Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiD/AR Surveys and Flood Mapping of Morong River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Central Luzon State University (CLSU)

APRIL 2017

© University of the Philippines Diliman and Central Luzon State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E. C. Paringit and A. M. Paz-Alberto (eds.) (2017), LiDAR Surveys and Flood Mapping of Morong River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-116pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Annie Melinda Paz-Alberto

Project Leader, Phil-LiDAR 1 Program Central Luzon State University Science City of Muñoz, Nueva Ecija Philippines 3120 E-mail: melindapaz@gmail.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-004-4

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

TABLE OF CONTENTS

List of	List of Figures				
List of	Tables	vii			
List of Acronyms and Abbreviations					
СНУР.	TER 1. OVERVIEW OF THE PROGRAM AND MORONG RIVER	1			
CITAI	1.1 Background of the Phil-LIDAR 1 Program	. 1			
	1.2 Morong River Basin	. 1			
СНОР.	TER 2 LIDAR ACOLUSITION IN MORONG FLOODPLAIN	R			
CITAI	2.1 Flight Plans				
	2.2 Ground Base Station	. 6			
	2.3 Flight Missions	10			
	2.4 Survey Coveragea	11			
CHAP	TER 3 LIDAR DATA PROCESSING FOR MORONG FLOODPLAIN	13			
	3.1 Transmittal of Acquired LiDAR Data	13			
	3.2 Trajectory Computation	14			
	3.3 LiDAR Point Cloud Computation	16			
	3.4 LiDAR Data Quality Checking	17			
	3.5 LiDAR Point Cloud Classification and Rasterization	20			
	3.6 LIDAR Image Processing and Orthophotograph Rectification	22			
	3.7 DEIVI Editing and Hydro-Correction	24			
	3.0 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	25			
	3.10 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	30			
	3.11 Feature Extraction	32			
	3.11.1 Quality Checking of Digitized Features' Boundary	32			
	3.11.2 Height Extraction	33			
	3.11.3 Feature Attribution	33			
	3.11.4 Final Quality Checking of Extracted Features	34			
CHAP	TER 4 Survey and Measurements in the Morong River Basin	35			
	4.1 Summary of Activities	35			
	4.2 Control Survey	36			
	4.3 Baseline Processing	40			
	4.4 Network Adjustment	40			
	4.5 Cross-section, Bridge As-Built Survey, and Water Level Marking	44			
	4.6 Validation Points Acquisition Survey	49			
	4.7 Bathymetric Survey	50			
CHAP.	TER 5 FMC	53			
	5.1 Data Used for Hydrologic Modeling	53			
	5.1.1 Hydrometry and Rating Curves	53			
	5.1.2 Precipitation	53			
	5.1.3 Rating Curves and River Outliow	54			
	5.2 HMS Model	57			
	5.4 Cross-section Data	58			
	5.5 Flo 2D Model	59			
	5.6 Results of HMS Calibration	61			
	5.7 Calculated Outflow hydrographs and Discharge Values for different				
	Rainfall Return Periods	62			
	5.7.1 Hydrograph using the Rainfall Runoff Model	63			
	5.8 River Analysis Model Simulation	64			
	5.9 Flood Hazard and Flow Depth Map	64			
	5.10 Inventory of Areas Exposed to Flooding	71			
	5.11 FIOOD VAIIDATION	/4			
Refere	ences	76			
Annex		77			
	ANNEX A-1. LECHNICAL SPECIFICATION OF THE SENSORS	/7			
	ANNEA A-2. NAIVIKIA CEKTIFICATES OF KEFEKENCE POINTS USED	19			

ANNEX A-3. BASELINE PROCESSING REPORTS OF REFERENCE POINTS USED	81
ANNEX A-4. THE SURVEY TEAM	
ANNEX A-5. DATA TRANSFER SHEET FOR MORONG FLOODPLAIN	83
ANNEX A-6. FLIGHT LOGS	86
ANNEX A-7. FLIGHT STATUS	89
ANNEX A-8. MISSION SUMMARY REPORT	93

