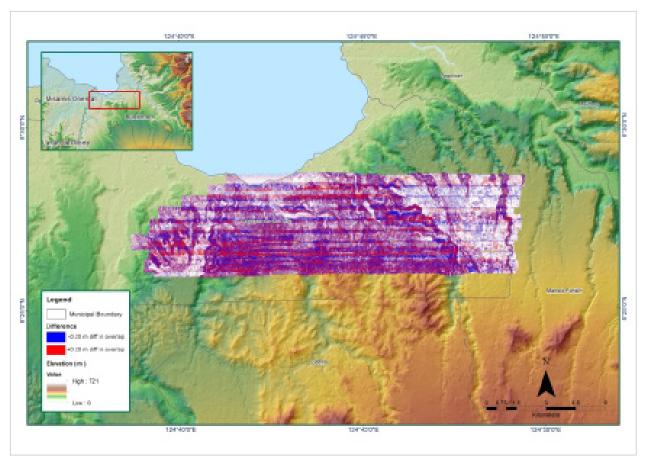


Figure A-7.14 Elevation difference between flight lines

Table A-7.3 Mission Summary Report for Mission RX_BlkE_additional2

Flight Area	Northern Mindanao
Mission Name	RX_BlkE_additional2
Inclusive Flights	1569P
Range data size	21.3 GB
POS	237 MB
Image	NA
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.90
RMSE for East Position (<4.0 cm)	2.67
RMSE for Down Position (<8.0 cm)	4.48
Boresight correction stdev (<0.001deg)	0.000102
IMU attitude correction stdev (<0.001deg)	0.000381
GPS position stdev (<0.01m)	0.0073
Minimum % overlap (>25)	18.33%
Ave point cloud density per sq.m. (>2.0)	4.14
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	279
Maximum Height	735.0 m.
Minimum Height	-2.37 m.
Classification (# of points)	
Ground	482,670,071
Low vegetation	247,589,891
Medium vegetation	452,463,888
High vegetation	622,419,309
Building	26,062,650
Orthophoto	
Processed by	Engr. Kenneth A. Solidum, Engr. Mark Joshua A. Salvacion, Engr. Roa Shalemar Redo

Figure A-7.15 Solution Status

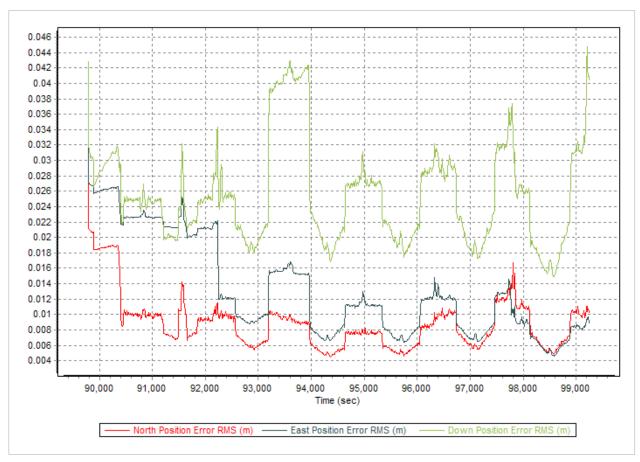


Figure A-7.16 Smoothed Performance Metric Parameters

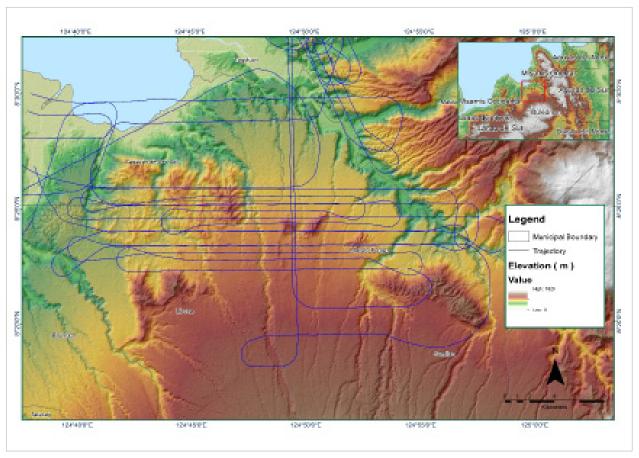


Figure A-7.17 Best Estimated Trajectory

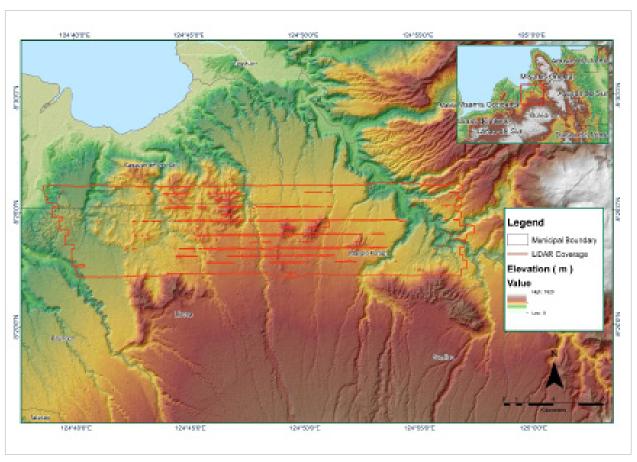


Figure A-7.18 Coverage of LiDAR data

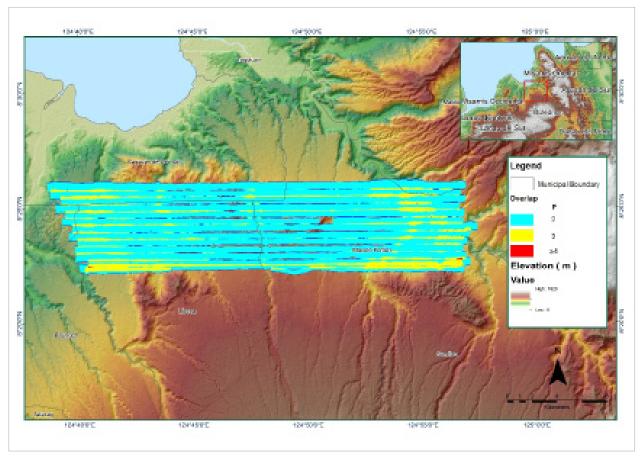


Figure A-7.19 Image of data overlap

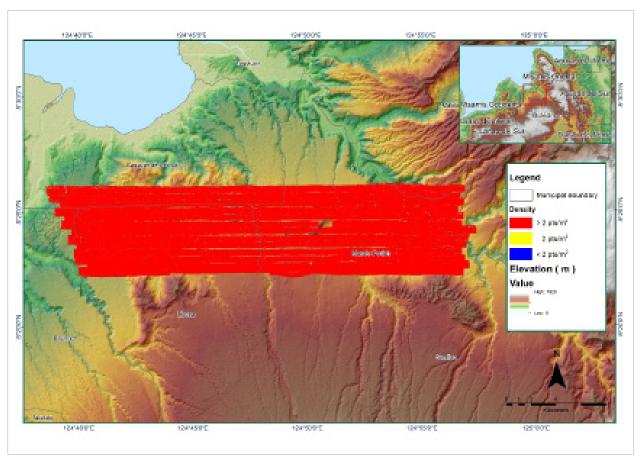


Figure A-7.20 Density map of merged LiDAR data

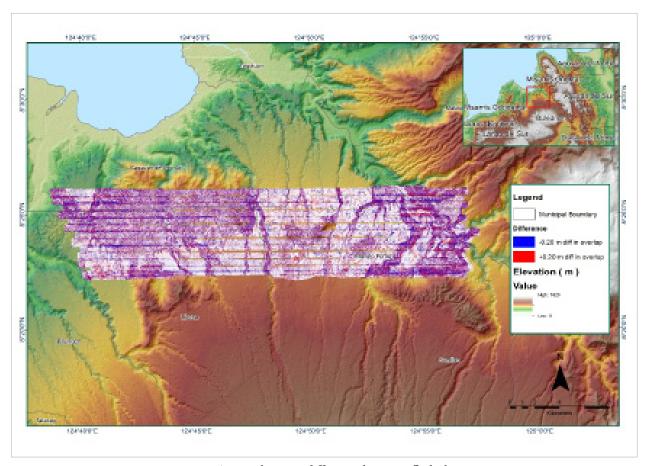


Figure A-7.21 Elevation difference between flight lines

Table A-7.4 Mission Summary Report for Mission Blk64A

Flight Area	Bukidnon
Mission Name	Blk64A
Inclusive Flights	23492P
Range data size	20.9 GB
Base data size	217 MB
POS	230 MB
Image	N/A
Transfer date	November 7, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.9815
RMSE for East Position (<4.0 cm)	3.045
RMSE for Down Position (<8.0 cm)	4.153
Boresight correction stdev (<0.001deg)	0.000225
IMU attitude correction stdev (<0.001deg)	0.001070
GPS position stdev (<0.01m)	0.0120
Minimum % overlap (>25)	30.77
Ave point cloud density per sq.m. (>2.0)	2.43
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	299
Maximum Height	1102.3 m
Minimum Height	412.73 m
Classification (# of points)	
Ground	191,528,488
Low vegetation	145,533,151
Medium vegetation	322,909,291
High vegetation	362,589,170
Building	17,861,849
Orthophoto	17,861,849 No
Processed by	Engr. Jennifer Saguran, Engr. Harmond Santos, Alex John Escobido

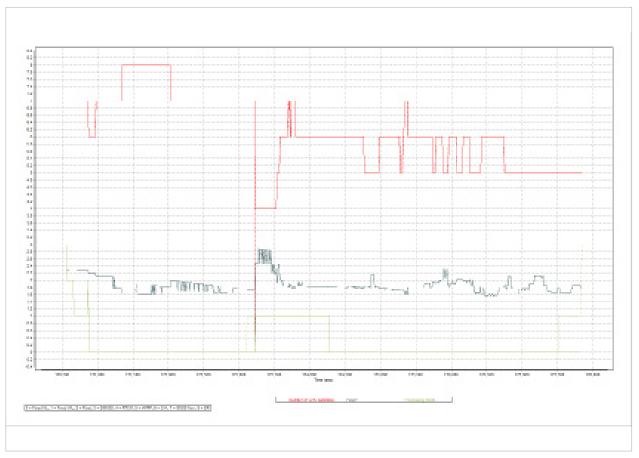


Figure A-7.22 Solution Status

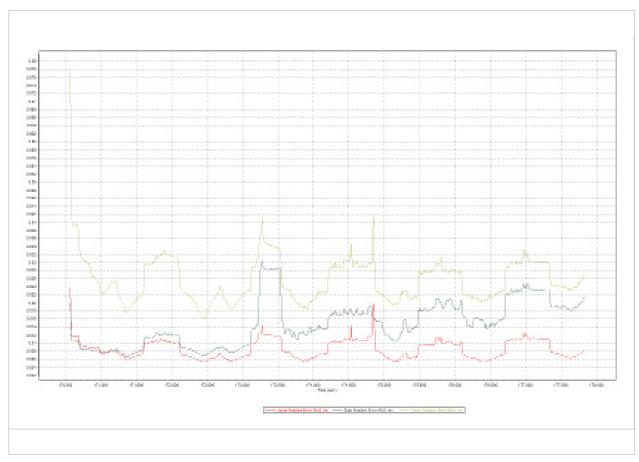


Figure A-7.23 Smoothed Performance Metric Parameters

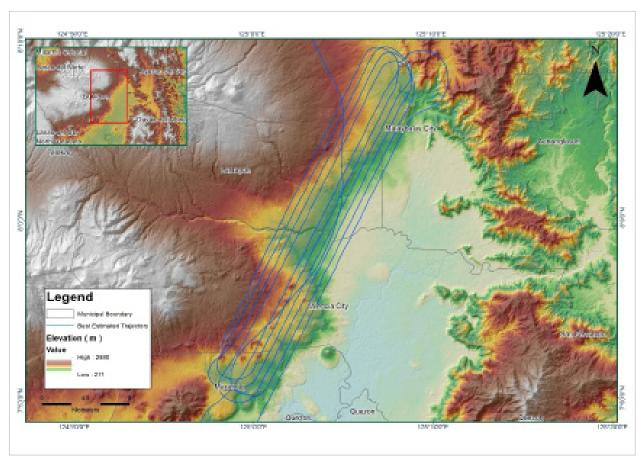


Figure A-7.24 Best Estimated Trajectory

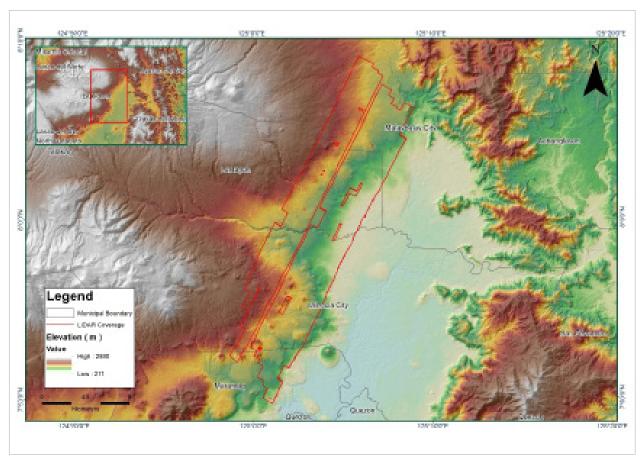


Figure A-7.25 Coverage of LiDAR data

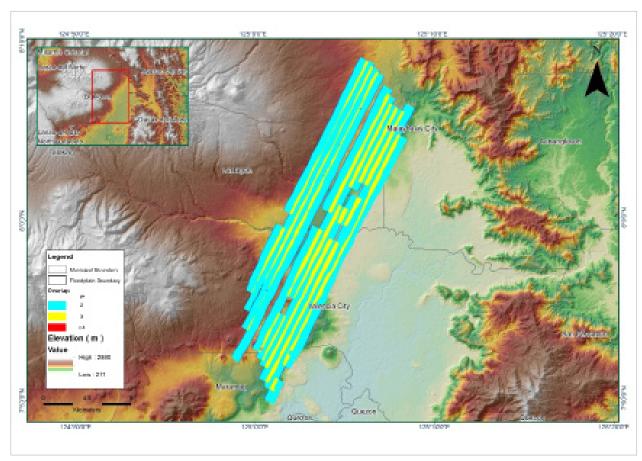


Figure A-7.26 Image of data overlap

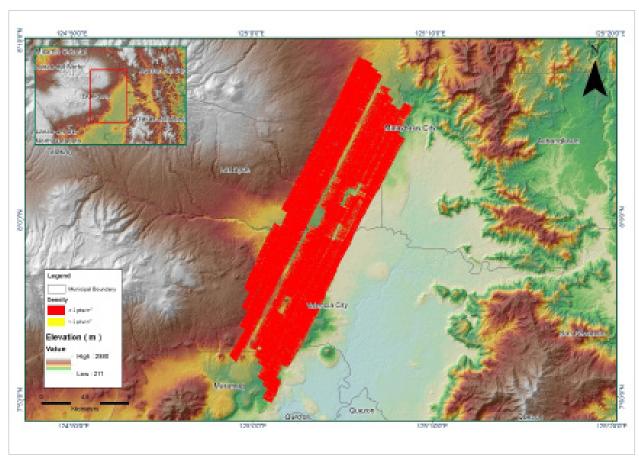


Figure A-7.27 Density map of merged LiDAR data

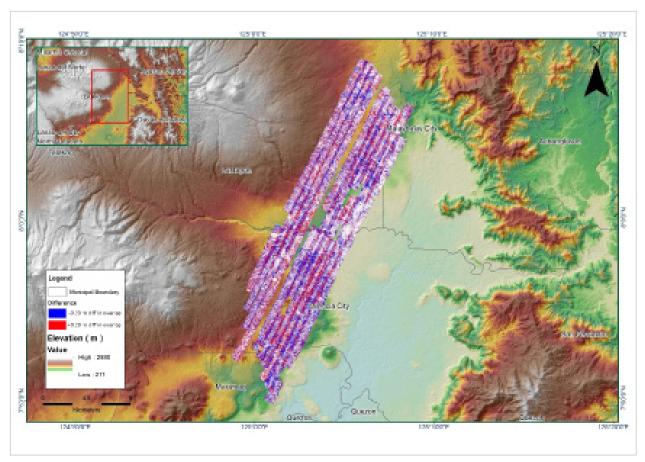


Figure A-7.28 Elevation difference between flight lines

Table A-7.5 Mission Summary Report for Mission Blk64A_Additinal

Flight Area	Bukidnon
Mission Name	Blk64A_Additional
Inclusive Flights	23534 P
Range data size	16.6 GB
Base data size	136 MB
POS	255 MB
Image	N/A
Transfer date	November 24, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.20
RMSE for East Position (<4.0 cm)	1.393
RMSE for Down Position (<8.0 cm)	4.290
Boresight correction stdev (<0.001deg)	0.000090
IMU attitude correction stdev (<0.001deg)	0.001178
GPS position stdev (<0.01m)	0.0144
Minimum % overlap (>25)	37.67
Ave point cloud density per sq.m. (>2.0)	4.92
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	58
Maximum Height	682.03 m
Minimum Height	373.33 m
Classification (# of points)	
Ground	25,441,266
Low vegetation	22,546,966
Medium vegetation	61,054,975
High vegetation	80,759,028
Building	4,837,220
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Chelou Prado, Engr. Karl Adrian Vergara

Figure A-7.29 Solution Status



Figure A-7.30 Smoothed Performance Metric Parameters

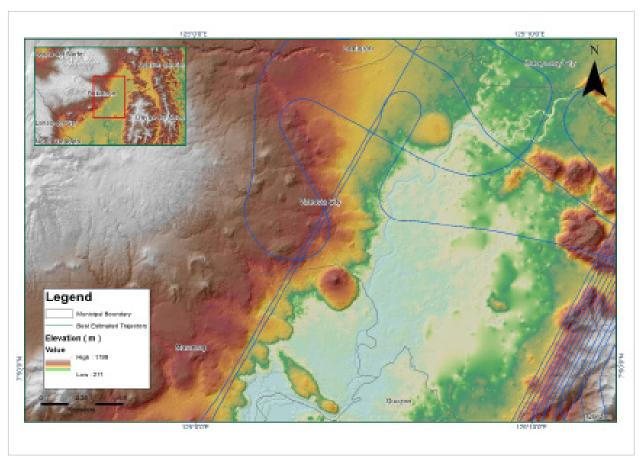


Figure A-7.31 Best Estimated Trajectory

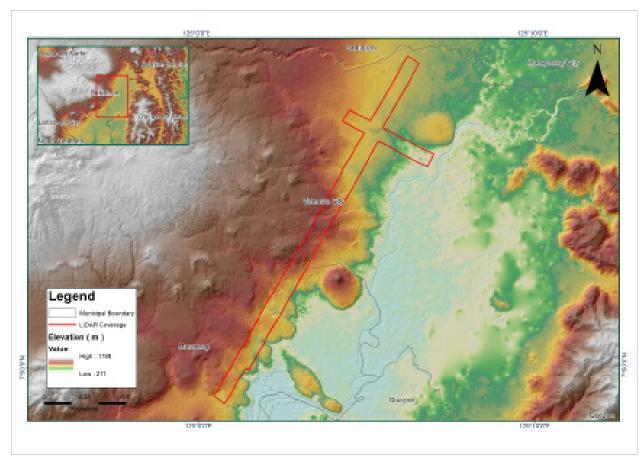


Figure A-7.32 Coverage of LiDAR data

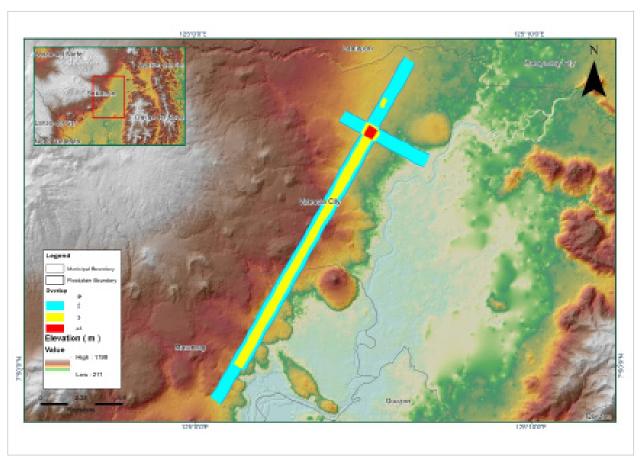


Figure A-7.33 Image of data overlap

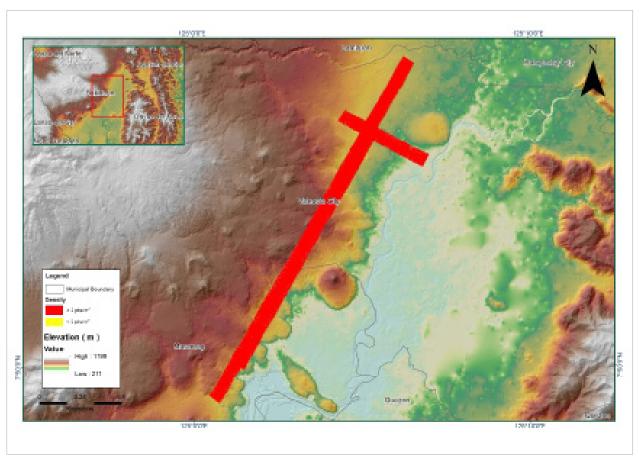


Figure A-7.34 Density map of merged LiDAR data

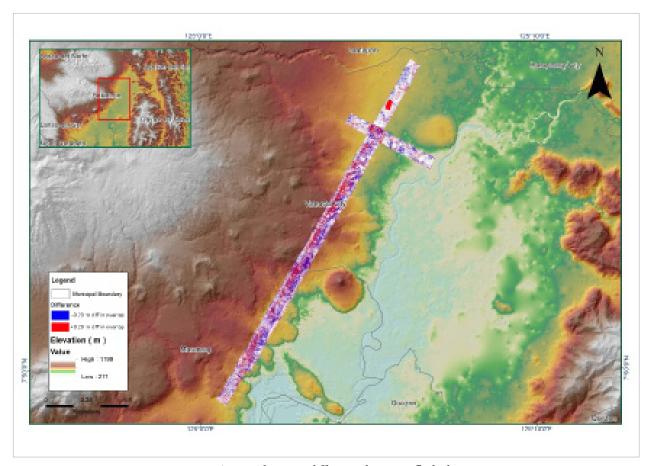


Figure A-7.35 Elevation difference between flight lines

Table A-7.6 Mission Summary Report for Mission Blk64A_Supplement

Flight Area Mission Name	Bukidnon Blk64A_Supplement
Range data size	22.90 GB
Base data size	146 MB
POS	235 MB
Image	N/A
Transfer date	November 24, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.420
RMSE for East Position (<4.0 cm)	3.450
RMSE for Down Position (<8.0 cm)	3.628
Boresight correction stdev (<0.001deg)	0.000113
IMU attitude correction stdev (<0.001deg)	0.000335
GPS position stdev (<0.01m)	0.0070
Minimum % overlap (>25)	72.40
Ave point cloud density per sq.m. (>2.0)	7.08
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	125
Maximum Height	1141.19 m
Minimum Height	407.8 m
Classification (# of points)	
Ground	140,873,960
Low vegetation	116,830,863
Medium vegetation	383,758,426
High vegetation	454,225,250
Building	30,777,474
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Merven Matthew Natino, Vincent Louise Azucena

