HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Gingoog River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Central Mindanao University

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and Central Mindanao University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and G.R. Puno, (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Gingoog River, in Enrico C. Paringit (Ed.), Flood Hazard Mapping of the Philippines using LIDAR. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-153pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. George R. Puno

Project Leader, Phil-LIDAR 1 Program Central Mindanao State University Maramag, Bukidnon 8714 geopuno@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-012-9

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	х
CHAPTER 1: OVERVIEW OF THE PROGRAM AND GINGOOG RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Gingoog River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE GINGOOG FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	10
2.4 Survey Coverage	11
CHAPTER 3: LIDAR DATA PROCESSING OF THE GINGOOG FLOODPLAIN	13
3.1 Overview of the LiDAR Data Pre-Processing	13
3.2 Transmittal of Acquired LiDAR Data	14
3.3 Trajectory Computation	14
3.4 LiDAR Point Cloud Computation	16
3.5 LiDAR Data Quality Checking	17
3.6 LiDAR Point Cloud Classification and Rasterization	21
3.7 LiDAR Image Processing and Orthophotograph Rectification	23
3.8 DEM Editing and Hydro-Correction	25
3.9 Mosaicking of Blocks	27
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	29
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	32
3.12 Feature Extraction	34
3.12.1 Quality Checking of Digitized Features' Boundary	34
3.12.2 Height Extraction	35
3.12.3 Feature Attribution	35
3.12.4 Final Quality Checking of Extracted Features	36
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GINGOOG RIVER BAS	5IN.37
4.1 Summary of Activities	37
4.2 Control Survey	39
4.3 Baseline Processing	42
4.4 Network Adjustment	43
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	45
4.6 Validation Points Acquisition Survey.	48
4.7 River Bathymetric Survey	50
CHAPTER 5: FLOOD MODELING AND MAPPING	54
5.1 Data Used for Hydrologic Modeling	54
5.1.1 Hydrometry and Rating Curves	54
5.1.2 Precipitation	54
5.1.3 Rating Curves and River Outflow	55
5.2 RIDF Station	57
5.3 HMS Model	59
5.4 Cross-section Data	64
5.5 Flo 2D Model	65
5.6 Results of HMS Calibration	66
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	68
5.7.1 Hydrograph using the Rainfall Runoff Model	68
5.7.2 Discharge Data Using Dr. Horritts's Recommended Hydrologic Method	69
5.8 River Analysis (RAS) Model Simulation	75
5.9 Flow Depth and Flood Hazard	76
5.10 Inventory of Areas Exposed to Flooding	83
5.11 Flood Validation	98
REFERENCES	100
ANNEXES	101
Annex 1. OPTECH Technical Specification of the Pegasus Sensor	101
Annex 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey	102
Annex 3. Baseline Processing Reports of Control Points Used in the LiDAR Survey	105

LIST OF TABLES

Table 1.Flight planning parameters for Pegasus LiDAR system	3
Table 2. Details of the recovered NAMRIA horizontal control point MSE-31 used as base station for the LiDAR acquisition	7
Table 3. Details of the recovered NAMRIA horizontal control point MSE-32 used as base station for the LiDAR acquisition	8
Table 4. Details of the recovered NAMRIA horizontal control point MSE-36 used as base station for the LiDAR acquisition	9
Table 5. Ground control points that were used during the LiDAR data acquisition	10
Table 6. Flight missions for the LiDAR data acquisition of the Gingoog Floodplain	10
Table 7. Actual parameters used during the LiDAR data acquisition of the Gingoog Floodplain	10
Table 8. List of municipalities and cities surveyed during Gingoog Floodplain LiDAR	11
Table 9. Self-calibration Results values for Gingoog flights	16
Table 10. List of LiDAR blocks for Gingoog Floodplain	17
Table 11. Gingoog classification results in TerraScan	21
Table 12. LiDAR blocks with its corresponding areas	25
Table 13. Shift values of each LiDAR block of Gingoog Floodplain	27
Table 14. Calibration Statistical Measures	31
Table 15. Validation Statistical Measures	32
Table 16. Quality Checking Ratings for Gingoog Building Features	34
Table 17. Building Features Extracted for Gingoog Floodplain	35
Table 18. Total Length of Extracted Roads for Gingoog Floodplain	36
Table 19. Number of Extracted Water Bodies for Gingoog Floodplain	36
Table 20. List of Reference and Control Points occupied for Gingoog River Survey	39
Table 21. Baseline processing report for Gingoog River Basin static survey	42
Table 22. Constraints applied to the adjustment of the control points	43
Table 23. Adjusted grid coordinates	43
Table 24. Adjusted geodetic coordinates for control points used in the Gingoog River Floodplain validation	44
Table 25Reference and control points used and its location	44
Table 26. RIDF values for Aparri Rain Gauge computed by PAGASA	57
Table 27. Range of calibrated values for the Gingoog River Basin	66
Table 28. Summary of the Efficiency Test of the Gingoog HMS Model	67
Table 29. Peak values of the Gingoog HEC-HMS Model outflow using the Butuan RIDF24-hour values	69
Table 30. Summary of Gingoog-Gingoog River (1) discharge generated in HEC-HMS	72
Table 31. Summary of Gingoog-Gingoog River (2) discharge generated in HEC-HMS	72
Table 32. Summary of Gingoog-Gingoog River (3) discharge generated in HEC-HMS	73
Table 33. Summary of Gingoog-Gingoog River (4) discharge generated in HEC-HMS	73
Table 34. Summary of Gingoog-Gingoog River (5) discharge generated in HEC-HMS	73
Table 35. Summary of Gingoog-Gingoog River (6) discharge generated in HEC-HMS	73
Table 36. Validation of river discharge estimates	74

Table 37. Municipalities affected in Gingoog Floodplain
Table 38. Affected areas Gingoog City, Misamis Oriental during a 5-year rainfall return period83
Table 39. Affected areas Gingoog City, Misamis Oriental during a 5-year rainfall return period84
Table 40. Affected areas Gingoog City, Misamis Oriental during a 5-year rainfall return period84
Table 41. Affected areas Gingoog City, Misamis Oriental during a 5-year rainfall return period85
Table 42. Affected areas Gingoog City, Misamis Oriental during a 25-year rainfall return period
Table 43. Affected areas Gingoog City, Misamis Oriental during a 25-year rainfall return period
Table 44. Affected areas Gingoog City, Misamis Oriental during a 25-year rainfall return period89
Table 45. Affected areas Gingoog City, Misamis Oriental during a 25-year rainfall return period90
Table 46. Affected areas Gingoog City, Misamis Oriental during a 100-year rainfall return period93
Table 47. Affected areas Gingoog City, Misamis Oriental during a 100-year rainfall return period93
Table 48. Affected areas Gingoog City, Misamis Oriental during a 100-year rainfall return period94
Table 49. Affected areas Gingoog City, Misamis Oriental during a 100-year rainfall return period94
Table 50. Areas covered by each warning level with respect to the rainfall scenarios
Table 51. Actual flood vs. simulated flood depth at different levels in the Gahub - GingoogRiver Basin
Table 52. The summary of the Accuracy Assessment in the Gingoog River Basin Survey

LIST OF FIGURES

Figure 1. Map of the Gingoog River Basin (in brown)	2
Figure 2.Flight plans used for Gingoog Floodplain	4
Figure 3. Flight plans and base stations for Gingoog Floodplain	6
Figure 4. GPS set-up over MSE-31 inside the school grounds of Binuangan National High School	
of Sitio Naratulan, Binuangan, Misamis Oriental (a) and NAMRIA reference point	
MSE-31 (b) as recovered by the field team	7
Figure 5. GPS set-up over MSE-32 inside Alicomohan Elementary school,	
just in front of the school's flag pole, situated at Barangay Alicomohan,	
Sugbongcogon, Misamis Oriental (a) and NAMRIA reference point	
MSE-32 (b) as recovered by the field team	8
Figure 6. GPS set-up over MSE-36 within Medina municipal port (a) and NAMRIA reference point	
MSE-32 (b) as recovered by the field team	9
Figure 7. Actual LiDAR survey coverage of the Gingoog Floodplain.	12
Figure 8. Schematic diagram for Data Pre-Processing Component.	13
Figure 9. Smoothed Performance Metrics of Gingoog Flight 1525P	14
Figure 10. Solution Status Parameters of Gingoog Flight 1525P	15
Figure 11. Best Estimated Trajectory of the LiDAR missions conducted over the Gingoog Floodplain.	16
Figure 12. Boundary of the processed LiDAR data over Gingoog Floodplain	17
Figure 13. Image of data overlap for Gingoog Floodplain.	18
Figure 14. Pulse density map of merged LiDAR data for Gingoog Floodplain	19
Figure 15. Elevation Difference Map between flight lines for Gingoog Floodplain Survey	20
Figure 16. Quality checking for a Gingoog flight 1525P using the Profile Tool of QT Modeler	21
Figure 17. Tiles for Gingoog Floodplain (a) and classification results (b) in TerraScan	22
Figure 18. Point cloud before (a) and after (b) classification	22
Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Gingoog Floodplain	23
Figure 20. Gingoog Floodplain with available orthophotographs.	24
Figure 21. Sample orthophotograph tiles for Gingoog Floodplain	24
Figure 22. Portions in the DTM of Gingoog Floodplain— – a bridge before (Figure 22a)	
and after (Figure 22b) manual editing; and ridges before (Figures 22c and 22e)	
and after (Figure 22d and 22f) data retrieval	26
Figure 25. Correlation plot between calibration survey points and LiDAR data	31
Figure 26. Correlation plot between validation survey points and LiDAR data.	32
Figure 27. Map of Gingoog Floodplain with bathymetric survey points shown in blue	33
Figure 28. Blocks (in blue) of Silaga building features that were subjected to QC	34
Figure 29. Extracted features for Gingoog Floodplain.	36
Figure 30. Extent of the bathymetric survey (in blue line) in Gingoog River	38
and the LiDAR data validation survey (in red).	38
Figure 31. The GNSS Network established in the Gingoog River Survey.	39
Figure 32. Trimble [®] SPS 882 GPS set-up at MSE-35 located on a seawall within Madahilag	
Elementary School in Brgy. Pahindong, Municipality of Medina, Misamis Oriental	40
Figure 33. Trimble® SPS 852 Base set-up at ME-36 located at the approach of Gahub Bridge	
in Brgy. 1 Poblacion, Gingoog City, Misamis Oriental	40
Figure 34. Trimble® SPS 852 Base set-up at MSE-44, located at the approach of Kibungsod Bridge	
in Brgy. Kibungsod, Municipality of Magsaysay, Misamis Oriental	41
Figure 37. New Gingoog Bridge facing downstream	45

Figure 36. Murallon-Libon Hanging Bridge location map	46
Figure 37. Gingoog Bridge cross-section diagram	47
Figure 38. Set-up for LiDAR ground validation survey	48
Figure 39.Validation points acquisition survey extent in Gingoog River Basin	49
Figure 40. Bathymetric survey set-up using OHMEX [™] single beam echo sounder	50
and a mounted with a Trimble [®] SPS 882	50
Figure 41.Manual bathymetric survey in Gingoog River	51
Figure 42. Extent of the Gingoog River bathymetric survey	52
Figure 43. Riverbed profile of Gingoog River	53
Figure 44. The Location map of Gingoog HEC-HMS model used for calibration	54
Figure 45.Rainfall and outflow data used for modeling	55
Figure 46. Rainfall and outflow data of Gingoog River Basin, which was used for modeling,	56
Figure 47. Location of Butuan RIDE Station relative to Gingoog River Basin	
Figure 48 Synthetic storm generated for a 24-hour period rainfall for various return periods	58
Figure 49 Soil Man of Gingoog River Basin Figure 49 Soil man of the Gingoog River Basin	59
Figure 50 Land cover man of the Gingoog River Basin (Source: NAMRIA)	60
Figure 51. Slone Man of Gingoog River Basin	61
Figure 52. Stream Delineation Man of Cingoog Piver Pacin	62
Figure 52. Stream Defineation Map of Gingoog River Basin	62
Figure 53. Gingoog River basin model generated using HEC CooPAS tool	05
Figure 54. Gingoog River closs-section generated using HEC GeoRAS tool	04
Figure 55. Screenshot of subcatchment with the computational area to be modeled in Fio2D	<u>ر ج</u>
Grid Developer System (FIO-2D GDS Pro)	65
Figure 56. Outflow hydrograph of Gingoog produced by the HEC-HIVIS model	66
compared with observed ouπlow	66
Figure 57.Outflow hydrograph at Gingoog Station generated using Butuan RIDF	60
simulated in HEC-HMS.	68
Figure 58. Gingoog-Gingoog river (1) generated discharge using 5-, 25-, and 100-year Lumbia	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	69
Figure 59. Gingoog-Gingoog river (2) generated discharge using 5-, 25-, and 100-year Lumbia	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	70
Figure 60. Gingoog-Gingoog river (3) generated discharge using 5-, 25-, and 100-year Lumbia	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	70
Figure 61. Gingoog-Gingoog river (4) generated discharge using 5-, 25-, and 100-year Lumbia	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	71
Figure 62. Gingoog-Gingoog river (5) generated discharge using 5-, 25-, and 100-year Lumbia	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	71
Figure 63. Gingoog-Gingoog river (6) generated discharge using 5-, 25-, and 100-year Lumbia	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	72
Figure 64. Sample output map of Gingoog RAS Model	75
Figure 65. 100-year flood hazard map for Gahub-Gingoog Floodplain	77
Figure 66. A 100-year Flow Depth Map for Gahub-Gingoog Floodplain	78
Figure 67. A 25-year Flood Hazard Map for Gahub-Gingoog Floodplain	79
Figure 68. A 25-year Flow Depth Map for Gahub-Gingoog Floodplain	80
Figure 69. A 5-year Flood Hazard Map for Gahub-Gingoog Floodplain	81
Figure 70. A 5-year Flow depth map for Gahub-Gingoog Floodplain.	82
Figure 71. Affected areas in Gingoog City, Misamis Oriental during a 5-year rainfall return period	86
Figure 72. Affected areas in Gingoog City, Misamis Oriental during a 5-year rainfall return period	86
Figure 73. Affected areas in Gingoog City, Misamis Oriental during a 5-year rainfall return period	87

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CMU	Central Mindanao University		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment fo Mitigation [Program]		
DRRM	Disaster Risk Reduction and Managemen		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND GINGOOG RIVER

Enrico C. Paringit, Dr. Eng. Dr. George Puno, and Eric Bruno

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, tThe program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit et al., 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the Central Mindanao University (CMU). CMU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Central Mindanao Region. The university is located in the Municipality of Maramag in the province of Bukidnon.

1.2 Overview of the Gingoog River Basin

Gingoog river basin is located in the central part of the Gingoog City at the easternmost part of Misamis Oriental, Philippines. The city is approximately 122 kilometers east of Cagayan de Oro City and 74 kilometers west of Butuan City. It specifically lies within the grid coordinates of 125.1000 east and 8.8167 north. The river basin has an area of 13,291 hectares and covers thirty-five (35) barangays of Gingoog City and two barangays of Claveria. According to DENR – RCBO, it covers a drainage area of 102 km2 and has an estimated annual run-off of 260 MCM. The basin encloses tributaries of Gingoog and Samay rivers that drain into the floodplain through the Kibaluyot and Malubog channels exiting into the coast of Gingoog Bay. The headwaters of the basin is a massive compound strato-volcano called Mount Balatucan at the northeast and Mount Mangabon at the southwest.

Its main stem, Gingoog River, is part of the 13 river systems in Central Mindanao Region. According to the 2010 national census of NSO, a total of 22,659 locals are residing in the immediate vicinity of the river. Its recent flood event was on March 20, 2014 caused by the Tropical Depression "Caloy" due to heavy rains. It was reported that at least 350 families were evacuated from five barangays of Gingoog City.

Gingoog River serves as the source of water for domestic uses and agricultural production. It is used for irrigating the rice fields and fishponds for aquaculture. The upper slope is characterized by primary and secondary forests while the downstream is composed of small-scale and large- scale tree plantation, as well as massive coconut plantation. Moreover, several fruit trees namely durian, marang, pomelo, and rambutan, among others, abound in the basin.

Flooding occasionally visits the floodplain of Gingoog. One flood incident was on 2009 which caused a total of 2,013 individuals who suffered the consequences. Flood water reached as high as 1.0 meter in low-lying barangays. Earliest flood incident recalled by the locals during the focus group discussion and key informant interview was on 1979. Recent occurrences were on 2009, 2013 and three times on 2014, two of which were during the Typhoons Agaton and Seniang. Its recent flood event was on March 20, 2014 caused by the heavy rains due to Tropical Depression "Caloy." It was reported that at least 350 families were evacuated from five barangays of Gingoog City.

Figure 1. Map of the Gingoog River Basin (in brown)

Gingoog river is one of the sites assigned to Central Mindanao University (CMU) under the Phil-LiDAR 1 Program. Using Hydrologic Engineering Centre's – Hydrologic Modeling System (HEC-HMS) and Hydrologic Engineering Centre's – Hydrologic River Analysis System (HEC-RAS) computer applications, the hydrologic and hydraulic models were created. The hydrologic model which consists of 41 sub basins, 20 reaches, and 20 junctions was calibrated using an event on December 15, 2015. Model efficiency was further evaluated using the statistical tests obtaining a satisfactory performance. Run-off simulations were conducted using a 21-year data-based Rainfall Intensity Duration Frequency (RIDF) of Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) from Butuan rain guage station. Hydraulic simulations which calculates extent and depth of the flood were conducted using the hydraulic model. Results of the simulation are were then used to generate the 5-, 25-, and 100-years return period of flooding scenarios.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE GINGOOG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Renan D. Punto, Ms. Pauline Joanne G. Arceo

The methods applied in this cChapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Gingoog Floodplain in Misamis Oriental. These missions were planned for 12 lines and ran for at most four and a half (4.5) hours including take-off, landing, and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plan for Gingoog Floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 64A	900	30	50	200	30	130	5
BLK RXS	900	30	50	200	30	130	5

Table 1.Flight planning parameters for Pegasus LiDAR system

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Figure 2.Flight plans used for Gingoog Floodplain

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA ground control points: MSE-31, MSE-32, and MSE-36 which are of second-order accuracy. The certifications for the NAMRIA reference points are found in ANNEX 2. These points were used as base stations during flight operations for the entire duration of the survey (May 29–June 19, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Gingoog Floodplain are shown in Figure 3.

Figure 3. Flight plans and base stations for Gingoog Floodplain

Figure 4 to Figure 6 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 4 show the details about the following NAMRIA control stations, while Table 5 lists all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 4. GPS set-up over MSE-31 inside the school grounds of Binuangan National High School of Sitio Naratulan, Binuangan, Misamis Oriental (a) and NAMRIA reference point MSE-31 (b) as recovered by the field team

Γable 2. Details of the recovered NAMRIA horizontal control point MSE-31 used as base station for the LiDAR	
acquisition	

Station Name	MSE-31		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°55'28.57032" North 124°46'55.456" East 59.48400 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	476032.898 meters 986806.828 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°55'24.88251" North 124°47'0.81947" East 126.4900 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	696109.62 meters 986876.83 meters	

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 5. GPS set-up over MSE-32 inside Alicomohan Elementary school, just in front of the school's flag pole, situated at Barangay Alicomohan, Sugbongcogon, Misamis Oriental (a) and NAMRIA reference point MSE-32 (b) as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point MSE-32 used as base station for the LiDAR acquisition

Station Name	MSE-32		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°56'30.44605" North 124°46'58.97104" East 132.12900 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	476141.401 meters 988707.53 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°56'26.75387" North 124°47'4.33290" East 199.10100 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	696045.73 meters 988828.70 meters	

Figure 6. GPS set-up over MSE-36 within Medina municipal port (a) and NAMRIA reference point MSE-32 (b) as recovered by the field team

Station Name	MSE-36	
Order of Accuracy	2nd	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°54'20.12398" North 125°1'28.36102" East 0.97100 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	502699.481 meters 984697.224 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°54'16.46220" North 125°1'33.72408" East 68.61700 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	722630.22 meters 984961.57 meters

Table 4. Details of the recovered NAMRIA horizontal control point MSE-36 used as base station for the LiDAR acquisition

Table 5. Ground control points that were used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 29,2014	1525P	1RXE149A	MSE-31, MSE-32, MSE-36
June 19, 2014	1609P	1RXE170A	MSE-31, MSE-32, MSE-36

2.3 Flight Missions

Two (2) missions were conducted to complete the LiDAR data acquisition in Gingoog Floodplain, for a total of eight hours and forty seven minutes (8+47) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 6 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 7 presents the actual parameters used during the LiDAR data acquisition.