LIST OF FIGURES

Figure 1.	Map of Morong River Basin	1
Figure 2.	Flight plans and base stations used for Morong floodplain using Pegasus Sensor	4
Figure 3.	Flight plans and base stations used for Morong floodplain using Gemini Sensor	5
Figure 4.	GPS set-up over BTN-71 located in Brgy. Maria Fe, Orani, 30 meters	
	southwest of the Day Care Center, 20 meters southeast of the basketball court	
	and 15 meters of the chapel (a) and NAMRIA reference point BTN-71	
	(b) as recovered by the field team	6
Figure 5.	GPS set-up over ZBS-64 located in Brgy. Magsaysay which is about	
	one (1) kilometer of Castillejos Municipal Hall (a) and NAMRIA reference point ZBS-64	
	(b) as recovered by the field team	8
Figure 6.	Actual LiDAR survey coverage for Morong floodplain.	12
Figure 7.	Schematic Diagram for Data Pre-Processing Component	13
Figure 8.	Smoothed Performance Metric Parameters of a Morong Flight 2658G	14
Figure 9.	Solution Status Parameters of Morong Flight 2658G.	15
Figure 10.	Best Estimated Trajectory for Morong floodplain.	16
Figure 11.	Boundary of the processed LiDAR data over Morong Floodplain	1/
Figure 12.	Image of data overlap for Morong floodplain.	
Figure 13.	Pulse Density map of merged LIDAR data for Morong floodplain	19
Figure 14.	Elevation difference map between flight lines for iviorong floodplain	19
Figure 15.	Quality checking for a Worong flight 2658G using the Profile Tool of QT Wodeler.	20
Figure 16.	Depart cloud before (a) and ofter (b) clossification results (b) in Terrascan.	21
Figure 17.	The Production of last roturn DSM (a) and DTM (b) first roturn DSM (a)	
Figure 18.	and secondary DTM (d) in some portion of Morong floodalain	22
Eiguro 10	And secondal y DTM (d) in some portion of Morong hoodplain	ZZ
Figure 19.	Sample orthonhotograph tiles for Morong floodplain	25 22
Figure 20.	Portions in the DTM of Morong floodplain – a bridge before (a) and after	23
rigure 21.	(b) manual editing: a fish ponds before (c) and after (d) data retrieval:	
	and a building before (e) and after (f) manual editing	24
Figure 22	Man of Processed LiDAR Data for Morong Flood Plain	24 26
Figure 23	Map of Morong Flood Plain with validation survey points in green	20
Figure 24	Correlation plot between calibration survey points and LiDAR data	29
Figure 25.	Correlation plot between validation survey points and LiDAR data.	
Figure 26.	Map of Morong Flood Plain with bathymetric survey points shown in blue	
Figure 27.	QC blocks for Morong building features	
Figure 28.	Extracted features for Morong floodplain	34
Figure 29.	Morong River Survey Extent	35
Figure 30.	GNSS Network covering Morong River	36
Figure 31.	GNSS base set up, Trimble [®] SPS 882, atBTN-68located just outside	
	the Bataan Nuclear Power Plant along National High Way, Brgy. Nagbalayong,	
	Municipality of Morong, Bataan	37
Figure 32.	GNSS receiver setup, Trimble [®] SPS 882, atBTN-71 located at the middle	
	of a basketball court, Barangay Day Care Center and Barangay Chapel	
	in Brgy. Apollo, Municipality of Orani, Bataan	38
Figure 33	GNSS receiver setup, Trimble [®] SPS 852, at BA-196 located at the approach	
	of CapitanganBridge in Brgy. Capitangan, Municipality of Abucay, Bataan	38
Figure 34.	GNSS receiver setup, Trimble [®] SPS 985, at UP-MOR located at the approach	
	of Morong Bridge in Brgy. Poblacion, Municipality of Morong, Bataan	39
Figure 35.	Morong Bridge facing downstream	
Figure 36.	MorongBridge cross-section diagram	45
Figure 37.	Morong bridge cross-section planimetric map	46
Figure 38.	Bridge as-built form of Morong Bridge	
Figure 39.	Water-level markings on Morong Bridge	48
Figure 40.	Validation points acquisition survey set up along MorongKiver Basin	
Figure 41.	valuation point acquisition survey onvioringkiver Basin	49 50
Figure 42.	Damymetric Survey using Onnex [®] Single Bedin etho Sounder in MorongKiver	5U E0
Figure 43.	Rathymetric survey of Morong Piver	
Figure 44.	MorongRiverhed Profile	בייייי ני
Figure 16	The location man of Morong HEC-HMS model used for calibration	ے د ج2
· 1541 C TU.		

Figure 17	Cross-Section Plot of Morong Bridge	5/
Figure 18	Rating Curve at Morong Bridge Morong Bataan	5/
Figure 40.	Rainfall and outflow data at Morong used for modeling	55
Figure 50	Sangley Point PIDE location relative to Morong Piver Pasin	56
Figure 50.	Support Storm generated for a 21-br period rainfall for various return periods	50
Figure 51.	The Marang river basin model generated using UEC UMS	
Figure 52.		
Figure 53.	River cross-section of MorongRiver generated through Arcmap HEC GeoRAS tool	58
Figure 54.	Screenshot of subcatchment with the computational area to be modeled	
	in FLO-2D GDS Pro	59
Figure 55.	Generated 100-year rain return hazard map from FLO-2D Mapper	60
Figure 56.	Generated 100-year rain return flow depth map from FLO-2D Mapper	60
Figure 57.	Outflow Hydrograph of Morong produced by the HEC-HMS	
	model compared with observed outflow	61
Figure 58.	Outflow hydrograph at Morong Station generated using Sangley Point	
-	RIDF simulated in HEC HMS.	63
Figure 59.	Sample output of Morong RAS Model	64
Figure 60.	100-year Flood Hazard Map for Bucao Floodplain	65
Figure 61.	100-year Flow Depth Map for Bucao Floodplain	66
Figure 62.	25-year Flood Hazard Map for Bucao Floodplain	67
Figure 63.	25-year Flow Depth Map for Bucao Floodplain	68
Figure 64.	5-year Flood Hazard Map for Bucao Floodplain	69
Figure 65.	5-year Flood Depth Map for Bucao Floodplain	70
Figure 66.	Affected Areas in Morong, Bataan during 5-Year Rainfall Return Period	71
Figure 67.	Affected Areas in Morong, Bataan during 25-Year Rainfall Return Period	72
Figure 68.	Affected Areas in Morong, Bataan during 100-Year Rainfall Return Period	73
Figure 69	Validation points for 5-year Flood Depth Map of Morong Floodplain	