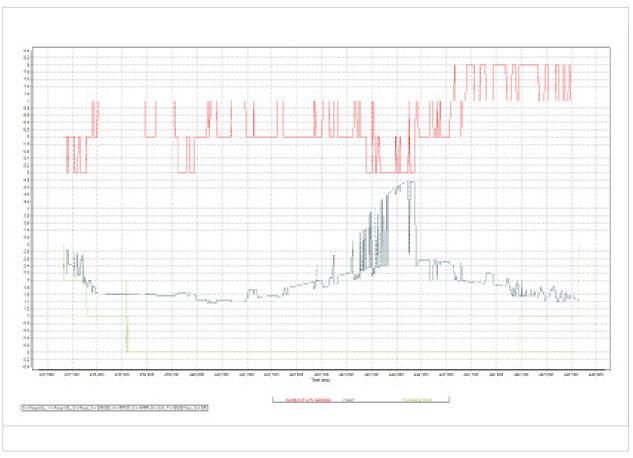


Figure A-7.36 Solution Status

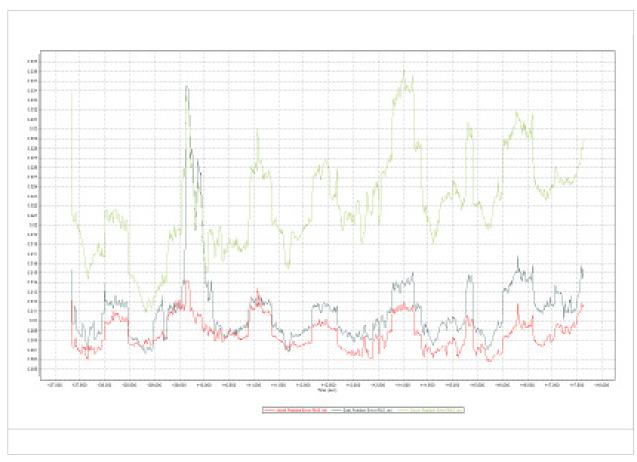


Figure A-7.37 Smoothed Performance Metric Parameters

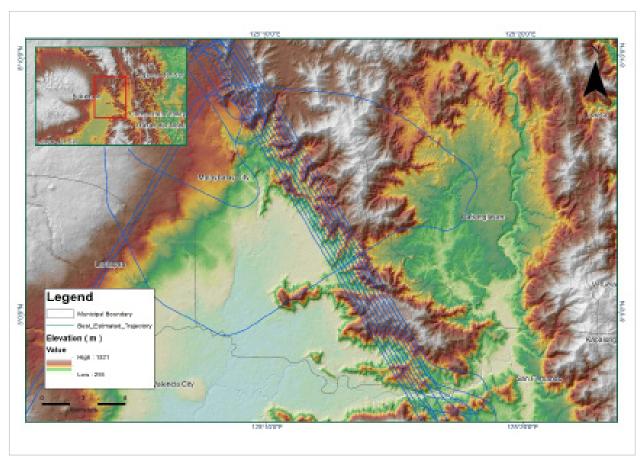


Figure A-7.38 Best Estimated Trajectory

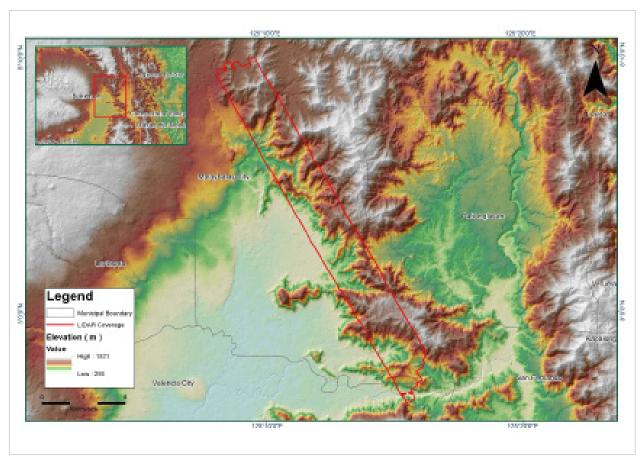


Figure A-7.39 Coverage of LiDAR data

Figure A-7.40 Image of data overlap

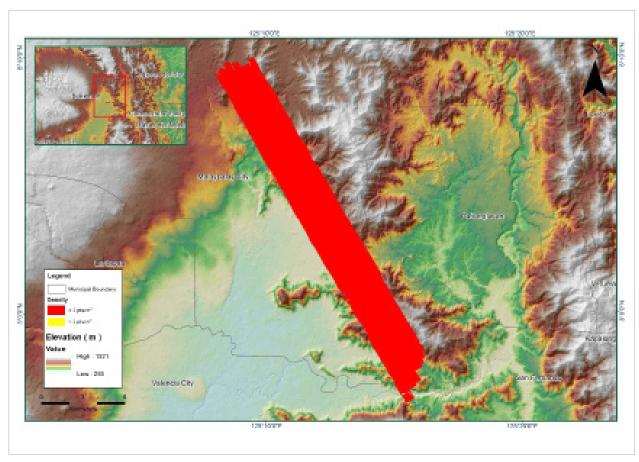


Figure A-7.41 Density map of merged LiDAR data

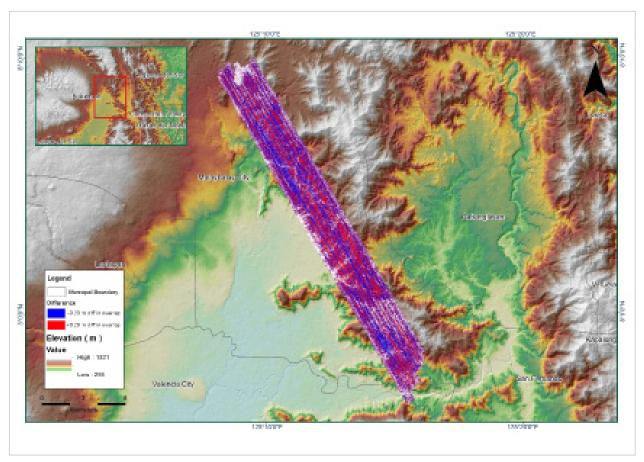


Figure A-7.42 Elevation difference between flight lines

Table A-7.7 Mission Summary Report for Mission Blk64B_Supplement2

Flight Area	Bukidnon
Mission Name	Blk64B_Supplement2
Inclusive Flights	23548P
Range data size	26.7 GB
Base data size	208 MB
POS	268 MB
Image	N/A
Transfer date	November 24, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.232
RMSE for East Position (<4.0 cm)	1.441
RMSE for Down Position (<8.0 cm)	2.99
Boresight correction stdev (<0.001deg)	0.000131
IMU attitude correction stdev (<0.001deg)	0.000463
GPS position stdev (<0.01m)	0.0011
Minimum % overlap (>25)	60.89
Ave point cloud density per sq.m. (>2.0)	5.80
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	334
Maximum Height	1099.77 m
Minimum Height	629.02 m
Classification (# of points)	
Ground	355,349,842
Low vegetation	420,008,545
Medium vegetation	1,045,682,099
High vegetation	986,779,809
Building	94,950,490
Orthophoto	No
Processed by	Engr. Analyn Naldo, Aljon Rie Araneta, Engr. Gladys Mae Apat

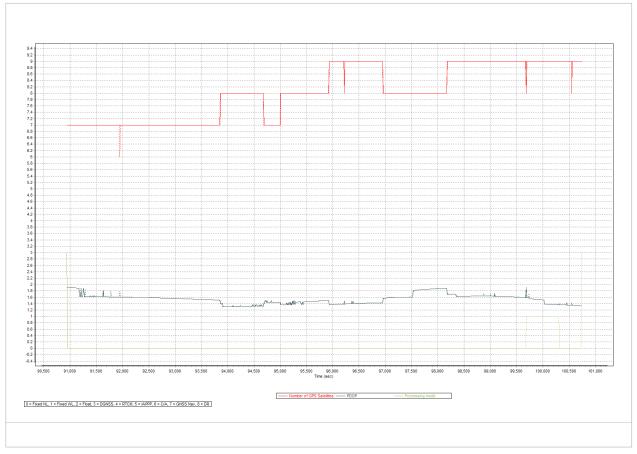


Figure A-7.43 Solution Status

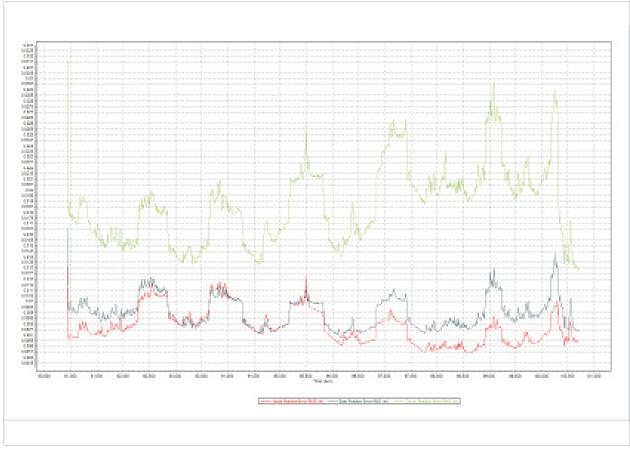


Figure A-7.44 Smoothed Performance Metric Parameters

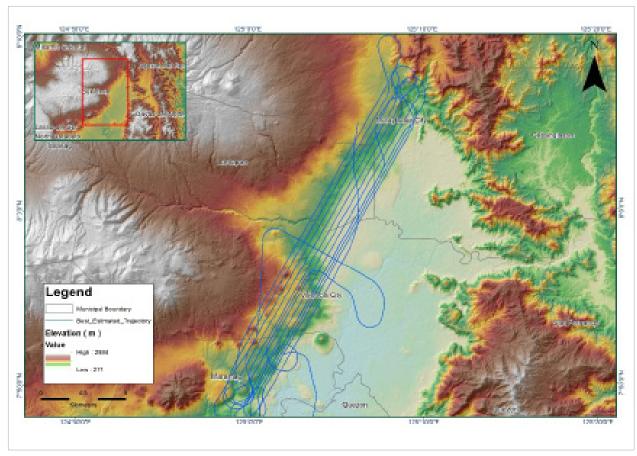


Figure A-7.45 Best Estimated Trajectory

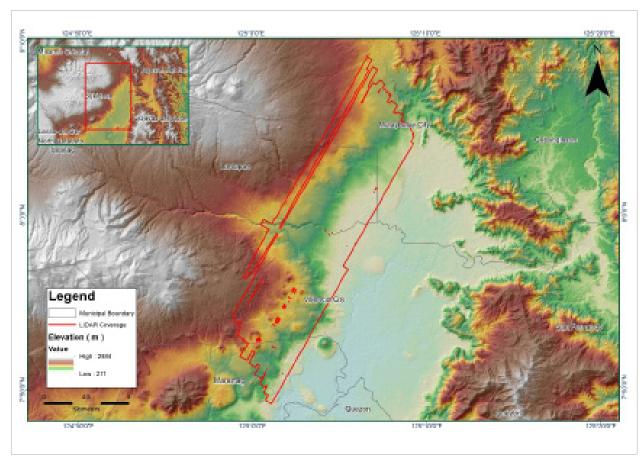


Figure A-7.46 Coverage of LiDAR data

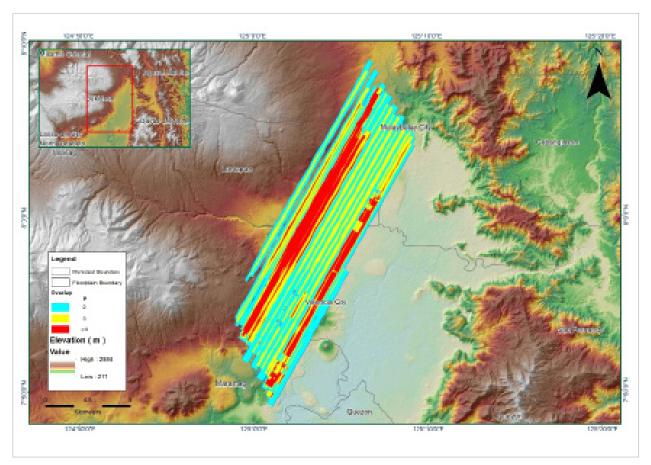


Figure A-7.47 Image of data overlap

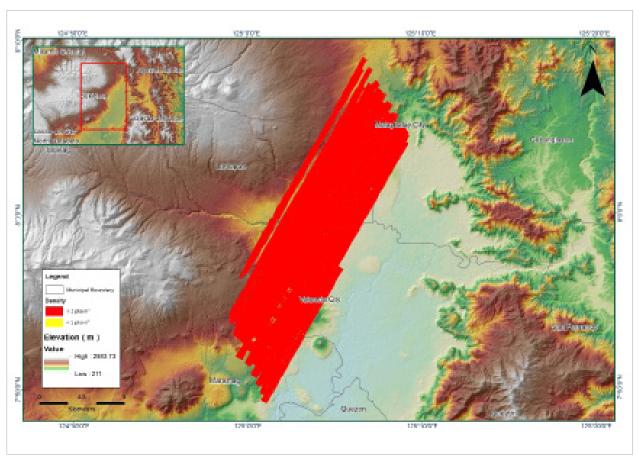


Figure A-7.48 Density map of merged LiDAR data

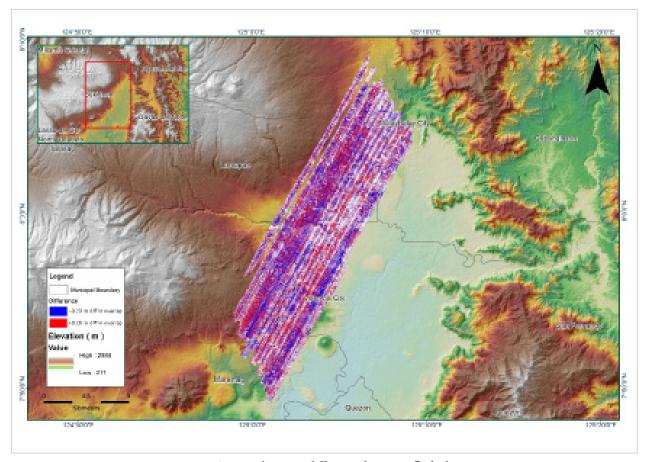


Figure A-7.49 Elevation difference between flight lines

Table A-7.8 Mission Summary Report for Mission Blk64B

Flight Area	Bukidnon
Mission Name	Blk64B
Inclusive Flights	23516P
Range data size	22.5 GB
Base data size	283 MB
POS	269MB
Image	N/A
Transfer date	November 16, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.675
RMSE for East Position (<4.0 cm)	4.350
RMSE for Down Position (<8.0 cm)	3.335
Boresight correction stdev (<0.001deg)	0.000531
IMU attitude correction stdev (<0.001deg)	0.001317
GPS position stdev (<0.01m)	0.0071
Minimum % overlap (>25)	42.69
Ave point cloud density per sq.m. (>2.0)	3.54
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	319
Maximum Height	834.68 m
Minimum Height	304.99 m
Classification (# of points)	
Ground	356,040,037
Low vegetation	326,910,127
Medium vegetation	525,652,904
High vegetation	512,546,318
Building	44,145,758
Orthophoto	No
Processed by	Engr Ben Joseph Harder, Engr James Kevin Dimaculangan, Engr. Justine Francisco