Table 6. Flight missions for the LiDAR data acquisition of the Gingoog Floodplain.

Date Surveyed	Flight Number	Flight Plan Area	Surveyed Area	Area Surveyed	Area Surveyed Outside the	No. of Images	FI H	ying ours
		(km2)	(km2)	within the Floodplain (km2)	Floodplain (km2)	(Frames)	Hr	Min
May 29,2014	1525P	153.85	132.81	16.62	116.19	NA	4	29
June 19, 2014	1609P	185.6	141.17	2.5	138.67	618	4	18
тотя	AL	339.45	273.98	19.12	254.86	618	8	47

Table 7. Actual parameters used during the LiDAR data acquisition of the Gingoog Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1525P	900	30	50	200	30	130	5
1609P	800,1000	30	50	200	30	130	5

2.4 Survey Coverage

Gingoog Floodplain is located in the province of Misamis Oriental with majority of the floodplain situated within the City of Gingoog. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 8. The actual coverage of the LiDAR acquisition for Gingoog Floodplain is presented in Figure 7.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Binuangan	15.32	7.08	46.2%
	Kinoguitan	36.19	14.52	40.1%
	Salay	56.46	15.75	27.9%
	Gingoog City	538.03	146.86	27.3%
	Sugbongcogon	21.35	5.69	26.6%
Misamis Oriental	Lagonglong	46.63	11.89	25.5%
	Talisayan	65.14	10.57	16.2%
	Balingoan	62.65	9.4	15%
	Medina	118.64	8.9	7.5%
	Balingasag	125.59	5.83	4.6%
	Magsaysay	118.05	1.74	1.5%
Tota	l.	1204.05	238.23	22%

Table 8. List of municipalities and cities surveyed during Gingoog Floodplain LiDAR

Figure 7. Actual LiDAR survey coverage of the Gingoog Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE GINGOOG FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Alex John B. Escobido , Engr. Ma. Ailyn L. Olanda, Engr. Melanie C. Hingpit, Engr. Wilbert Ian M. San Juan , Engr. Jommer M. Medina, Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are were subject for quality checking to ensure that the required accuracies of the program, which are were the minimum point density, vertical and horizontal accuracies, are were met. The point clouds are were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are were calibrated. Portions of the river that are were barely penetrated by the LiDAR system are were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 8.

Figure 8. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Gingoog Floodplain can be found in ANNEX A-5. Data Transfer Sheets. Missions flown during the survey conducted on May 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Gingoog City, Misamis Oriental.

The Data Acquisition Component (DAC) transferred a total of 48.6 Gigabytes of Range data, 5.24 Gigabytes of POS data, 16.9 Megabytes of GPS base station data, and 45.3 Gigabytes of raw image data to the data server on July 28, 2014. The Data Pre-Processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Gingoog was fully transferred on July 28, 2014, as indicated on the data transfer sheets for Gingoog Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1525P, one of the Gingoog flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 29, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 9. Smoothed Performance Metrics of Gingoog Flight 1525P

The time of flight was from 349800 seconds to 352600 seconds, which corresponds to morning of May 29, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts started computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 show that the North position RMSE peaks at 0.95 centimeters, the East position RMSE peaks at 1.05 centimeters, and the Down position RMSE peaks at 1.80 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 10. Solution Status Parameters of Gingoog Flight 1525P

The Solution Status parameters of flight 1525P, one of the Gingoog flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 9. The PDOP value also did not go above the value of 1.8, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions as indicated in the methodology. The computed best estimated trajectory for all Gingoog flights is shown in Figure 11.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 11. Best Estimated Trajectory of the LiDAR missions conducted over the Gingoog Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 38 flight lines, with each flight line containing two channels, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Gingoog Floodplain are given in Table 9.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000228
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000426
GPS Position Z-correction stdev	<0.01meters	0.0073

The optimum accuracy was obtained for all Gingoog flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the ANNEX 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Gingoog Floodplain is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 12. Boundary of the processed LiDAR data over Gingoog Floodplain

The total area covered by the Gingoog missions is 196.96 sq.kmsq km that is comprised of two (2) flight acquisitions grouped and merged into two (2) blocks as shown in Table 10.

LiDAR Blocks	Flight Numbers	Area (sq. km)
NorthernMindanao_Blk64A	1525P	125.1
NorthernMindanao_RX_supplement	1609P	71.86
TOTAL	196.96	

Table 10. List of LiDAR blocks for	Gingoog Floodplain
------------------------------------	--------------------

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is shown in Figure 13. Since the Pegasus system employs two channels, we would expect\ an average value of 2 (blue) would be expected for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 13. Image of data overlap for Gingoog Floodplain.

The overlap statistics per block for the Gingoog Floodplain can be found in ANNEX 8. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 33.39% and 44.22%, respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion, is shown in Figure 14. It was determined that all LiDAR data for Gingoog Floodplain satisfy the point density requirement, and the average density for the entire survey area is 5.84 points per square meter.

Figure 14. Pulse density map of merged LiDAR data for Gingoog Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20 m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20 m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 15. Elevation Difference Map between flight lines for Gingoog Floodplain Survey.

A screen capture of the processed LAS data from a Gingoog flight 1525P loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 16. Quality checking for a Gingoog flight 1525P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	182,085,847
Low Vegetation	202,484,561
Medium Vegetation	479,026,680
High Vegetation	505,011,303
Building	18,269,324

Table 11.	Gingoog	classification	results in	TerraScan
-----------	---------	----------------	------------	-----------

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Gingoog Floodplain is shown in Figure 17. A total of 303 1 km by 1 km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 11. The point cloud has a maximum and minimum height of 794.05 meters and 66.01 meters, respectively.

Figure 17. Tiles for Gingoog Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly due to the density of the LiDAR data.

Figure 18. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Gingoog Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 127 1 km by 1 km tiles area covered by Gingoog Floodplain is shown in Figure 20. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Gingoog Floodplain survey attained a total of 71.43 sq.kmsq km in orthophotogaph coverage comprised of 280 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 21.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 20. Gingoog Floodplain with available orthophotographs.

Figure 21. Sample orthophotograph tiles for Gingoog Floodplain.
3.8 DEM Editing and Hydro-Correction

Two (2) mission blocks were processed for Gingoog Floodplain. These blocks are composed of NorthernMindanao_Blk64A and NorthernMindanao_RX_S with a total area of 196.96 square kilometers. Table 12 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
NorthernMindanao_Blk64A	125.1
NorthernMindanao_RX_supplement	71.86
TOTAL	196.96 sq.kmsq km

Table 12. LiDAR blocks with its corresponding areas.

Portions of DTM before and after manual editing are shown in Figure 22. The bridge (Figure 22a) is was considered to be impedance to the flow of water along the river and has had to be removed (Figure 22b) in order to hydrologically correct the river. This was done through interpolation process wherein in which a specific polygon determines the upstream and downstream elevation values to generate an interpolated portion of a river and eventually remove the bridge footprint. On the other hand, object retrieval was done in misclassified ridges (Figure 22c and 22e) which have been removed during classification process and have to be retrieved to complete the surface and retain the correct terrain (Figure 22d and 22f). Object retrieval useds the secondary DTM (t_layer) to fill in these areas.

Figure 22. Portions in the DTM of Gingoog Floodplain— – a bridge before (Figure 22a) and after (Figure 22b) manual editing; and ridges before (Figures 22c and 22e) and after (Figure 22d and 22f) data retrieval

3.9 Mosaicking of Blocks

The Gingoog Floodplain lies within the mosaicked DEM of NorthernMindanao_Blk64A and NorthernMindanao_RX_S blocks. Such blocks were calibrated when mosaicked to the existing calibrated DEM. The calibration was done in block NorthernMindanao_RX_C located in its western part which was used as reference for shifting. Table 13 shows the area of each LiDAR block and the shift values applied to calibrate the Gingoog DEM during mosaicking. Furthermore, the mean difference of the calibrated mosaicked DEM over the calibrated NorthernMindanao_Blk64A resulted to in .0009 meters.

Mosaicked LiDAR DEM from the calibrated NorthernMindanao_RX_C block up to the Gingoog Floodplain DEM is shown in Figure 23. It can be seen that the entire Gingoog Floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)		
	х	У	Z
NorthernMindanao_Blk64A	0.00	0.00	-0.12
NorthernMindanao_RX_supplement	0.00	0.00	-0.16

Table 13. Shift values of each LiDAR block of Gingoog Floodplain.

Figure 23 . Map of Processed LiDAR Data for Gingoog Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Gingoog to collect points with which the LiDAR dataset was validated is shown in Figure 24. A total of 7,941 survey points were used for calibration and validation of Gingoog LiDAR data. Eighty percent of the survey points, which were randomly selected and resulting in 6,353 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.64 meters with a standard deviation of 0.10 meters. Calibration of Gingoog LiDAR data was done by subtracting the height difference value, 0.64 meters, to Gingoog mosaicked LiDAR data. Table 14 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 24. Map of Gingoog Floodplain with validation survey points in green.

Figure 25. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.64
Standard Deviation	0.10
Average	-0.64
Minimum	-0.85
Maximum	-0.42

Table 14. Calibration Statistical Measures

The remaining 20% of the total survey points, resulting to in 1,588 points, were used for the validation of calibrated Gingoog DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.10 meters with a standard deviation of 0.10 meters, as shown in Table 15.

Figure 26. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.10
Standard Deviation	0.10
Average	0.03
Minimum	-0.23
Maximum	0.37

Table 15. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Gingoog with 9,, 917 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is was represented by the computed RMSE value of 0.47 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Gingoog integrated with the processed LiDAR DEM is shown in Figure 27.

Figure 27. Map of Gingoog Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Gingoog Floodplain, including its 200 m buffer, has a total area of 22.34 sq km. For this area, a total of 5.00 sq km, corresponding to a total of 3,100 building features, are were considered for QC. Figure 28 shows the QC blocks for Gingoog Floodplain.

Figure 28. Blocks (in blue) of Silaga building features that were subjected to QC

Quality checking of Gingoog building features resulted in the ratings shown in Table 16.

Table 16. Quality	Checking	Ratings for	Gingoog	Building Features
-------------------	----------	-------------	---------	--------------------------

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS	
Gingoog	100.00	100.00	99.97	PASSED	

3.12.2 Height Extraction

Height extraction was done for 3,782 building features in Gingoog Floodplain. Of these building features, 68 were filtered out after height extraction, resulting to in 3,714 buildings with height attributes. Filtered features were the features with less than 2 meters high. The lowest building height is at 2.00 m, while the highest building is at 10.54 m.

3.12.3 Feature Attribution

Field data collection for the attribution process was done through Geotagging (point to a specific feature and shoot method) using a handheld GPS with a built-in camera. The (x,y,z) and the viewing direction of the GPS in 0-359 degrees during the photo capture were the essential information in the process. Using Arcmap's tool "Geotagged Photos to Points,", the symbology of the imported point shapefile was set as "Airfield" and the viewing angle was set as "Direction.". The "Path" is was automatically created in the points' attribute table wherein the photo's directory is was linked every after the "Identify" button is was clicked to a specific point.

Table 17 summarizes the number of building features per type. From the total features identified, approximately 3, 400 of it these are residential establishments while the commercial establishments are the most common in non-residential features. On the other hand, Table 18 shows the total length of each road type. However, road networks other than the national road (NA) and provincial road (PR) were considered unclassified (Others). Table 19 shows the water feature extracted.

0	
Facility Type	No. of Features
Residential	3,400
School	33
Market	1
Agricultural/Agro-Industrial Facilities	0
Medical Institutions	5
Barangay Hall	9
Military Institution	0
Sports Center/Gymnasium/Covered Court	2
Telecommunication Facilities	4
Transport Terminal	0
Warehouse	25
Power Plant/Substation	1
NGO/CSO Offices	0
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	22
Bank	1
Factory	0
Gas Station	12
Fire Station	0
Other Government Offices	14
Other Commercial Establishments	185
Total	3,714

Table 17. Building Features Extracted for Gingoog Floodplain.

Floodplain		Road Network Length (km)						
	Barangay RoadCity/Municipal RoadProvincial RoadNational RoadOthers							
Gingoog	0	0	10.95	4.53	22.81	38.29		

Table 18. Total Length of Extracted Roads for Gingoog Floodplain.

Table 19. Number of Extracted Water Bodies for Gingoog Floodplain.

Floodplain	Water Body Type						
	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen						
Gingoog	2	0	0	0	0	2	

A total of 11 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 29 shows the Digital Surface Model (DSM) of Gingoog floodplain overlaid with its ground features.

Figure 29. Extracted features for Gingoog Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GINGOOG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Gingoog River. The survey was conducted on September 28 – October 12, 2015 with the following scope of work: reconnaissance; control survey for the establishment of a control point; cross-section and as-built survey of Murallon-Libon hanging bridge in Brgy. Murallon, Gingoog City; LiDAR validation of about 65 km; and bathymetric survey from Brgy. Samay down to the mouth of the river in Brgy. Daan-Lungsod, with an estimated length of 14.12 km using an OHMEX[™] Single Beam Echo Sounder and GNSS PPK survey technique. The entire extent of the bathymetry in Gingoog River is shown in Figure 30.

Figure 30. Extent of the bathymetric survey (in blue line) in Gingoog River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network used for Gingoog River Basin is composed of a single loop established on September 9 – October 5, 2015 occupying the following reference points: MSE-35, a second-order GCP in Brgy. Pahindong, Municipality of Medina; and ME-36, a first-order BM in Brgy. Barangay 1 Poblacion, Gingoog City; Misamis Oriental.

A NAMRIA established control points: MSE-44 in Brgy. Kibungsod, Municipality of Magsaysay was also used as marker during the survey.

The summary of rThe reference and control points and its the respective locations is are summarized in Table 20 while the GNSS network established is illustrated in Figure 31.

Figure 31. The GNSS Network established in the Gingoog River Survey.

Table 20. List of Reference and Contr	ol Points occupied for Gingoog F	liver Survey (Source: NAN	IRIA; UP-TCAGP)
			, , , , , , , , , , , , , , , , , , , ,

		Geographic Coordinates (WGS 84)					
Control Order of Point Accuracy		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established	
MSE-35	2nd Order, GCP	08°57'19.75841"N	124°57'19.75841"E	68.009	0.009	2003	
ME-36	1st Order, BM	14°33'52.21121"N	121°36'54.79419"E	75.333	9.474	2007	
MSE- 44	Used as marker	-	-	76.146	-	2003	

The GNSS set-ups on recovered reference and control points in Gingoog River are shown in Figure 32 to Figure 34.

Figure 32. Trimble® SPS 882 GPS set-up at MSE-35 located on a seawall within Madahilag Elementary School in Brgy. Pahindong, Municipality of Medina, Misamis Oriental

Figure 33. Trimble® SPS 852 Base set-up at ME-36 located at the approach of Gahub Bridge in Brgy. 1 Poblacion, Gingoog City, Misamis Oriental

Figure 34. Trimble® SPS 852 Base set-up at MSE-44, located at the approach of Kibungsod Bridge in Brgy. Kibungsod, Municipality of Magsaysay, Misamis Oriental

4.3 Baseline Processing

GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is was performed. Masking is done by removing portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Gingoog river basin survey is summarized in Table 21 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
ME-36 MSE-35	09-29-2015	Fixed	0.007	0.033	313°47'45"	21122.989	-7.312
ME-36 MSE-44	09-29-2015	Fixed	0.006	0.027	29°30'54"	23174.977	0.966
MSE-44 MSE-35	09-29-2015	Fixed	0.008	0.046	78°13'25"	27235.149	8.297

Table 21. Baseline processing report for Gingoog River Basin static survey

As shown in Table 21, a total of three (3) baselines were processed with coordinates of MSE-35 and elevation value of ME-36 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is was performed using TBC. Looking at the Adjusted Grid Coordinates (Table 23) Table C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

```
\sqrt{((x_e)^2 + (y_e)^2)} <20cm and z_e < 10 \ cm
```

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 22 to Table 24 for complete details.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)			
ME-36	Grid				Fixed			
MSE-35	Local	Fixed	Fixed					
Fixed = 0.000001 (Meter)								

Table 22. Constraints applied to the adjustment of the control points.

The list of adjusted grid coordinates, i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 23. All fixed control points have no values for grid and elevation errors.

Table 23	Adjusted	orid	coordinates
Table 29.	Ingusted	gilu	coordinates

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
ME-36	730883.858	0.009	975969.756	0.006	6.512	?	е
MSE-35	715551.148	?	990505.339	?	-0.349	0.056	LL
MSE-44	742189.569	0.009	996207.709	0.006	9.268	0.048	

With the mentioned equation, for horizontal and for the vertical,; the computation for the accuracy are as follows:

horizontal accuracy	=	Fixed
vertical accuracy	=	5.6 < 10 cm
horizontal accuracy	=	$\sqrt{((0.9)^2 + (0.6)^2)}$
	=	√ (0.81 + 0.36)
	=	1.08 < 20 cm
vertical accuracy	=	Fixed
horizontal accuracy	=	$V((0.9)^2 + (0.6)^2)$
	=	√ (0.81 + 0.36)
	=	1.08 < 20 cm
vertical accuracy	=	4.8 < 10 cm
	horizontal accuracy vertical accuracy horizontal accuracy vertical accuracy horizontal accuracy vertical accuracy	horizontal accuracy = vertical accuracy = horizontal accuracy = vertical accuracy = horizontal accuracy = vertical accuracy = vertical accuracy =

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Table 24. Adjusted g	geodetic coordinates for cont	ol points used in the Gir	ngoog River Floodplain validation.
----------------------	-------------------------------	---------------------------	------------------------------------

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
ME-36	N8°49'24.00979"	E125°05'56.85831"	74.935	?	е
MSE-35	N8°57'19.75841"	E124°57'37.74118"	67.619	0.056	LL
MSE-44	N9°00'20.39882"	E125°12'10.65876"	75.908	0.048	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 24. Based on the result of the computation, the accuracy condition is was satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 25.

Control Point	Order of Accuracy	Geograph	UTM ZONE 51 N				
		Latitude	Latitude Longitude Ellipsoidal Height (m)		Northing (m)	Easting (m)	BM Ortho (m)
ME-36	1st Order, BM	8°49'24.00979"	125°05'56.85831"	74.935	975969.756	730883.858	6.512
MSE-35	2nd Order, GCP	8°57'19.75841"	124°57'37.74118"	67.619	990505.339	715551.148	-0.349
MSE-44	Used as Marker	9°00'20.39882"	125°12'10.65876"	75.908	996207.709	742189.569	9.268

Table 25.Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section was performed on October 6 and 8, 2015 along the downstream side of a hanging bridge connecting Brgy. Murallon and Brgy. Libon in Gingoog City, Misamis Oriental. The survey was conducted with the application of PPK technique using a survey grade GPS, Trimble® SPS 882, as shown in Figure 35. However, the data gathered from this survey failed to meet the required accuracy set for its horizontal and vertical coordinates (or 'floated'). DPPC processed LiDAR data gathered from the area to compensate for the float data gathered.

Figure 37. New Gingoog Bridge facing downstream

46

Figure 37. Gingoog Bridge cross-section diagram

4.6 Validation Points Acquisition Survey

LiDAR validation points acquisition survey was conducted on October 1, 2, and 7, 2015 using a surveygrade GNSS rover receiver Trimble[®] SPS 985 mounted on a pole attached at the back of a vehicle as seen in Figure 38. It was secured with a nylon rope and cable ties to ensure that it was horizontally and vertically balanced. The antenna height was measured and recorded to be 2.428 m from the ground up to the bottom of antenna mount of the receiver.