LIST OF TABLES

Table 1.	Flight planning parameters for Pegasus LiDAR system	3
Table 2.	Flight planning parameters for Gemini LiDAR system	3
Table 3.	Details of the recovered NAMRIA horizontal control point BTN-71	
	used as base station for the LiDAR acquisition	7
Table 4.	Details of the recovered NAMRIA horizontal control point ZBS-64 used as	
	base station for the LiDAR acquisition	8
Table 5.	Details of the established NAMRIA horizontal control point AAC-01	
	used as base station for the LiDAR acquisition	9
Table 6.	Ground control points used during LiDAR data acquisition	9
Table 7.	Flight missions for LiDAR data acquisition in Morong floodplain.	10
Table 8.	Actual parameters used during LiDAR data acquisition	10
Table 9.	List of municipalities and cities surveyed during Morong floodplain LiDAR survey	11
Table 10.	Self-Calibration Results values for Morong flights	16
Table 11.	List of LiDAR blocks for Morong floodplain.	17
Table 12.	Morong classification results in TerraScan.	20
Table 13.	LiDAR blocks with its corresponding area.	24
Table 14.	Shift Values of each LiDAR Block of Morong floodplain.	25
Table 15.	Calibration Statistical Measures.	29
Table 16.	Validation Statistical Measures	30
Table 17.	Quality Checking Ratings for Morong Building Features.	32
Table 18.	Number of Building Features Extracted for Morong Floodplain.	33
Table 19.	Total Length of Extracted Roads for Morong Floodplain.	34
Table 20.	Number of Extracted Water Bodies for Morong Floodplain	34
Table 21.	List of Reference and Control Points occupied for Morong River Survey	37
Table 22.	Baseline Processing Summary Report for MorongRiver Survey	40
Table 23.	Control Point Constraints	40
Table 24.	Adjusted Grid Coordinates	41
Table 25.	Adjusted Geodetic Coordinates	42
Table 26.	Reference and control points used and its location	43
Table 27.	RIDF values for Sangley Point Rain Gauge computed by PAGASA	55
Table 28.	Range of Calibrated Values for Morong	61
Table 29.	Summary of the Efficiency Test of Morong HMS Model	62
Table 30.	Peak values of the Morong HEC-HMS Model outflow using the Sangley Point RIDF	63
Table 31.	Affected Areas in Morong, Bataan during 5-Year Rainfall Return Period	71
Table 32.	Affected Areas in Morong, Bataan during 25-Year Rainfall Return Period	72
Table 33.	Affected Areas in Morong, Bataan during 100-Year Rainfall Return Period	72
Table 34.	Area covered by each warning level with respect to the rainfall scenario	73
Table 35.	Actual Flood Depth vs Simulated Flood Depth in Morong	75
Table 36.	Summary of Accuracy Assessment in Morong	75

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	AAC Asian Aerospace Corporation			
Ab	abutment			
ALTM	Airborne LiDAR Terrain Mapper			
ARG	automatic rain gauge			
ATQ	Antique			
BA	Bridge Approach			
BM	benchmark			
CAD	Computer-Aided Design			
CSRS	Chief Science Research Specialist			
DAC	Data Acquisition Component			
DEM	Digital Elevation Model			
DENR	Department of Environment and Natural Resources			
DOST	Department of Science and Technology			
DPPC	Data Pre-Processing Component			
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]			
DRRM	Disaster Risk Reduction and Management			
DSM	Digital Surface Model			
DTM	Digital Terrain Model			
DVBC	Data Validation and Bathymetry Component			
FMC	Flood Modeling Component			
FOV	Field of View			
GiA	Grants-in-Aid			
GCP	Ground Control Point			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System			
HEC-RAS	Hydrologic Engineering Center - River Analysis System			
HC	High Chord			
IDW	Inverse Distance Weighted [interpolation method]			
IMU	Inertial Measurement Unit			
kts	knots			
LAS Land Analysis System				

LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NAMRIA	National Mapping and Resource Information Authority			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall Intensity Duration Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Sun Canopy Sensor			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
TBC	Thermal Barrier Coatings			
UPC	University of the Philippines Cebu			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1 OVERVIEW OF THE PROGRAM AND MORONG RIVER

Enrico C. Paringit, Dr. Eng., Dr. Annie Melinda Paz-Alberto, and Gloria N. Ramos

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the Central Luzon State University (CLSU). CLSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 8 river basins in Central Luzon. The university is located in Munoz City in the province of Nueva Ecija.

1.2 Morong River Basin

120°20'0"E Figure l. Map of Morong River Basin

Morong River is one of the five (5) rivers out of twelve (12) waterways that drains the municipality of Morong and can be found in Barangay Poblacion according to the Municipal Planning Development

Office of Management Plan (2015-2025). The river is located at 14° 40′ 55.41″ N 120° 15′ 58.16″ E, within the municipality of Morong, the second largest municipality in the province of Bataan, Central Luzon, Philippines. According to the 2015 national census of NSO, a total of 18,923 persons are residing within the immediate vicinity of the river which is distributed among three barangays namely: Sabang, Poblacion and Binaritan, in Morong, Bataan. Fishing is the primary source of livelihood for the majority of its population although there are also few areas are utilized for tourism and recreation such as the Pawikan Conservation Center in Brgy. Nagbalayong. (http://www.bataan.gov.ph/home/ about-bataan/fast-facts/socio-economic-attribute.html, 2016). The city is also the center for trade, commerce, services and education in the Province of Bataan. On August 19, 2016 it has been reported that heavy monsoon rains have caused death to three persons in Bataan, one of whom is from Morong (http://newsinfo.inquirer.net/807678/state-of-calamity-up-in-flooded-areas, 2016).