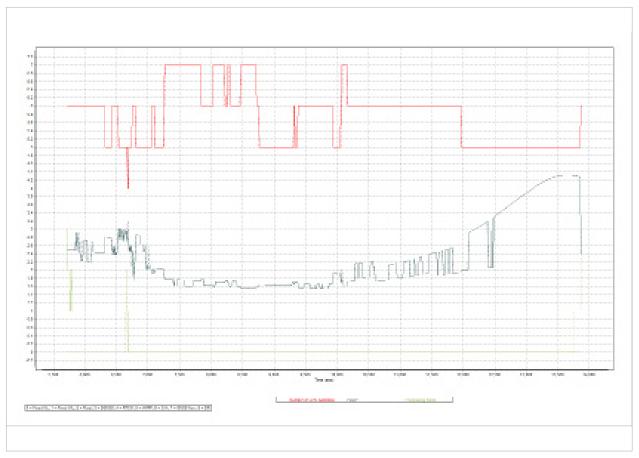


Figure A-7.50 Solution Status

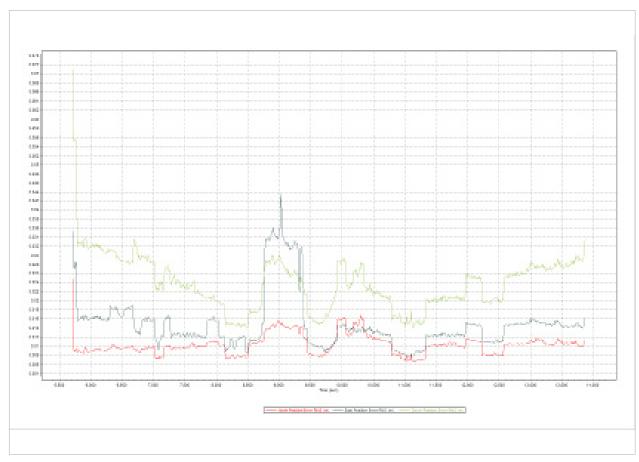


Figure A-7.51 Smoothed Performance Metric Parameters

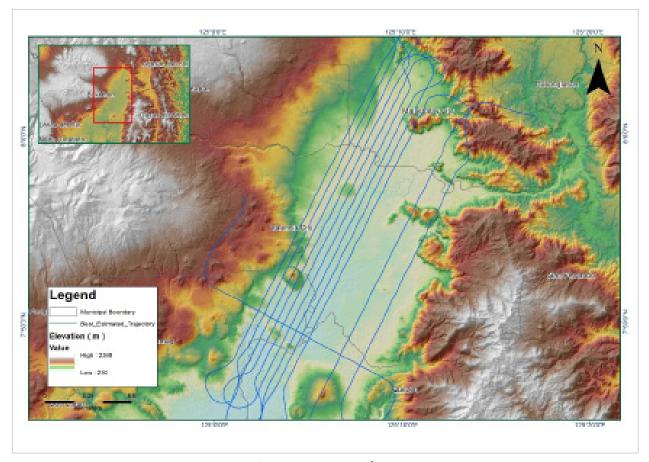


Figure A-7.52 Best Estimated Trajectory

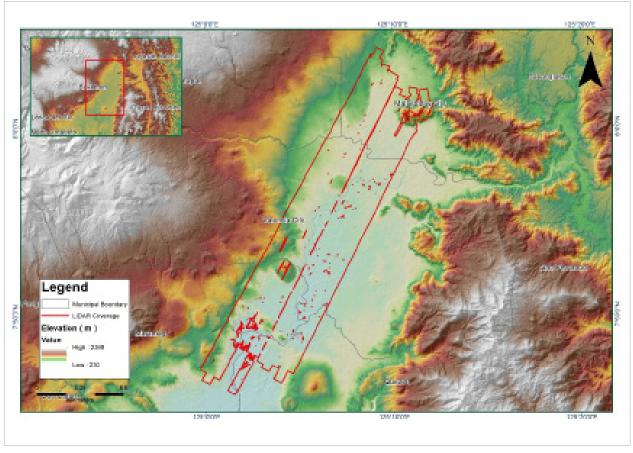


Figure A-7.53 Coverage of LiDAR data

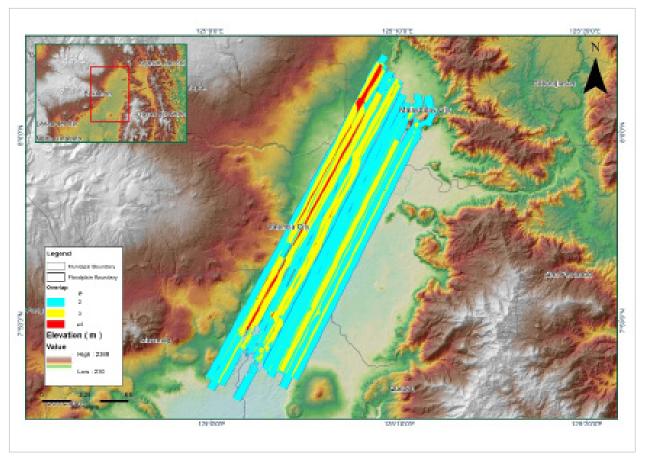


Figure A-7.54 Image of data overlap

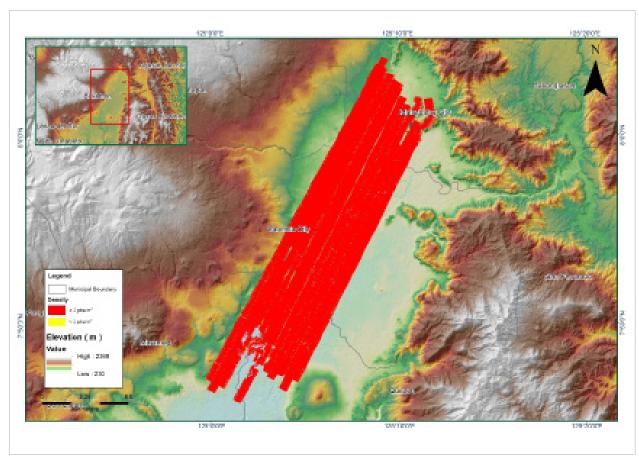


Figure A-7.55 Density map of merged LiDAR data

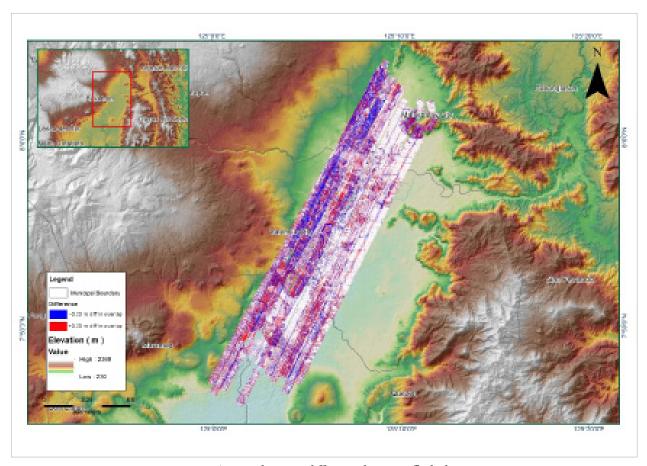


Figure A-7.56 Elevation difference between flight lines

Table A-7.9 Mission Summary Report for Mission Blk64B_Supplement

Flight Area	Bukidnon
Mission Name	Blk64B_Supplement
Inclusive Flights	23548P
Range data size	26.7 GB
Base data size	208 MB
POS	268 MB
Image	N/A
Transfer date	November 24, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
-	
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.232
RMSE for East Position (<4.0 cm)	1.441
RMSE for Down Position (<8.0 cm)	2.99
Boresight correction stdev (<0.001deg)	0.000152
IMU attitude correction stdev (<0.001deg)	0.000776
GPS position stdev (<0.01m)	0.0011
Minimum % overlap (>25)	59.75
Ave point cloud density per sq.m. (>2.0)	3.58
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	242
Maximum Height	849.49 m
Minimum Height	58.35 m
Classification (# of points)	
Ground	302,590,947
Low vegetation	139,176,892
Medium vegetation	257,286,910
High vegetation	313,991,201
Building	28,292,278
Orthophoto	No
Processed by	Engr Ben Joseph Harder, Engr. Edgardo Gubatanga Jr, Engr. Czarina Jean Añonuevo

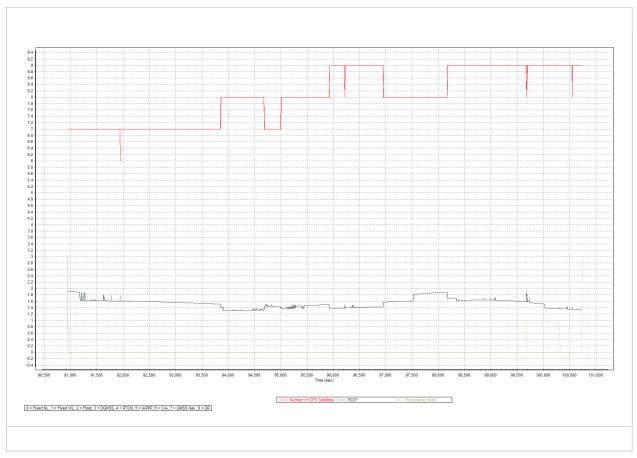


Figure A-7.57 Solution Status

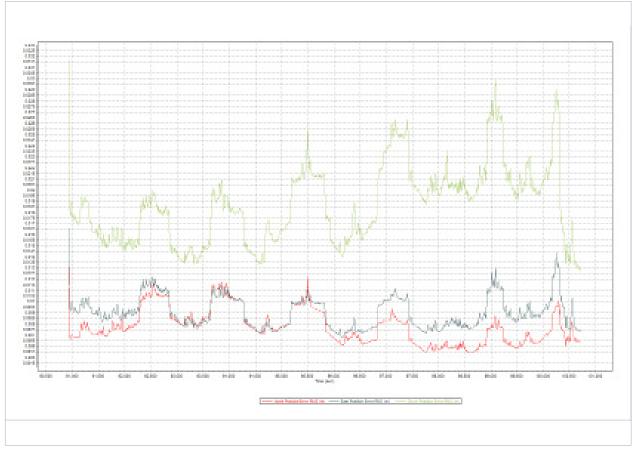


Figure A-7.58 Smoothed Performance Metric Parameters

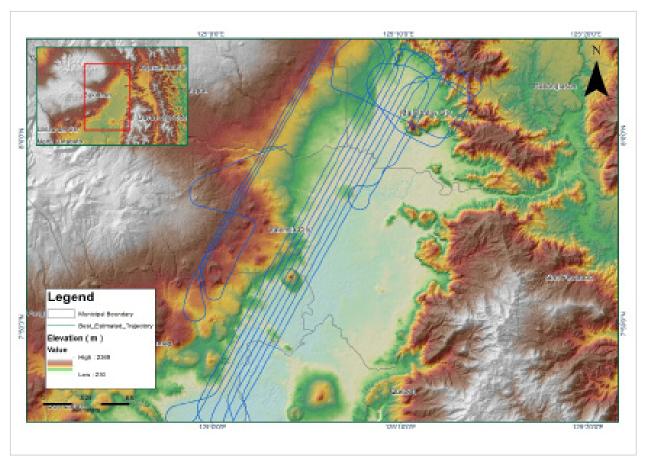


Figure A-7.59 Best Estimated Trajectory

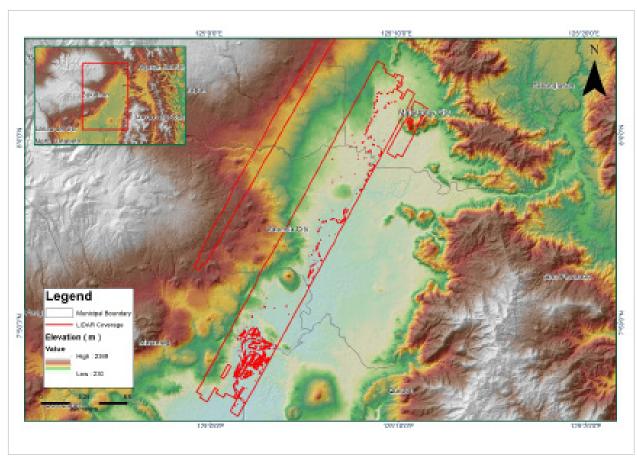


Figure A-7.60 Coverage of LiDAR data

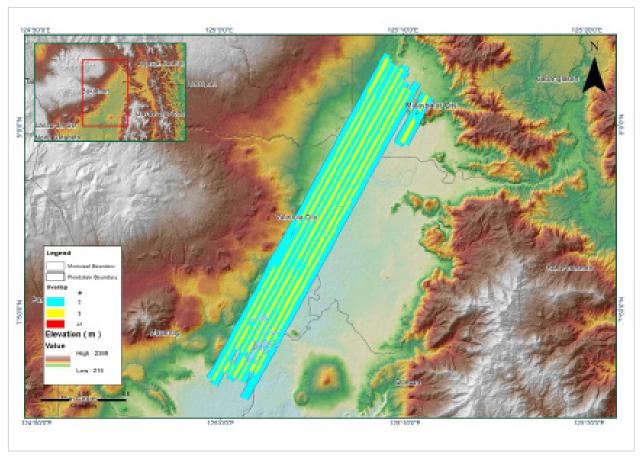


Figure A-7.61 Image of data overlap

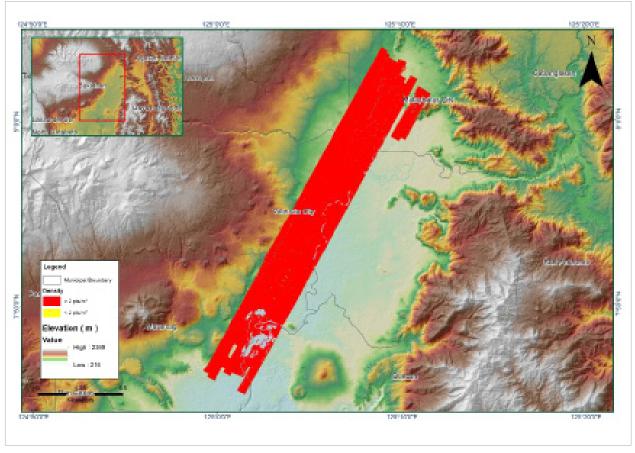


Figure A-7.62 Density map of merged LiDAR data

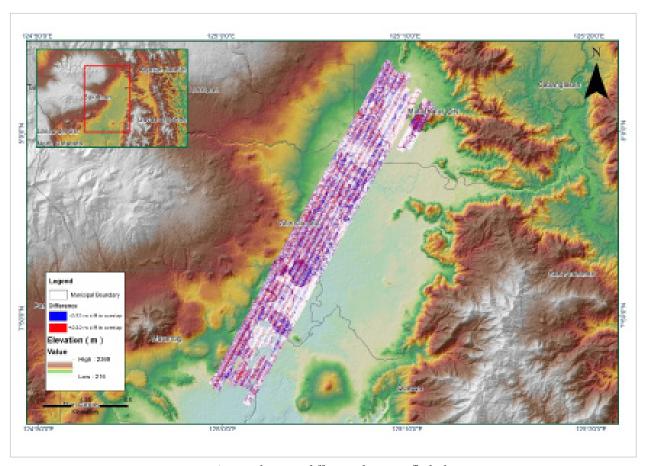


Figure A-7.63 Elevation difference between flight lines

Table A-7.10 Mission Summary Report for Mission Blk64C

Flight Area	Bukidnon
Mission Name	Blk64C
Inclusive Flights	23520P
Range data size	24.5 GB
Base data size	158 MB
POS	274 MB
Image	N/A
Transfer date	November 16, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.541
RMSE for East Position (<4.0 cm)	1.748
RMSE for Down Position (<8.0 cm)	3.572
Boresight correction stdev (<0.001deg)	0.000090
IMU attitude correction stdev (<0.001deg)	0.001178
GPS position stdev (<0.01m)	0.0144
Minimum % overlap (>25)	30.29
Ave point cloud density per sq.m. (>2.0)	3.18
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	221
Maximum Height	938.48 m
Minimum Height	114.92 m
Classification (# of points)	
Ground	293,747,127
Low vegetation	180,464,292
Medium vegetation	174,906,872
High vegetation	268,029,001
Building	7,345,248
Orthophoto	No
Processed by	Engr. Ben Joseph Harder, Engr James Kevin Dimaculangan, Engr. Jovelle Anjeanette Canlas, Maria Tamsyn Malabanan

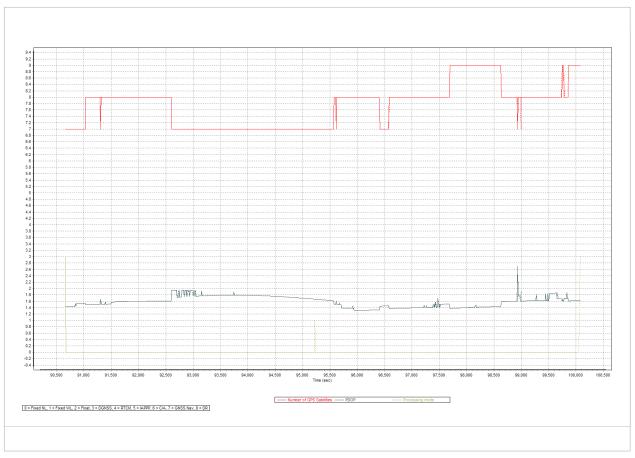


Figure A-7.64 Solution Status

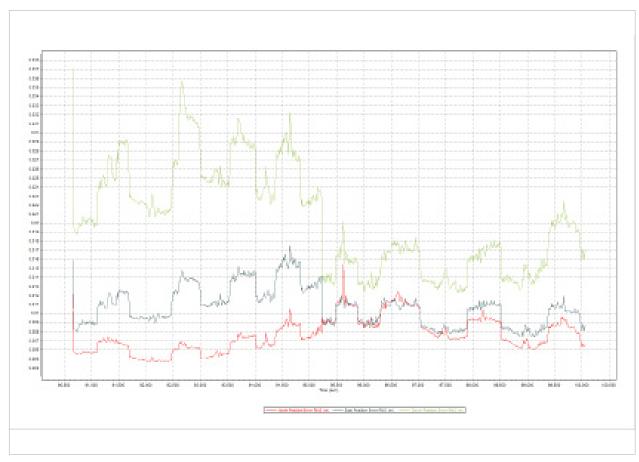


Figure A-7.65 Smoothed Performance Metric Parameters

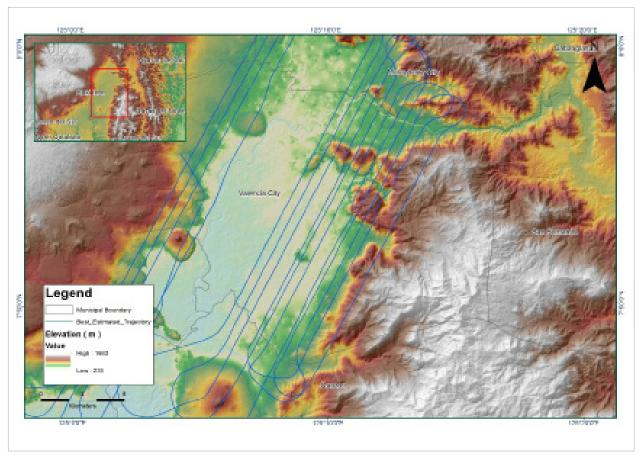


Figure A-7.66 Best Estimated Trajectory

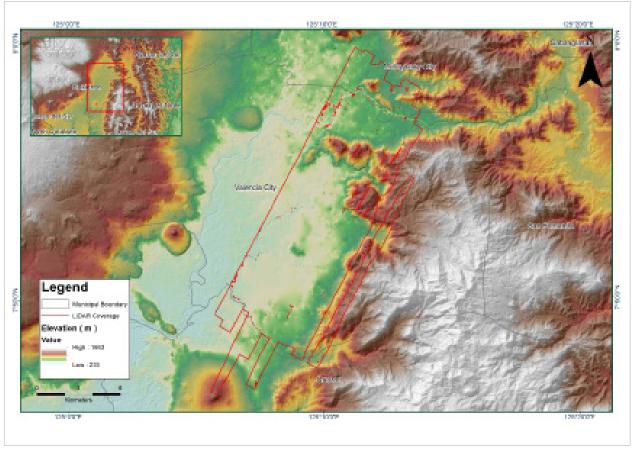


Figure A-7.67 Coverage of LiDAR data

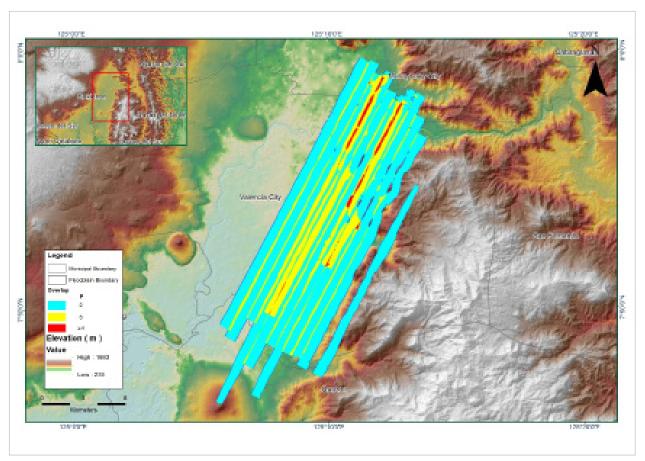


Figure A-7.68 Image of data overlap

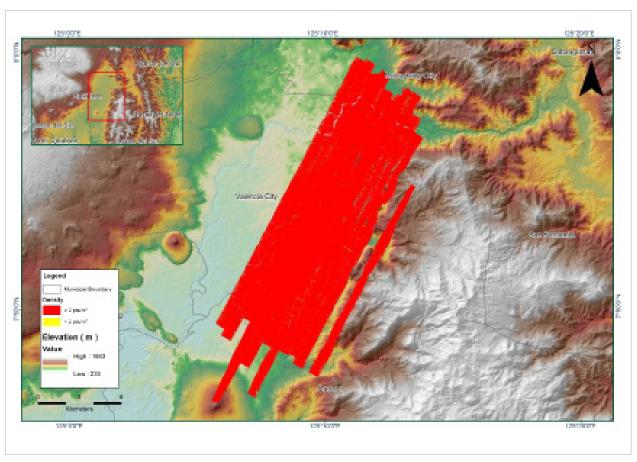


Figure A-7.69 Density map of merged LiDAR data

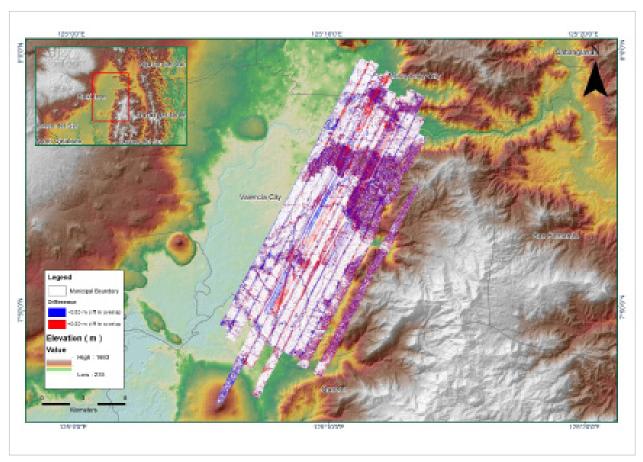


Figure A-7.70 Elevation difference between flight lines

Table A-7.11 Mission Summary Report for Mission Blk64A

Flight Area	Bukidnon
Mission Name	Blk64C_Additional
Inclusive Flights	23534P
Range data size	16.6 GB
Base data size	136 MB
POS	255MB
Image	N/A
Transfer date	November 24, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.20
RMSE for East Position (<4.0 cm)	1.393
RMSE for Down Position (<8.0 cm)	4.290
Boresight correction stdev (<0.001deg)	0.000090
IMU attitude correction stdev (<0.001deg)	0.001178
GPS position stdev (<0.01m)	0.0144
Minimum % overlap (>25)	55.90
Ave point cloud density per sq.m. (>2.0)	7.18
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	104
Maximum Height	1033.35 m
Minimum Height	381.91 m
Classification (# of points)	
Ground	88,679,344
Low vegetation	69,388,074
Medium vegetation	242,773,781
High vegetation	357,660,401
Building	25,009,474
Orthophoto	No
Processed by	Engr. Ben Joseph Harder, Engr. James Kevin Dimaculangan, Aljon Rie Araneta, Engr. Wilbert Ian San Juan