Figure 38. Set-up for LiDAR ground validation survey

The survey started from Brgy. San Luis, Gingoog City, going south through National highway traversing 27 barangays in Borongan City; seven barangays in the Municipality of Magsaysay; three (3) barangays in the Municipality of Carmen; and ten (10) barangays in the Municipality of Nasipit. It ended in Brgy. Cubi cubi, Mun. of Nasipit, Misamis Oriental. A total of 7,477 points were gathered with approximate length of 65 km using ME-36 and MSE-44 as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 39.

Figure 39. Validation points acquisition survey extent in Gingoog River Basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on October 3, 4, and 6, 2015 using Trimble[®] SPS 882 in GNSS PPK survey technique and an Ohmex[™] single-beam echo sounder mounted on a pole as shown in Figure 40. The survey started in Brgy. Santiago, Gingoog City with coordinates 8°49′24.32357″N, 125°07′20.15877″E, down to the mouth of the river in Brgy. 18-A, also in Gingoog City with coordinates 8°50′23.03306″N, 125°07′19.18987″E.

Figure 40. Bathymetric survey set-up using OHMEX[™] single beam echo sounder and a mounted with a Trimble® SPS 882

Manual bathymetric survey was executed simultaneously using Trimble[®] SPS 882 receiver in GNSS PPK survey technique as shown in Figure 41. It started in Brgy. Samay, Gingoog City with coordinates 8°46′34.74021″N, 125°06′38.68618″E, walked down the river by foot, and ended at the starting point of bathymetric survey using boat. The base station ME-36 was used all throughout the bathymetric survey.

Figure 41. Manual bathymetric survey in Gingoog River

The bathymetric survey for Gingoog River gathered a total of 1,534 bathymetric points covering 14.12 km of the river. The barangays traversed during the survey were: Brgy. Samay, Brgy. Binakalan,, Brgy. Murallon, Brgy. Libon, Brgy. 22-A, Brgy. 20, Brgy. Santiago, Brgy. 19, Brgy. 18-A, and Brgy. Daang-Lungsod, all in Gingoog City, Misamis Oriental. A CAD drawing was also produced to illustrate the Gingoog riverbed profile. As shown in Figure 43, the highest and lowest elevation garnered an 82-meter difference. The highest elevation observed was 76.405 meters located in Brgy. Samay while the lowest was 5.725 m below MSL located in Brgy. Daan-Lungsod.

Figure 42. Extent of the Gingoog River bathymetric survey

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Mariel Monteclaro

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Gingoog River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Gingoog River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI) at Lurisa National High School, Samay, Gingoog City. The location of the rain gauge is shown in Figure 44.

Total rain acquired is 20.8 mm. It peaked to 9.4 mm on 15 December 2015 at 17:45. The lag time between the peak rainfall and discharge is four (4) hours and 55 minutes.

Figure 44. The Location map of Gingoog HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

The river velocity and water level change used for the calculation of discharge were measured at Gingoog hanging bridge in the Barangay 26, Gingoog City. Peak discharge is 43.49 m3/s on December 15, 2014 at 23:40. Figure 45 illustrates river discharge as influenced by the rate of the rainfall.

Figure 45. Rainfall and outflow data used for modeling

Using the gathered stage and discharge data, a rating curve was developed to illustrate the relationship between the observed stage of the river and discharge. Stage was determined by the tying up the water surface elevation and water level change measured using a digital depth gauge. Meanwhile, discharge was calculated using the cross section area, stage, and river velocity measured using a mechanical flow meter. The relationship is expressed in the form of the following equation:

```
Q=anh
```

where, Q	:	Discharge (m3/s),
h	:	Gauge height (reading from Gingoog Hanging Bridge), and
		a and n: Constants.

For Gingoog Bridge, the rating curve is expressed as Q = 4E-151.7945h as shown in Figure 46.

Figure 46. Rainfall and outflow data of Gingoog River Basin, which was used for modeling.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Butuan Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way that a certain peak value will be attained at a certain time. This station is was chosen based on its proximity to the Gingoog river basin. The extreme values for this watershed were computed based on a 21-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	18.2	28.2	32.4	40.8	55.5	63.7	81.7	100	126.4
5	23.9	36.6	41.7	52.9	71.2	81.3	104.6	142.6	175.2
10	27.6	42.1	47.9	60.8	81.5	93	119.7	170.8	207.5
15	29.7	45.3	51.4	65.3	87.4	99.6	128.3	186.7	225.7
20	31.1	47.4	53.8	68.5	91.5	104.2	134.2	197.9	238.5
25	32.3	49.1	55.7	70.9	94.6	107.7	138.8	206.5	248.3
50	35.8	54.3	61.5	78.4	104.3	118.7	153	232.9	278.6
100	39.2	59.5	67.3	85.8	114	129.5	167.1	259.1	308.6

Table 26. RIDF values for Aparri Rain Gauge computed by PAGASA

Figure 47.Location of Butuan RIDF Station relative to Gingoog River Basin

Butuan Rainfall Intensity Duration Frequency

Figure 48. Synthetic storm generated for a 24-hour period rainfall for various return periods

5.3 HMS Model

The soil shapefile dataset was taken on 2004 from and generated by the Bureau of Soils and Water Management (BSWM) ; this is under the Department of Environment and Natural Resources ManagementAgriculture. The land cover shape filedataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover maps of the Gingoog River Basin are shown in Figure 49 and Figure 50, respectively.

Figure 49. Soil Map of Gingoog River Basin Figure 49. Soil map of the Gingoog River Basin

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 50. Land cover map of the Gingoog River Basin (Source: NAMRIA)

For Gingoog, two soil classes were identified: clay and undifferentiated soil. Moreover, six land cover classes were identified, namely brushland, built-up, cultivated area, grassland, and open canopy.

Figure 51. Slope Map of Gingoog River Basin

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 52. Stream Delineation Map of Gingoog River Basin

Using the SAR-based DEM, the Gingoog basin was delineated and further subdivided into subbasins. The basin model consists of 41 subbasins, 20 reaches, and 20 junctions. The main outlet assigned at the estuary. The delineated subbasins range from 0.082 to 9.128 km2 in area, and with an average area of 3.322 km2. This basin model is illustrated in Figure 53. The basins were identified based on soil and land cover characteristics of the area. Precipitation from the 15 December 2015 was taken from DOST rain gauge. Finally, it was calibrated using discharge data gathered at the Gingoog Hanging Bridge using mechanical flow meter and a staff gauge for water level measurement.

Figure 53. Gingoog River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model were derived from the LiDAR DEM data. These were defined using the Arc GeoRAS tool and post-processed in ArcGIS.

Figure 54. Gingoog River cross-section generated using HEC GeoRAS tool

5.5 Flo 2D Model

The automated modeling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area was divided into square grid elements, 10 meter by 10 meter in size. Each element was assigned a unique grid element number which served as its identifier, then attributed with the parameters required for modeling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it was seen that the water would generally flow from the South of the model to the North, following the main channel. As such, boundary elements in those particular regions of the model were assigned as inflow and outflow elements, respectively.

Figure 55. Screenshot of subcatchment with the computational area to be modeled in Flo--2D Grid Developer System (Flo-2D GDS Pro)

The simulation was then run through Flo-2D GDS Pro. This particular model had a computer run time of 24.35986 hours. After the simulation, Flo-2D Mapper Pro was used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High created the following food hazard map. Most of the default values given by Flo-2D Mapper Pro were used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) was set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) was set at 0 m2/s.

The creation of a flood hazard map from the model also automatically created a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper was not a good representation of the range of flood inundation values, so a different legend was used for the layout. In this particular model, the inundated parts cover a maximum land area of 32230100.00 m2.

There is a total of 34,436,373.72 m3 of water entering the model. Of this amount, 9,612,326.70 m3 is due to rainfall while 24,824,047.02 m3 is inflow from other areas outside the model. A volume of 4,052,283.00 m3 of this water is lost to infiltration and interception, while 2,471,692.96 m3 is stored by the floodplain. The rest, amounting up to 27,912,403.53 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Gingoog HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 56 shows the comparison between the two discharge data.

Figure 56. Outflow hydrograph of Gingoog produced by the HEC-HMS model compared with observed outflow

Hydrologic Element	Calculation Type Method		Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	0.00013 - 0.17
			Curve Number	73.9 - 89
Basin	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.02 – 1.09
			Storage Coefficient (hr)	0.039 – 1.78
	Baseflow	Recession	Recession Constant	1
			Ratio to Peak	0.05 – 0.09
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.06 - 0.11

Table 27. Range of calibrated values for the Gingoog River Basin

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.00013 mm to 0.17 mm signifies that there is very minimal amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 73.9 to 89 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Gingoog, the basin mostly consists of brushlands and open canopy, and the soil consists of clay and undifferentiated soil.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.02 hours to 1.78 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events, while ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.05 - 0.09 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.06 - 0.11 corresponds to the common roughness in Gingoog watershed which is determined to be close to the roughness value for cultivated areas (0.04) and shrubland (0.11) (Brunner, 2010).

Accuracy measure	Value
RMSE	2.8
r2	0.94
NSE	0.94
PBIAS	16.55
RSR	0.23

Table 28. Summary of the Efficiency Test of the Gingoog HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 2.8 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This A value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC -HMS model. Here, it measured 0.936.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.94.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 16.55.

The Observation Standard Deviation Ratio, (RSR), is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.23.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 57) shows the Gingoog River outflow using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 57.Outflow hydrograph at Gingoog Station generated using Butuan RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Gingoog discharge using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 29.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	142.6	23.9	392.2	3 hour, 50 minutes
10-Year	170.8	27.6	466.5	3 hour, 50 minutes
25-Year	206.5	32.3	560.3	3 hour, 40 minutes
50-Year	232.9	35.8	630.6	3 hour, 40 minutes
100-Year	259.1	39.2	700.1	3 hour, 40 minutes

Table 29. Peak values of the Gingoog HEC-HMS Model outflow using the Butuan RIDF 24-hour values.

5.7.2 Discharge Data Using Dr. Horritts's Recommended Hydrologic Method

The river discharge values for the nine rivers entering the floodplain are shown in Figure 58 to Figure 63 and the peak values are summarized in Table 30 to Table 35.

Figure 58. Gingoog-Gingoog river (1) generated discharge using 5-, 25-, and 100-year Lumbia rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 59. Gingoog-Gingoog river (2) generated discharge using 5-, 25-, and 100-year Lumbia rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 60. Gingoog-Gingoog river (3) generated discharge using 5-, 25-, and 100-year Lumbia rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 61. Gingoog-Gingoog river (4) generated discharge using 5-, 25-, and 100-year Lumbia rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 62. Gingoog-Gingoog river (5) generated discharge using 5-, 25-, and 100-year Lumbia rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 63. Gingoog-Gingoog river (6) generated discharge using 5-, 25-, and 100-year Lumbia rainfall intensityduration-frequency (RIDF) in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	835.8	14 hours, 50 minutes
25-Year	617.3	14 hours, 50 minutes
5-Year	389.0	15 hours

Table 31. Summary of Gingoog-Gingoog River (2) discharge generated in HEC-HMS

RIDF Period Peak discharge (cms)		Time-to-peak
100-Year	328.2	14 hours, 30 minutes
25-Year	245.3	14 hours, 30 minutes
5-Year	157.5	14 hours, 30 minutes

RIDF Period Peak discharge (cms)		Time-to-peak
100-Year	101.9	13 hours, 40 minutes
25-Year	76.4	13 hours, 40 minutes
5-Year	49.0	13 hours, 50 minutes

Table 32. Summary of Gingoog-Gingoog River (3) discharge generated in HEC-HMS

Table 33. Summary of Gingoog-Gingoog River (4) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	95.1	12 hours, 40 minutes
25-Year	72.4	12 hours, 40 minutes
5-Year	47.3	12 hours, 40 minutes

Table 34. Summary of Gingoog-Gingoog River (5) discharge generated in HEC-HMS

RIDF Period Peak discharge (cms)		Time-to-peak
100-Year	125.5	13 hours, 40 minutes
25-Year	94.1	13 hours, 40 minutes
5-Year	59.9	13 hours, 40 minutes

Table 35. Summary of Gingoog-Gingoog River (6) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak	
100-Year	208.5	13 hours, 20 minutes	
25-Year	155.1	13 hours, 20 minutes	
5-Year	96.6	13 hours, 20 minutes	

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 36.

				VALID	ATION
Discharge Point	QIMED(SCS), cms	QBANKFUL, cms	QMED(SPEC), cms	Bankful Discharge	Specific Discharge
Gingoog- Gingoog (1)	342.320	639.157	262.649	PASS	PASS
Gingoog- Gingoog (2)	138.600	231.653	124.700	PASS	PASS
Gingoog- Gingoog (3)	43.120	48.914	40.568	PASS	PASS
Gingoog- Gingoog (4)	41.624	71.544	23.419	PASS	FAIL
Gingoog- Gingoog (5)	52.712	54.423	47.567	PASS	PASS
Gingoog- Gingoog (6)	85.008	73.490	102.266	PASS	PASS

Table 36. Validation of river discharge estimates

Five out of six of the results from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and specific discharge methods. One did not pass the conditions for validation using the specific discharge methods and will would need further recalculation. The passing values are were based on theory but are were supported using other discharge computation methods so they were good to use flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS flood model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will would be used in determining the flooded areas within the model. The simulated model will would be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was is to be shown. The sample generated map of Gingoog River using the calibrated HMS base flow is shown in Figure 64.

Figure 64. Sample output map of Gingoog RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 65 to Figure 70 show the 1005-, 25-, and 5-100-year rain return scenarios of the Gahub - Gingoog Floodplain. The floodplain, with an area of 32.23 sq. km., covers the city of Gingoog. Table 37 shows the percentage of area affected by flooding per municipality.

Table 37. Municipalities affected in Ging	goog Floodplain
---	-----------------

Municipality	Total Area	Area Flooded	% Flooded
Gingoog	578.36	32.19	5.57%

Figure 65. 100-year flood hazard map for Gahub-Gingoog Floodplain

Figure 66. A 100-year Flow Depth Map for Gahub-Gingoog Floodplain

Figure 67. A 25-year Flood Hazard Map for Gahub-Gingoog Floodplain

Figure 68. A 25-year Flow Depth Map for Gahub-Gingoog Floodplain

Figure 69. A 5-year Flood Hazard Map for Gahub-Gingoog Floodplain

Figure 70. A 5-year Flow depth map for Gahub-Gingoog Floodplain.

Affected barangays in Gahub-Gingoog River Basin are listed below. For the said basin, one municipality consisting of 43 barangays are is expected to experience flooding when subjected to 5-, 25-, and 100-yr rainfall return period. For the 5-year return period, 4.05% of Gingoog City with an area of 538.032214 sq. km. will experience flood levels of less than 0.20 meters;. 0.57% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.53%, 0.59%, 0.19%, and 0.04% of the area will experience flood depths of 0.51 to 1 meters, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 to Table 41 are the affected areas in square kilometers by flood depth per barangay.

		Table	e 38. Affected ai	reas Gingoog C	lity, Misamis O	riental during	a 5-year rainfal	l return period			
Affected area (sq. km.) by				Area of at	ffected barar	າgays in Gin _໌	goog City (in	sq. km)			
flood depth (in m.)	Bagubad	Bakidbakid	Barangay 1	Barangay 10	Barangay 11	Barangay 12	Barangay 13	Barangay 14	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.0037	0.43	0.026	0.018	0.0092	0.0027	0.013	0.022	0.035	0.038	0.067
0.21-0.50	0.0001	0.037	0.00063	0.0023	0.013	0.013	0.011	0.012	0.0056	0.0045	0.054
0.51-1.00	0	0.018	0.00063	0	0	0.006	0.0092	0.0045	0	0.0022	0.045
1.01-2.00	0	0.0017	0.0012	0	0	0	0	0	0	0.0023	0.001
2.01-5.00	0	0	0.0054	0	0	0	0	0	0	0.017	0
> 5.00	0	0	0.0011	0	0	0	0	0	0	0	0

E	1
E	5
÷	ŗ
1	H
Ξ	1
£	5
19.	
7	Ś
5	2
7	Ś
ΛP	2
ĥ	
-	÷
ĥ	'n
Ĕ	ì
٦ [.]	1
E	Ş
7	2
5	3
÷	
٩	5
٦.	1
С)
U	ņ
Ē	3
1	3
isar	3
disar	TYOTTA
Misar	TATTOMI
w Misar	·) · I I I I O I I
Tity Misar	LUCITY, LILLUNI
City Misar	(IT) TITOM
or City Misar	\mathcal{L}
oog City Misar	(1)
anna City Misar	COCC (IL) TITOM
ingoog City Misar	TIPOOL OIL, TITOM
Gingoog City Misar	CILLOUD OIL, TILLOUD
s Gingoog City Misar	O CHIECOS (MC), MILLOWI
eas Gingoog City Misar	THE CALCOC OT ATTOM
reas Gingoog City Misar	THE CASE OF CASE OF THE CASE O
lareas Gingoog City Misar	t at two o the cost of the cos
ed areas Gingoog City Misar	the second of the second of the second
rted areas Gingoog City Misar	the at the other of the other of the other
ected areas Gingoog City Misar	with a trade of the order of th
ffected areas Gingoog City Misar	areas areas o migood (more areas
Affected areas Gingoog City Misar	THIS CALL AND CHARGE CALL AND
8 Affected areas Gingoog City Misar	o. 1 micene ar cas o migoog (me), mina
38 Affected areas Gingoog City Misar	Jos. 1 million an cas of million of the state
le 38 Affected areas Gingoog City Misar	is out a more at case of migoog out of this
ble 38 Affected areas Gingoog City Misar	DIC TO: I THE COLOR AT CAS O THE COLOR OTHER IS A THE AND A THE AN
able 38 Affected areas Gingoog City Misar	ante doi i micerca areas o migoog ores, milan

	period
	return
Ξ	∃
ر	Ë
•	rair
	year
,	Ś.
	.,
	Bung
-	Ξ.
-	Ξ
	Ца
	5
•	Ĕ
(5
	s
•	amı
	S
5	/11S
	MIIS
	City, Mis
	g Lity, Mis
	oog Lity, Mis
	igoog Uity, Mis
	ingoog Uity, Mis
	UINGOOG CITY, MIS
	as Umgoog Uity, Mis
	areas Umgoog Uity, Mis
	ed areas Gingoog City, Mis
	sted areas Gingoog City, Mis
	ected areas Gingoog City, Mis
	uttected areas Gingoog City, Mis
	. Attected areas ungoog Lity, Mis
	Altected areas Ungoog City, Mis
	e 39. Attected areas Gingoog City, Mis
	ole 39. Affected areas Uingoog Uity, Mis
	able 59. Attected areas Gingoog City, Mis

Affected area (sq. km.) by				Area of af	fected barar	յgays in Ginք	goog City (in	sq. km)			
flood depth (in m.)	Barangay 18	Barangay 18-A	Barangay 19	Barangay 2	Barangay 20	Barangay 21	Barangay 22	Barangay 22-A	Barangay 23	Barangay 24	Barangay 24-A
0.03-0.20	0.034	0.062	0.13	0.03	0.26	0.03	0.013	0.85	0.26	0.12	0.92
0.21-0.50	0.016	0.072	0.23	0.0023	0.21	0.014	0.022	0.19	0.22	0.047	0.12
0.51-1.00	0.018	0.21	0.45	0.0013	0.52	0.00054	0.0017	0.071	0.039	0.034	0.049
1.01-2.00	0.0046	0.3	0.35	0	0.52	0	0	0.051	0.008	0.0087	0.033
2.01-5.00	0	0.0007	0.049	0	0.085	0	0	0.0012	0.022	0.008	0.028
> 5.00	0	0	0.0077	0	0.056	0	0	0.0017	0.0085	0.0017	0.0032

Table 40. Affected areas Gingoog City, Misamis Oriental during a 5-year rainfall return period