Morong River Basin covers majority of Municipality of Morong; and minor portions of Municipalities of Bagac, Orani and Samal in Bataan. The DENR River Basin Control Office identified the basin to have a drainage area of 66km2 and an estimated 74 million cubic meter (MCM) annual run-off (RBCO, 2015).

The estimated terrain elevation above sea level is 3 meters and the watershed boundary was estimated at 64.44 square kilometer. Variant forms of spelling for Morong River or in other languages: Moran River, Moron River, Morong River, Morong River, Morong River.

The prevailing climate in Morong is categorized under Type 1 of the Modified Corona's Classification. Rainy season starts in May and ends up around October. The rest of the year is dry with occasional rains dispersed widely throughout the province. Adjunct to this relatively hot and humid climate are the major climate cyclones largely controlled by the seasonal winds (Southwest and Northeast Monsoons) and topography. The Southwest monsoon prevails in the area from June to October whereas the Northeast monsoon prevails from November to March.

Morong has a rugged mountainous terrain. The relatively flat areas are found along the coasts facing West Philippine Sea. The largest among these is the narrow strip that spans the rice lands of Nagbalayong to Poblacion, Eman Point and to the north by Mayagao Point. Great portions of the municipality are rugged and mountainous terrain dominated by Mt. Natib's Peak (1,253 masl) towards southeast. Other landforms of considerable heights are Bataan Peak (1,026 masl) and Mt. Silanganan (910 masl). Major tributaries such as Tawawa, Bisay, Bayandati and Morong River drain the slopes of these mountainous terrains toward the West Philippine Sea and Subic Bay.

Morong municipality is a 3rd class municipality of Bataan Province. The municipality has a total population of 29,901 as of 2015 PSA census distributed among the five (5) barangays namely: Biniratan, Mabayao (with least number of population with only 4,771), Nagbalayong (the less dense barangay with only 0.62), Poblacion (the densest barangay having 13 persons per hectare) and Sabang, the barangay that was recorded as the most populated having 7,446.

Having low densities, Morong is considered as rural municipality. It is a distant municipality and mountinous land mass of which large portion belong to protected areas that is only small percent is devoted to residential, commercial and industrial purposes. The municipality of Morong although densely populated has been identified as a Special Economic Zone with the presence of Bataan Technology Park and a tourist destination as evidenced by its pristine beaches. It also serves as an alternate access to Subic Bay Freeport Zone and often called the back gate of SBFZ. Through these, Morong is also considered as a Secondary Urban Center A.

Morong has a land area of 219.20 square kilometers with forested areas cover at least 9000 hectares excluding Subic Bay Freeport Zone. These are mainly dipterocarp species vegetation and residual growths. Almost all of the forests in Morong are part of the Bataan National Park (BNP), a protected area covered by the NIPAS Law (Republic Act 7586) (SWMP-MPDO, 2015).

CHAPTER 2 LIDAR ACQUISITION IN MORONG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, and Ms. Jasmin M. Domingo

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Morong floodplain in Bataan. These missions were planned for nine (9) lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system are found in Table 1 and Table 2. Figure 2 and Figure 3 show the flight plans and base stations used for Morong floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BTN	1000	30	50	200	30	120	5

Table 1. Flight planning parameters for Pegasus LiDAR system

Table 2. Flight planning parameters for Gemini LiDAR system

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BAL E	1000	30	40	100	50	120	5
BTN C	800	30	50	200	40	120	5
BTN D	800	30	50	200	40	120	5

Figure 2. Flight plans and base stations used for Morong floodplain using Pegasus Sensor

Figure 3. Flight plans and base stations used for Morong floodplain using Gemini Sensor

2.2 Ground Base Station

The project team was able to recover two (2) NAMRIA horizontal ground control points: BTN-71 and ZBS-64which are both of second (2nd) order accuracy. The project team also established one ground control point (AAC-01). The certification for the NAMRIA reference points and benchmarks are found in ANNEX A-2 while the baseline processing of the ground control points are found in ANNEX A-3. These were used as base stations during flight operations for the entire duration of the survey (January 2, 2014, January 23, 2015, and August 26, 2015). Base stations were observed using dual frequency GPS receivers, TOPCON GR5 and TRIMBLE SPS985. Flight plans and location of base stations used during the aerial LiDAR Acquisition in Morong floodplain are shown in Figure 2 and Figure 3.

Figure 4 to Figure 5 show the recovered NAMRIA reference points within the area. In addition, Table 3 to Table 5 show the details about the following NAMRIA control stations and established points, while Table 6 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

Figure 4. GPS set-up over BTN-71 located in Brgy. Maria Fe, Orani, 30 meters southwest of the Day Care Center, 20 meters southeast of the basketball court and 15 meters of the chapel (a) and NAMRIA reference point BTN-71 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point BTN-71 used as base station for the LiDAR acquisition.