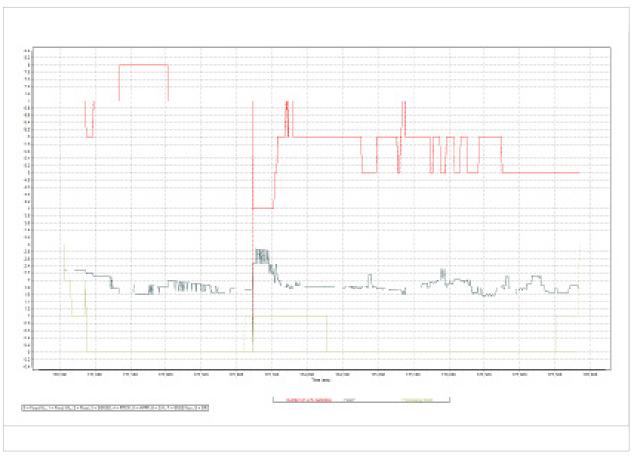


Figure A-7.71 Solution Status

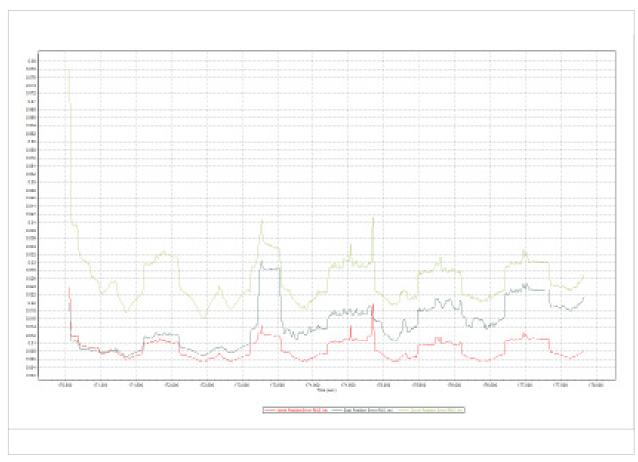


Figure A-7.72 Smoothed Performance Metric Parameters

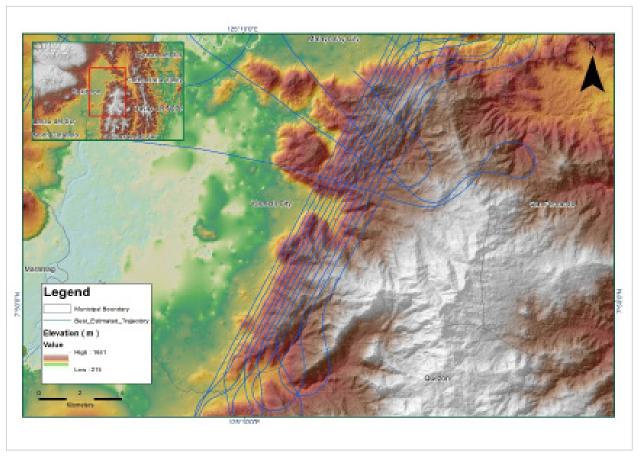


Figure A-7.73 Best Estimated Trajectory

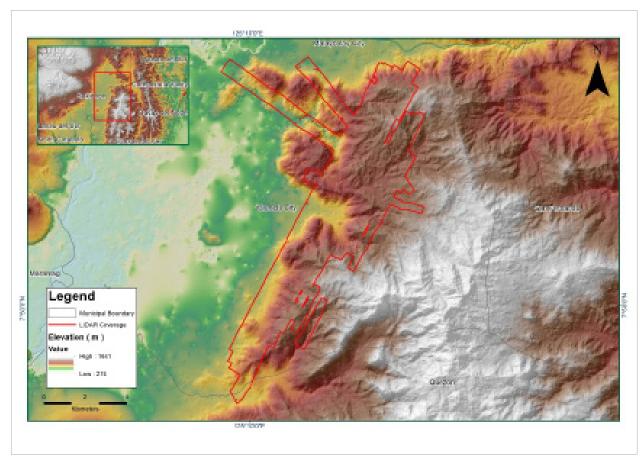


Figure A-7.74 Coverage of LiDAR data

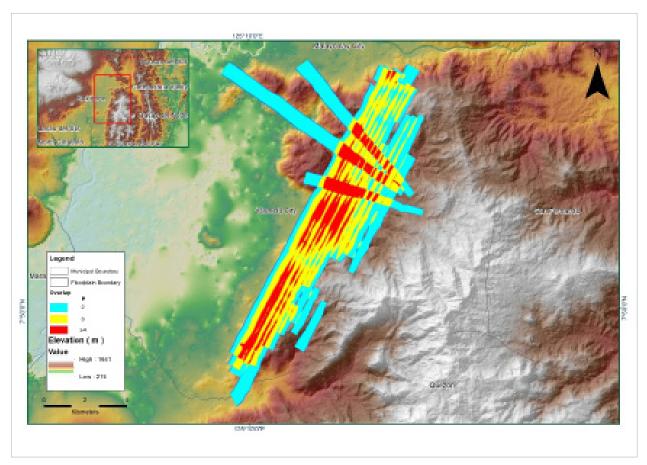


Figure A-7.75 Image of data overlap

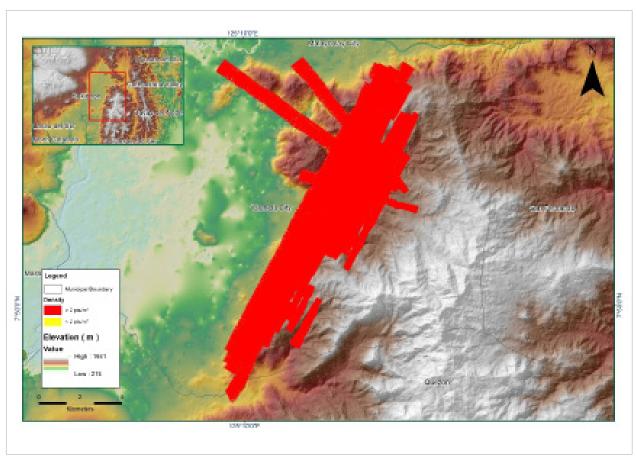


Figure A-7.76 Density map of merged LiDAR data

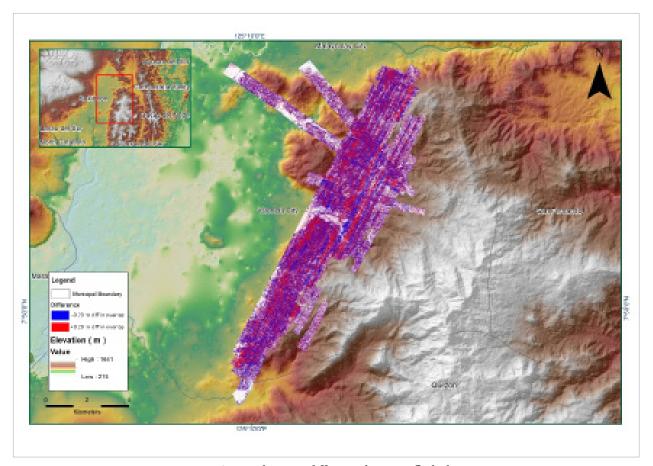


Figure A-7.77 Elevation difference between flight lines

Table A-7.12 Mission Summary Report for Mission Blk64 $C_Supplement$

Flight Area Mission Name	Bukidnon Blk64C_Supplement
Range data size	18.1 GB
Base data size	299 MB
POS	262 MB
Image	N/A
Transfer date	November 24, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.155
RMSE for East Position (<4.0 cm)	1.675
RMSE for Down Position (<8.0 cm)	4.400
Boresight correction stdev (<0.001deg)	0.000166
IMU attitude correction stdev (<0.001deg)	0.000495
GPS position stdev (<0.01m)	0.0053
Minimum % overlap (>25)	47.66
Ave point cloud density per sq.m. (>2.0)	3.65
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	153
Maximum Height	917.61 m
Minimum Height	363.27 m
Classification (# of points)	
Ground	251,837,143
Low vegetation	194,428,563
Medium vegetation	141,971,724
High vegetation	233,521,779
Building	16,939,875
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Gladys Mae Apat

Figure A-7.78 Solution Status

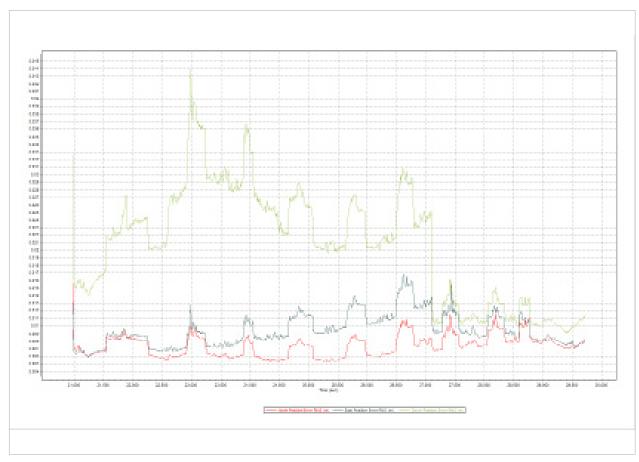


Figure A-7.79 Smoothed Performance Metric Parameters

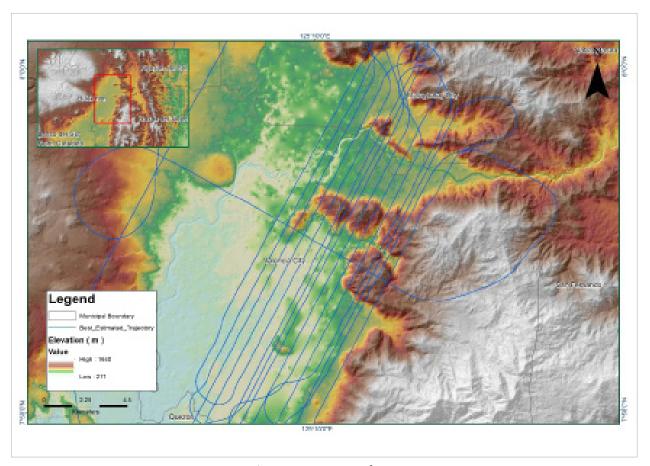


Figure A-7.80 Best Estimated Trajectory

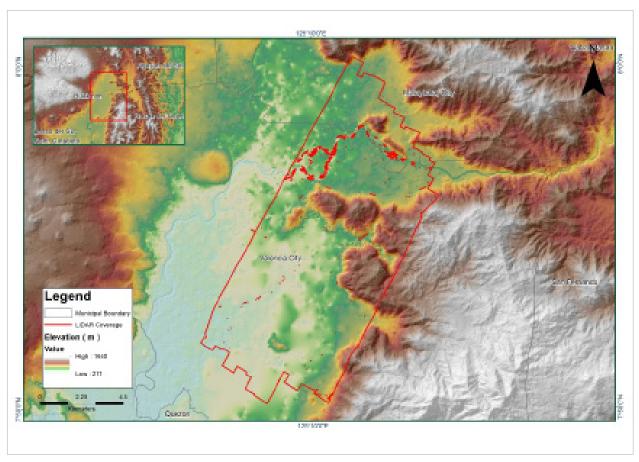


Figure A-7.81 Coverage of LiDAR data

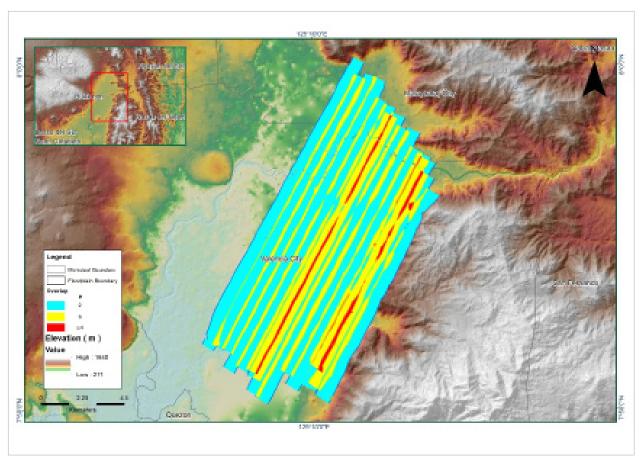


Figure A-7.82 Image of data overlap

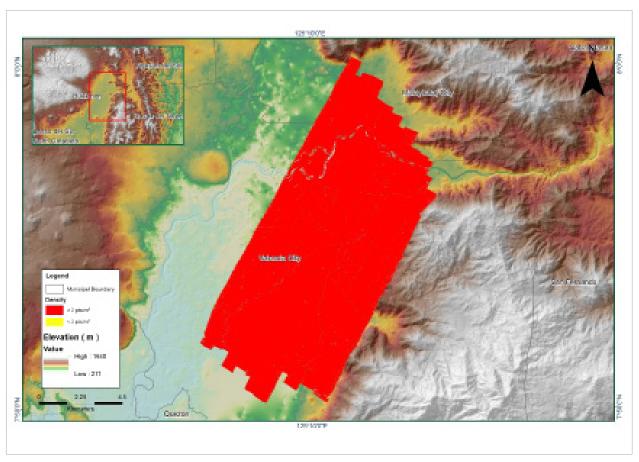


Figure A-7.83 Density map of merged LiDAR data

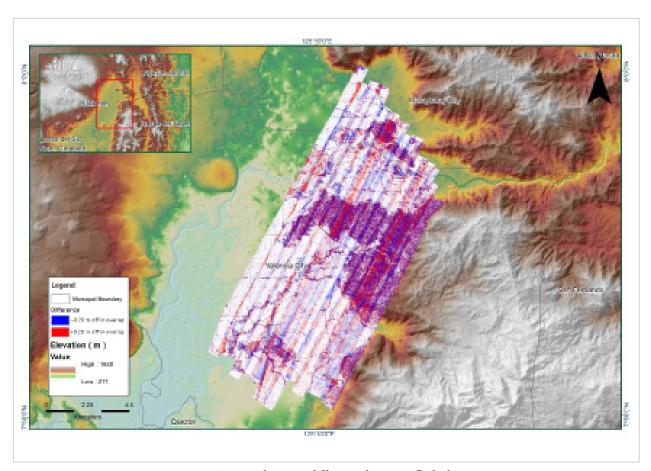


Figure A-7.84 Elevation difference between flight lines

Table A-7.13 Mission Summary Report for Mission Blk64D

Flight Area	Bukidnon
Mission Name	Blk64D
Inclusive Flights	23524P
Range data size	27 GB
Base data size	141 MB
POS	237 MB
Image	N/A
Transfer date	November 16, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.067
RMSE for East Position (<4.0 cm)	1.225
RMSE for Down Position (<8.0 cm)	2.340
Boresight correction stdev (<0.001deg)	0.000170
IMU attitude correction stdev (<0.001deg)	0.000230
GPS position stdev (<0.01m)	0.0013
Minimum % overlap (>25)	56.46
Ave point cloud density per sq.m. (>2.0)	5.27
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	130
Maximum Height	1222.82 m
Minimum Height	387.74 m
Classification (# of points)	
Ground	226,612,345
Low vegetation	226,612,345
Medium vegetation	181,833,367
High vegetation	288,808,400
Building	18,950,286
Orthophoto	No
Processed by	Engr. Don Matthew Banatin, Engr. Mark Joshua Salvacion, Engr. Gladys Mae Apat