Affected area (sɑ. km.) bv				Area of a	ffected bara	ngays in Gin	goog City (ir	ı sq. km)			
flood depth (in m.)	Barangay 25	Barangay 26	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Barangay 7	Barangay 8	Barangay 9	Binakalan	Daan- Lungsod
0.03-0.20	0.23	0.17	0.023	0.02	0.016	0.021	0.019	0.01	0.014	1.94	0.61
0.21-0.50	0.038	0.019	0.0034	0.01	0.009	0.0037	0.0042	0.0011	0.00093	0.086	0.17
0.51-1.00	0.019	0.0014	0.00035	0.00051	0	0	1.1E-06	0.0013	0.00062	0.067	0.058
1.01-2.00	0.0065	0.00011	0	0	0	0	0	0.00034	0.0012	0.11	0.0093
2.01-5.00	0.0028	0.00013	0	0	0	0	0	0.0016	0.0053	0.094	0.019
> 5.00	0	0	0	0	0	0	0	0.00048	0	0.0083	0.0005

	d
	Ō.
	Ξ.
	8
	7
	H
	Ц
	g.
	Ч
F	Ξ
Ċ	β
	Ξ
	E.
	Ξ.
	ਸ਼
	Š
	5
l	\mathbf{n}
	б
	pC
	E
	Ξ.
-	2
	9
	ਲ
	H
	5
•	E
(5
	ŝ
•	Ë,
	Ħ
	Sa
1	Ξ
	2
1	~
	Ę,
	Lity,
(City,
į	og City, J
į	oog Uity, J
į	Igoog City, J
ĺ	ingoog City, J
ĺ	Gingoog City, J
į	s Gingoog City, J
į	as Umgoog City, J
į	reas Gingoog City, J
j	areas Umgoog City, J
	d areas Jungoog City, J
) (ted areas Gingoog City, J
	cted areas Gingoog City, J
	fected areas Gingoog City, J
	Attected areas Gingoog City, J
	Attected areas Gingoog City, J
	 Attected areas Gingoog City, J
	: 41. Attected areas Gingoog City, J
	le 41. Attected areas Gingoog City, J
	ble 41. Attected areas Gingoog City, J
	able 41. Attected areas Gingoog City, J

Affected area (sq. km.) bv				Area of afi	ected baran	gays in Ging	oog City (in	sq. km)			
flood depth (in m.)	Lawit	Libon	Mimbalagon	Murallon	Punong	Samay	San Juan	San Miguel	Santiago	Tinulongan	Daan- Lungsod
0.03-0.20	1.33	5.4	0.079	5.03	0.022	0.086	0.039	0.89	2.37	0.096	0.61
0.21-0.50	0.044	0.31	0.0022	0.76	0.0002	0.011	0.0034	0.039	0.22	0.024	0.17
0.51-1.00	0.018	0.19	0.00026	0.6	0	0.016	0	0.036	0.33	0.023	0.058
1.01-2.00	0.011	0.29	0	0.58	0	0.04	0	0.0073	0.8	0.013	0.0093
2.01-5.00	0.0052	0.081	0	0.3	0	0.035	0	0	0.25	0.0007	0.019
> 5.00	0	0.00093	0	0.082	0	0.0007	0	0	0.036	0	0.0005

Figure 71. Affected areas in Gingoog City, Misamis Oriental during a 5-year rainfall return period

Figure 72. Affected areas in Gingoog City, Misamis Oriental during a 5-year rainfall return period

Figure 73. Affected areas in Gingoog City, Misamis Oriental during a 5-year rainfall return period

Figure 74. Affected areas in Gingoog City, Misamis Oriental during a 5-year rainfall return period

For the 25-year return period, 3.75% of Gingoog City with an area of 538.032214 sq. km. will experience flood levels of less than 0.20 meters.; 0.54% of the area will experience flood levels of 0.21 to 0.50 meters; 0.55%, 0.76%, 0.32%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 to Table 45 are the affected areas in square kilometers by flood depth per barangay.

Affected area (so. km.) bv				Area of af	fected bara	າgays in Gin _໌	goog City (in	sq. km)			
flood depth (in m.)	Bagubad	Bakidbakid	Barangay 1	Barangay 10	Barangay 11	Barangay 12	Barangay 13	Barangay 14	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.0037	0.42	0.025	0.015	0.00091	0.00066	0.01	0.011	0.029	0.037	0.015
0.21-0.50	0.0001	0.036	0.00055	0.0052	0.016	0.0055	0.0067	0.016	0.012	0.0047	0.046
0.51-1.00	0	0.025	0.00078	0	0.0048	0.016	0.016	0.01	0	0.0032	0.073
1.01-2.00	0	0.0032	0.001	0	0	0	0.0004	0	0	0.002	0.033
2.01-5.00	0	0	0.0046	0	0	0	0	0	0	0.017	0
> 5.00	0	0	0.0025	0	0	0	0	0	0	0	0

Table 42. Affected areas Gingoog City, Misamis Oriental during a 25-year rainfall return period

-	~
	R
•	Ĕ
	5
	Ā
	Ц
	Ξ
	В.
	ธ
	Ч
F	
ر	Ε
	Ц
•	Я
	Ĥ
	Ч
	3
	×
,	~
è	2
	2
	10
	a
	Ц
	H
-	Ξ.
	9
	ਲ
	Ц
	H
•	ř
1	5
	\mathcal{I}
	IS.
	E
	Я
	õ
÷	Ξ
	2
	5
	Ę.
i	7
`	-
	õ
	X
	ы
	ď
ì	F.
(\sim
	S
	3
	Ē
	σ,
	Q.
	Ц
	S
Ļ	11
	Ĕ
	Ĭ
-	Atte
	5. Atte
	43. Atte
	e 43. Atte
J Y V L	ole 43. Atte
J Y V 11	able 43. Att
	I able 45. Att

Affected area (sɑ. km.) bv				Area of af	fected baraı	ıgays in Gin _î	goog City (in	sq. km)			
flood depth (in m.)	Barangay 18	Barangay 18-A	Barangay 19	Barangay 2	Barangay 20	Barangay 21	Barangay 22	Barangay 22-A	Barangay 23	Barangay 24	Barangay 24-A
0.03-0.20	0.012	0.018	0.032	0.027	0.13	0.019	0.0011	0.71	0.097	0.099	0.8
0.21-0.50	0.018	0.056	0.081	0.0041	0.18	0.019	0.019	0.26	0.19	0.045	0.2
0.51-1.00	0.024	0.13	0.41	0.0021	0.33	0.006	0.016	0.093	0.22	0.053	0.075
1.01-2.00	0.018	0.43	0.62	0.00024	0.86	0	0	0.096	0.011	0.014	0.044
2.01-5.00	0	0.011	0.051	0	0.1	0	0	0.001	0.023	0.0083	0.033
> 5.00	0	0	0.017	0	0.065	0	0	0.0019	0.011	0.0026	0.006

Table 44. Affected areas Gingoog City, Misamis Oriental during a 25-year rainfall return period

Affected area (sɑ. km.) bv				Area of a	ffected bara	ngays in Gin	goog City (ir	ı sq. km)			
flood depth (in m.)	Barangay 25	Barangay 26	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Barangay 7	Barangay 8	Barangay 9	Binakalan	Daan- Lungsod
0.03-0.20	0.21	0.15	0.011	0.005	0.0029	0.01	0.016	0.0096	0.013	1.92	0.54
0.21-0.50	0.037	0.038	0.014	0.022	0.019	0.014	0.0067	0.00088	0.0014	0.089	0.15
0.51-1.00	0.035	0.0032	0.0028	0.0039	0.0024	0.00031	1.1E-06	0.0018	0.00098	0.048	0.14
1.01-2.00	0.0074	0.00034	0	0	0	0	0	0.00054	0.0013	0.088	0.012
2.01-5.00	0.0045	0.00023	0	0	0	0	0	0.0012	0.0055	0.15	0.022
> 5.00	0	0	0	0	0	0	0	0.00084	0	0.021	0.0009

Affected area (sq. km.) bv				Area of af	fected barar	Igays in Ging	goog City (in	sq. km)			
flood depth (in m.)	Lawit	Libon	Mimbalagon	Murallon	Punong	Samay	San Juan	San Miguel	Santiago	Tinulongan	Barangay 17
0.03-0.20	1.32	5.29	0.078	4.68	0.022	0.078	0.038	0.88	2.29	0.081	0.015
0.21-0.50	0.047	0.34	0.0024	0.67	0.0002	0.0026	0.0044	0.039	0.16	0.027	0.046
0.51-1.00	0.022	0.16	0.00036	0.73	0	0.013	0.0002	0.038	0.21	0.027	0.073
1.01-2.00	0.012	0.32	0	0.71	0	0.035	0	0.015	0.73	0.019	0.033
2.01-5.00	0.0087	0.16	0	0.47	0	0.058	0	0.0003	0.57	0.0026	0
> 5.00	0	0.0029	0	0.1	0	0.0014	0	0	0.042	0	0

Figure 75. Affected areas in Gingoog City, Misamis Oriental during a 25-year rainfall return period

Figure 76. Affected areas in Gingoog City, Misamis Oriental during a 25-year rainfall return period

Figure 77. Affected areas in Gingoog City, Misamis Oriental during a 25-year rainfall return period

Figure 78. Affected areas in Gingoog City, Misamis Oriental during a 25-year rainfall return period

For the 25-year return period, 3.75% of Gingoog City with an area of 538.032214 sq. km. will experience flood levels of less than 0.20 meters.; 0.54% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.55%, 0.76%, 0.32%, and 0.05% of the area will experience flood depths of 0.51 to 1 meters, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 to Table 45 are the affected areas in square kilometers by flood depth per barangay.

				0		0		T			
Affected area				Area of at	fected bara	ngays in Gin _i	goog City (in	sq. km)			
(sq. km.) by flood depth (in m.)	Bagubad	Bakidbakid	Barangay 1	Barangay 10	Barangay 11	Barangay 12	Barangay 13	Barangay 14	Barangay 15	Barangay 16	Barangay 17
0.03-0.20	0.0037	0.42	0.024	0.012	0	0.00011	0.0056	0.0036	0.016	0.036	0.0035
0.21-0.50	0.0001	0.037	0.0013	0.0075	0.0082	0.0017	0.007	0.018	0.022	0.0046	0.034
0.51-1.00	0	0.029	0.0011	0.00086	0.014	0.019	0.018	0.016	0.0024	0.0038	0.059
1.01-2.00	0	0.0051	0.0012	0	0	0.0011	0.0028	0.0003	0	0.0023	0.07
2.01-5.00	0	0.0001	0.0039	0	0	0	0	0	0	0.017	0
> 5.00	0	0	0.0037	0	0	0	0	0	0	0	0

Table 46. Affected areas Gingoog City, Misamis Oriental during a 100-year rainfall return period

Table 47. Affected areas Gingoog City, Misamis Oriental during a 100-year rainfall return period

Affected area				Area of a	ffected bara	ngays in Gin	goog City (ir	ı sq. km)			
(sq. km.) by flood depth (in m.)	Barangay 18	Barangay 18-A	Barangay 19	Barangay 2	Barangay 20	Barangay 21	Barangay 22	Barangay 22-A	Barangay 23	Barangay 24	Barangay 24-A
0.03-0.20	0.0015	0.0073	0.02	0.022	0.08	0.013	0	0.6	0.044	0.063	0.71
0.21-0.50	0.019	0.033	0.029	0.0088	0.1	0.018	0.0086	0.29	0.11	0.064	0.22
0.51-1.00	0.024	0.11	0.29	0.0019	0.26	0.014	0.028	0.15	0.33	0.064	0.12
1.01-2.00	0.027	0.46	0.71	0.0015	0.97	0	0.0001	0.12	0.04	0.018	0.056
2.01-5.00	0	0.031	0.14	0	0.17	0	0	0.0013	0.024	0.0084	0.038
> 5.00	0	0	0.022	0	0.07	0	0	0.002	0.012	0.0034	0.0082

Table 48. Affected areas Gingoog City, Misamis Oriental during a 100-year rainfall return period

Affected area (sq. km.) bv				Area of a	ffected bara	ngays in Gin	goog City (in	sq. km)			
flood depth (in m.)	Barangay 25	Barangay 26	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Barangay 7	Barangay 8	Barangay 9	Binakalan	Daan- Lungsod
0.03-0.20	0.19	0.089	0.0034	0.00082	0.00077	0.002	0.014	0.0089	0.012	1.89	0.5
0.21-0.50	0.04	0.091	0.015	0.014	0.0092	0.018	0.0094	0.0013	0.0017	0.096	0.11
0.51-1.00	0.044	0.0062	0.0086	0.016	0.015	0.0051	0.000019	0.0017	0.0013	0.047	0.21
1.01-2.00	0.0086	0.0015	0.00014	0.0001	0	0	0	0.0008	0.0013	0.059	0.02
2.01-5.00	0.0056	0.00024	0	0	0	0	0	0.0012	0.0056	0.18	0.024
> 5.00	0	4E-07	0	0	0	0	0	0.001	0.000091	0.033	0.0016

Table 49. Affected areas Gingoog City, Misamis Oriental during a 100-year rainfall return period

Affected area (sq. km.) by				Area of a	ffected bara	ngays in Gin	goog City (in	sq. km)			
flood depth (in m.)	Lawit	Libon	Mimbalagon	Murallon	Punong	Samay	San Juan	San Miguel	Santiago	Tinulongan	Daan- Lungsod
0.03-0.20	1.3	5.22	0.078	4.42	0.022	0.076	0.037	0.88	2.25	0.072	0.54
0.21-0.50	0.055	0.35	0.0025	0.69	0.0002	0.0014	0.0056	0.039	0.15	0.026	0.15
0.51-1.00	0.024	0.16	0.00063	0.64	0	0.0051	0.0002	0.037	0.13	0.029	0.14
1.01-2.00	0.013	0.26	0	0.83	0	0.029	0	0.021	0.62	0.024	0.012
2.01-5.00	0.01	0.27	0	0.66	0	0.074	0	0.00098	0.82	0.0049	0.022
> 5.00	0	0.0054	0	0.12	0	0.0028	0	0	0.045	0	0.0009

Figure 79. Affected areas in Gingoog City, Misamis Oriental during a 100-year rainfall return period

Figure 80. Affected areas in Gingoog City, Misamis Oriental during a 100-year rainfall return period

Figure 81. Affected areas in Gingoog City, Misamis Oriental during a 100-year rainfall return period

Figure 82. Affected areas in Gingoog City, Misamis Oriental during a 100-year rainfall return period
Among the barangays of Gingoog City in Misamis Oriental, Murallon is projected to have the highest percentage of area that will experience flood levels at 1.37%. Meanwhile, Libon posted the second highest percentage of area that may be affected by flood depths at 1.16%.

Moreover, the generated flood hazard maps for the Gahub-Gingoog Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps ("Low,", "Medium,", and "High"), the affected institutions were given their individual assessment for each flood hazard scenario (5-year, 25-year, and 10-year).

Warning	Area	Covered	in sq. km.
Level	5 year	25 year	100 year
Low	3.10	2.96	2.84
Medium	4.96	5.17	5.02
High	2.38	3.97	5.23
TOTAL	10.44	12.1	13.09

Table 50. Areas covered by each warning level with respect to the rainfall scenarios

Of the nine identified educational institutionse in Gingoog Floodplain, one (1) school was discovered exposed to low-level flooding during a 5-year scenario, while five (5) schools were found exposed to medium-level flooding in the same scenario.

In the 25-year scenario, three (3) schools were found exposed to low-level flooding, while four (4) schools were discovered exposed to medium-level flooding and one (1) was assessed to be exposed to high-level flooding.

For the 100-year scenario, three (3) schools were discovered exposed to low-level flooding, while four (4) schools were exposed to medium-level flooding. In the same scenario, two (2) schools were found exposed to high-level flooding; both of which are located in Barangay 19, Gingoog City. See ANNEX 12 ppendix D for a detailed enumeration of educational institutions affected in Gingoog City.

Apart from this, five (5) medical health institutions were identified in the Giingoog Floodplain, one of which was assessed to be exposed to medium-level flooding in all scenarios. One (1) health center is exposed to low-level flooding for the 25- and 100- year scenarios, while a medical laboratory is exposed to low-level flooding during a 100-year scenario. See Appendix ENNEX 13 for a detailed enumeration of medical institutions affected in Gingoog City.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is was a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are were identified for validation.

The validation personnel will then gowent to the specified points identified in a river basin and will gathered data regarding the actual flood level in each location. Data gathering can was be done through by contacting a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will bewere compared to the simulated data to assess the accuracy of the flood depth maps produced and to improve on what is needed.

The flood validation consists of 366 points randomly selected all over the Gingoog Floodplain. It has an RMSE value of 0.95.

Figure 83. Gingoog-Gingoog flood validation points

Figure 84. Flood map depth vs. actual flood depth

Actual			Model	ed Flood Dep	th (m)		
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	62	37	37	27	9	0	172
0.21-0.50	18	15	9	7	0	0	49
0.51-1.00	14	13	21	19	3	1	71
1.01-2.00	6	8	19	26	3	1	63
2.01-5.00	2	1	3	1	1	3	11
> 5.00	0	0	0	0	0	0	0
Total	102	74	89	80	16	5	366

Table 51. Actual flood vs. simulated flood depth at different levels in the Gahub - Gingoog River Basin

The overall accuracy generated by the flood model is estimated at 34.15% with 125 points correctly matching the actual flood depths. In addition, there were 109 points estimated one level above and below the correct flood depths while there were 73 points and 46 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 85 points were underestimated in the modelled flood depths of Gahub - Gingoog.

Table 52. The summary of the Accuracy Assessment in the Gingoog River Basin Survey

	No. of Points	%
Correct	125	34.15
Overestimated	156	42.62
Underestimated	85	23.22
Total	366	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP-TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. OPTECH Technical Specification of the Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (op- tional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

Table A-1.1 Parameters and Specifications of the Pegasus Sensor

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size \geq laser footprint5 Dependent on system configuration

Annex 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey

1. MSE-31

Figure A-2.1 MSE-21

2. MSE-32

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

June 08, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: MIS	SAMIS ORIENTAL			
		Station N	ame: MSE-32			
Island: MINDAI Municipality: St	NAD IGBONGCOGON	Order	r. 2nd	Baranga	ey: ALIC	OMOHAN
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		PRS	92 Coordinates			
Latitude: 8º 56	30.44605*	Longitude:	124° 46' 58.97104"	Ellipsoid	ial Hgt:	132.12900 m
		WGS	84 Coordinates			
Latitude: 8º 56	26.75387"	Longitude:	124° 47° 4.33290"	Ellipsoid	ial Hgt	199.10100 m
		PTM	I Coordinates			
Northing: 98870	07.53 m.	Easting:	476141.401 m.	Zone:	5	
		UTA	A Coordinates			
Northing: 988,	328.70	Easting:	696,045.73	Zone:	51	

Location Description

MSE-32

MSE-32 From the town proper of Medina, travel W along provincial road for about 40kms, to the municipality of Sugbongcogon. Approximately a km. S of the municipal hall, and just before the boundary of Binuangan and Sugbongcogon, is Alicomohan Elementary School in barangay Alicomohan. The station is located on the E edge of a concrete platform, and beside the western corner of a staircase. It is approximately halfway between the school gate and the flagpole, about 12m WNW of the flagpole, and about 12m ESE of the school gate. It is also about 50cm SW of the junction between the E edge of the concrete platform and the second set of concrete steps. Station mark is the head of a 2-1/2" copper nail, top-centered on a 15cm x 15cm cement putty with inscriptions. MSE-32, 2003 NAMRIA.