Station Name	BTN-71		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)		1:50,000	
	Latitude	14º47' 30.18239" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	120°32' 9.95860" East	
	Ellipsoidal Height	7.56300 meters	
Grid Coordinates, Philippine Transverse	Easting	450060.675 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1635812.88 meters	
	Latitude	14º47' 24.68277" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	120º 32' 14.83855" East	
	Ellipsoidal Height	49.42500 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	234,782.54 meters	
(UTM 51N PRS 1992)	Northing	1,636,645.28 meters	

(a)

Figure 5. GPS set-up over ZBS-64 located in Brgy. Magsaysay which is about one (1) kilometer of Castillejos Municipal Hall (a) and NAMRIA reference point ZBS-64 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point ZBS-64 used as base station for the LiDAR
acquisition.

Station Name	ZBS-64		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1	1:50,000	
	Latitude	14º56' 28.82886" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	120°11' 31.25386" East	
	Ellipsoidal Height	52.07500 meters	
Grid Coordinates, Philippine Transverse	Easting	413077.841 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1652473.038 meters	
	Latitude	14º56' 23.26711" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	120º 11' 36.12262" East	
	Ellipsoidal Height	92.66800 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	197, 928.90 meters	
(UTM 51N PRS 1992)	Northing	1,653,646.25 meters	

Table 5. Details of the established NAMRIA horizontal control point AAC-01 used as base station for the LiDAR acquisition.

Station Name	AAC-01			
Order of Accuracy		1 st		
Relative Error (horizontal positioning)	1	:100,000		
	Latitude	15°11' 27.81685" North		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	120°32' 43.37833" East		
	Ellipsoidal Height	154.260 meters		
Grid Coordinates, Philippine Transverse	Easting	2366272.483 meters		
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1680836.256 meters		
	Latitude	15°11' 22.22626" North		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	120° 32' 48.22418" East		
	Ellipsoidal Height	194.988 meters		

Table 6. Ground control points used during LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
January 2, 2014	926G	2BALE002A	BTN-71
January 23, 2015	2481P	1BTN023A	AAC-01 and ZBS-64
August 27, 2015	2658G	2BTNCD239A	ZBS-64

2.3 Flight Missions

Three (3) missions were conducted to complete LiDAR data acquisition in Morong Floodplain, for a total of twelve hours and twenty seven minutes (12+27) of flying time for RP-C9122, RP-C9022 and RP-9322. All missions were acquired using Gemini and Pegasus LiDAR systems. Table 7 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 8 presents the actual parameters used during the LiDAR data acquisition.

Data Sumarrad	Flight	Flight Plan	Surveyed	Area Surveyed	Area Surveyed Outside	No. of	Fly Ho	ing urs
Date Surveyed	Number	Area (km²)	Area (km²)	Floodplain (km²)	the Floodplain (km²)	(Frames)	Hr	Min
January 2, 2014	926G	85.47	88.41	0	88.41	402	4	05
January 23, 2015	2481P	133.76	164.91	24.17	140.74	0	4	23
August 27, 2015	2658G	69.96	84.98	28.47	56.51	347	3	59
ΤΟΤΑΙ	-	289.19	338.3	52.64	285.66	749	12	27

Table 7 Flight missions	for LiDAR data aco	usition in Morone	r floodplain
rupie (. r inglie illiootolio	TOT LIDTING GARGA ACC		s mooupium.

Table 8. Actual parameters used during LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
926G	1000	30	40	100	50	120	5
2481P	1000	30	50	200	30	120	5
2658G	800	30	50	100	40	120	5

2.4 Survey Coverage

Morong floodplain is located in the municipality of Morong, Bataan. Municipalities of Morong, Hermosa, San Marcelino, and San Antonio are mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 9. The actual coverage of the LiDAR acquisition for Morong Floodplain is presented in Figure 6.

Province	Municipality/City	Area of Municipality/ City(km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed
	Morong	240.57	114.86	48%
Bataan	Hermosa	135.27	46.01	34%
	Orani	53.25	12.067	23%
	San Felipe	96.23	10.02	10%
	San Antonio	179.70	18.21	10%
	Olongapo City	178.25	14.31	8%
Zambalas	San Marcelino	337.57	26.40	8%
Zampales	Cabangan	231.28	15.87	7%
	Subic	253.59	5.54	2%
	Castillejos	72.10	1.10	2%
	Botolan	649.68	7.82	1%

Table 9. List of municipalities and cities surveyed during Morong floodplain LiDAR survey.

Figure 6. Actual LiDAR survey coverage for Morong floodplain.

CHAPTER 3 LIDAR DATA PROCESSING FOR MORONG FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Engr. Elainne R. Lopez , Aljon Rie V. Araneta, Engr. Vincent Louise DL. Azucena, Engr. Abigail C. Ching , Engr. Jommer M. Medina, John Andrew B. Cruz, Gloria N. Ramos, Hanna Mae T. Carganilla, Cenon Conrado C. Divina, Jeremy Joel J. Barza, Kathrina Mapanao, Melissa Joy Sison, Kevin Christian Manipon

Figure 7. Schematic Diagram for Data Pre-Processing Component

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

3.1 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Morong floodplain can be found in ANNEX A-5. Data Transfer Sheets. Missions flown during the first survey conducted on January 2014 and second survey

conducted on January 2015 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) both Pegasus and Gemini system over Municipality of Morong, Bataan. The Data Acquisition Component (DAC) transferred a total of 51.0 Gigabytes of Range data, 748 Megabytes of POS data, 105.85 Megabytes of GPS base station data, and 38.80 Gigabytes of raw image data to the data server on September 10, 2015. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Morong was fully transferred on October 05, 2015 as indicated on the Data Transfer Sheets for Morong floodplain.