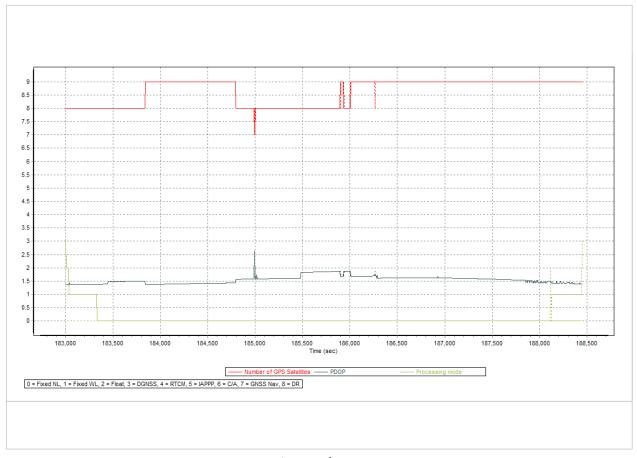


Figure A-7.85 Solution Status

Figure A-7.86 Smoothed Performance Metric Parameters

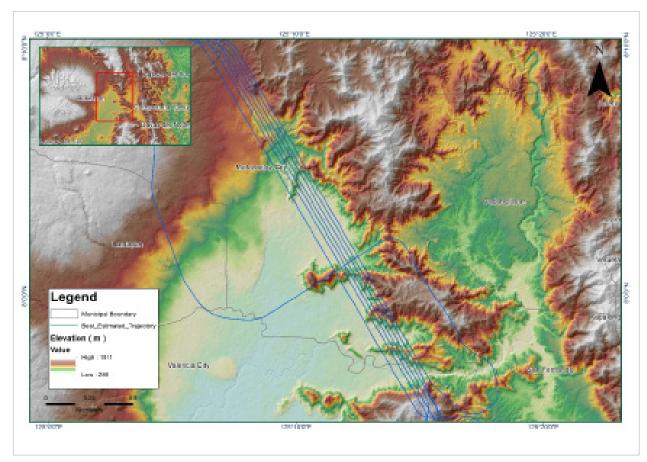


Figure A-7.87 Best Estimated Trajectory

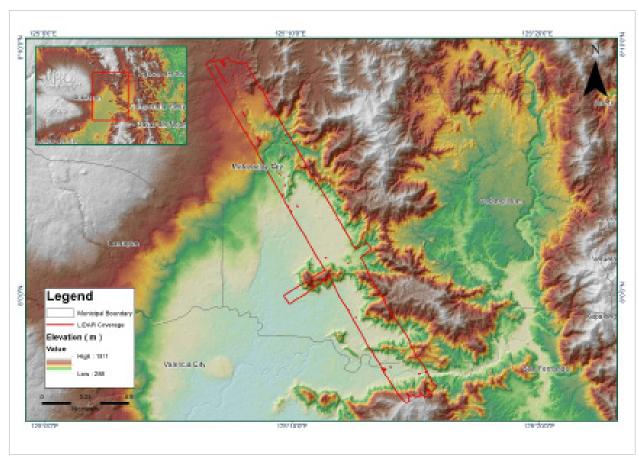


Figure A-7.88 Coverage of LiDAR data

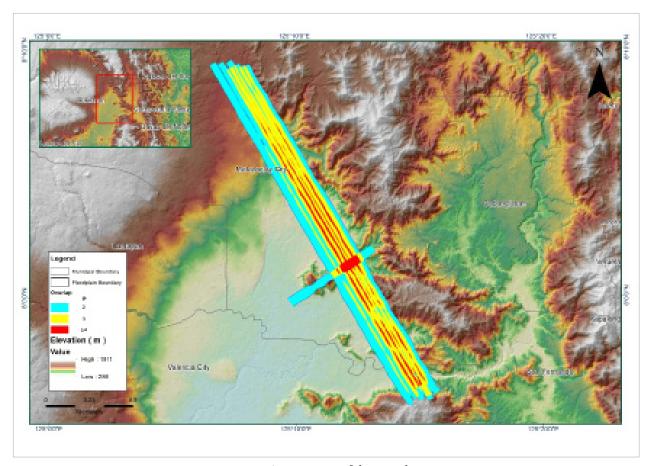


Figure A-7.89 Image of data overlap

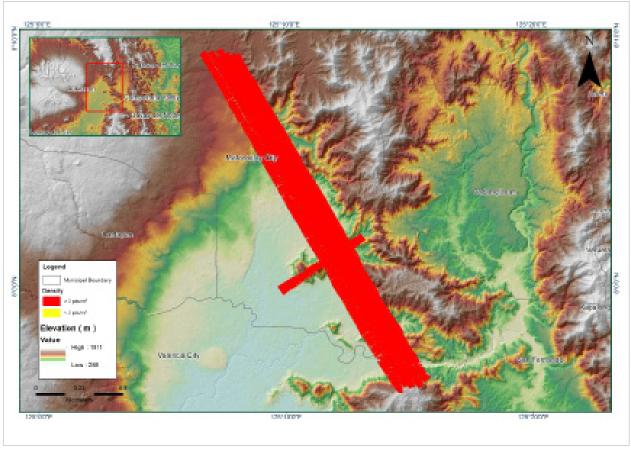


Figure A-7.90 Density map of merged LiDAR data

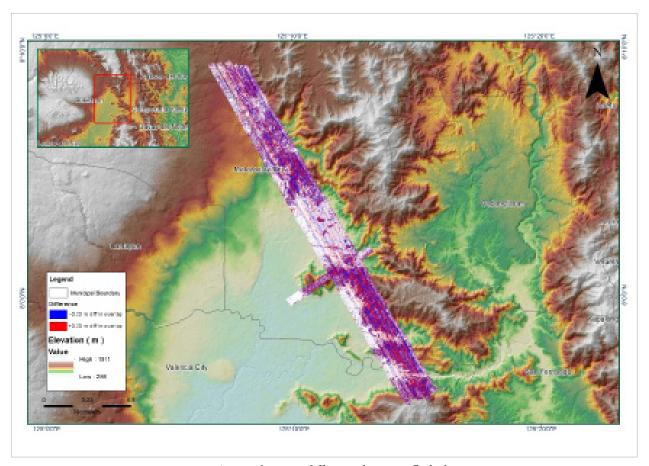


Figure A-7.91 Elevation difference between flight lines

Table A-7.14 Mission Summary Report for Mission Blk64D_Additional

Flight Area	Bukidnon
Mission Name	Blk64D_Additional
Inclusive Flights	23524P
Range data size	27 GB
Base data size	141 MB
POS	237 MB
Image	N/A
Transfer date	November 16, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.067
RMSE for East Position (<4.0 cm)	1.225
RMSE for Down Position (<8.0 cm)	2.340
Boresight correction stdev (<0.001deg)	0.000170
IMU attitude correction stdev (<0.001deg)	0.000230
GPS position stdev (<0.01m)	0.0013
Minimum % overlap (>25)	50.73
Ave point cloud density per sq.m. (>2.0)	5.11
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	131
Maximum Height	1061.97 m
Minimum Height	387.14 m
Classification (# of points)	
Ground	209,407,639
Low vegetation	107,127,411
Medium vegetation	148,329,008
High vegetation	101,853,025
Building	6,859,755
Orthophoto	No
Processed by	Engr. Don Matthew Banatin, Engr. Edgardo Gubatanga Jr., Engr. Czarina Jean Añonuevo

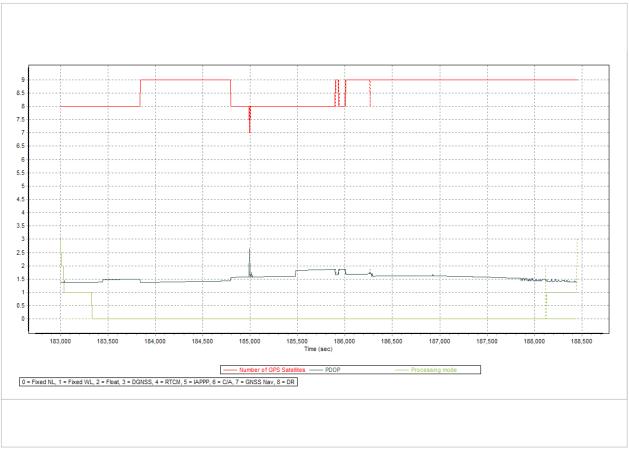


Figure A-7.92 Solution Status

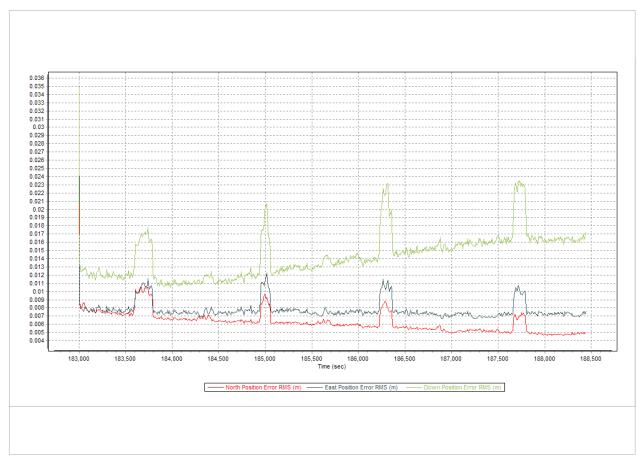


Figure A-7.93 Smoothed Performance Metric Parameters

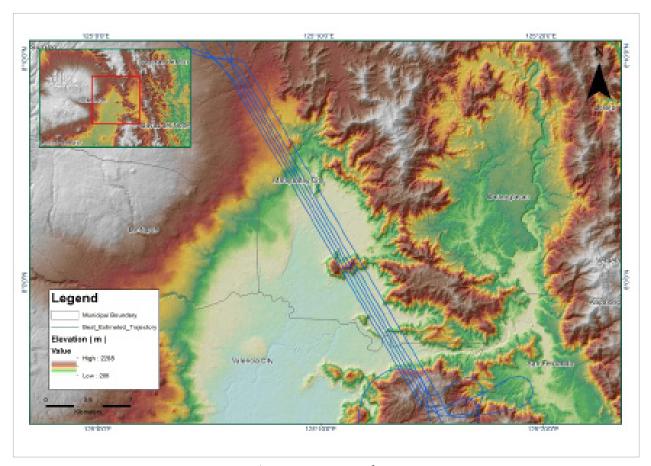


Figure A-7.94 Best Estimated Trajectory

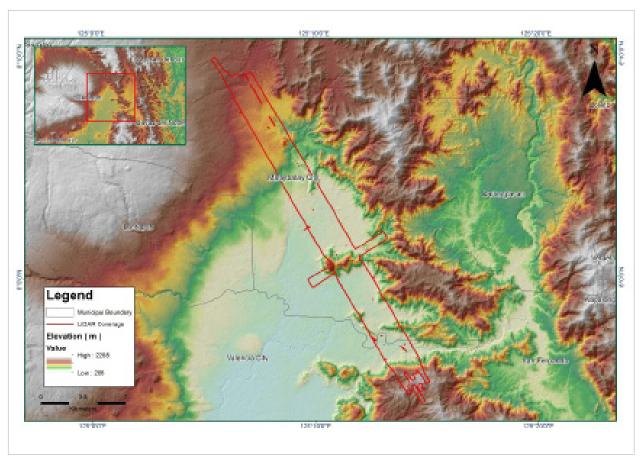


Figure A-7.95 Coverage of LiDAR data

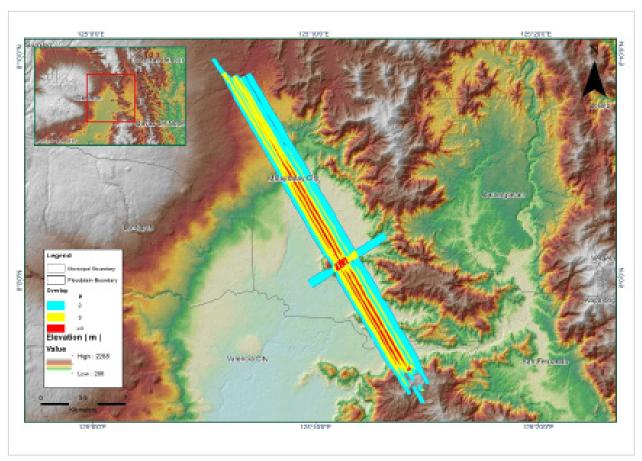


Figure A-7.96 Image of data overlap

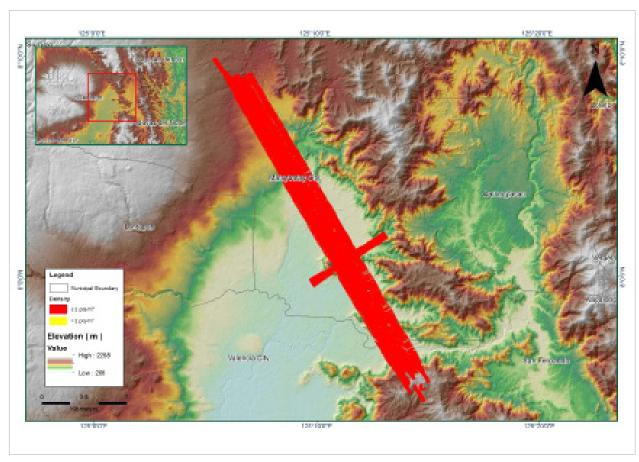


Figure A-7.97 Density map of merged LiDAR data

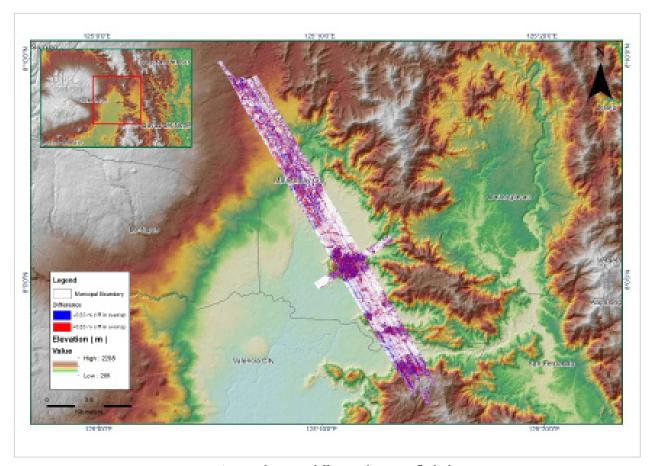


Figure A-7.98 Elevation difference between flight lines

Table A-7.15 Mission Summary Report for Mission Blk64D_Supplement

Flight Area	Bukidnon
Mission Name	Blk64D_Supplement
Inclusive Flights	23536P
Range data size	22.9 GB
Base data size	146 MB
POS	235 MB
Image	N/A
Transfer date	November 24, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.420
RMSE for East Position (<4.0 cm)	3.457
RMSE for Down Position (<8.0 cm)	3.628
Boresight correction stdev (<0.001deg)	0.000515
IMU attitude correction stdev (<0.001deg)	0.000310
GPS position stdev (<0.01m)	0.0134
Minimum % overlap (>25)	14.93
Ave point cloud density per sq.m. (>2.0)	4.80
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	65
Maximum Height	1023.54 m
Minimum Height	531.72 m
Classification (# of points)	
Ground	30,760,771
Low vegetation	30,494,239
Medium vegetation	73,287,936
High vegetation	77,556,593
Building	7,311,967
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Melanie Hingpit, Engr Wilbert Ian San Juan

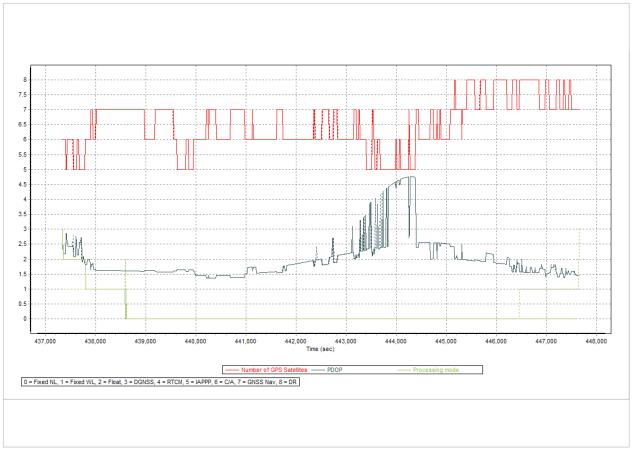


Figure A-7.99 Solution Status

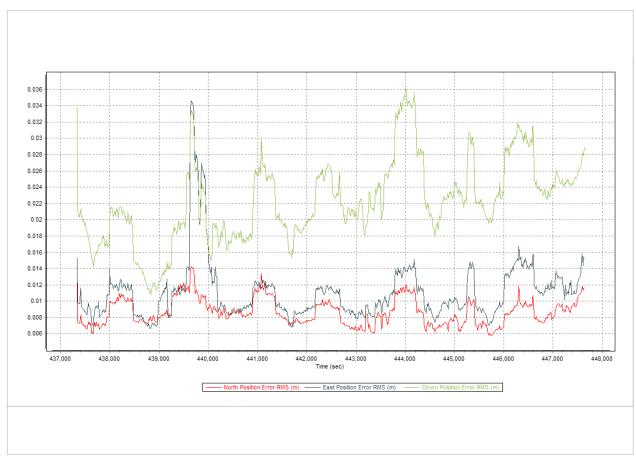


Figure A-7.100 Smoothed Performance Metric Parameters

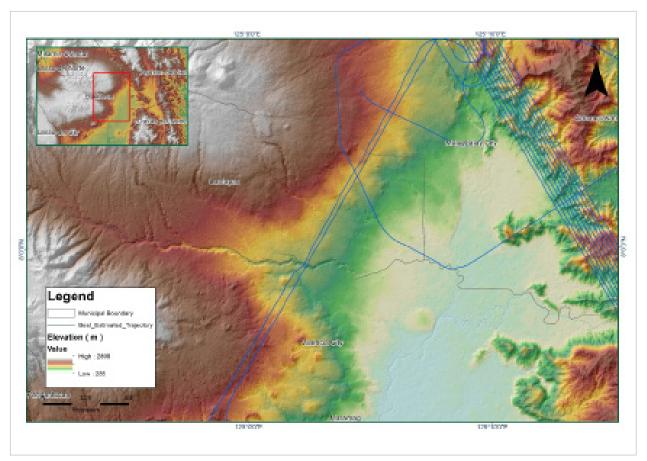


Figure A-7.101 Best Estimated Trajectory

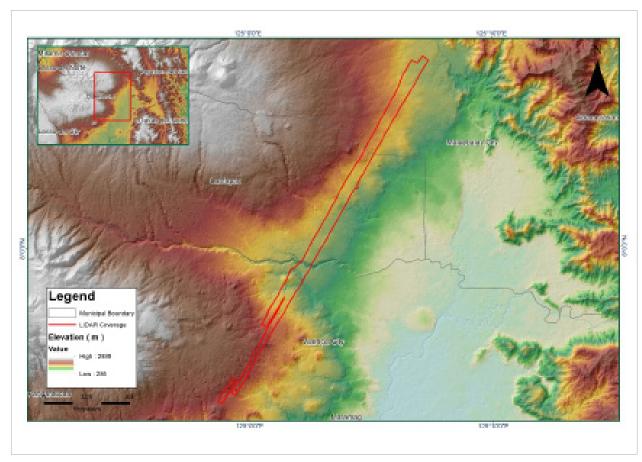


Figure A-7.102 Coverage of LiDAR data

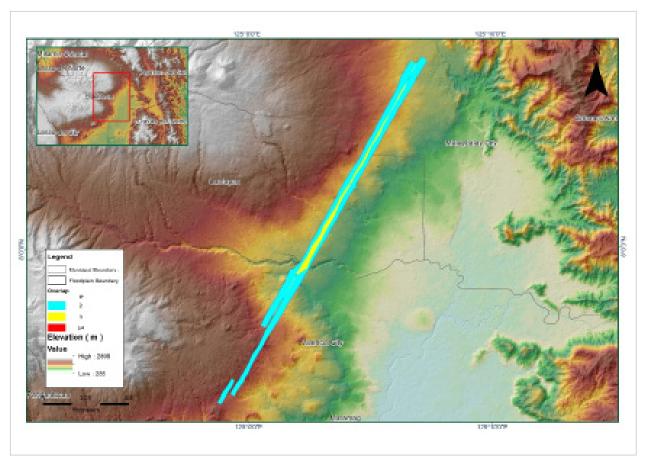


Figure A-7.103 Image of data overlap

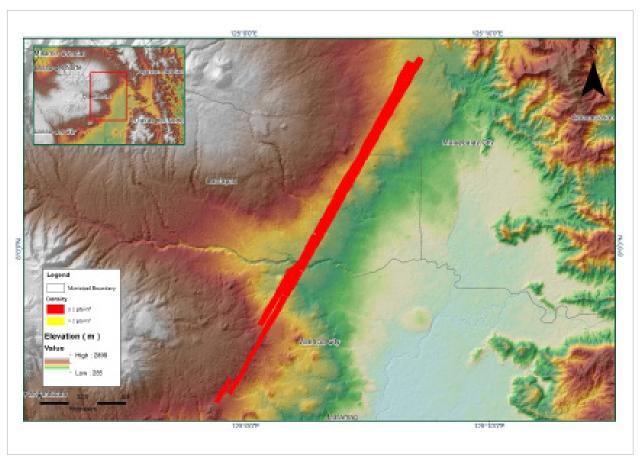


Figure A-7.104 Density map of merged LiDAR data



Figure A-7.105 Elevation difference between flight lines

Table A-7.16 Mission Summary Report for Mission Blk64E

Flight Area	Bukidnon
Mission Name	Blk64E
Inclusive Flights	23486P
Range data size	13.2 GB
Base data size	210 MB
POS	208 MB
Image	N/A
Transfer date	November 16, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.368
RMSE for East Position (<4.0 cm)	1.164
RMSE for Down Position (<8.0 cm)	2.180
Boresight correction stdev (<0.001deg)	0.000789
IMU attitude correction stdev (<0.001deg)	0.001000
GPS position stdev (<0.01m)	0.0110
Minimum % overlap (>25)	39.02
Ave point cloud density per sq.m. (>2.0)	3.30
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	196
Maximum Height	1082.18 m
Minimum Height	577.92 m
Classification (# of points)	
Ground	246,263,221
Low vegetation	131,891,179
Medium vegetation	241,703,402
High vegetation	138,637,545
Building	3,391,281
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Merven Matthew Natino, Alex John Escobido