Requesting Party: UP-TCAGP Pupose: Reference OR Number. 8796290 A T.N.: 2014-1290

1 OR-RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 0

n Andra, Offices Man Lawton Awine, Fan Bunterin 1604 Tagelg CA, Philippines Tai, Na. 1972;413-4631 to 41 Seinch - 421 Samac St. Sait Nacole, 93/3 Navie, Mir/golms, Tai, Na. 1922;201-4664 to 68 www.samria.gov.ph

ISD 3001 2018 CERTIFIED FOR MUPPING AND SEDERATIAL INFORMATION MANAGEMENT

Figure A-2.2 MSE-32

3. MSE-36

June 24, 2014

CERTIFICATION

To whom it may concern:

This is to cartify that according to the records on file in this office, the requested survey information is as follows -

		Province: MIS	SAMIS ORIENTAL			
		Station N	ame: MSE-36			
Island: Mil Municipality	NDANAO © MEDINA	Order	: 2nd	Baranga	y SOU	TH POBLACION
	Sector Carlos	PRS	92 Coordinates			
Latitude:	8° 54' 20.12398"	Longitude:	125° 1' 28.36102"	Ellipsoid	ial Hgt	0.97100 m.
		WGS	84 Coordinates			
Latitude:	8° 54° 16.46220"	Longitude:	125" 1' 33.72408"	Ellipsoid	al Hgt	68.61700 m.
		PTM	I Coordinates			
Northing: 5	984697.224 m.	Easting:	502699.481 m.	Zone:	5	
		UTA	f Coordinates			
Northing	984,961.57	Easting:	722,630.22	Zone:	51	

Location Description

MSE-36 The station is located at Medina municipal port, Brgy, South Poblacion, Medina, Misamis Oriental, Medina municipal port is just in front of Tiro residence, and about 85m SSE of Medina lighthouse where station MSE-47 is located. Beside the port is a Beer na beer warehouse. The station is approximately 60cm W of the E edge of the pler and approximately 20m N from the S end of the pler. Station mark is the head of a 4" copper nail, top-centered on a 19cm x 16cm cement putty, with inscriptions, MSE-36, 2003 NAMRIA.

Requesting Party: Engr. Cruz Pupose: OR Number: T.N.:

Reference 8796376 A 2014-1438

ſ Store Dat RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAME A OFFICES Record Dimonstration March Lawlers & Cardionistics, 1634 Fugues Cey, Philippines, Tel No. (320) 210 4801 (e. 42) Bioleck. 421 Bantes St. San Alexina, 1010 Manta, Philippines, Tel No. (320) 211-3434 (e. 58) www.camria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATINE INFORMATION MASAGENENT

Figure A-2.3 MSE-36

Annex 3. Baseline Processing Reports of Control Points Used in the LiDAR Survey

There are no baseline processing reports for the Gingoog Floodplain.

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component	Designation	Name	Agency / Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIEN- TO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Re-	LOVELY GRACIA ACUÑA	UP-TCAGP
	vising SRS)	LOVELYN ASUNCION	UP-TCAGP
	FIEI	LD TEAM	
	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP
LiDAR Operation	Research Associate (RA)	GRACE SINADJAN	UP-TCAGP
	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	LANCE KERWIN CINCO	UP-TCAGP
	Airborne Security	SSG. LEE JAY PUNZALAN	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. JEFFREY JEREMY ALAJAR	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. CESAR ALFONSO III	AAC

Table A-4.1 LiDAR Survey Team Composition

Methoda Failer Flux	FEBAGR MMULS MULS MULS	Image: constraint of the					06/20/2014	KANSTER	SHEET Mindanao)								
Output Matter Stationes Base Incode Res Incode Res Incode Res Incode Incode Res Incode Res Incode Res Incode Res Incode Res Incode Incode Res	Other Output Output Mater <	Other Kul, kennth On Rel Man Rel Man Concord Adrian Kul. PEGASUS 16 457 9.27 266 M 9.83 148 148 40 M. Szp PEGASUS 16 457 9.27 266 3.33 M 9.83 148 148 4.0 M. Szp PEGASUS 3.22 2.27 266 3.33 M 9.86 148 7.8 M. Szp M. Szp PEGASUS 4 2.42 2.24 423 4.0 236 148 7.18 4.0 M. Szp PEGASUS 4 1.1 219 3.9 112 148 7.18 4.0 M. Szp PEGASUS 4 1.1 1.18 1.18 1.18 4.1 M. Szp PEGASUS M 1.65 5.3 4.0.1 2.26 M. Szp 1.12 1.18 1.18 7.1 M. Szp M. Mon 2.1	SENSOR	RA	W LAS	I OCCMBI	bue	RAW	NISSION	DANDE	DIGITIZED	BASE ST/	(I)NOI(S)	OPERATOR LOGS	FLIGHTP	PLAN	SERVER
FEGASUS 16 457 927 266 Ia 265 IA 9 83 IKB IKB 40 Nd Z265 PEGASUS 322 270 144 224 428 333 M 9 837 IKB 1KB 47 M Z265 PEGASUS 322 270 144 224 428 333 M 8 87 IKB 1KB 47 363 M 5656 24 5556 PEGASUS 47 242 73 401 139 363 M 8 87 1KB 1KB 47 363 Monte, Faw PEGASUS 413 2259 13 535 657 533 40.1 272MB 9.965 1KB 141 M 5450 M 5450 <th>FEGARUS 16 457 921 266 1a 265 M 923 HG HG Ad M Schemmann PEGARUS 322 270 144 224 422 428 333 M 887 HG 148 M Schemmann M Schemmann M Schemmann M Schemmann M Schemmann Schemmann M Schemmann Schemmann M Schemmann Schemmann</th> <th>PEGASUS 16 457 927 266 1a 26.5 M 9.83 148 148 40 ML52phone.Tem PEGASUS 3.32 2.70 1.4 2.24 4.2 4.2 4.0 ML52phone.Tem PEGASUS 4 2.42 4.2 4.2 4.2 4.1 2.4 4.106 ML52phone.Tem PEGASUS 4 2.42 4.2 4.2 4.2 4.1 4.106 ML52phone.Tem PEGASUS 4 2.22 1.3 2.86 10 1.2 1.48 1.41 ML54poone.Tem PEGASUS 14 2.22 1.3 2.86 M ML 2.7165 1.41 ML52poone.Tem PEGASUS ML 1.12 1.48 1.12 1.48 1.41 ML52poone.Tem PEGASUS ML 1.12 1.48 1.48 1.41 ML52poone.Tem PEGASUS ML 1.41 1.42 1.43 1.41 ML52poone.Tem</th> <th></th> <th>Output LAS</th> <th>KML (swath)</th> <th>rocolum)</th> <th>2</th> <th>8</th> <th>FILEICASI LOGS</th> <th></th> <th></th> <th>BASE STATION(S)</th> <th>Base Info (.txt)</th> <th>(0PL0G)</th> <th>Actual</th> <th>KML</th> <th>LOCATION</th>	FEGARUS 16 457 921 266 1a 265 M 923 HG HG Ad M Schemmann PEGARUS 322 270 144 224 422 428 333 M 887 HG 148 M Schemmann M Schemmann M Schemmann M Schemmann M Schemmann Schemmann M Schemmann Schemmann M Schemmann	PEGASUS 16 457 927 266 1a 26.5 M 9.83 148 148 40 ML52phone.Tem PEGASUS 3.32 2.70 1.4 2.24 4.2 4.2 4.0 ML52phone.Tem PEGASUS 4 2.42 4.2 4.2 4.2 4.1 2.4 4.106 ML52phone.Tem PEGASUS 4 2.42 4.2 4.2 4.2 4.1 4.106 ML52phone.Tem PEGASUS 4 2.22 1.3 2.86 10 1.2 1.48 1.41 ML54poone.Tem PEGASUS 14 2.22 1.3 2.86 M ML 2.7165 1.41 ML52poone.Tem PEGASUS ML 1.12 1.48 1.12 1.48 1.41 ML52poone.Tem PEGASUS ML 1.12 1.48 1.48 1.41 ML52poone.Tem PEGASUS ML 1.41 1.42 1.43 1.41 ML52poone.Tem		Output LAS	KML (swath)	rocolum)	2	8	FILEICASI LOGS			BASE STATION(S)	Base Info (.txt)	(0PL0G)	Actual	KML	LOCATION
PEGASUS 3.32 2.70 14.4 2.24 4.22 4.28 33.3 N 8.87 HKB 1KB 47/36 N 533P PEGASUS 4 2 2 4.22 4.28 53.3 N 8.87 HKB 1745 N 533P PEGASUS 4 2 2 2 2 3 3 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FEGASIS 322 270 14.4 224 42.2 42.6 33.3 M 8.87 HB 14B 47368 MA Camborna Addroma FEGASUS 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 1 4 1 4 1 2 5 5 5 5 5 5 4 1 2 6 1 1 2 1 1 2 1	FEGASIS 3.32 270 14.4 224 4.2 4.6 33.3 M 8.87 KB	PEGASUS	1.6	457	9.27	265	e	na	26.5	Ą	9.83	1KB	1KB	40	N	Z:VAirborne_Raw/ 525P
PEGASUS 4 242 0 286 19.7 139 39 674MB 12.6 1KB 1KB 4746/40/34 Na ZWrborne_Raw PEGASUS 413 2259 13 253 69.7 533 40.1 272MB 9.95 1KB 1KB 7145/40/34 Na 541P PEGASUS 413 2259 13 253 69.7 533 40.1 272MB 9.95 1KB 1KB 141 Na 541P PEGASUS 34.8 150 14.3 264 NA 34.6 NA 2.41borne_Raw PEGASUS 34.8 143 NA 34.6 NA 2.41borne_Raw PEGASUS NA 44 NA 71 NA 54150145 Na 549P PEGASUS NA 163 163 NA 2.21 163 17.8 17.8 17.8 71 Na 561P PEGASUS MA 163	FEGASUS 4 242 0 286 187 189 126 188 168 1746/40/04 MI S41P FEGASUS 413 223 13 233 617 533 40 127.2MB 9.95 188 141 MI S41P FEGASUS 346 150 143 284 M 34.6 11.2 148 143 ZMithorm-Raw FEGASUS 348 135 143 284 M 34.6 11.12 148 143 ZWithorm-Raw FEGASUS M 126 5.35 163 13.3 M 11.2 148 143 M S451P FEGASUS M 16 M 23.3 13.3 M 7.75 148 7.1 M S450P 2.400mm-Raw FEGASUS M 16 M 2.33 M 7.75 18 148 M S450P M S450P FEGASUS M 16 5.35 13.3 17.75 </td <td>FEGASUS 4 242 0 286 137 139 39 112 112 112 113 113 MI Sarthorma. Raw FEGASUS 413 2259 13 233 807 533 401 273HB 995 HB 141 MI Sarthorma. Raw FEGASUS 348 150 143 234 MA 346 141 MI Sarthorma. Raw FEGASUS 348 150 143 224 MA 346 141 MI Sarthorma. Raw FEGASUS MA 150 143 234 112 112 113 112 113 114 114 114 114 114 114 114 114</td> <td> PEGASUS</td> <td>3.32</td> <td>270</td> <td>14.4</td> <td>224</td> <td>43.2</td> <td>428</td> <td>33.3</td> <td>A</td> <td>8.87</td> <td>1KB</td> <td>1KB</td> <td>47/38</td> <td>N</td> <td>Z'Airbome_Raw 533P</td>	FEGASUS 4 242 0 286 137 139 39 112 112 112 113 113 MI Sarthorma. Raw FEGASUS 413 2259 13 233 807 533 401 273HB 995 HB 141 MI Sarthorma. Raw FEGASUS 348 150 143 234 MA 346 141 MI Sarthorma. Raw FEGASUS 348 150 143 224 MA 346 141 MI Sarthorma. Raw FEGASUS MA 150 143 234 112 112 113 112 113 114 114 114 114 114 114 114 114	 PEGASUS	3.32	270	14.4	224	43.2	428	33.3	A	8.87	1KB	1KB	47/38	N	Z'Airbome_Raw 533P
PEGASUS 413 2259 13 253 69.7 533 40.1 272/MB 9.95 1KB 1KB 141 Na 2456 PEGASUS 348 150 14.3 256 NA NA 34.6 11.2 1KB 1KB 54/50/45 Na 54/9 PEGASUS 348 143 264 NA 34.6 NA 34.6 NA 54/60/mE.Rew PEGASUS 348 143 264 NA 34.6 NA 8.1 1KB 1KB 71 Na 54/60/mE.Rew PEGASUS MA 143 NA NA 22 NA 8.1 1KB 71 NA 56/9 NA 56/9 PEGASUS MA 163 13.3 13.3 NA 7.75 1KB 1KB 71 NA 2/Miborne.Rew	FEGASUS 413 233 401 27MB 9.95 46B 141 Nd 244 Nd 345 141 Nd 54/5045	FEGASUS 413 223 617 533 401 2748 148 141 MJ 5400ma FEGASUS 3.48 150 14.3 284 MA 34.6 11.2 14.8 141 MJ 5460 FEGASUS 3.48 150 14.3 284 MA 34.6 11.2 148 143 M 546045 MJ 54704 77 MJ 5469 77 MJ 569 77 MJ 5569 77 MJ 5569 77 MJ 566 77	PEGASUS	4	242	0	285	19.7	139	39 6	74MB	12.6	1KB	1KB	47/45/40/34	NA	Z'Airborne_Raw
PEGASUS 348 150 14.3 264 Na Na 34.6 Ma 11.2 1KB 1KB 54/50/45 Na Z4/home_Raw PEGASUS Na 44 Na 187 Na 22 Na 8.1 1KB 54/50/45 Na 24/9 PEGASUS Na 44 Na 187 Na 22 Na 8.1 1KB 1KB 71 Na 5619 PEGASUS Na 16 5.35 168 221 163 13.3 Na 7.75 1KB 1KB 36 Na 24/100me_Raw	FEGASUS 348 150 14.3 284 NA NA 34.6 NA 11.2 148 14.8 54.50.45 M 2.4.6 FEGASUS NA 44 NA 187 NA NA 22 NA 8.1 14.8 7.1 M.5.60 FEGASUS NA 187 NA NA 22 NA 8.1 14.8 7.1 M.2 M.4 FEGASUS NA 167 NA 22 NA 2.7 14.8 7.1 M.6 7.1 M.6 7.1 M.6 7.1 M.6 2.0 M.6 2.0 M.6 2.0 M.6 2.0 1.0 1.7 M.6 2.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PEGASUS	4.13	2259	13	253	28.7	533	40.1	72MB	9.95	1KB	1KB	141	NA	Z:Varbome_Rawl 545P
PEGASUS NA 187 NA NA 22 NA 8.1 IKB IKB 71 NA 561P PEGASUS NA 16 5.35 168 22 13.3 NA 7.75 1KB 1KB 71 NA 5651P PEGASUS NA 16 5.35 168 22.1 163 13.3 NA 7.75 1KB 1KB 36 NA 265P	FEGASUS M 44 M 187 M Na 22 M 81 HB 148 71 Nd Z-Wittome. Raw PEGASUS M 16 5.35 168 221 13.3 M 7.75 HB 71 Nd 25.0 C. J. O'TCLI LI Received by Received by 7.75 HB 148 148 7.8 71 Nd 56.10 C. J. O'TCLI LI Received by Name JOIDH F. RNET 7.75 HB 148 7.8 71 Nd 56.0 C. J. O'TCLI LI Received by Name JOIDH F. RNET 7.75 148 148 71 Nd 56.0 C. J. O'TCLI LI Name JOIDH F. RNET 13.3 13.3 14.7 7.75 148 7.8 71 Nd 56.0 C. J. O'TCLI LI Signature Joint F. RNET 13.3 14.7 17.7 14.7 14.7 14.7 14.7 14.7 14.7	Februs M 44 M 187 M M 22 M 8.1 KB 1KB 1KB 71 Magerpare Peonsus M 16 5.35 168 221 13.3 M 7.75 1KB 1KB 71 Magerpare C-LONDUL M 16 5.35 168 221 163 13.3 M 7.75 1KB 1KB 71 Magerpare C-LONDUL Mane JOINH-FRNT 13.3 M 7.75 1KB 1KB 71 Magerpare C-LONDUL Mane JOINH-FRNT 13.3 M 7.75 1KB 1KB 1 1 Magerpare C-LONDUL Mane JOINH-FRNT 1 1 1 2 2 1	PEGASUS	3.48	150	14.3	264	AN I	NA	34.6	A	11.2	1KB	1KB	54/50/45	N	Z'Airborne_Raw/ 549P
PEGASUS NA 16 5.35 168 ^{22.1} 163 13.3 NA 7.75 ^{11KB} 1KB 36 NA 566P 36	PEGASUS MA 16 5.35 168/221 F83 13.3 MA 7.75 H8 18 28 MA 565P C-JOMENTIN Poston UNDAFF. RNETU 6/23/2414 Signature Signature 11/6	PEGASUS $ M $ 16 5.35 188 22.1 153 $ M $ 7.75 HB 148 148 36 $ M $ 2.75 HB 36 $ M $ 2.24 torme. Raw C. J. Orne. Lu Name JOIDH F. RIKTU 6/23/2414 Signature Signature (123/2414) Signature (123/2414)	PEGASUS	NA	44	NA	187	A	NA	22	A	8.1	1KB	1KB	71	NA	Z'Airborne_Rawl 561P
	C. J. C. Marie John F. RKETD 6/23/2014 Poston John F. RKETD 6/23/2014	C.J. C.Marin Landon Karlo Name JOINT F. RRETD 6/23/2019 Position JOINT F. RRETD 6/23/2019	PEGASUS	NA	16	6.35	168	22.1	163	13.3	Ą	7.75	1KB	1KB	36	N	Z:\Airborne_Raw\ 565P