3.2 Trajectory Computation

The *Smoothed Performance Metric* parameters of the computed trajectory for flight 2658G, one of the Morong flights, which is the North, East, and Down position RMSE values are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on August 23, 2015 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 8. Smoothed Performance Metrics of a Morong Flight 2658G.

The time of flight was from 350,000 seconds to 359,500 seconds, which corresponds to morning of August 27, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimize the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 2.55 centimeters, the East position RMSE peaks at 2.20 centimeters, and the Down position RMSE peaks at 4.49 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 9. Solution Status Parameters of Morong Flight 2658G.

The Solution Status parameters of flight 2658G, one of the Morong flights, which are the number of GPS satellites, Positional Dilution of Precision, and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down below 9. Majority of the time, the number of satellites tracked was between 9 and 12. The PDOP value also did not go above the value of 3, which still indicates optimal GPS geometry. The processing mode stayed at the value of 0 for almost the entire survey time with some parts go to 1 attributed to the turn performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Morong flights is shown in Figure 10.

Figure 10. Best Estimated Trajectory for Morong floodplain.

3.3 LiDAR Point Cloud Computation

The produced LAS data contains 49 flight lines, thirteen (13) of those flight lines contains only one (1) channel for the Gemini system, and the remaining 36 flight lines contains two channels since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Morong floodplain are given in Table 10.

Table 10. Self-Calibration Re	sults values for	Morong flights.
-------------------------------	------------------	-----------------

Parameter	Value
Boresight Correction stdev (<0.001degrees)	0.000479
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000981
GPS Position Z-correction stdev (<0.01meters)	0.0092

The optimum accuracy is obtained for all Morong flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the ANNEX A-8.

3.4 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 11. Boundary of the processed LiDAR data over Morong Floodplain

The total area covered by the Morong missions is 278.08 sq.km that is comprised of three (3) flight acquisitions grouped and merged into three (3) blocks as shown in Table 11.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Bataan_Bal_BlkE	926G	89.95
Bataan_Reflights_Bal_BlkE_additional	2481P	107.25
Clark_reflights_BTNCD	2658G	80.88
TOTAL		278.08

Table 11.	List of	Lidar	blocks	for N	lorong	floodr	lain.
i abie ii.	LISCOL	LIDIN	DIOCKS	TOT IV	lorong	ուօօգե	uani.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Pegasus system employs two channels and the Gemini system employs one channel, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 12. Image of data overlap for Morong floodplain.

The overlap statistics per block for the Morong floodplain can be found in ANNEX A-8. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 31.52% and 50.11% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for Morong floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.12 points per square meter.

Figure 13. Pulse Density map of merged LiDAR data for Morong floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 14. Elevation difference map between flight lines for Morong floodplain.

A screen capture of the processed LAS data from a Morong flight 2658G loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 15. Quality checking for a Morong flight 2658G using the Profile Tool of QT Modeler.

3.5 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	193,857,135
Low Vegetation	160,000,845
Medium Vegetation	367,952,671
High Vegetation	680,792,010
Building	29,975,320

Table 12. Morong classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Morong floodplain is shown in Figure 16. A total of 401 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 12. The point cloud has a maximum and minimum height of 756.92 meters and 29.33 meters respectively.

Figure 16. Tiles for Morong floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 17. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ ASCII) DTM, first (S_ ASCII) and last (D_ ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 18. The Production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion **of** Morong floodplain.

3.6 LiDAR Image Processing and Orthophotograph Rectification

The 117 1km by 1km tiles area covered by Morong floodplain is shown in Figure 19. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Morong floodplain has a total of 91.26 sq.km orthophotogaph coverage comprised of 388 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 20.

Figure 19. Morong floodplain with available orthophotographs.

Figure 20. Sample orthophotograph tiles for Morong floodplain.

3.7 DEM Editing and Hydro-Correction

Three (3) mission blocks were processed for Morong flood plain. These blocks are composed of Bataan, Bataan Reflights and Clark Reflights blocks with a total area of 278.08 square kilometers. Table 13 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km)
Bataan_Bal_BlkE	89.95
Bataan_Reflights_Bal_BlkE_additional	107.25
Clark_reflights_BTNCD	80.88
TOTAL	278.08

Table 13. LiDAR bloc	ks with its cor	responding area.
----------------------	-----------------	------------------

Portions of DTM before and after manual editing are shown in Figure 21. The bridge (Figure 21a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 21b) in order to hydrologically correct the river. Embankments (Figure 21c) have been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 21d) to allow the correct flow of water. Another example is a building that is still present in the DTM after classification (Figure 21e) and has to be removed through manual editing (Figure 21f).

Figure 21. Portions in the DTM of Morong floodplain – a bridge before (a) and after (b) manual editing; a fish ponds before (c) and after (d) data retrieval; and a building before (e) and after (f) manual editing.

3.8 Mosaicking of Blocks

Clark_reflights Block BTNCD was used as the reference block at the start of mosaicking because it have the bigger area covering the flood plain.

Mosaicked LiDAR DTM for Morong floodplain is shown in Figure 22. The entire Morong floodplain is 89.92% covered by LiDAR data while portions with no Lidar data were patched with the available IFSAR data.

Mission Blocks	Shift Values (m)			
	х	у	z	
Bataan_Bal_BlkE	0.07	2.91	1.90	
Bataan_Reflights_Bal_BlkE_additional	0.00	0.00	-0.40	
Clark_reflights_BtnCD	0.00	0.00	0.45	

Table 14. Shift Values of each LiDAR Block of Morong floodplain.