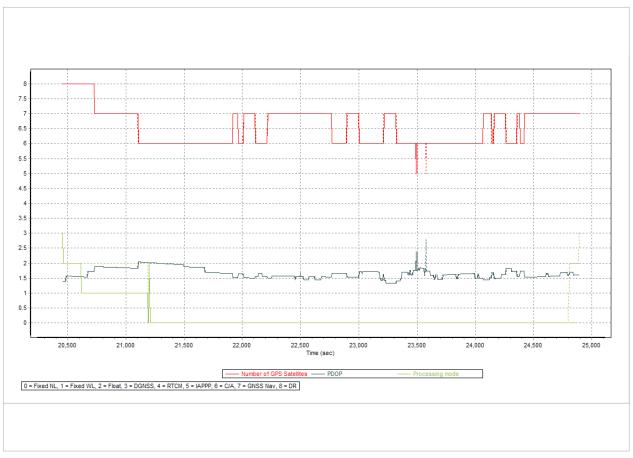


Figure A-7.106 Solution Status

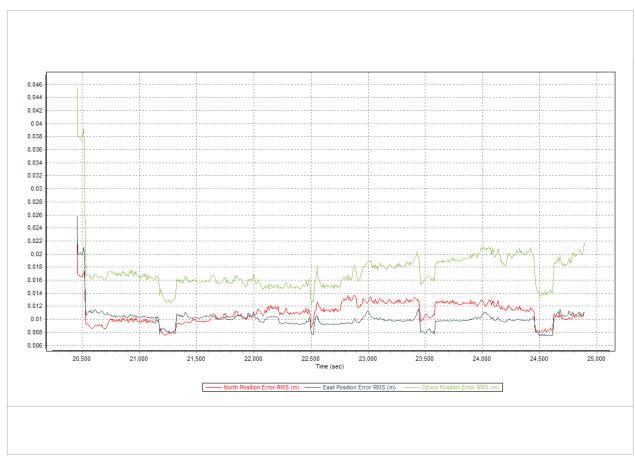


Figure A-7.107 Smoothed Performance Metric Parameters

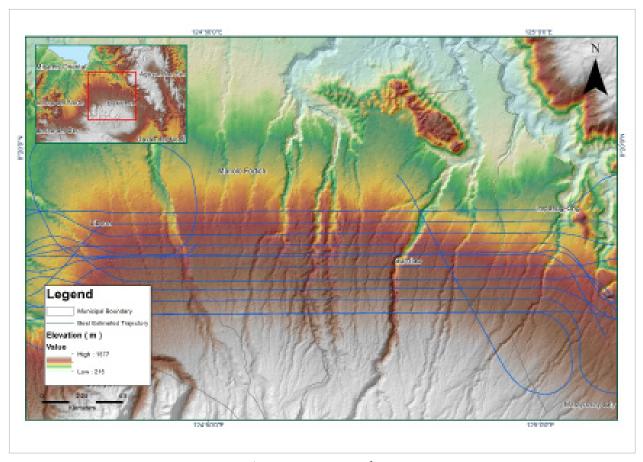


Figure A-7.108 Best Estimated Trajectory

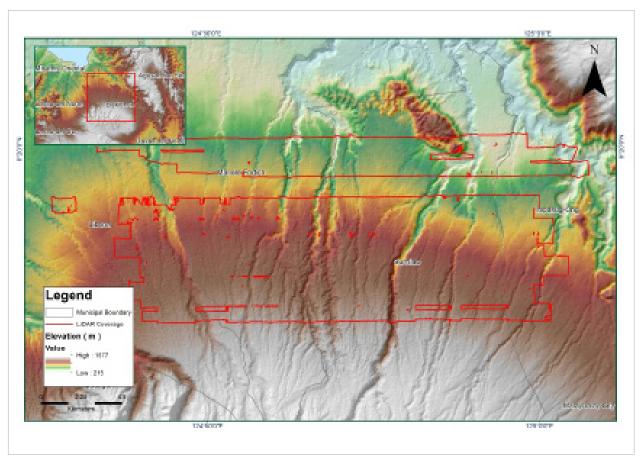


Figure A-7.109 Coverage of LiDAR data

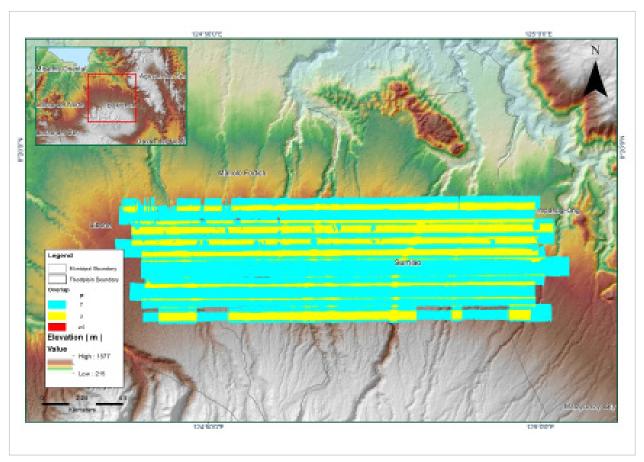


Figure A-7.110 Image of data overlap

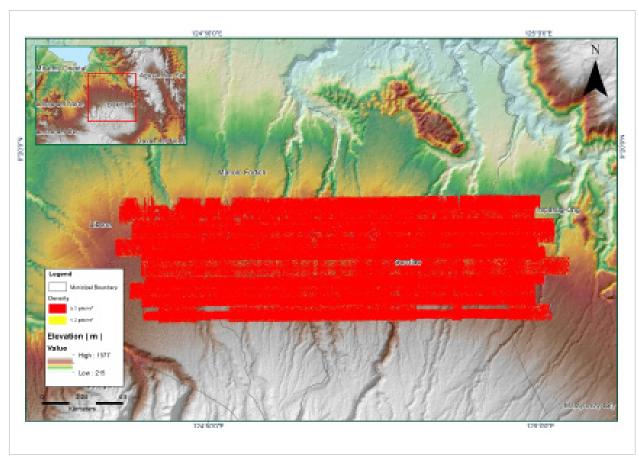


Figure A-7.111 Density map of merged LiDAR data

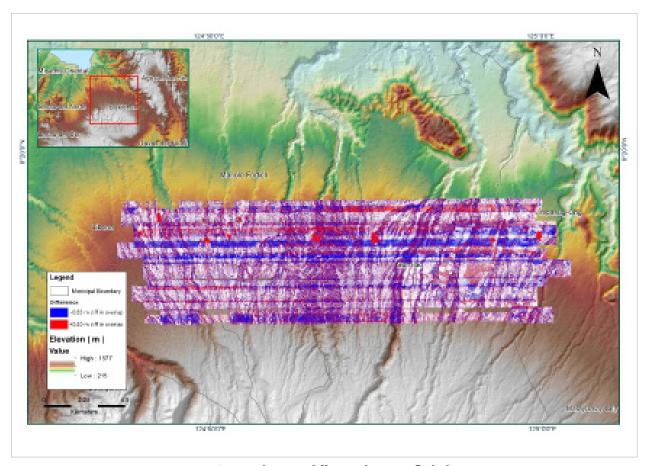


Figure A-7.112 Elevation difference between flight lines

Table A-7.17 Mission Summary Report for Mission Blk64E_Supplement

Flight Area	Bukidnon
Mission Name	Blk64E_Supplement
Inclusive Flights	1714A & 1734A
Range data size	21 GB
Base data size	272 MB
POS	255MB
Image	N/A
Transfer date	November 16, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.368
RMSE for East Position (<4.0 cm)	1.460
RMSE for Down Position (<8.0 cm)	1.755
(0.0 0.0.)	
Boresight correction stdev (<0.001deg)	0.000789
IMU attitude correction stdev (<0.001deg)	0.001000
GPS position stdev (<0.01m)	0.0110
Minimum 0/ availan (> 25)	44.22
Minimum % overlap (>25)	41.22
Ave point cloud density per sq.m. (>2.0)	4.02
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	85
Maximum Height	955.21 m
Minimum Height	432.51 m
Classification (# of naints)	
Classification (# of points) Ground	60.046.353
	68,846,353
Low vegetation	66,115,774
Medium vegetation	119,803,226
High vegetation	114,461,628
Building	9,444,092
Orthophoto	No No
Processed by	Engr. Analyn Naldo, Engr. Ma. Joanne Balaga, Engr. Karl Adrian Vergara



Figure A-7.113 Solution Status

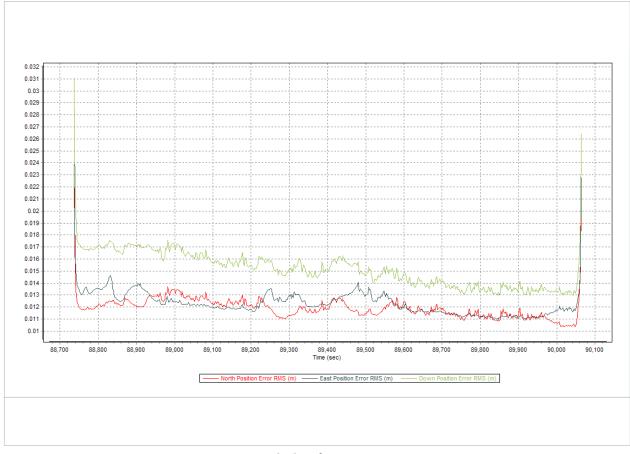


Figure A-7.114 Smoothed Performance Metric Parameters

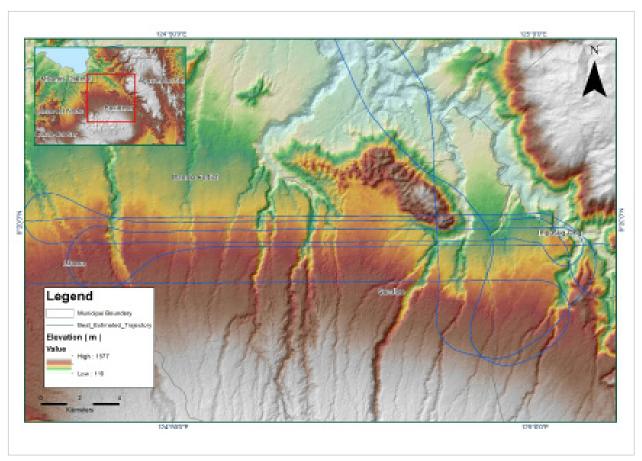


Figure A-7.115 Best Estimated Trajectory

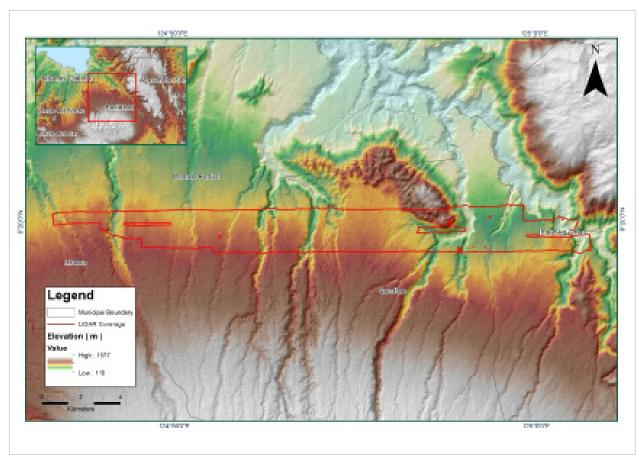


Figure A-7.116 Coverage of LiDAR data

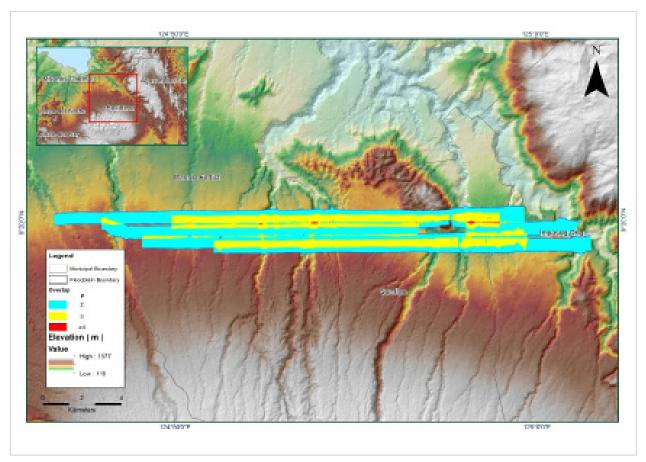


Figure A-7.117 Image of data overlap

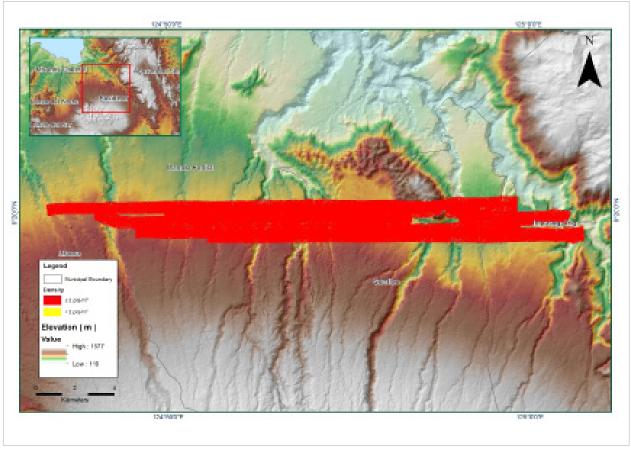


Figure A-7.118 Density map of merged LiDAR data

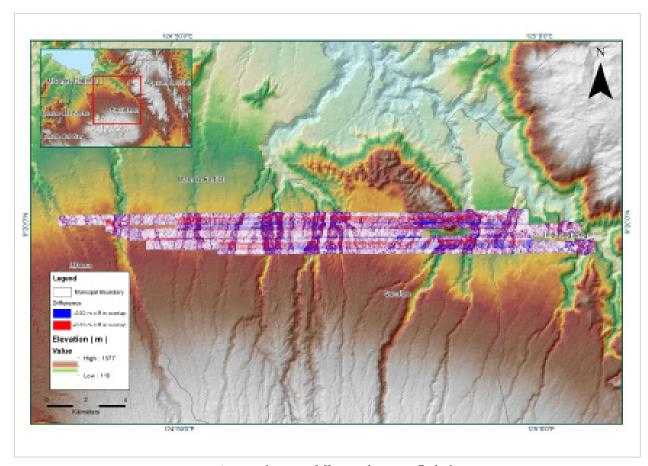


Figure A-7.119 Elevation difference between flight lines

ANNEX 8. Sawaga Model Basin Parameters

Table A-8.1 Sawaga Model Basin Parameters

Danin	SCS C	Curve Numbe	r Loss		Clark Unit drograph Transform		Recession Baseflow				
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M³/S)	Recession Constant	Threshold Type	Ratio to Peak	
W2080	21.17368	71.88156	0	0.829395	3.06166	Discharge	0.11731	1	Ratio to Peak	0.15	
W2100	25.61856	69.55596	0	0.883743	3.262253	Discharge	0.09407	1	Ratio to Peak	0.15	
W2120	35.1472	65.04413	0	0.636216	2.348543	Discharge	0.074156	1	Ratio to Peak	0.15	
W2130	33.03872	65.99147	0	0.559608	2.065728	Discharge	0.080874	1	Ratio to Peak	0.15	
W2150	22.02376	71.42499	0	0.691971	2.55436	Discharge	0.10426	1	Ratio to Peak	0.15	
W2160	13.80808	76.09842	0	0.1423506	0.525493	Discharge	0.002364	1	Ratio to Peak	0.15	
W2170	13.27304	76.42418	0	0.272118	1.004483	Discharge	0.005661	1	Ratio to Peak	0.15	
W2190	23.15984	70.82307	0	0.687624	2.538305	Discharge	0.091709	1	Ratio to Peak	0.15	
W2200	21.19832	71.86874	8	0.544761	2.010913	Discharge	0.091937	1	Ratio to Peak	0.15	
W2220	22.58872	71.12489	0	0.810894	2.993355	Discharge	0.13148	1	Ratio to Peak	0.15	
W2230	35.52032	64.87997	8	0.674289	2.489095	Discharge	0.11985	1	Ratio to Peak	0.15	
W2240	13.32936	76.38912	8	0.21462	0.7923	Discharge	0.004841	1	Ratio to Peak	0.15	
W2270	18.30928	73.46417	0	0.784896	2.897405	Discharge	0.17318	1	Ratio to Peak	0.15	
W2280	25.86584	69.43113	8	0.458556	1.692758	Discharge	0.062105	1	Ratio to Peak	0.15	
W2310	40.88744	62.59883	0	0.301392	1.112545	Discharge	0.022646	1	Ratio to Peak	0.15	
W2330	37.44136	64.04378	0	0.860874	3.177845	Discharge	0.14372	1	Ratio to Peak	0.15	
W2370	19.33008	72.89217	0	1.031226	3.806698	Discharge	0.14216	1	Ratio to Peak	0.15	
W2410	14.14864	75.89237	0	0.686931	2.535788	Discharge	0.087423	1	Ratio to Peak	0.15	
W2430	13.67344	76.17965	0	0.646149	2.385165	Discharge	0.071401	1	Ratio to Peak	0.15	
W2450	24.72448	70.01168	0	0.653919	2.413903	Discharge	0.092073	1	Ratio to Peak	0.15	

Basin	SCS Curve Number Loss		Clark Unit Hydrograph Transform			Recession Baseflow				
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M³/S)	Recession Constant	Threshold Type	Ratio to Peak
W2460	13.31792	76.39682	0	0.334509	1.23481	Discharge	0.011502	1	Ratio to Peak	0.15
W2520	13.64	76.095	0	0.376614	1.39023	Discharge	0.011873	1	Ratio to Peak	0.15
W2570	15.71328	74.96042	0	0.906822	3.347515	Discharge	0.023056	1	Ratio to Peak	0.15
W2600	28.8552	67.9554	0	0.699237	2.58115	Discharge	0.10158	1	Ratio to Peak	0.15
W2670	13.64	76.095	0	0.0960645	0.35461	Discharge	0.001369	1	Ratio to Peak	0.15
W2740	16.1656	74.69537	0	0.813099	3.001478	Discharge	0.053911	1	Ratio to Peak	0.15
W2850	13.64	76.095	0	0.1295511	0.47823	Discharge	0.00044	1	Ratio to Peak	0.15
W3440	25.86408	69.43199	0	0.629706	2.324508	Discharge	0.049794	1	Ratio to Peak	0.15
W3450	31.0948	66.88922	0	0.840735	3.10346	Discharge	0.040864	1	Ratio to Peak	0.15

ANNEX 9. Sawaga Model Reach Parameters

Table A-9.1 Sawaga Model Reach Parameters

Reach	Muskingum Cunge Channel Routing										
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope				
R 1 060	Automatic Fixed Interval	5460.7	0.001091	0.05	Trapezoid	34	0.5				
R 1 100	Automatic Fixed Interval	402.15	0.008053	0.01	Trapezoid	34	0.5				
R 3 470	Automatic Fixed Interval	8703.2	0.006935	0.09	Trapezoid	34	0.5				
R 400	Automatic Fixed Interval	13821	0.020375	0.01	Trapezoid	34	0.5				
R 420	Automatic Fixed Interval	1431.9	0.022777	0.01	Trapezoid	34	0.5				
R 430	Automatic Fixed Interval	2131.1	0.014451	0.0001	Trapezoid	34	0.5				
R 490	Automatic Fixed Interval	5418.5	0.020571	0.05	Trapezoid	34	0.5				
R 510	Automatic Fixed Interval	1981.9	0.017666	0.0001	Trapezoid	34	0.5				
R 560	Automatic Fixed Interval	4593	0.018328	0.01	Trapezoid	34	0.5				
R 570	Automatic Fixed Interval	2502.2	0.013575	0.1	Trapezoid	34	0.5				
R 660	Automatic Fixed Interval	1297.8	0.012533	0.1	Trapezoid	34	0.5				
R 680	Automatic Fixed Interval	6857.9	0.002785	1	Trapezoid	34	0.5				
R 840	Automatic Fixed Interval	3339.2	0.00264	1	Trapezoid	34	0.5				
R 880	Automatic Fixed Interval	591.25	0.004065	1	Trapezoid	34	0.5				