Annex 5. Data Transfer Sheets for Gingoog Floodplain

Figure A-5.1 Data Transfer Sheet for Gingoog Floodplain - A

FAWLLS FAWLAS Resonance Marce								1)							
OutputLuts Kull OutputLuts Kull OutputLuts Kull Coss Antal Kull Coss Antal Kull Coss Antal Kull Cost		RAW LAS	s	Nam/SOCI	900	RAW	MISSION LOG			BASE ST	ATION(S)	OPERATOR	FLIGH	T PLAN	
Ma I6 6.93 168 Na 13.3 Na 7.75 146 96 Na 2.4400ms 416 8332 16.5 2908 62 38.5, Na 10 148 148 36 Na Z.Matoma 21.6 332 10.5 2908 62 38.5, Na 10 148 148 36 Na Z.Matoma 21.6 526 112 256 133 309 22.1 Na 7.07 148 148 Z.Matoma 21.6 526 112 258 457 33.2 Na 7.07 148 148 Z.Matoma 310 1112 1117 212 0.03 415 23.3 148 7.07 148 148 Z.Matoma 300 1112 1117 212 0.03 415 2.94 148 148 168 Ma Z.Matoma 201 311 111 2117 212	ō	utput LAS (s	KML swath)	roos(MB)	504	IMAGES/CASI	FILE/CASI LOGS	RANGE	DIGITIZER	BASE	Base Info	(OPLOG)	Actual	IN N	LOCATION
16 832 16.5 290 886 62 38.5 Ma 1/10 1/18 1/18 36 Ma Zivibrona 218 332 10.5 237 Na Na 21.3 Na 7.52 148 148 86 Na Zivibrona 216 526 112 259 453 309 22.1 Na 7.52 148 148 24 314 117 13.7 258 453 309 22.1 Na 7.67 148 168 7.3 314 117 212 039 22.1 Na 7.37 148 148 7.176 Na Zivibrona 316 1112 117 212 033 415 294 866 4.97 148 7.9 Resu 317 117 212 033 415 294 866 4.97 148 7.3 Na Zivibrona 214 146 146 146 148 148 52/56 Na Zivibrona 21 111 117 212 803 284 146 148 7.3 Na 214 147 56.5 Na 146 148 148	NA		16	6.93	168	NA	NA	12.0	NA	SIATION(S)	(.tot)		IBMAL	VML	7-1 Airbonna
032 033 10 148 16 148 16 148 86 NA Zuburone 216 526 11.2 258 65.3 309 22.1 NA 7.52 148 148 68 NA Zuburone 314 177 13.7 258 65.3 309 22.1 NA 7.07 148 148 68 NA Zuburone 3.44 177 13.7 258 65.3 309 22.1 NA 7.07 148 148 7.07 NA Zuburone 3.44 177 13.7 258 67.3 437 33.2 NA 5.92 148 148 7.07 Res 3.09 1112 11.7 212 60.3 415 294 86.6 4.97 148 7.3 NA Zuburone 2.13 370 10.7 187 36.3 283 28.1 NA 4.46 NA Zuburone 2.14 NA 148 148 148 7.3 NA Zuburone 2.14 1995 12.6 286 57.4 NA 5.6 NA Zuburone 2.14 N<	4.1	9		10.6	000	000		0.01	5	Q/./	INB	IKB	36	MA	Raw
Alt 10.5 237 MA NA 21.3 MA 7.52 1KB 1KB 68 NA Zwhönme. 216 526 11.2 259 45.3 300 22.1 MA 7.07 1KB 1KB 17776 NA Zwhönme. 3.44 177 13.7 258 67.3 300 22.1 MA 7.07 1KB 1KB 73776 NA Zwhönme. 3.44 1112 11.7 212 60.3 415 294 86.6 4.97 1KB 1KB 73 NA Zwhönme. 3.44 1112 11.7 212 60.3 415 294 86.6 4.97 1KB 1KB 73 NA Zwhönme. 2.79 370 10.7 187 283 286 26.1 NA 4.46 NA Zwhönme. 2.84 1995 12.6 288 7.4 3.88 7.7 1KB 1KB 7.3 NA Zwhönme. 2.84 1995 12.6 288 7.4 3.88 7.7 1KB 1KB 7.4 RM 2.4 <t< td=""><td>1</td><td></td><td>700</td><td>0.01</td><td>780</td><td>00'0</td><td>70</td><td>38.5</td><td>AA</td><td>10</td><td>1KB</td><td>1KB</td><td>85</td><td>NA</td><td>Z:Vairborne_ Raw</td></t<>	1		700	0.01	780	00'0	70	38.5	AA	10	1KB	1KB	85	NA	Z:Vairborne_ Raw
216 526 112 258 453 300 22.1 NA 7.07 1KB 1KB 7776 NA Rein 3.4 177 13.7 258 453 457 33.2 NA 5.92 1KB 1KB 7776 NA Rein 3.4 1112 11.7 212 60.3 415 29.4 86.6 4.97 1KB 46 NA Zwithome- 3.09 1112 11.7 212 60.3 415 29.4 86.6 4.97 1KB 46 NA Zwithome- 2.09 370 10.7 187 368 26.6 NA 4.45 1KB 1KB 73 NA Zwithome- 2.91 1995 12.6 26.8 57.4 388 28.6 57.2 7.7 1KB 1KB 73 NA Zwithome- 2.92 4.33 116 NA NA 5.65 NA 5.65 NA 7.7 1KB 1KB 74 Rwith 20.7 1.00 1.1	2	0	332	10.5	237	NA	NA	21.3	NA	7.52	1KB	1KB	68	NA	Z:\Airborne_
3.4 177 13.7 258 67.3 437 33.2 NA 5.92 1KB 1KB 46 NA Raw 3.09 1112 11.7 212 60.3 415 29.4 86.6 4.97 1KB 1KB 46 NA Zviitoma- 3.09 1112 11.7 212 60.3 415 29.4 86.6 4.97 1KB 1KB 46 NA Zviitoma- 2.79 370 10.7 187 36.3 268 26.1 NA 4.45 1KB 1KB 52/56 NA Zviitoma- 2.84 1995 12.6 288 57.4 39.6 28.9 56.5 NA 4.45 1KB 1KB 7.3 NA Zviitoma- 2.84 1995 12.6 288 57.4 39.6 57.2 7.7 1KB 1KB 56.65 NA Zviitoma- 332 95 4.33 119 NA 5.65 NA 5.7 1KB 1KB 59.68 NA Zviitoma- 314 11.4 242 51.8 375 27.4 N 6.25 1KB 59.68 NA Zviitoma- <td>2.10</td> <td>9</td> <td>526</td> <td>11.2</td> <td>259</td> <td>45.3</td> <td>309</td> <td>22.1</td> <td>NA</td> <td>7 07</td> <td>1KB</td> <td>1KR</td> <td>SELEE</td> <td>VIV</td> <td>Z:\Airborne</td>	2.10	9	526	11.2	259	45.3	309	22.1	NA	7 07	1KB	1KR	SELEE	VIV	Z:\Airborne
309 1112 11.7 212 60.3 415 294 86.6 4.97 1KB 1KB 52/56 NA Raw 279 370 10.7 187 36.3 26.1 M 4.45 1KB 1KB 52/56 NA Zwithome. 2.94 10.7 187 36.3 26.1 M 4.45 1KB 1KB 52/56 NA Zwithome. 2.94 1995 12.6 288 57.4 388 28.9 57.2 7.7 1KB 1KB 56/65/60/ NA Zwithome. 2.82 95 4.33 119 M NA 5.65 NA 7.7 1KB 1KB 65/65/60/ NA Zwithome. 3.82 95 4.33 119 M NA 5.65 NA 7.7 1KB 1KB 65/65/60/ NA Zwithome. 3.84 NA 11.4 2.42 51.8 375 27.4 NA 6.25 1KB 1KB 59/68 NA Zwithome. .84 NA 11.4 2.42 51.8 375 27.4 NA 6.25 1KB 1KB 70 Raw	3.4	4	177	13.7	258	67.3	437	33.2	AN	20.3	, ș		9////	WN :	Raw 7:Vaithome
279 370 10.7 187 36.3 268 26.1 NA 4.45 1KB 52/56 NA Raw 294 1995 12.6 268 57.4 39.9 57.2 7.7 1KB 1KB 56 NA Raw 332 95 4.33 119 NA NA 5.65 NA 7.3 NB 8.4 332 95 4.33 119 NA NA 5.65 NA 7.7 1KB 1KB 5.6 NA Raw 332 95 4.33 119 NA NA 5.65 NA 6.25 1KB 1KB 5.066 NA Raw 332 95 4.33 119 NA NA 5.65 NA 6.25 1KB 1KB 6.50/65/60/ NA Raw 34 NA 11.4 2.42 51.8 375 27.4 NA 6.25 1KB 1KB 59/68 NA Zwittome- AM NA 1.4 6.25 1KB 1KB 59/68 NA Zwittome- Station 7.7 1.8 1.8 59/68 NA Zwittome-	3.00	6	1112	11.7	212	60.3	415	100	88	20.0		2	46	N	Raw 7-Mithome
370 10.7 187 36.3 268 26.1 M 4.45 $1KB$ 73 M $Z^{Mithome}$ 2.94 1995 12.6 268 57.4 398 28.9 57.2 7.7 $1KB$ $1KB$ 73 N Raw 2.95 95 4.33 119 M N 5.65 M 7.7 $1KB$ $1KB$ 556560 N Raw 2.84 114 2.43 119 M N 7.7 $1KB$ $1KB$ 6565600 N Raw 2.84 N 11.4 2.42 51.8 375 27.4 6.25 $1KB$ $1KB$ N Raw 2.84 N 11.4 2.42 51.8 375 27.4 6.25 $1KB$ 59.68 N Raw <	020							1.74		12.4		9VI	52/56	M	Raw
2.94 1995 12.6 268 57.4 398 57.2 7.7 1KB 1KB 65/65/60/ NA Raw 32 95 4.33 119 Na NA 5.65 Na 7.7 1KB 1KB 65/65/60/ NA Raw 32 95 4.33 119 Na NA 5.65 Na 7.7 1KB 1KB 48 NA Raw .84 NA 11.4 2.42 51.8 375 27.4 NA 6.25 1KB 1KB 59/68 NA Zvaltborne- .84 NA 11.4 2.42 51.8 375 27.4 NA 6.25 1KB 1KB 59/68 NA Zvaltborne-			370	10.7	187	36.3	268	26.1	AN	4.45	1KB	1KB	73	NA	Z:'Airborne_ Raw
32 95 4.33 119 NA 5.65 NA 7.7 1KB 1KB 48 NA 2.Valtoone 84 NA 11.4 242 51.8 375 27.4 NA 6.25 1KB 1KB 48 NA Z.Valtoone 84 NA 11.4 242 51.8 375 27.4 NA 6.25 1KB 59/68 NA Z.Valtoone Pastion Total 6.25 1KB 6.25 1KB 59/68 NA Z.Valtoone Revel N 11.4 242 51.8 375 27.4 6.25 1KB 59/68 NA Z.Valtoone	-94	4	1995	12.6	268	57.4	398	28.9	57.2	7.7	1KB	1KB	65/65/60/	M	Z:VAirborne_
B4 NA 11.4 242 51.8 375 27.4 NA 6.25 1KB 59/68 NA Z'Aritome_ Raw Name J0.01/A Signature 375 27.4 NA 6.25 1KB 59/68 NA Z'Aritome_ Received by Name J0.01/A Signature 37.5 27.4 MA 6.25 1KB 59/68 NA Z'Aritome_ Received by Name J0.01/A Signature 31.5 J14 Ma 50.5 1KB 59/68 NA Zivitiome_	32		95	4.33	119	NA	NA	99	AA		1KB	1KB	0	NA	Z:VAirborne_
Wei Unit of the state 27.4 Ma 6.25 1KB 59.68 NA 2.1 Autoone Received by Name J0.11A Mer N Are Real S9.68 NA 2.1 Autoone Received by Name J0.11A Mer N Are S9.68 NA 2.1 Autoone Resilion Signature 3.1.6 Mer N Are Mer N Reave	8		VIV	11 4	CVC	848	976	000	T.	2	1		48		Raw
Received by Name JOINA RNETD ' AFACTO ' AFACTO' AFACTO' ' AFACTO' A			YN1		747	0110	610	27.4	A	6.25	1KB	1KB	59/68	NA	Z:VAIrborne_ Raw
Position 10.10.4 R.R.T.D. 1 Signature 7,258,114						Received by									
Signature 7/26/14	74	*			-,-	Name	JOINA 9	Ken '	- Dr	+					
	1.1				- 105 1	Signature	Se	26/14	All	3					

DATA TRANSFER SHEET

Figure A-5.2 Data Transfer Sheet for Gingoog Floodplain - B

Annex 6. Flight Logs for the Flight Missions

1. Flight Log for 1525P Mission

Figure A-6.1 Flight Log for 1525P Mission

2. Flight Log for 1609P Mission

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-6.2 Flight Log for 1609P Mission

Annex 7. Flight Status Reports

NORTHERN MINDANAO

(May 29 - June 19, 2014)

Table A-7.1 Flight Status Reports

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1525P	BLK 64A, RX- Supplement (RXS)	1RXE149A	I. Roxas	May 29, 2014	Surveyed RX B and half of BLK 64A; restarted at about 1/3 of the mission, no output LAS for lines after restart
1609P	BLK 64A, RXS	1RXS170A	I. Roxas	June 19, 2014	Mission successful; de- scended to 800m then ascended to 1000

LAS BOUNDARIES PER FLIGHT

Flight No. :	1525P		
Area:	RX A, BLK 64A		
Mission Name:	1RXE149A		
Parameters:	Altitude:	900m;	Scan Frequency: 30Hz;
Scan Angle:	25deg; Overla	p: 30%	

LAS

Figure A-7.1 Swath for Flight No. 1525P

Flight No. :	1609P		
Area:	RX A, RX B, RX	C, BLK64A	
Mission Name:	1RXE158A		
Parameters:	Altitude:	800, 1000 m;	Scan Frequency: 30Hz;
Scan Angle:	25deg; Overla	p: 30%	

LAS

Figure A-7.2 Swath for Flight No. 1609P

Annex 8. Mission Summary Reports

Flight Area	Northern Mindanao
Mission Name	Blk64A
Inclusive Flights	1525P
Range data size	26.5 GB
POS	265 MB
Base data size	9.83 MB
Image	n/a
Transfer date	June 23, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.95
RMSE for East Position (<4.0 cm)	1.04
RMSE for Down Position (<8.0 cm)	1.8
Boresight correction stdev (<0.001deg)	0.000228
IMU attitude correction stdev (<0.001deg)	0.0493
GPS position stdev (<0.01m)	0.0318
Minimum % overlap (>25)	44.22%
Ave point cloud density per sq.m. (>2.0)	6.30
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	171
Maximum Height	794.05 m
Minimum Height	66.1 m
Classification (# of points)	
Ground	131,200,834
Low vegetation	154,620,486
Medium vegetation	308,219,562
High vegetation	343,529,636
Building	16,708,805
Orthophoto	
Drocossed by	Engr. Jennifer Saguran, Engr. Harmond Santos,
Processed by	Engr. Gladys Mae Apat

Table A-8.1 Mission Summary Report for Mission Blk64A

Figure A-8.1 Solution Status

Figure A-8.2 Smoothed Performance Metric Parameters

Figure A-8.3 Best Estimated Trajectory

Figure A-8.4 Coverage of LiDAR data

Figure A-8.5 Image of data overlap

Figure A-8.6 Density map of merged LiDAR data

Figure A-8.7 Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk RX_supplement
Inclusive Flights	1609P
Range data size	22.1 GB
POS	259 MB
Base data size	7.07 MB
Image	45.3 GB
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	2.1
RMSE for Down Position (<8.0 cm)	3.5
Boresight correction stdev (<0.001deg)	0.000218
IMU attitude correction stdev (<0.001deg)	0.000460
GPS position stdev (<0.01m)	0.0010
Minimum % overlap (>25)	33.39%
Ave point cloud density per sq.m. (>2.0)	5.40
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	132
Maximum Height	678.91 m
Minimum Height	68.96 m
Classification (# of points)	
Ground	50,885,013
Low vegetation	47,864,075
Medium vegetation	170,807,118
High vegetation	161,481,667
Building	1,560,519
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Christy Lubiano, Engr. Analyn Naldo, Engr. Gladys Mae Apat

Table A-8.2 Mission Summary Report for Mission Blk RX_supplement

Figure A-8.8 Solution Status

Figure A-8.9 Smoothed Performance Metric Parameters

Figure A-8.10 Best Estimated Trajectory

Figure A-8.11 Coverage of LiDAR data

Figure A-8.12 Image of data overlap

Figure A-8.13 Density map of merged LiDAR data

Figure A-8.14 Elevation difference between flight lines

Parameters
Basin
Aodel
Gingoog N
nnex 9.

Ratio to Peak 0.1 Threshold Type Ratio to Peak **Recession Baseflow** Recession Constant --Ч -----Ч -Ч ----Ч --Τ -Discharge (M3/S) Initial 0.066378 0.002288 0.097688 0.014805 0.085148 0.039324 0.068106 0.059702 0.076387 0.070012 0.014139 0.082773 0.056054 0.091577 0.066591 0.14075 0.12759 0.11492 0.10294 0.1238 Initial Type Discharge Storage Coefficient **Clark Unit Hydrograph Trans** 8.3369785 2.4906768 3.0731036 4.0519874 2.1236723 3.6560149 2.7138698 5.6188162 5.8756369 4.7178451 1.6951992 5.2355461 1.5872101 2.5125167 3.7527687 2.915942 5.490082 4.641884 1.539826 2.594982 (HR) form Concentration Time of (HR) 9.014898 5.101476 4.381476 2.296359 4.057926 1.665036 2.693205 6.353412 3.322992 2.805993 1.833045 5.936505 5.661273 1.716273 5.019339 2.934549 6.075711 3.153051 2.716821 3.953304 Impervious (%) SCS Curve Number Loss 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 40 40 40 40 35 Curve Number 74.658 75.855 81.675 74.893 87.537 78.965 78.161 81.289 77.808 85.063 78.414 76.597 80.634 78.91 5 5 79 79 73 79 nitial Abstraction (mm) 0.360704 0.555664 0.526148 0.517623 0.535204 0.522904 0.587589 0.625461 0.46538 0.52098 0.58155 0.45879 0.54592 0.56513 0.53207 0.50105 0.6975 0.6975 0.6958 0.6975 Number Basin W810 W750 W740 W730 W720 W710 W620 W610 W780 W770 W760 W700 W690 W680 W670 W660 W650 W640 W630 W600

0.1

Ratio to Peak

μ

0.20091

Discharge

2.0003152

2.16297

35

74.375

0.50918

W590

	SCS C	urve Numbe	r Loss	Clark Unit Hydrog form	graph Trans-		Re	cession Baseflo	M	
Basin Number	Initial Ab- straction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W580	0.487414	77.589	35	7.513881	6.9488367	Discharge	0.10955	1	Ratio to Peak	0.1
W570	0.50746	80.371	40	6.075711	5.6188162	Discharge	0.162244	1	Ratio to Peak	0.1
W560	0.45879	77.776	40	3.297732	3.0497422	Discharge	0.16547	1	Ratio to Peak	0.1
W550	0.6975	76.416	40	9.014898	8.3369785	Discharge	0.037541	1	Ratio to Peak	0.1
W540	0.53207	75.17	40	2.693205	2.4906768	Discharge	0.25437	1	Ratio to Peak	0.1
W530	0.360704	79.43	40	3.153051	2.915942	Discharge	0.20167	1	Ratio to Peak	0.1
W520	0.555664	77.12	40	6.353412	5.8756369	Discharge	0.021078	1	Ratio to Peak	0.1
W510	0.526148	73.24	40	3.322992	3.0731036	Discharge	0.14688	1	Ratio to Peak	0.1
W500	0.6975	78.645	40	5.101476	4.7178451	Discharge	0.007311	1	Ratio to Peak	0.1
W490	0.6975	73	40	4.381476	4.0519874	Discharge	0.014926	1	Ratio to Peak	0.1
W480	0.517623	73	40	2.296359	2.1236723	Discharge	0.10438	1	Ratio to Peak	0.1
W470	0.56513	78.365	40	2.805993	2.594982	Discharge	0.040496	1	Ratio to Peak	0.1
W460	0.6958	77.434	40	1.833045	1.6951992	Discharge	0.23427	1	Ratio to Peak	0.1
W450	0.50105	84.079	40	5.936505	5.490082	Discharge	0.16174	1	Ratio to Peak	0.1
W440	0.625461	78.166	40	5.661273	5.2355461	Discharge	0.010881	1	Ratio to Peak	0.1
W800	0.54592	73	40	3.297732	3.0497422	Discharge	0.072635	1	Ratio to Peak	0.1
W420	0.587589	81.207	40	1.716273	1.5872101	Discharge	0.078616	1	Ratio to Peak	0.1
W410	0.46538	79.29	40	4.057926	3.7527687	Discharge	0.13225	1	Ratio to Peak	0.1
W400	0.535204	83.345	40	5.019339	4.641884	Discharge	0.045631	1	Ratio to Peak	0.1

Annex 10. Gingoog Model Reach Parameters

		Musking	um Cunge Cha	annel Routin	g		
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R10	Automatic Fixed Interval	1974.9	0.002595	0.05	Trapezoid	55	45
R30	Automatic Fixed Interval	5101.6	0.002381	0.05	Trapezoid	55	45
R50	Automatic Fixed Interval	1488.4	0.018712	0.05	Trapezoid	55	45
R70	Automatic Fixed Interval	1106.3	0.023453	0.06	Trapezoid	55	45
R80	Automatic Fixed Interval	713.07	0.01091	0.06	Trapezoid	55	45
R100	Automatic Fixed Interval	1695.6	0.022798	0.08	Trapezoid	55	45
R120	Automatic Fixed Interval	1362.4	0.029627	0.08	Trapezoid	35	45
R160	Automatic Fixed Interval	8612.9	0.058172	0.09	Trapezoid	35	45
R190	Automatic Fixed Interval	4968.2	0.09916	0.09	Trapezoid	35	45
R200	Automatic Fixed Interval	6392.5	0.026246	0.07	Trapezoid	35	45
R220	Automatic Fixed Interval	2788.4	0.027965	0.08	Trapezoid	35	45
R230	Automatic Fixed Interval	6857.1	0.039582	0.1	Trapezoid	25	45
R240	Automatic Fixed Interval	2296.2	0.040788	0.1	Trapezoid	25	45
R250	Automatic Fixed Interval	875.91	0.025529	0.1	Trapezoid	25	45
R260	Automatic Fixed Interval	3214.5	0.04322	0.1	Trapezoid	25	45
R280	Automatic Fixed Interval	667.44	0.17923	0.1	Trapezoid	25	45
R290	Automatic Fixed Interval	1517.5	0.013527	0.1	Trapezoid	25	45
R310	Automatic Fixed Interval	752.36	0.18329	0.1	Trapezoid	20	45
R820	Automatic Fixed Interval	159.68	0.021147	0.1	Trapezoid	20	45
R40	Automatic Fixed Interval	797.7	0.011946	0.1	Trapezoid	20	45