Figure 22. Map of Processed LiDAR Data for Morong Flood Plain.
3.9 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Morong to collect points with which the LiDAR dataset is validated is shown in Figure 23, with the validation survey points highlighted in green. Morong LiDAR data was calibrated using the validation survey points provided for BataanZambales area to be consistent with the other floodplains covered by the mosaicked blocks. A total of 30,472 survey points were gathered within BataanZambales wherein the Morong floodplain is located. Random selection of 80% of the survey points, resulting to 24,377 points, were used for calibration.

A good correlation between the uncalibrated BataanZambales LiDAR DTM and ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 4.15 meters with a standard deviation of 0.15 meters. Calibration of Morong LiDAR data was done by subtracting the height difference value, 4.15 meters, to BataanZambales mosaicked LiDAR data. Table 15 shows the statistical values of the compared elevation values between BataanZambales LiDAR data and calibration data.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 23. Map of Morong Flood Plain with validation survey points in green.

Figure 24. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	4.15
Standard Deviation	0.15
Average	-4.14
Minimum	-4.50
Maximum	-3.85

Table 15. Calibration Statistical Measures.

A total of 282 points, were used for the validation of calibrated Morong DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.12 meters with a standard deviation of 0.12 meters, as shown in Table 16.

Figure 25. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.12
Standard Deviation	0.12
Average	-0.03
Minimum	-0.38
Maximum	0.28

Table 16. Validation Statistical Measures

3.10 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, merged centerline and zigzag data were available for Morong with 20,129 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers (KIB) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.21 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Morong integrated with the processed LiDAR DEM is shown in Figure 26.

Figure 26. Map of Morong Flood Plain with bathymetric survey points shown in blue.

3.11 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.11.1 Quality Checking of Digitized Features' Boundary

Morong floodplain, including its 200 m buffer, has a total area of 42.73sq km. For this area, a total of 5.00 sq km, corresponding to a total of 366 building features, are considered for QC. Figure 27 shows the QC blocks for Morong floodplain.

Figure 27. QC blocks for Morong building features.

Quality checking of Morong building features resulted in the ratings shown in Table 17.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Morong	100.00	100.00	89.07	PASSED

Table 17. Quality Checking Ratings for Morong Building Features.

3.11.2 Height Extraction

Height extraction was done for 4,700 building features in Morong floodplain. Of these building features, 28 was filtered out after height extraction, resulting to 4,672 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 11.95 m.

3.11.3 Feature Attribution

Field data gathering and ground verification were conducted in order to correct and complete the information needed in the attribution of the digitized features in the flood plains of the river basins.

The team used the video tagging/capture device installed in a vehicle that roamed around the floodplains to capture and tag the buildings, bridges, roads and water bodies. Courtesy call to the municipal officials and request for their approval at the same time were performed before the video tagging was conducted.

Table 18 summarizes the number of building features per type. On the other hand, Table 19 shows the total length of each road type, while Table 20 shows the number of water features extracted per type.

Facility Type	No. of Features		
Residential	4,024		
School	42		
Market	11		
Agricultural/Agro-Industrial Facilities	2		
Medical Institutions	1		
Barangay Hall	3		
Military Institution	0		
Sports Center/Gymnasium/Covered Court	2		
Telecommunication Facilities	0		
Transport Terminal	12		
Warehouse	1		
Power Plant/Substation	7		
NGO/CSO Offices	0		
Police Station	1		
Water Supply/Sewerage	3		
Religious Institutions	23		
Bank	0		
Factory	0		
Gas Station	6		
Fire Station	0		
Other Government Offices	5		
Other Commercial Establishments	529		
Total	4,672		

Table 18. Number of Building Features Extracted for Morong Floodplain.

Floodplain						
	Barangay Road	City/ Municipal Road	Provincial Road	National Road	Others	Total
Morong	36.25	4.64	6.91	11.98	0.00	59.73

Table 19. Total Length of Extracted Roads for Morong Floodplain.

Table 20. Number of Extracted Water Bodies for Morong Floodplain.

Floodplain	Water Body Type					
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Morong	5	9	0	0	0	14

A total of 10 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.11.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 28 shows the Digital Surface Model (DSM) of Morong floodplain overlaid with its ground features.

Figure 28. Extracted features for Morong floodplain.

CHAPTER 4: SURVEY AND MEASUREMENTS IN THE MORONG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Morong River on July 22 – Aug 3, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built survey at MorongBridge in Brgy. Binaritan, Municipality of Morong, Bataan; validation points acquisition of about 25 km covering the Morong River Basin area; and bathymetric survey from its upstream in Brgy. Binaritan down to the mouth of the river located in Brgy. Poblacion, both in Municipality of Morong, with an approximate length of 6.505km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (Figure 29).

Figure 29. Morong River Survey Extent

4.2 Control Survey

The GNSS network used for Morong River Basin is composed of four (4) loops established on July 24, 2016 occupying the following reference points: BTN-68, a second-order GCP in Brgy. Nagbalayong, Municipality of Morong;BTN-71, a second order GCP, in Brgy. Apollo, Municipality of Orani; and BA-196, a first order BM, located in Brgy. Capitangan, Municipality of Abucay; all in Bataan.

A control pointwas established along the approach of Morong Bridge namely: UP-MOR, located in Brgy. Poblacion, Municipality of Morong, Bataan.