ANNEX 10. Sawaga Field Validation Points

Table A-10.1 Sawaga Field Validation Points

	Validatia.		Dain				
Point Number	Lat	Coordinates Long	Model Var (m)	Validation Points (m)	Error	Event	Rain Return/ Scenario
1	8.11910	125.14531	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
2	8.11722	125.14577	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
3	8.12302	125.14084	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
4	8.12510	125.13943	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
5	8.12740	125.13881	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
6	8.13035	125.13678	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
7	8.13090	125.13519	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
8	8.13319	125.13446	0.23	0.00	-0.23	Pablo/4Dec2012	5YR
9	8.13437	125.13259	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
10	8.13739	125.13276	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
11	8.13914	125.13172	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
12	8.14126	125.13241	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
13	8.13748	125.12915	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
14	8.13560	125.12939	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
15	8.13131	125.13211	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
16	8.12689	125.12446	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
17	8.11489	125.13581	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
18	8.10075	125.14046	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
19	8.09839	125.14884	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
20	8.10009	125.15165	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
21	8.10318	125.15587	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
22	8.10182	125.16125	6.72	0.00	-6.72	Pablo/4Dec2012	5YR
23	8.10478	125.16039	4.50	0.00	-4.50	Pablo/4Dec2012	5YR
24	8.10193	125.15997	6.53	0.00	-6.53	Pablo/4Dec2012	5YR
25	8.09804	125.16442	12.05	0.30	-11.75	Pablo/4Dec2012	5YR
26	8.09711	125.16862	2.82	0.78	-2.04	Pablo/4Dec2012	5YR
27	8.09681	125.17267	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
28	8.09448	125.17560	1.48	0.80	-0.68	Pablo/4Dec2012	5YR
29	8.09497	125.17931	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
30	8.07839	125.14722	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
31	8.08218	125.14704	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
32	8.07978	125.16353	4.74	0.00	-4.74	Pablo/4Dec2012	5YR
33	8.07838	125.16082	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
34	8.08481	125.14996	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
35	8.03645	125.13822	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
36	8.02659	125.13947	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
37	8.02327	125.13928	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
38	8.02040	125.14146	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
39	8.01833	125.14197	0.06	0.00	-0.06	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
40	8.01795	125.14304	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
41	8.03065	125.14343	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
42	7.99650	125.15581	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
43	7.99528	125.14968	0.68	0.00	-0.68	Pablo/4Dec2012	5YR
44	7.99719	125.14723	0.89	0.00	-0.89	Pablo/4Dec2012	5YR
45	7.99126	125.14976	0.90	0.00	-0.90	Pablo/4Dec2012	5YR
46	7.98980	125.15284	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
47	7.98838	125.15510	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
48	7.98625	125.15622	0.31	0.00	-0.31	Pablo/4Dec2012	5YR
49	7.98136	125.14365	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
50	7.98018	125.14217	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
51	7.97815	125.14064	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
52	7.97404	125.13961	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
53	7.97057	125.13696	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
54	7.97309	125.11676	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
55	7.97843	125.12517	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
56	8.06459	125.16093	6.03	0.00	-6.03	Pablo/4Dec2012	5YR
57	8.06555	125.16147	4.50	0.00	-4.50	Pablo/4Dec2012	5YR
58	8.06092	125.17001	1.13	0.00	-1.13	Pablo/4Dec2012	5YR
59	8.05853	125.17349	0.37	0.20	-0.17	Pablo/4Dec2012	5YR
60	8.06132	125.16734	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
61	8.06265	125.16697	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
62	8.06410	125.16748	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
63	8.06134	125.16413	0.18	0.20	0.02	Pablo/4Dec2012	5YR
64	8.06077	125.16027	1.10	0.00	-1.10	Pablo/4Dec2012	5YR
65	8.05855	125.16120	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
66	8.05776	125.16339	1.49	0.40	-1.09	Pablo/4Dec2012	5YR
67	8.05728	125.16123	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
68	8.05782	125.15857	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
69	8.05577	125.15981	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
70	8.05218	125.16236	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
71	8.05065	125.16176	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
72	8.05001	125.16353	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
73	8.04957	125.16531	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
74	8.05116	125.16782	1.45	0.00	-1.45	Pablo/4Dec2012	5YR
75	8.05398	125.16925	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
76	8.05207	125.16554	9.15	0.15	-9.00	Pablo/4Dec2012	5YR
77	8.04899	125.16901	1.33	0.20	-1.13	Pablo/4Dec2012	5YR
78	8.04692	125.17067	1.19	0.30	-0.89	Pablo/4Dec2012	5YR
79	8.04548	125.17190	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
80	8.03973	125.16919	0.26	0.00	-0.26	Pablo/4Dec2012	5YR
81	8.04359	125.16815	2.30	0.20	-2.10	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
82	8.04239	125.16710	5.01	0.40	-4.61	Pablo/4Dec2012	5YR
83	8.04746	125.16826	2.43	0.15	-2.28	Pablo/4Dec2012	5YR
84	8.04123	125.16186	2.82	0.70	-2.12	Pablo/4Dec2012	5YR
85	8.03946	125.15835	3.31	0.40	-2.91	Pablo/4Dec2012	5YR
86	8.04065	125.16358	3.52	0.00	-3.52	Pablo/4Dec2012	5YR
87	8.04640	125.16200	0.42	0.00	-0.42	Pablo/4Dec2012	5YR
88	8.04716	125.16484	0.10	0.10	0.00	Pablo/4Dec2012	5YR
89	8.04475	125.15785	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
90	8.03956	125.15366	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
91	8.03639	125.15612	4.11	0.60	-3.51	Pablo/4Dec2012	5YR
92	8.03788	125.15645	5.79	0.10	-5.69	Pablo/4Dec2012	5YR
93	8.03708	125.16221	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
94	8.03793	125.16407	0.19	0.00	-0.19	Pablo/4Dec2012	5YR
95	8.03936	125.16648	0.55	0.00	-0.55	Pablo/4Dec2012	5YR
96	8.03181	125.16753	0.63	0.00	-0.63	Pablo/4Dec2012	5YR
97	8.03557	125.15395	0.74	0.00	-0.74	Pablo/4Dec2012	5YR
98	8.03406	125.14994	2.54	0.80	-1.74	Pablo/4Dec2012	5YR
99	8.03105	125.14989	3.00	0.80	-2.20	Pablo/4Dec2012	5YR
100	8.02995	125.14937	1.75	0.10	-1.65	Pablo/4Dec2012	5YR
101	8.02668	125.14816	1.19	0.00	-1.19	Pablo/4Dec2012	5YR
102	8.02300	125.14802	2.26	0.00	-2.26	Pablo/4Dec2012	5YR
103	8.02125	125.14812	3.17	0.10	-3.07	Pablo/4Dec2012	5YR
104	8.03125	125.15454	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
105	8.02699	125.15628	1.35	0.00	-1.35	Pablo/4Dec2012	5YR
106	8.02527	125.15412	1.78	0.10	-1.68	Pablo/4Dec2012	5YR
107	8.02517	125.15372	1.78	0.20	-1.58	Pablo/4Dec2012	5YR
108	8.02689	125.15657	0.81	0.10	-0.71	Pablo/4Dec2012	5YR
109	8.02570	125.15757	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
110	8.01648	125.14895	0.63	0.15	-0.48	Pablo/4Dec2012	5YR
111	8.01515	125.14595	1.02	0.60	-0.42	Pablo/4Dec2012	5YR
112	8.01591	125.14540	1.16	0.80	-0.36	Pablo/4Dec2012	5YR
113	8.01387	125.14555	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
114	8.01250	125.14459	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
115	8.00819	125.14260	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
116	8.00702	125.14186	0.06	0.10	0.04	Pablo/4Dec2012	5YR
117	8.00252	125.14074	1.79	0.10	-1.69	Pablo/4Dec2012	5YR
118	8.00567	125.14499	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
119	8.00427	125.14496	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
120	8.00483	125.15544	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
121	8.01515	125.15725	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
122	7.99258	125.12672	2.25	0.80	-1.45	Pablo/4Dec2012	5YR
123	7.99308	125.12504	0.47	0.40	-0.07	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
124	7.99294	125.12406	0.72	0.10	-0.62	Pablo/4Dec2012	5YR
125	7.99421	125.12166	1.64	0.96	-0.68	Pablo/4Dec2012	5YR
126	7.99581	125.12059	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
127	7.99590	125.11872	0.45	0.00	-0.45	Pablo/4Dec2012	5YR
128	7.99557	125.11600	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
129	7.99418	125.11554	0.59	0.00	-0.59	Pablo/4Dec2012	5YR
130	7.99558	125.11392	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
131	7.99586	125.11067	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
132	8.01231	125.13431	1.03	0.60	-0.43	Pablo/4Dec2012	5YR
133	8.00498	125.13331	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
134	8.00311	125.13001	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
135	8.00090	125.12741	0.09	0.17	0.08	Pablo/4Dec2012	5YR
136	7.99677	125.12931	2.49	1.24	-1.25	Pablo/4Dec2012	5YR
137	7.99687	125.12585	1.90	0.40	-1.50	Pablo/4Dec2012	5YR
138	8.00485	125.12197	5.76	0.20	-5.56	Pablo/4Dec2012	5YR
139	7.99875	125.13212	0.10	0.10	0.00	Pablo/4Dec2012	5YR
140	7.99578	125.13598	2.25	0.00	-2.25	Pablo/4Dec2012	5YR
141	7.99643	125.13770	0.93	0.00	-0.93	Pablo/4Dec2012	5YR
142	7.99252	125.13393	2.30	0.40	-1.90	Pablo/4Dec2012	5YR
143	7.99201	125.13215	1.56	0.60	-0.96	Pablo/4Dec2012	5YR
144	7.99292	125.13200	1.55	0.60	-0.95	Pablo/4Dec2012	5YR
145	7.99135	125.13454	3.64	2.14	-1.50	Pablo/4Dec2012	5YR
146	7.98912	125.13417	1.04	1.20	0.16	Pablo/4Dec2012	5YR
147	7.98544	125.13453	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
148	7.98383	125.13382	1.16	0.00	-1.16	Pablo/4Dec2012	5YR
149	7.96449	125.13688	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
150	7.96247	125.13878	2.92	0.70	-2.22	Pablo/4Dec2012	5YR
151	7.96688	125.14028	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
152	7.97043	125.14114	0.73	0.60	-0.13	Pablo/4Dec2012	5YR
153	7.98372	125.13671	0.18	0.00	-0.18	Pablo/4Dec2012	5YR
154	7.98643	125.14190	3.64	1.60	-2.04	Pablo/4Dec2012	5YR
155	7.98416	125.14119	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
156	7.98734	125.13901	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
157	7.98799	125.13904	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
158	7.98777	125.13914	0.06	0.20	0.14	Pablo/4Dec2012	5YR
159	7.98730	125.14025	0.06	1.60	1.54	Pablo/4Dec2012	5YR
160	7.98744	125.14081	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
161	7.98785	125.14010	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
162	7.98882	125.13994	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
163	7.98856	125.13893	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
164	7.98974	125.13871	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
165	7.99427	125.13838	1.59	0.00	-1.59	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
166	7.99361	125.13824	1.38	0.00	-1.38	Pablo/4Dec2012	5YR
167	7.99089	125.13784	0.52	0.00	-0.52	Pablo/4Dec2012	5YR
168	7.99070	125.13777	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
169	7.99272	125.13776	1.17	0.00	-1.17	Pablo/4Dec2012	5YR
170	7.99149	125.13666	1.12	0.00	-1.12	Pablo/4Dec2012	5YR
171	7.99229	125.13537	1.65	0.00	-1.65	Pablo/4Dec2012	5YR
172	7.99301	125.13614	1.88	0.00	-1.88	Pablo/4Dec2012	5YR
173	7.99307	125.13721	1.79	0.00	-1.79	Pablo/4Dec2012	5YR
174	7.99358	125.13397	1.34	0.00	-1.34	Pablo/4Dec2012	5YR
175	7.99549	125.13279	2.76	0.00	-2.76	Pablo/4Dec2012	5YR
176	7.99429	125.13361	1.28	0.70	-0.58	Pablo/4Dec2012	5YR
177	7.98243	125.07909	3.54	0.00	-3.54	Pablo/4Dec2012	5YR
178	7.98262	125.07904	0.08	1.20	1.12	Pablo/4Dec2012	5YR
179	7.98315	125.08058	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
180	7.98351	125.08204	0.08	0.00	-0.08	Pablo/4Dec2012	5YR
181	7.98518	125.08515	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
182	7.98514	125.08594	0.10	0.10	0.00	Pablo/4Dec2012	5YR
183	7.98639	125.08502	0.65	0.14	-0.51	Pablo/4Dec2012	5YR
184	7.98771	125.08479	0.10	0.15	0.05	Pablo/4Dec2012	5YR
185	7.97813	125.05257	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
186	7.89410	125.07421	0.10	0.00	-0.10	Pablo/4Dec2012	5YR
187	7.99016	125.10144	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
188	7.99107	125.10119	1.96	0.00	-1.96	Pablo/4Dec2012	5YR
189	7.99135	125.10132	1.83	0.00	-1.83	Pablo/4Dec2012	5YR
190	7.99045	125.10335	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
191	7.99264	125.10537	3.02	0.00	-3.02	Pablo/4Dec2012	5YR
192	7.99107	125.10503	1.16	0.00	-1.16	Pablo/4Dec2012	5YR
193	7.99049	125.10595	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
194	7.99012	125.10722	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
195	7.99006	125.10900	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
196	7.98922	125.11728	0.09	0.00	-0.09	Pablo/4Dec2012	5YR
197	7.99282	125.11523	1.78	0.00	-1.78	Pablo/4Dec2012	5YR
198	7.99010	125.12104	0.39	0.00	-0.39	Pablo/4Dec2012	5YR
199	7.99219	125.12092	0.13	0.00	-0.13	Pablo/4Dec2012	5YR
200	7.99215	125.12229	1.62	0.00	-1.62	Pablo/4Dec2012	5YR
201	7.99208	125.12299	2.33	0.00	-2.33	Pablo/4Dec2012	5YR
202	7.98781	125.12911	1.05	0.00	-1.05	Pablo/4Dec2012	5YR
203	7.98893	125.13548	7.32	0.00	-7.32	Pablo/4Dec2012	5YR
204	7.99056	125.12930	2.76	0.10	-2.66	Pablo/4Dec2012	5YR
205	7.99028	125.12858	2.51	0.10	-2.41	Pablo/4Dec2012	5YR
206	7.99079	125.12677	0.98	0.00	-0.98	Pablo/4Dec2012	5YR
207	7.98736	125.06920	0.06	0.00	-0.06	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
208	7.99132	125.12676	3.06	0.00	-3.06	Pablo/4Dec2012	5YR
209	7.99132	125.12676	3.06	0.00	-3.06	Pablo/4Dec2012	5YR
210	7.98691	125.13239	1.63	0.00	-1.63	Pablo/4Dec2012	5YR
211	7.98669	125.13340	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
212	7.98668	125.13341	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
213	7.98677	125.13480	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
214	7.98730	125.13740	2.26	0.00	-2.26	Pablo/4Dec2012	5YR
215	7.98769	125.13789	2.59	0.00	-2.59	Pablo/4Dec2012	5YR
216	7.98646	125.13727	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
217	7.98547	125.13774	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
218	7.87500	125.19466	0.93	0.52	-0.41	Pablo/4Dec2012	5YR
219	7.87577	125.19654	5.89	0.90	-4.99	Pablo/4Dec2012	5YR
220	7.87584	125.19230	2.12	1.00	-1.12	Pablo/4Dec2012	5YR
221	7.87586	125.19238	2.62	0.00	-2.62	Pablo/4Dec2012	5YR
222	7.87784	125.19069	3.63	0.70	-2.93	Pablo/4Dec2012	5YR
223	7.87817	125.19091	5.39	0.00	-5.39	Pablo/4Dec2012	5YR
224	7.88078	125.18753	1.19	0.10	-1.09	Pablo/4Dec2012	5YR
225	7.88459	125.18764	1.70	0.20	-1.50	Pablo/4Dec2012	5YR
226	7.88499	125.18607	2.41	0.50	-1.91	Pablo/4Dec2012	5YR
227	7.88922	125.18310	2.04	0.00	-2.04	Pablo/4Dec2012	5YR
228	7.89267	125.17876	0.68	0.50	-0.18	Pablo/4Dec2012	5YR
229	7.90059	125.13093	0.39	0.20	-0.19	Pablo/4Dec2012	5YR
230	7.90086	125.12312	0.13	0.00	-0.13	Pablo/4Dec2012	5YR
231	7.90084	125.12313	0.15	0.30	0.15	Pablo/4Dec2012	5YR
232	7.93285	125.10162	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
233	7.93204	125.09364	0.26	0.20	-0.06	Pablo/4Dec2012	5YR
234	7.92029	125.09243	0.19	2.00	1.81	Pablo/4Dec2012	5YR
235	7.89537	125.17766	0.23	0.80	0.57	Pablo/4Dec2012	5YR
236	7.89589	125.17616	0.10	0.70	0.60	Pablo/4Dec2012	5YR
237	7.89853	125.17667	1.17	1.05	-0.12	Pablo/4Dec2012	5YR
238	7.90170	125.17512	0.06	0.80	0.74	Pablo/4Dec2012	5YR
239	7.90018	125.18051	0.21	0.00	-0.21	Pablo/4Dec2012	5YR
240	7.90643	125.17934	0.38	0.00	-0.38	Pablo/4Dec2012	5YR
241	7.90523	125.17504	0.13	0.00	-0.13	Pablo/4Dec2012	5YR
242	7.90523	125.16772	0.23	0.42	0.19	Pablo/4Dec2012	5YR
243	7.90431	125.16518	0.87	0.45	-0.42	Pablo/4Dec2012	5YR
244	7.90359	125.16083	0.81	0.70	-0.11	Pablo/4Dec2012	5YR
245	7.90405	125.16003	0.06	0.30	0.24	Pablo/4Dec2012	5YR
246	7.90314	125.15760	0.21	0.48	0.27	Pablo/4Dec2012	5YR
247	7.90098	125.15694	0.45	0.40	-0.05	Pablo/4Dec2012	5YR
248	7.90093	125.15725	0.72	1.20	0.48	Pablo/4Dec2012	5YR
249	7.89833	125.14976	0.06	0.20	0.14	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
250	7.90073	125.14791	0.39	0.30	-0.09	Pablo/4Dec2012	5YR
251	7.90071	125.13925	0.06	0.00	-0.06	Pablo/4Dec2012	5YR
252	7.90662	125.15590	0.72	0.00	-0.72	Pablo/4Dec2012	5YR
253	7.90953	125.15612	0.86	0.30	-0.56	Pablo/4Dec2012	5YR
254	7.90978	125.15620	1.53	0.00	-1.53	Pablo/4Dec2012	5YR
255	7.90577	125.16048	0.38	0.55	0.17	Pablo/4Dec2012	5YR
256	7.90590	125.16044	0.31	0.00	-0.31	Pablo/4Dec2012	5YR
257	7.90891	125.16487	0.08	0.80	0.72	Pablo/4Dec2012	5YR
258	7.91271	125.17042	0.52	0.40	-0.12	Pablo/4Dec2012	5YR
259	7.91750	125.17247	0.16	0.16	0.00	Pablo/4Dec2012	5YR
260	7.91454	125.17368	0.52	0.00	-0.52	Pablo/4Dec2012	5YR
261	7.91528	125.17915	0.45	0.00	-0.45	Pablo/4Dec2012	5YR
262	7.91510	125.18481	0.97	0.00	-0.97	Pablo/4Dec2012	5YR
263	7.91557	125.18819	2.40	0.00	-2.40	Pablo/4Dec2012	5YR
264	7.91373	125.18992	0.40	0	-0.40	Pablo/4Dec2012	5YR
265	7.91645	125.19196	2.95	0.4	-2.55	Pablo/4Dec2012	5YR
266	7.91633	125.19207	2.47	1	-1.47	Pablo/4Dec2012	5YR
267	7.91724	125.19469	1.81	0.1	-1.71	Pablo/4Dec2012	5YR
268	7.94716	125.10493	0.08	0	-0.08	Pablo/4Dec2012	5YR
269	7.92931	125.09663	0.06	0	-0.06	Pablo/4Dec2012	5YR
270	7.92010	125.09236	0.10	0	-0.10	Pablo/4Dec2012	5YR
271	7.94416	125.10332	0.87	1.1	0.23	Pablo/4Dec2012	5YR
272	7.94398	125.10301	4.72	0.2	-4.52	Pablo/4Dec2012	5YR
273	7.94399	125.10292	4.80	1.5	-3.30	Pablo/4Dec2012	5YR
274	7.94909	125.10347	3.01	0.5	-2.51	Pablo/4Dec2012	5YR
275	7.94785	125.10430	2.48	1.2	-1.28	Pablo/4Dec2012	5YR
276	7.94193	125.10748	1.79	0.9	-0.89	Pablo/4Dec2012	5YR
277	7.94054	125.10749	1.38	0.45	-0.93	Pablo/4Dec2012	5YR
278	7.93916	125.10800	2.34	0.4	-1.94	Pablo/4Dec2012	5YR
279	7.93787	125.10852	1.04	0.3	-0.74	Pablo/4Dec2012	5YR
280	7.93759	125.10868	0.93	0.1	-0.83	Pablo/4Dec2012	5YR
281	7.93256	125.11006	1.07	0.3	-0.77	Pablo/4Dec2012	5YR
282	7.97220	125.23444	1.43	0.5	-0.93	Pablo/4Dec2012	5YR
283	7.95867	125.22288	0.10	0.25	0.15	Pablo/4Dec2012	5YR
284	7.94374	125.15541	3.23	0.8	-2.43	Pablo/4Dec2012	5YR
285	7.94065	125.15563	0.58	0	-0.58	Pablo/4Dec2012	5YR
286	7.96357	125.18858	1.38	0.2	-1.18	Pablo/4Dec2012	5YR
287	7.96468	125.19249	2.29	1.1	-1.19	Pablo/4Dec2012	5YR
288	7.89993	125.10539	0.22	1.6	1.38	Pablo/4Dec2012	5YR
289	7.90787	125.09480	0.41	0	-0.41	Pablo/4Dec2012	5YR
290	7.91003	125.09760	0.21	1.5	1.29	Pablo/4Dec2012	5YR
291	7.91004	125.09765	0.29	2.5	2.21	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation	_	_	Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
292	7.90783	125.09686	2.86	2.5	-0.36	Pablo/4Dec2012	5YR
293	7.91123	125.09332	1.17	0	-1.17	Pablo/4Dec2012	5YR
294	7.91231	125.09548	0.30	0	-0.30	Pablo/4Dec2012	5YR
295	7.91308	125.09681	0.42	1.9	1.48	Pablo/4Dec2012	5YR
296	7.91307	125.09684	0.42	0.6	0.18	Pablo/4Dec2012	5YR
297	7.91338	125.09642	0.06	0	-0.06	Pablo/4Dec2012	5YR
298	7.91427	125.09606	0.39	0	-0.39	Pablo/4Dec2012	5YR
299	7.91429	125.09611	0.32	1	0.68	Pablo/4Dec2012	5YR
300	7.91525	125.09529	1.35	0.6	-0.75	Pablo/4Dec2012	5YR
301	7.91526	125.09523	1.32	0.3	-1.02	Pablo/4Dec2012	5YR
302	7.91516	125.09413	0.42	0	-0.42	Pablo/4Dec2012	5YR
303	7.91357	125.09396	1.16	0	-1.16	Pablo/4Dec2012	5YR
304	7.98766	125.13781	2.60	0.3	-2.30	Pablo/4Dec2012	5YR
305	7.98747	125.13764	3.09	0.9	-2.19	Pablo/4Dec2012	5YR
306	7.99001	125.10896	0.06	0.3	0.24	Pablo/4Dec2012	5YR
307	7.98587	125.09918	0.06	0.3	0.24	Pablo/4Dec2012	5YR
308	7.99287	125.13769	1.34	0.2	-1.14	Pablo/4Dec2012	5YR
309	7.93698	125.12522	1.13	0.1	-1.03	Pablo/4Dec2012	5YR
310	7.92940	125.12175	1.10	0	-1.10	Pablo/4Dec2012	5YR
311	7.92038	125.12239	0.06	0	-0.06	Pablo/4Dec2012	5YR
312	7.91989	125.12042	0.06	0	-0.06	Pablo/4Dec2012	5YR
313	7.91501	125.11501	0.08	0	-0.08	Pablo/4Dec2012	5YR
314	7.91892	125.11500	0.06	0	-0.06	Pablo/4Dec2012	5YR
315	7.91906	125.11493	0.08	0	-0.08	Pablo/4Dec2012	5YR
316	7.91863	125.11286	0.10	0	-0.10	Pablo/4Dec2012	5YR
317	7.91992	125.10463	0.47	0	-0.47	Pablo/4Dec2012	5YR
318	7.90050	125.11138	0.06	0	-0.06	Pablo/4Dec2012	5YR
319	7.90390	125.11614	0.06	0	-0.06	Pablo/4Dec2012	5YR
320	7.90520	125.11918	0.06	0	-0.06	Pablo/4Dec2012	5YR
321	7.91155	125.12609	0.06	0	-0.06	Pablo/4Dec2012	5YR
322	7.91360	125.13369	0.09	0	-0.09	Pablo/4Dec2012	5YR
323	7.93993	125.16057	0.06	0	-0.06	Pablo/4Dec2012	5YR
324	7.94253	125.15861	4.45	0	-4.45	Pablo/4Dec2012	5YR
325	7.94309	125.15622	2.76	0	-2.76	Pablo/4Dec2012	5YR
326	7.94020	125.15426	0.13	0	-0.13	Pablo/4Dec2012	5YR
327	7.94029	125.15412	0.06	0.2	0.14	Pablo/4Dec2012	5YR
328	7.94238	125.15068	3.01	0	-3.01	Pablo/4Dec2012	5YR
329	7.94408	125.14477	3.64	0	-3.64	Pablo/4Dec2012	5YR
330	7.93382	125.15864	0.06	0	-0.06	Pablo/4Dec2012	5YR
331	7.93795	125.14506	0.10	0	-0.10	Pablo/4Dec2012	5YR
332	7.93811	125.13908	0.06	0	-0.06	Pablo/4Dec2012	5YR
333	7.93856	125.12827	1.62	0	-1.62	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
334	7.93988	125.11536	0.06	0	-0.06	Pablo/4Dec2012	5YR
335	7.93523	125.11494	1.13	0	-1.13	Pablo/4Dec2012	5YR
336	7.93428	125.11530	2.40	0	-2.40	Pablo/4Dec2012	5YR
337	7.92998	125.11416	0.06	0	-0.06	Pablo/4Dec2012	5YR
338	7.93004	125.11399	1.33	0	-1.33	Pablo/4Dec2012	5YR
339	7.92806	125.11451	1.70	0	-1.70	Pablo/4Dec2012	5YR
340	7.93486	125.10440	0.13	0	-0.13	Pablo/4Dec2012	5YR
341	7.93557	125.10533	0.93	0.25	-0.68	Pablo/4Dec2012	5YR
342	7.93560	125.10533	0.93	0	-0.93	Pablo/4Dec2012	5YR
343	7.96926	125.13745	0.39	0	-0.39	Pablo/4Dec2012	5YR
344	7.98717	125.13413	2.85	0.5	-2.35	Pablo/4Dec2012	5YR
345	7.90476	125.09809	2.12	2.5	0.38	Pablo/4Dec2012	5YR
346	7.90532	125.09986	1.69	2.15	0.46	Pablo/4Dec2012	5YR
347	7.90372	125.10327	0.06	0.9	0.84	Pablo/4Dec2012	5YR
348	7.90092	125.10483	0.16	1.7	1.54	Pablo/4Dec2012	5YR
349	7.89938	125.10635	0.13	1	0.87	Pablo/4Dec2012	5YR
350	7.89962	125.10470	0.42	1.55	1.13	Pablo/4Dec2012	5YR
351	7.90551	125.10738	0.06	0.9	0.84	Pablo/4Dec2012	5YR
352	7.90960	125.10865	0.06	0.4	0.34	Pablo/4Dec2012	5YR
353	7.90974	125.10853	0.06	0.2	0.14	Pablo/4Dec2012	5YR
354	7.90976	125.11195	0.06	0.5	0.44	Pablo/4Dec2012	5YR
355	7.90752	125.11193	0.13	0	-0.13	Pablo/4Dec2012	5YR
356	7.90517	125.11005	0.08	0.9	0.82	Pablo/4Dec2012	5YR
357	7.90513	125.11005	0.08	0.5	0.42	Pablo/4Dec2012	5YR
358	7.90741	125.10406	0.06	0.45	0.39	Pablo/4Dec2012	5YR
359	7.90787	125.10638	0.06	0.7	0.64	Pablo/4Dec2012	5YR
360	7.91071	125.10449	0.97	1.5	0.53	Pablo/4Dec2012	5YR
361	7.91387	125.10375	0.06	1.3	1.24	Pablo/4Dec2012	5YR
362	7.91475	125.10603	0.06	1	0.94	Pablo/4Dec2012	5YR
363	7.91819	125.10105	0.10	1.2	1.10	Pablo/4Dec2012	5YR
364	7.91594	125.09727	0.13	2	1.87	Pablo/4Dec2012	5YR
365	8.04938	125.16784	2.74	0	-2.74	Pablo/4Dec2012	5YR
366	8.04864	125.16915	1.71	0.3	-1.41	Pablo/4Dec2012	5YR
367	8.02570	125.15653	1.53	0	-1.53	Pablo/4Dec2012	5YR
368	8.02569	125.15662	1.15	0	-1.15	Pablo/4Dec2012	5YR
369	8.00326	125.15519	0.08	0	-0.08	Pablo/4Dec2012	5YR
370	7.97855	125.14886	1.49	0.4	-1.09	Pablo/4Dec2012	5YR
371	7.97849	125.14868	2.05	1	-1.05	Pablo/4Dec2012	5YR
372	7.97842	125.14835	1.29	0.35	-0.94	Pablo/4Dec2012	5YR
373	7.99980	125.19622	0.40	0.2	-0.20	Pablo/4Dec2012	5YR
374	7.94818	125.22582	1.50	0	-1.50	Pablo/4Dec2012	5YR
375	7.95010	125.21651	2.61	0.7	-1.91	Pablo/4Dec2012	5YR