Table A-10.1 Gingoog Model Reach Parameters

	Validatio	n Coordinates	Model Var	Validation	L		
Point Number	Lat	Long	(m)	Points (m)	Error	Event/Date	Kain Keturn/ Scenario
1	8.81668700000	125.0985060000	3.73	0.10	-3.63	Ondoy/29Nov2009	5YR
2	8.81355200100	125.09886200000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
m	8.81167500000	125.09786400000	2.19	0.10	-2.09	Ondoy/29Nov2009	5YR
4	8.81134700000	125.09898300000	0.05	0.00	-0.05	Ondoy/29Nov2009	5YR
ы	8.81109100000	125.10063600000	0.06	0.05	-0.01	Ondoy/29Nov2009	5YR
9	8.81106000000	125.10289100000	0.66	0.00	-0.66	Ondoy/29Nov2009	5YR
7	8.81099999900	125.10264100000	0.05	1.15	1.10	Ondoy/29Nov2009	5YR
ø	8.81378999900	125.10341300000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
б	8.81478199900	125.10379900000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
10	8.82237100000	125.09894300000	0.28	0.00	-0.28	Ondoy/29Nov2009	5YR
11	8.82194399900	125.09858600000	0.25	0.25	0.00	Ondoy/29Nov2009	5YR
12	8.82100600000	125.09917800000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
13	8.82066200000	125.09940300000	6.48	1.70	-4.78	Ondoy/29Nov2009	5YR
14	8.82060800100	125.09917900000	0.47	0.00	-0.47	Ondoy/29Nov2009	5YR
15	8.82058200000	125.09875200000	0.15	0.00	-0.15	Ondoy/29Nov2009	5YR
16	8.82057399900	125.09856300000	0.14	0.00	-0.14	Ondoy/29Nov2009	5YR
17	8.81979700000	125.09828000000	2.13	0.00	-2.13	Ondoy/29Nov2009	БҮR
18	8.81979300100	125.09829800000	2.13	0.05	-2.08	Ondoy/29Nov2009	БҮR
19	8.81969400100	125.09818300000	1.28	0.00	-1.28	Ondoy/29Nov2009	БҮR
20	8.81965800000	125.09817200000	1.28	0.40	-0.88	Ondoy/29Nov2009	5YR
21	8.81953900000	125.09831500000	1.45	0.05	-1.40	Ondoy/29Nov2009	5YR

Table A-11.1 Gingoog Field Validation Points

Annex 11. Gingoog Field Validation Points

	Validatio	n Coordinates					
Point Number			Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
	Lat	Long					
22	8.81935700000	125.09780500000	0.12	5.00	4.88	Ondoy/29Nov2009	5YR
23	8.81872299900	125.09828500000	0.65	5.00	4.35	Ondoy/29Nov2009	5YR
24	8.81807300000	125.09860300000	6.32	5.00	-1.32	Ondoy/29Nov2009	5YR
25	8.81786200000	125.09870700000	5.42	5.00	-0.42	Ondoy/29Nov2009	5YR
26	8.81780400000	125.09867400000	5.99	5.00	-0.99	Ondoy/29Nov2009	5YR
27	8.81777000000	125.09849500000	2.84	0.00	-2.84	Ondoy/29Nov2009	5YR
28	8.81774200000	125.09853500000	2.84	0.05	-2.79	Ondoy/29Nov2009	5YR
29	8.81777500000	125.09840600000	2.84	0.00	-2.84	Ondoy/29Nov2009	5YR
30	8.80519100000	125.10621500000	0.79	0.90	0.11	Ondoy/29Nov2009	5YR
31	8.80496300000	125.10652800000	0.05	1.00	0.95	Ondoy/29Nov2009	5YR
32	8.80569500000	125.10651000000	0.63	2.00	1.37	Ondoy/29Nov2009	5YR
33	8.80612900000	125.10648000000	0.46	2.00	1.54	Ondoy/29Nov2009	5YR
34	8.8059800000	125.10647600000	0.61	2.00	1.39	Ondoy/29Nov2009	5YR
35	8.80632600000	125.10609400000	0.63	0.40	-0.23	Ondoy/29Nov2009	5YR
36	8.80682300000	125.10642900000	0.28	1.00	0.72	Ondoy/29Nov2009	5YR
37	8.80706600000	125.10569300000	0.05	0.40	0.35	Ondoy/29Nov2009	5YR
38	8.80788600000	125.10623300000	0.09	0.40	0.31	Ondoy/29Nov2009	5YR
39	8.80771000000	125.10596900000	0.17	0.40	0.23	Ondoy/29Nov2009	5YR
40	8.8087800000	125.10572600000	0.21	0.00	-0.21	Ondoy/29Nov2009	5YR
41	8.81091800000	125.10560100000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
42	8.81192600000	125.10491200000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
43	8.81275900000	125.10552100000	0.05	0.00	-0.05	Ondoy/29Nov2009	5YR
44	8.81263200000	125.10474500000	0.17	0.00	-0.17	Ondoy/29Nov2009	5YR
45	8.81358700000	125.10445000000	0.09	0.00	-0.09	Ondoy/29Nov2009	5YR
46	8.8166100000	125.09936100000	0.34	0.00	-0.34	Ondoy/29Nov2009	5YR

	Validatio	n Coordinates					
er	Lat	Long	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
	8.8181610000	125.09885700000	0.38	0.00	-0.38	Ondoy/29Nov2009	SYR
	8.81831800000	125.09874000000	0.29	0.00	-0.29	Ondoy/29Nov2009	5YR
	8.81888900000	125.09878300000	0.41	0.00	-0.41	Ondoy/29Nov2009	5YR
	8.81960399900	125.09877600000	0.55	0.00	-0.55	Ondoy/29Nov2009	5YR
	8.81988900100	125.09885100000	0.85	0.40	-0.45	Ondoy/29Nov2009	5YR
	8.82015400000	125.09937400000	0.63	2.50	1.87	Ondoy/29Nov2009	5YR
	8.82045100000	125.09963500000	1.58	2.50	0.92	Ondoy/29Nov2009	5YR
	8.8213960000	125.09950800000	1.79	0.00	-1.79	Ondoy/29Nov2009	5YR
	8.82167700000	125.09933300000	2.68	0.00	-2.68	Ondoy/29Nov2009	5YR
	8.82270100000	125.09914900000	1.52	0.00	-1.52	Ondoy/29Nov2009	5YR
	8.8173600000	125.10262300000	0.24	0.00	-0.24	Ondoy/29Nov2009	5YR
	8.81839700000	125.10272200000	0.05	0.00	-0.05	Ondoy/29Nov2009	5YR
	8.81906200000	125.10347400000	0.63	1.00	0.37	Ondoy/29Nov2009	SYR
	8.81865100000	125.10395800000	0.29	0.00	-0.29	Ondoy/29Nov2009	5YR
	8.81929300000	125.10475700000	0.41	1.80	1.39	Ondoy/29Nov2009	5YR
	8.82096500000	125.1054040000	0.17	0.00	-0.17	Ondoy/29Nov2009	5YR
	8.82181100000	125.10535400000	0.18	0.00	-0.18	Ondoy/29Nov2009	5YR
	8.82265700000	125.1051500000	0.25	0.00	-0.25	Ondoy/29Nov2009	SYR
	8.82220800000	125.10335700000	0.17	0.00	-0.17	Ondoy/29Nov2009	SYR
	8.82031800000	125.10352600000	0.05	0.00	-0.05	Ondoy/29Nov2009	5YR
	8.80747600000	125.09891000000	0.39	0.00	-0.39	Ondoy/29Nov2009	SYR
	8.80700900000	125.09904800000	0.27	0.00	-0.27	Ondoy/29Nov2009	SYR
	8.80891200000	125.10063500000	0.05	3.00	2.95	Ondoy/29Nov2009	SYR
	8.80953400000	125.10006200000	0.05	1.50	1.45	Ondoy/29Nov2009	БYR
	8.80977200000	125.10021200000	0.14	1.50	1.36	Ondoy/29Nov2009	5YR

Point Number	Validatio	n Coordinates	Model Var	Validation	Error	Event/Date	Rain Return/ Scenario
	Lat	Long	Ē	Points (m)			
72	8.81016200000	125.10036300000	0.15	0.00	-0.15	Ondoy/29Nov2009	5YR
73	8.81060799900	125.10071100000	0.16	0.00	-0.16	Ondoy/29Nov2009	5YR
74	8.81086000100	125.10113200000	0.29	2.30	2.01	Ondoy/29Nov2009	5YR
75	8.81093200000	125.10181700000	0.12	0.00	-0.12	Ondoy/29Nov2009	5YR
76	8.81093600000	125.10221000000	0.28	1.20	0.92	Ondoy/29Nov2009	5YR
77	8.81190800000	125.10268400000	0.05	0.67	0.62	Ondoy/29Nov2009	5YR
78	8.81225500000	125.10257500000	0.05	0.50	0.45	Ondoy/29Nov2009	5YR
79	8.8125860000	125.10227400000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
80	8.81349000100	125.10324400000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
81	8.82392700100	125.09908700000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
82	8.82400500000	125.09840400000	0.05	0.00	-0.05	Ondoy/29Nov2009	5YR
83	8.82518800000	125.09873000000	0.05	0.00	-0.05	Ondoy/29Nov2009	SYR
84	8.82555700000	125.09864100000	0.05	0.00	-0.05	Ondoy/29Nov2009	SYR
85	8.82580499900	125.09891800000	0.14	1.00	0.86	Ondoy/29Nov2009	5YR
86	8.82600800000	125.09888400000	0.18	0.00	-0.18	Ondoy/29Nov2009	5YR
87	8.82617900000	125.09860500000	0.05	0.00	-0.05	Ondoy/29Nov2009	5YR
88	8.82645200000	125.09811200000	0.05	0.00	-0.05	Ondoy/29Nov2009	5YR
89	8.82605300000	125.09666400000	0.16	0.20	0.04	Ondoy/29Nov2009	SYR
06	8.82535000100	125.09626200000	0.12	0.00	-0.12	Ondoy/29Nov2009	SYR
91	8.82461199900	125.09695400000	0.51	0.00	-0.51	Ondoy/29Nov2009	SYR
92	8.82408700000	125.09762200000	0.05	0.30	0.25	Ondoy/29Nov2009	SYR
93	8.82387300000	125.09562800000	0.05	0.00	-0.05	Ondoy/29Nov2009	SYR
94	8.82487400000	125.09389200000	0.12	0.00	-0.12	Ondoy/29Nov2009	БҮR
95	8.82586400000	125.09381900000	0.16	0.00	-0.16	Ondoy/29Nov2009	SYR
96	8.82569500100	125.09292300000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR

	Rain Return/ Scenario	R	R	R	R	R	R	R	R	ſŔ	R	R	ſŖ	ſR	ſR	ſŖ	ſŖ	ſŖ	ſŖ	R	ſŖ	ſR	ſR	/R	ſR	ſR
		5	5	5	5	5	5	5	5	5	5	5	5)	5)	5)	5)	5	5	5)	5	5	5)	5	5)	5)	2
	Event/Date	Ondoy/29Nov2009																								
	Error	-0.43	-0.55	0.77	-0.14	-0.48	-1.06	-0.15	-1.16	0.28	0.70	-1.23	-0.96	-0.72	-0.10	0.62	-0.63	-0.66	-0.66	0.72	-1.58	-1.38	-1.42	1.02	-0.88	0.87
	Validation Points (m)	0.00	0.00	1.00	0.00	0.00	0.00	1.00	0.00	1.50	1.30	0.00	0.00	0.00	0.80	1.50	0.00	0.00	0.00	1.60	0.00	0.00	0.00	1.40	0.00	1.10
	Model Var (m)	0.43	0.55	0.23	0.14	0.48	1.06	1.15	1.16	1.22	0.60	1.23	0.96	0.72	0.90	0.88	0.63	0.66	0.66	0.88	1.58	1.38	1.42	0.38	0.88	0.23
n Coordinates	Long	125.0926360000	125.09273600000	125.0922760000	125.0988900000	125.10946500000	125.11055100000	125.11056400000	125.11125300000	125.11130100000	125.10830800000	125.1079500000	125.10856700000	125.11018500000	125.11008600000	125.11073800000	125.11025200000	125.11286300000	125.11285300000	125.11405900000	125.11522800000	125.11502300000	125.11640500000	125.11595200000	125.11834100000	125.11963700000
Validatio	Lat	8.82722599900	8.82756600000	8.82689500000	8.82452900000	8.82732099900	8.82726900000	8.82711700000	8.82694900100	8.82827600000	8.82713800000	8.82818500000	8.82898200000	8.83000400000	8.82872400000	8.82857800000	8.82681100000	8.82664900000	8.82666300000	8.82828300000	8.82930200000	8.82953200000	8.82954800000	8.82767499900	8.82922800000	8.83008800100
	Point Number	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121

Point Number	Validatio	n Coordinates	Model Var	Validation	Error	Event/Date	Rain Return/ Scenario																			
	Lat	Long	E)	Points (m)																						
122	8.83079200000	125.11896400000	0.85	1.20	0.35	Ondoy/29Nov2009	5YR																			
123	8.83014700000	125.11802700000	0.61	0.00	-0.61	Ondoy/29Nov2009	SYR																			
124	8.8294900000	125.11733400000	1.19	2.00	0.81	Ondoy/29Nov2009	SYR																			
125	8.83118300000	125.11791800000	1.02	0.00	-1.02	Ondoy/29Nov2009	5YR																			
126	8.82934500000	125.11946900000	0.61	0.00	-0.61	Ondoy/29Nov2009	SYR																			
127	8.82866500100	125.11879100000	0.79	1.00	0.21	Ondoy/29Nov2009	5YR																			
128	8.8272560000	125.1159300000	0.60	1.20	0.60	Ondoy/29Nov2009	5YR																			
129	8.82995699900	125.12390500000	0.28	0.00	-0.28	Ondoy/29Nov2009	SYR																			
130	8.82964900000	125.12357300000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR																			
131	8.83140700000	125.12319100000	0.75	0.00	-0.75	Ondoy/29Nov2009	5YR																			
132	8.83281400000	125.12581400000	0.47	0.00	-0.47	Ondoy/29Nov2009	SYR																			
133	8.82980300000	125.12528700000	0.51	0.00	-0.51	Ondoy/29Nov2009	SYR																			
134	8.82915600000	125.1247000000	1.04	0.00	-1.04	Ondoy/29Nov2009	SYR																			
135	8.82788600100	125.12391800000	0.75	2.00	1.25	Ondoy/29Nov2009	SYR																			
136	8.82770800000	125.12276200000	0.85	0.00	-0.85	Ondoy/29Nov2009	SYR																			
137	8.8281500000	125.12243300000	0.88	0.00	-0.88	Ondoy/29Nov2009	SYR																			
138	8.82823799900	125.12235300000	0.69	0.00	-0.69	Ondoy/29Nov2009	SYR																			
139	8.82877700100	125.12114900000	0.06	0.00	-0.06	Ondoy/29Nov2009	SYR																			
140	8.82834400000	125.12032900000	0.88	0.00	-0.88	Ondoy/29Nov2009	SYR																			
141	8.82421000000	125.11638200000	1.09	0.00	-1.09	Ondoy/29Nov2009	SYR																			
142	8.80680200100	125.11040400000	0.35	1.00	0.65	Ondoy/29Nov2009	SYR																			
143	8.80695700100	125.11072100000	0.25	0.00	-0.25	Ondoy/29Nov2009	SYR																			
144	8.80710100000	125.11136500000	0.31	0.00	-0.31	Ondoy/29Nov2009	SYR																			
145	8.80768299900	125.10968300000	0.50	0.40	-0.10	Ondoy/29Nov2009	SYR																			
146	8.80769600100	125.10951400000	0.72	1.00	0.28	Ondoy/29Nov2009	БҮR																			
	Rain Return/ Scenario	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR
---------------	-----------------------	----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------
	Event/Date	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y	//29Nov2009 5Y
	irror	82 Ondo	28 Ondo	72 Ondo	35 Ondo	69 Ondo	31 Ondo	28 Ondo	5 Ondo	25 Ondo	62 Ondo	5 Ondo	48 Ondo	69 Ondo	0 Ondo	30 Ondo	41 Ondo	84 Ondo	40 Ondo	47 Ondo	20 Ondo	05 Ondo	63 Ondo	88 Ondo	67 Ondo	0 Ondo
Validation	Points (m)	.20 -0.	.00 -0.	.0- 00.	.00 -0.	.0- 00.0	.00	.00 -0.	0.3	.40 -1.	.0- 00.0	.00 1.4	-0- 00.0	.0- 00.	.50 0.6	.00 -1.	.00	-0.	.00	50 -0	.00 -1.	-0-	.0- 00.0	.45 -0.	.0- 00.	0.0
Model Var	(m)	1.02 0	0.28 0	0.72 0	0.35 0	0.69	0.31 0	0.28 0	0.05	1.65 0	0.62 0	0.55 2	0.48 0	0.69 0	0.00	1.30 0	1.41 0	1.64 0	1.40 0	1.97	1.20 0	0.05 0	0.63 0	1.33 0	0.67	2.94 3
ר Coordinates	Long	125.1090360000	125.10835700000	125.10888600000	125.10907500000	125.10821100000	125.10821500000	125.10872500000	125.10876600000	125.10649900000	125.11265200000	125.11274300000	125.11419500000	125.11435100000	125.11472600000	125.11705100000	125.11749800000	125.11791600000	125.11827900000	125.11895500000	125.12853300000	125.10918500000	125.10830900000	125.10838500000	125.10834400000	125.10830800000
Validatio	Lat	8.80675900000	8.80723400100	8.80614100100	8.80595100000	8.80515300000	8.80455700100	8.80454400000	8.80405900000	8.80462900000	8.80729300000	8.80704900000	8.80792400000	8.80807100100	8.80828000000	8.80850400000	8.80865000000	8.80859700000	8.80843200000	8.80870200000	8.82585700100	8.79905200000	8.79843000000	8.79853000000	8.79797600000	8.79861800000
	Point Number	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171