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Return/ Scenario
376	7.94874	125.21925	3.39	1.2	-2.19	Pablo/4Dec2012	5YR
377	7.95049	125.21418	3.06	1	-2.06	Pablo/4Dec2012	5YR
378	7.94740	125.21376	2.76	1.3	-1.46	Pablo/4Dec2012	5YR
379	7.94797	125.21633	2.53	0.1	-2.43	Pablo/4Dec2012	5YR
380	7.94302	125.20920	1.17	0.3	-0.87	Pablo/4Dec2012	5YR
381	7.94971	125.20814	2.00	1.2	-0.80	Pablo/4Dec2012	5YR
382	7.95289	125.19914	1.19	1.5	0.31	Pablo/4Dec2012	5YR
383	7.95346	125.19940	1.16	1.7	0.54	Pablo/4Dec2012	5YR
384	7.95345	125.19939	1.16	0.1	-1.06	Pablo/4Dec2012	5YR
385	7.96064	125.19750	0.06	1.3	1.24	Pablo/4Dec2012	5YR
386	7.96065	125.19751	0.06	0.25	0.19	Pablo/4Dec2012	5YR
387	7.96274	125.19557	1.13	2	0.87	Pablo/4Dec2012	5YR
388	7.96448	125.19425	0.31	1.5	1.19	Pablo/4Dec2012	5YR
389	7.96554	125.19313	1.02	0.3	-0.72	Pablo/4Dec2012	5YR
390	7.96553	125.19320	0.94	0.2	-0.74	Pablo/4Dec2012	5YR
391	7.96346	125.19146	2.20	0.45	-1.75	Pablo/4Dec2012	5YR
392	7.96378	125.19139	2.53	0.9	-1.63	Pablo/4Dec2012	5YR
393	7.96400	125.18978	1.13	0	-1.13	Pablo/4Dec2012	5YR
394	7.95896	125.18883	1.33	0.4	-0.93	Pablo/4Dec2012	5YR
395	7.95744	125.18357	2.47	1.4	-1.07	Pablo/4Dec2012	5YR
396	7.95635	125.18054	1.33	0.5	-0.83	Pablo/4Dec2012	5YR
397	7.95643	125.18054	1.33	1.5	0.17	Pablo/4Dec2012	5YR
398	7.95602	125.17902	1.47	1	-0.47	Pablo/4Dec2012	5YR
399	7.95299	125.18290	1.36	1	-0.36	Pablo/4Dec2012	5YR
400	7.94553	125.17717	1.02	0	-1.02	Pablo/4Dec2012	5YR
401	7.94574	125.17572	0.93	0	-0.93	Pablo/4Dec2012	5YR
402	7.94649	125.17485	2.05	0.3	-1.75	Pablo/4Dec2012	5YR
403	7.94363	125.16718	0.06	2	1.94	Pablo/4Dec2012	5YR
404	7.94437	125.16824	1.70	2	0.30	Pablo/4Dec2012	5YR

ANNEX 11. Educational Institutions Affected by flooding in Sawaga Flood Plain

Table A-11.1 Educational Institutions Affected by flooding in Sawaga Flood Plain

Bukidnon Lantapan								
		F	Rainfall Scenari	io				
Building Name	Barangay	5-year	25-year	100-year				
Bantuanon Elementary School	Bantuanon							
Bugcaon Elementary School	Bugcaon							
Bugcaon National High School	Bugcaon		Medium	Medium				
Elementary School	Kulasihan							
Valbueco Elementary School	Kulasihan		Low	High				
Lantapan Central Elementary School	Poblacion	Low	Low	Medium				

	Bukidnon						
Malaybalay City							
Building Name	Barangay		Rainfall Scenario				
		5-year	25-year	100-year			
Elementary School	Apo Macote						
Bangcud National High School	Bangcud	High	High	High			
Tigre Day Care Center	Bangcud		Low	Medium			
Casisang Elementary School	Barangay 7						
Natid Asan Elementary School	Barangay 9						
Agricultural Training Institute	Casisang						
Day Care Center	Casisang						
Jan Jose Elementary School	Casisang						
Mabuhay Elementary School	Casisang	Medium	High	High			
Private School	Casisang						
Bishop Han Theological Seminary	Laguitas						
Laguitas Elementary School	Laguitas						
Laguitas Naional High School	Laguitas						
Aglayan Central School	Linabo	Medium	Medium	Medium			
Aglayan National High School	Linabo			Low			
Linabo Central Elementary School	Linabo						
Linabo Community Learning Center	Linabo						
Saint Micheal High Schoo	Linabo						
Day Carem Center	Managok	High	High	High			

Managok Elementary School	Managok	Low	Low	Low
Managok National High School	Managok			
Sawaga Elementary school	Managok	High	High	High
Day Care Center	San Jose	High	High	High
Mabuhay Elementary School	San Jose	High	High	High
Malaybalay Clty National High School	San Jose	Low	Low	Low
Nalapgap Day Care Center	San Martin	Low	Low	Low
Padernal Elementary School	Santo Niño		Low	Low
Bangcud Central School	Simaya	Medium	High	High
Binalbagan Day Care Center	Simaya		Low	Low
Binalbagan Elementary School	Simaya		Low	Low
Bukidnon Fundamental Baptist Seminary	Simaya			
Child Friendly Day Care Center	Simaya		Low	Low
Elementary School	Simaya			
Nalapgap Elementary School	Simaya	Medium	Medium	Medium
San Martin Agro-industrial High School	Simaya			
San Martin Day Care Center	Simaya	Medium	Medium	Medium
San Martin Elementary School	Simaya	Medium	Medium	Medium
Simaya Elementary School	Simaya			
Sinanglanan Day Care Center	Simaya		Low	Low
Soso-on Day Care Center	Simaya	Medium	Medium	Medium
St. Isidore Academy	Simaya		Low	Low
SunBeam Christian Academy of Bangcud	Simaya	Low	Medium	Medium
Apo Macote Day Care Center	Sinanglanan	Low	Medium	Medium
Apo Macote Elementary School	Sinanglanan	Low	Medium	Medium
Elementary School	Sinanglanan			
		-		1

	Bukidnon			
	Valencia City			
Building Name	Barangay		ainfall Scenar	
ACLC	Pagentage	5-year	25-year	100-year
	Bagontaas	High	High	High
Bagontaas Adventist Elementary School	Bagontaas			
Bagontaas Central Elementary School	Bagontaas			Low
Casiphia Baptist Christian Academ Inc.	Bagontaas	Low	Low	Low
Central Mindanao Theological School	Bagontaas	Medium	High	High
College	Bagontaas	Medium	High	High
Day Care Center	Bagontaas			
First Fruit Christian Academy	Bagontaas			
Mountain View College ANNEX	Bagontaas	Low	Low	Low
School	Bagontaas			Low
Valencia Colleges	Bagontaas			
Batangan Central School	Batangan		Medium	High
DayCare Center	Batangan		Medium	Medium
Jupiter Day Care Center	Batangan		Medium	High
Colonia elementary School	Colonia	Low	Medium	Medium
Day Care Center	Colonia	Low	Medium	Medium
Padernal Elementary School	Colonia			Low
Day Care Center	Kahapunan	High	High	High
Christian Learning Center	Laligan	Low	Medium	Medium
Gold Day Care Center	Laligan	Medium	Medium	Medium
Laligan Central School	Laligan	Medium	Medium	Medium
Saint Joseph High School	Laligan	Medium	High	High
Tongantongan National High School	Laligan	Medium	Medium	High
Day Care Center	Lumbayao	High	High	High
Lumbayao Elementary School	Lumbayao	High	High	High
High School	Lumbo			
I.B.A College of Mindanao	Lumbo			
San Agustin Institute of Technology	Lumbo	Low	Low	Low
San Agustin Institute of Technology ANNEX	Lumbo	Low	Low	Medium
TESDA School	Lumbo	Low	Low	Medium
Valencia National High School	Lumbo	Medium	Medium	Medium

Lurugan Elementary School	Lurogan			
Dabongdabong Elementary School	Mailag		Low	Low
Good Counsel High School	Mailag		Low	Low
Mailag Elementary School	Mailag		Low	
Seventh Day Adventist School	Mailag			
Nabag.O Elementary School	Nabago	Medium	Medium	High
Faith Christian School	Poblacion	Medium	Medium	High
High School	Poblacion	High	High	High
Review Center	Poblacion	Medium	High	High
STI	Poblacion		Medium	Medium
Valencia Baptist Christian Academy	Poblacion	Low	Low	Medium
Valencia City Adventist Elementary School	Poblacion	High	High	High
Valencia City Central School	Poblacion	Medium	High	High
Valencia National High School	Poblacion	Low	Medium	High
Lurugan Day Care Center	San Carlos			
Lurugan Elementary School	San Carlos			
Lurugan National High School	San Carlos			
San Carlos Elementary School	San Carlos			
San Isidro Elementary School	San Isidro	Medium	High	High
Valencia City High School	San Isidro	High	High	High
Sinabuagan Elementary School	Sinabuagan	Medium	High	High
Day Care Center	Sugod			
Scorpion Day Care Center	Sugod	Medium	Medium	Medium
Adarna Day Care Center	Tongantongan	Medium	High	High
Araneta Elementary School	Tongantongan			
Fundamental Baptist School	Tongantongan	Medium	Medium	Medium
Mecury Day Care Center	Tongantongan	Low	Low	Low
San Vicente Elementary School	Tongantongan		Low	Medium
Tongantongan Elementary School	Tongantongan	Low	Medium	Medium
Cidrec Cumlat Memorial Institute	Vintar	Medium	High	High
Kahaponan Elementary School	Vintar		Medium	High
		· ·		

ANNEX 12. Health Institutions affected by flooding in Sawaga Flood Plain

Table A-12.1 Health Institutions affected by flooding in Malabalay City, Bukidnon in Sawaga Flood Plain

Bukidnon								
Malaybalay City								
Building Name	Barangay	R	ainfall Scenari	io				
bulluling Name	Barangay	5-year	25-year	100-year				
Provincial Hospital	Barangay 7	Low	Medium	Medium				
Provincial Hospital Establishment	Barangay 7							
Provincial Hospital	Casisang	Low	Low	Low				
Provincial Hospital Establishment	Casisang		Low	Low				
Barangay Health Station	Linabo	Medium	Medium	Medium				
Health Center	Managok			Low				
Barangay Health Station	Santo Niño		Low	Low				
Barangay Health Center	Simaya		Low	Low				
Health Center	Simaya							
Barangay Health Station	Sinanglanan	Low	Medium	Medium				

	Bukidnon							
Valencia City								
Building Name	Barangay	R	Rainfall Scenario					
Dunum _b rume	Darangay	5-year	25-year	100-year				
Barangay Health Station	Bagontaas							
Valencia Polymedic General Hospital	Bagontaas	High	High	High				
Health Center	Laligan	Medium	Medium	Medium				
Blanco Hospital	Lumbo		Low	Low				
Bukidnon Community Health Care Center	Lumbo							
City Health Office Of Valencia City	Lumbo							
Lavicaa General Hospital	Lumbo							
Shiphrah and Puah Maternity Clinic	Lumbo	Medium	Medium	High				
Mailag Barangay Health Station	Mailag	Medium	High	Medium				
Barangay Health Station	Nabago		Medium	Medium				
Abella Midway Hospital	Poblacion	Medium	High	High				
Blanco Hospital	Poblacion	Medium	Medium	Medium				
Clinic	Poblacion			Low				
Lavicaa General Hospital	Poblacion							
Sanitarium Hospital	Poblacion	Low	Medium	High				

Urgent Care Clinic	Poblacion	Medium	High	High
Valencia Medical Hospital	Poblacion	Medium	High	High
Yap Building	Poblacion	Low	Low	Medium
DOH MPC	San Carlos			
Baranga Health Center	San Isidro	Medium	High	High
Sinabuagan Health Center	Sinabuagan	High	High	High
Barangay Health Center	Sugod		Low	Low
Barangay Health Center	Tongantongan	Medium	Medium	Medium
Barangay Health Station	Vintar		Medium	Medium