		Conditional and					
Point Number			Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
	Lat	Long					
172	8.79787800000	125.10866900000	0.05	0.00	-0.05	Ondoy/29Nov2009	5YR
173	8.80100900000	125.11549500000	1.52	1.00	-0.52	Ondoy/29Nov2009	5YR
174	8.80299700100	125.11725200000	1.92	0.00	-1.92	Ondoy/29Nov2009	5YR
175	8.8035450000	125.11711200000	3.66	0.00	-3.66	Ondoy/29Nov2009	5YR
176	8.8038630000	125.1183800000	0.62	0.00	-0.62	Ondoy/29Nov2009	5YR
177	8.80398700000	125.11844400000	0.95	0.00	-0.95	Ondoy/29Nov2009	5YR
178	8.80409699900	125.11827100000	1.75	1.30	-0.45	Ondoy/29Nov2009	5YR
179	8.8040600000	125.11862900000	0.29	0.70	0.41	Ondoy/29Nov2009	5YR
180	8.80376800000	125.11903900000	0.12	0.20	0.08	Ondoy/29Nov2009	5YR
181	8.80367400000	125.11890300000	0.51	0.20	-0.31	Ondoy/29Nov2009	5YR
182	8.80784400000	125.12056600000	0.51	0.00	-0.51	Ondoy/29Nov2009	SYR
183	8.80794900000	125.12020100000	1.36	0.00	-1.36	Ondoy/29Nov2009	SYR
184	8.80782100000	125.12111900000	0.24	0.00	-0.24	Ondoy/29Nov2009	SYR
185	8.80981900000	125.1212760000	1.19	2.00	0.81	Ondoy/29Nov2009	SYR
186	8.8099800000	125.12111800000	1.29	1.00	-0.29	Ondoy/29Nov2009	5YR
187	8.81007800000	125.12088100000	1.48	2.00	0.52	Ondoy/29Nov2009	5YR
188	8.81018200000	125.12077700000	1.60	1.50	-0.10	Ondoy/29Nov2009	5YR
189	8.81210200000	125.1205700000	1.42	0.00	-1.42	Ondoy/29Nov2009	5YR
190	8.81408400000	125.12084600000	1.48	1.00	-0.48	Ondoy/29Nov2009	SYR
191	8.81367700000	125.12059900000	1.48	0.40	-1.08	Ondoy/29Nov2009	5YR
192	8.8156960000	125.1211300000	1.16	1.00	-0.16	Ondoy/29Nov2009	5YR
193	8.81767800000	125.12170800000	1.65	1.00	-0.65	Ondoy/29Nov2009	SYR
194	8.81865500000	125.12234300000	0.88	0.00	-0.88	Ondoy/29Nov2009	SYR
195	8.81943600000	125.12287500000	0.88	0.40	-0.48	Ondoy/29Nov2009	5YR
196	8.81954100000	125.12287900000	0.88	1.00	0.12	Ondoy/29Nov2009	5YR

	Rain Return/ Scenario		5YR	SYR	SYR	5YR	SYR	5YR	5YR	5YR	SYR	SYR	5YR	SYR	5YR	SYR	5YR										
	Event/Date		Ondoy/29Nov2009																								
	Error		-0.05	-0.37	-0.01	1.61	1.29	-0.23	-1.02	-0.87	-0.69	0.30	1.62	-0.35	0.37	-0.11	-0.25	-0.55	0.37	0.05	-0.27	-1.38	0.02	-0.23	-0.18	0.35	0.70
	Validation Points (m)		0.00	0.00	0.40	2.00	2.00	0.40	0.00	0.00	0.60	2.00	2.50	0.00	1.25	0.55	0.40	0.05	0.98	0.55	0.75	0.00	1.40	1.35	1.40	0.40	0.75
	Model Var (m)		0.05	0.37	0.41	0.39	0.71	0.63	1.02	0.87	1.29	1.70	0.88	0.35	0.88	0.66	0.65	0.60	0.61	0.50	1.02	1.38	1.38	1.58	1.58	0.05	0.05
Coordinates	Lone	0	125.12913500000	125.12754600000	125.12637400000	125.1258250000	125.12537400000	125.12479500000	125.12397700000	125.12392400000	125.12348900000	125.12456300000	125.12395100000	125.11216200000	125.11233700000	125.11237600000	125.11188900000	125.11194100000	125.11238200000	125.11395500000	125.11545300000	125.11689400000	125.1168900000	125.11701700000	125.11686300000	125.12520400000	125.1257250000
United in the second se	Lat		8.82651000000	8.8250300000	8.82358500000	8.82320599900	8.82286700000	8.82240700000	8.82400900000	8.82429800000	8.82338100000	8.82259100000	8.82141100000	8.82255900000	8.82131699900	8.82058000000	8.82051100000	8.82224600000	8.80722700000	8.80768200000	8.80885299900	8.80818500000	8.80817300000	8.80762100000	8.80744999900	8.83698900000	8.83704900100
	Point Number		197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221

	Validatio	n Coordinates	Model Var	noitebileV			
Point Number	Lat	Long	(m)	Points (m)	Error	Event/Date	Rain Return/ Scenario
222	8.83709599900	125.1256660000	0.05	0.25	0.20	Ondoy/29Nov2009	SYR
223	8.83747000000	125.12621900000	0.05	0.25	0.20	Ondoy/29Nov2009	5YR
224	8.83736100000	125.12645800000	0.18	0.40	0.22	Ondoy/29Nov2009	5YR
225	8.83731300000	125.12720700000	0.05	0.75	0.70	Ondoy/29Nov2009	5YR
226	8.83692500000	125.12707300000	0.05	0.40	0.35	Ondoy/29Nov2009	5YR
227	8.83764500000	125.12905200000	0.05	0.40	0.35	Ondoy/29Nov2009	5YR
228	8.83755200000	125.12910700000	0.05	0.98	0.93	Ondoy/29Nov2009	5YR
229	8.8386030000	125.12999700000	0.05	0.07	0.02	Ondoy/29Nov2009	5YR
230	8.83829200000	125.1301800000	0.05	0.75	0.70	Ondoy/29Nov2009	5YR
231	8.83794700100	125.13040200000	0.48	0.55	0.07	Ondoy/29Nov2009	5YR
232	8.83850100000	125.13113200000	0.61	0.98	0.37	Ondoy/29Nov2009	5YR
233	8.83801100000	125.13140800000	0.65	0.75	0.10	Ondoy/29Nov2009	5YR
234	8.83849300000	125.13201900000	0.35	0.80	0.45	Ondoy/29Nov2009	БУR
235	8.83814799900	125.13248900000	0.06	0.55	0.49	Ondoy/29Nov2009	БУR
236	8.83816600000	125.13256400000	0.06	0.20	0.14	Ondoy/29Nov2009	5YR
237	8.83740200000	125.13293600000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
238	8.83704100000	125.13277600000	0.27	0.00	-0.27	Ondoy/29Nov2009	5YR
239	8.83727100000	125.13231800000	0.66	0.75	0.09	Ondoy/29Nov2009	5YR
240	8.83650800000	125.13257200000	0.05	0.00	-0.05	Ondoy/29Nov2009	БYR
241	8.83616500000	125.1323960000	0.05	0.00	-0.05	Ondoy/29Nov2009	SYR
242	8.83439200000	125.1316000000	0.06	0.00	-0.06	Ondoy/29Nov2009	5YR
243	8.83330200000	125.13119200000	0.12	0.00	-0.12	Ondoy/29Nov2009	5YR
244	8.8315850000	125.13008100000	0.05	0.55	0.50	Ondoy/29Nov2009	БУR
245	8.83161700000	125.12978700000	1.40	0.98	-0.42	Ondoy/29Nov2009	5YR
246	8.83156300000	125.12972800000	1.42	0.98	-0.44	Ondoy/29Nov2009	БҮR

	Rain Return/ Scenario	YR																								
		5	2 2	5	5	2)	2	2 2	5	2) 2)	2 2	2	5	5	5	5	5	5	5	2 2	5	5	5	5	5	5
	Event/Date	Ondoy/29Nov2009																								
	Error	-0.02	-0.01	-0.06	-0.05	-1.04	-1.04	0.35	0.51	-1.04	0.65	0.34	60.0	0.12	0.26	0.19	0.17	-0.76	-0.76	-4.17	-2.17	-1.21	0.58	-0.23	0.35	-0.55
Validation	Points (m)	1.40	1.40	0.00	0.00	0.00	0.00	1.50	1.55	0.00	1.80	0.55	0.55	0.40	0.55	0.55	0.55	1.00	0.60	0.00	1.05	0.50	0.70	0.65	0.40	0.45
rev labom	(m)	1.42	1.41	0.06	0.05	1.04	1.04	1.15	1.04	1.04	1.15	0.21	0.46	0.28	0.29	0.36	0.38	1.76	1.36	5.07	3.22	1.71	0.12	0.88	0.05	1.00
n Coordinates	Long	125.12970400000	125.12982100000	125.1303560000	125.12977900000	125.11582400000	125.1169900000	125.11702900000	125.11693800000	125.1169800000	125.11733200000	125.11854500000	125.11875300000	125.11793700000	125.11738500000	125.11743100000	125.11784700000	125.1172000000	125.12024000000	125.1195100000	125.1201800000	125.1209000000	125.1196500000	125.1225200000	125.1217300000	125.1186000000
Validatio	Lat	8.83151400000	8.83144100000	8.83151200000	8.83065600000	8.82652100000	8.82690600000	8.82696500000	8.82696300000	8.82694700000	8.82590600000	8.82445300000	8.82458600000	8.82361799900	8.82268800000	8.82167200000	8.81922999900	8.80296100000	8.80791100000	8.80726100000	8.80974200000	8.81419400000	8.81475800000	8.81897300000	8.81962800000	8.8200460000
	Point Number	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271

	Validatio	n Coordinates					
Point Number	Lat	Long	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
272	8.82096100000	125.1185600000	0.12	0.55	0.43	Ondoy/29Nov2009	SYR
273	8.82056700000	125.12307000000	1.75	0.70	-1.05	Ondoy/29Nov2009	5YR
274	8.8224000000	125.12477000000	0.63	0.60	-0.03	Ondoy/29Nov2009	5YR
275	8.82262900000	125.1242500000	1.82	0.82	-1.00	Ondoy/29Nov2009	SYR
276	8.82377200000	125.12547000000	3.46	1.52	-1.94	Ondoy/29Nov2009	5YR
277	8.82324700000	125.12677000000	2.11	0.60	-1.51	Ondoy/29Nov2009	5YR
278	8.82491700000	125.12667000000	1.06	1.41	0.35	Ondoy/29Nov2009	5YR
279	8.82474600000	125.12681000000	1.31	0.68	-0.63	Ondoy/29Nov2009	5YR
280	8.82562200000	125.12898000000	2.09	0.85	-1.24	Ondoy/29Nov2009	5YR
281	8.82720800000	125.12987000000	0.06	0.75	0.69	Ondoy/29Nov2009	5YR
282	8.82899300000	125.12894000000	2.24	1.72	-0.52	Ondoy/29Nov2009	5YR
283	8.8298600000	125.1278500000	1.57	1.61	0.04	Ondoy/29Nov2009	5YR
284	8.8300700000	125.12892000000	0.16	1.48	1.32	Ondoy/29Nov2009	БYR
285	8.83001400000	125.1261600000	1.01	1.40	0.39	Ondoy/29Nov2009	БYR
286	8.82972400000	125.1259300000	2.06	1.00	-1.06	Ondoy/29Nov2009	5YR
287	8.8292020000	125.1253600000	1.69	1.25	-0.44	Ondoy/29Nov2009	5YR
288	8.8295900000	125.1251400000	1.87	0.00	-1.87	Ondoy/29Nov2009	БYR
289	8.81387600000	125.11769000000	1.10	0.65	-0.45	Ondoy/29Nov2009	5YR
290	8.8108300000	125.11784000000	1.48	1.02	-0.46	Ondoy/29Nov2009	5YR
291	8.81916200000	125.11812000000	1.65	0.45	-1.20	Ondoy/29Nov2009	БYR
292	8.82154200000	125.11678000000	0.73	0.73	0.00	Ondoy/29Nov2009	БYR
293	8.82113300000	125.11608000000	1.07	0.65	-0.42	Ondoy/29Nov2009	БYR
294	8.82248700000	125.1175500000	1.92	0.55	-1.37	Ondoy/29Nov2009	БYR
295	8.82310300000	125.11772000000	0.05	0.45	0.40	Ondoy/29Nov2009	5YR
296	8.82496500000	125.1173400000	0.88	1.87	0.99	Ondoy/29Nov2009	БҮR

	Rain Return/ Scenario	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR	YR									
	te	09 5)	09	09	09 5	09	09	09 E	09 E	<u>5</u>	<u>5</u>	09 E	09 2)	09 2	09 2)	<u>5</u>	09 5	<u>.</u> 60	09 2)	<u>5</u>	<u>.</u> 60	09 2)	00 E	00 E	09 5	09 5
	Event/Da	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20	Ondoy/29Nov20									
	Error	-0.12	0.25	0.17	-0.09	0.60	0.12	-0.05	-0.09	-0.05	-0.12	-0.12	-0.06	-0.62	0.02	-0.64	-0.09	-0.34	-0.35	-0.28	0.82	0.58	0.29	0.45	0.00	0.21
	Validation Points (m)	0.55	0.30	0.40	0.45	0.65	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.00	1.20	1.20	0.50	0.50	0.50	0.50
	Model Var (m)	0.67	0.05	0.23	0.54	0.05	0.38	0.05	0.09	0.05	0.12	0.12	0.06	0.62	0.38	0.64	0.09	0.34	0.35	0.28	0.38	0.62	0.21	0.05	0.50	0.29
n Coordinates	Long	125.1185300000	125.1225000000	125.1195300000	125.1150600000	125.1136900000	125.1122200000	125.1097000000	125.1090600000	125.1085800000	125.10517000000	125.1055200000	125.1055900000	125.1151700000	125.11394000000	125.11009000000	125.1085200000	125.1073600000	125.1053300000	125.09948000000	125.1321300000	125.13292000000	125.1268900000	125.1287000000	125.12924000000	125.13242000000
Validatio	Lat	8.82836800000	8.82926900000	8.82832900000	8.82436100000	8.82255200000	8.82283700000	8.82028800000	8.81691600000	8.81924600000	8.81550700000	8.81781300000	8.81796100000	8.82702000000	8.82685500000	8.82487900000	8.82407200000	8.82210000000	8.82012000000	8.81628900000	8.83926100000	8.83993900000	8.83702300000	8.83604800000	8.83739500000	8.83874800000
	Point Number	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321

Point Number	Validatio	n Coordinates	Model Var	Validation	Error	Event/Date	Rain Return/ Scenario
	Lat	Long	(E)	Points (m)			
322	8.83141400000	125.1295600000	1.24	1.50	0.26	Ondoy/29Nov2009	5YR
323	8.83141400000	125.1295600000	1.24	1.50	0.26	Ondoy/29Nov2009	SYR
324	8.83109000000	125.1294000000	1.15	1.50	0.35	Ondoy/29Nov2009	SYR
325	8.83043100000	125.12898000000	0.05	1.50	1.45	Ondoy/29Nov2009	5YR
326	8.83055400000	125.1278500000	0.05	0.50	0.45	Ondoy/29Nov2009	SYR
327	8.83068400000	125.1265800000	0.88	0.50	-0.38	Ondoy/29Nov2009	5YR
328	8.83064500000	125.12618000000	1.19	1.20	0.01	Ondoy/29Nov2009	5YR
329	8.82989900000	125.12484000000	0.05	1.20	1.15	Ondoy/29Nov2009	SYR
330	8.8296560000	125.12179000000	0.23	0.00	-0.23	Ondoy/29Nov2009	SYR
331	8.8286760000	125.11882000000	0.79	0.60	-0.19	Ondoy/29Nov2009	5YR
332	8.83022400000	125.11997000000	0.43	0.50	0.07	Ondoy/29Nov2009	SYR
333	8.83491500000	125.1228300000	0.60	0.00	-0.60	Ondoy/29Nov2009	SYR
334	8.83402800000	125.11668000000	0.67	0.00	-0.67	Ondoy/29Nov2009	SYR
335	8.83394300000	125.1163000000	0.50	0.00	-0.50	Ondoy/29Nov2009	SYR
336	8.8269000000	125.1146300000	0.43	0.00	-0.43	Ondoy/29Nov2009	SYR
337	8.82783100000	125.1134500000	0.80	2.00	1.20	Ondoy/29Nov2009	SYR
338	8.82755700000	125.11109000000	0.69	1.50	0.81	Ondoy/29Nov2009	SYR
339	8.82770200000	125.10972000000	0.63	1.50	0.87	Ondoy/29Nov2009	SYR
340	8.83189600000	125.11262000000	1.45	0.50	-0.95	Ondoy/29Nov2009	SYR
341	8.83264200000	125.11242000000	0.52	0.00	-0.52	Ondoy/29Nov2009	SYR
342	8.83123100000	125.1089500000	0.31	0.00	-0.31	Ondoy/29Nov2009	SYR
343	8.83089600000	125.10899000000	0.88	1.50	0.62	Ondoy/29Nov2009	SYR
344	8.82920700000	125.1076900000	1.19	1.50	0.31	Ondoy/29Nov2009	SYR
345	8.82773100000	125.10701000000	0.64	0.70	0.06	Ondoy/29Nov2009	SYR
346	8.8294700000	125.10422000000	0.67	0.90	0.23	Ondoy/29Nov2009	БҮR

	Validatio	n Coordinates	Model Var	Validation	Ľ		
Point Number	Lat	Long	(m)	Points (m)	ELTOL	Event/ Date	kain keturn/ Scenario
347	8.8285560000	125.1025500000	0.60	0.00	-0.60	Ondoy/29Nov2009	5YR
348	8.8280630000	125.10418000000	0.79	06.0	0.11	Ondoy/29Nov2009	5YR
349	8.82751700000	125.10282000000	0.50	0.00	0.40	Ondoy/29Nov2009	5YR
350	8.82756100000	125.1030300000	0.60	1.50	0.90	Ondoy/29Nov2009	5YR
351	8.8266260000	125.10362000000	0.06	0.50	0.44	Ondoy/29Nov2009	5YR
352	8.8263560000	125.10313000000	0.35	0.50	0.15	Ondoy/29Nov2009	5YR
353	8.82571600000	125.10263000000	0.21	0.50	0.29	Ondoy/29Nov2009	5YR
354	8.82469800000	125.1015300000	0.28	0.50	0.22	Ondoy/29Nov2009	5YR
355	8.82704200000	125.09955000000	0.09	0.00	-0.09	Ondoy/29Nov2009	5YR
356	8.82923700000	125.09938000000	0.12	0.00	-0.12	Ondoy/29Nov2009	5YR
357	8.8286600000	125.10117000000	0.67	0.00	0.23	Ondoy/29Nov2009	5YR
358	8.82695400000	125.1014500000	0.40	1.20	0.80	Ondoy/29Nov2009	5YR
359	8.82609900000	125.10091000000	0.12	0.90	0.78	Ondoy/29Nov2009	5YR
360	8.82895700000	125.09642000000	0.63	0.90	0.27	Ondoy/29Nov2009	5YR
361	8.82691400000	125.0969900000	0.47	0.00	-0.47	Ondoy/29Nov2009	5YR
362	8.82772100000	125.0962600000	0.69	0.50	-0.19	Ondoy/29Nov2009	5YR
363	8.82716200000	125.09398000000	0.43	0.25	-0.18	Ondoy/29Nov2009	5YR
364	8.82591400000	125.09519000000	0.12	0.00	-0.12	Ondoy/29Nov2009	5YR
365	8.82519200000	125.0969500000	0.28	0.00	-0.28	Ondoy/29Nov2009	5YR
366	8.82542100000	125.0969600000	0.31	0.00	-0.31	Ondoy/29Nov2009	5YR

-

T T

-

Annex 12. Educational Institutions Affected by Flooding in Gingoog Floodplain

Table A-12.1 Educational Institutions in Gingoog City, Misamis Oriental Affected by Flooding in GingoogFloodplain

	Misamis Oriental			
	Gingoog City			
Duilding Name	Darangal	R	ainfall Scenari	io
	Barangay	5-year	25-year	100-year
18-A Elem School	Barangay 18-A	Medium	Medium	Medium
18-A Elem School	Barangay 19	Medium	Medium	High
Day Care Center	Barangay 19	Medium	High	High
Elementary School	Barangay 20	Medium	Medium	Medium
JRN Christian Academy	Barangay 21	Low	Low	Medium
Daan Lungsod Elem School	Daan-Lungsod			Low
JRN Christian Academy	Daan-Lungsod		Low	Low
School	Murallon	Medium	Medium	Medium
Elementary School	Santiago		Low	Low

Annex 13. Health Institutions Affected by Flooding in Gingoog Floodplain

		·		
	Misamis Orier	ntal		
	Gingoog Cit	y		
Duilding Norse	Derenery		Rainfall Scenari	0
Building Name	Barangay	5-year	25-year	100-year
Brgy Health Center	Barangay 19	Medium	Medium	Medium
Botika ni Tata	Barangay 20			
Nine Medical Laboratory	Barangay 20			Low
Pharmacy	Barangay 20			
Brgy Health Center	Daan-Lungsod		Low	Low

Table A-13.1 Health Institutions in Gingoog City, Misamis Oriental Affected by Flooding in Gingoog Floodplain