The summary of reference and control points and its location is summarized in Table 21 while the GNSS network established is illustrated in Figure 30.

Figure 30. GNSS Network covering Morong River

Table 21. List of Reference and Control Points occupied for Morong River Survey
(Source: NAMRIA; UP-TCAGP)

		Geographic Coordinates (WGS 84)							
Control Point	trol Order of int Accuracy Latitude		Latitude Longitude		MSL Elevation (m)	Date Established			
BTN-68	2nd order, GCP	14°38′42.29096″N	120°19'26.94802"E	136.52	-	2016			
BTN-71	2nd order, GCP	14°47′24.68277″N	120°32′14.83855″E	45.996	-	2014			
BA-196	1st order, BM	-	-	65.611	22.836	2016			
UP-MOR	UP Established	-	-	-	-	Jul 24, 2016 11:17 AM			

The GNSS set-ups on recovered reference points and established control points in Morong River are shown in Figure 31 to Figure 34.

Figure 31. GNSS base set up, Trimble[®] SPS 882, atBTN-68 located just outside the Bataan Nuclear Power Plant along National High Way, Brgy. Nagbalayong, Municipality of Morong, Bataan

Figure 32. GNSS receiver setup, Trimble® SPS 882, atBTN-71 located at the middle of a basketball court, Barangay Day Care Center and Barangay Chapel in Brgy. Apollo, Municipality of Orani, Bataan

Figure 33. GNSS receiver setup, Trimble® SPS 852, at BA-196 located at the approach of CapitanganBridge in Brgy. Capitangan, Municipality of Abucay, Bataan

Figure 34. GNSS receiver setup, Trimble[®] SPS 985, at UP-MOR located at the approach of Morong Bridge in Brgy. Poblacion, Municipality of Morong, Bataan

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Morong River Basin is summarized in Table 22 generated by TBC software.

Observation	Date of Observation	Solution Type	H.Prec. (Meter)	V.Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
BA196 BTN68	07-24-2016	Fixed	0.005	0.018	73°05'46"	21610.115	-70.921
BTN68 UPMOR	07-24-2016	Fixed	0.004	0.015	303°13′37″	7409.089	-87.926
BA196 BTN71	07-24-2016	Fixed	0.003	0.015	13°12′16″	10046.745	-19.625
BA196 UPMOR	07-24-2016	Fixed	0.003	0.013	265°19'07"	26966.019	-17.016
UPMOR BTN71	07-24-2016	Fixed	0.003	0.016	67°36'23"	31535.946	-2.587
BTN68 BTN71	07-24-2016	Fixed	0.005	0.022	55°01'14"	28025.680	-90.506

Table 22. Baseline	Processing	Summary	Report fo	or MorongRiver	Survey
	0		T	0	

As shown Table 22 a total of six(6) baselines were processed with reference points BTN-68 and BTN-71 held fixed for coordinate values; and BA-196 fixed for elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 < 20 cm and Z_e < 10 cm

Where:

x_e is the Easting Error,

- y_e is the Northing Error, and
- z_{p} is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table C-3 to Table C-6 for complete details.

The four (4) control points, BTN-68, BTN-71, BA-196 and UP-MOR were occupied and observed simultaneously to form a GNSS loop. Coordinates of BTN-68 and BTN-71; and elevation value of BA-196 were held fixed during the processing of the control points as presented in Table 23. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
BTN-68	Local	Fixed	Fixed		
BTN-71	Local	Fixed	Fixed		
BA-196	Grid				Fixed
Fixed = 0.000001 (Meter)					

Table 23. Control Point Constraints

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 24. The fixed controlsBTN-68 and BTN-71 have no values for grid errors while BA-68has no value for elevation error.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BTN-68	211765.363	?	1620773.573	?	93.217	0.044	LL
BTN-71	234930.205	?	1636575.052	?	3.465	0.041	LL
BA-196	232526.227	0.006	1626815.229	0.005	22.836	?	е
UP-MOR							
		2056	512.090				
0.008						0.020	
1624909.162						0.059	
0.007							
5.340							

Table 24. Adjusted Grid Coordinates

With the mentioned equation, for horizontal and for the vertical; the computation for the accuracy are as follows:

a. BTN-68

horizontal accuracy = Fixed vertical accuracy = 4.4 cm < 10 cm

b. BTN-71

horizontal accuracy = Fixed vertical accuracy = 4.1 cm < 10 cm Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

c. BA-196

horizontal accuracy	=	$V((0.6)^2 + (0.5)^2)$
	=	√ (0.36 + 0.25)
	=	0.78 < 20 cm
vertical accuracy	=	Fixed

d. UP-MOR

horizontal accuracy	=	$V((0.8)^2 + (0.7)^2)$
	=	√ (0.64 + 0.49)
	=	1.06 < 20 cm
vertical accuracy	=	3.9 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

			Ellipsoidal	Height	
Point ID	Latitude	Longitude	Height (Meter)	Error (Meter)	Constraint
BTN-68	N14°38'42.29096"	E120°19'26.94802"	136.520	0.044	LL
BTN-71	N14°47′24.68277″	E120°32'14.83855"	45.996	0.041	LL
BA-196	N14°42'06.44710"	E120°30'58.09376"	65.611	?	е
UP-MOR	N14°40'54.35855"	E120°15'59.79638"	48.592	0.039	

Table 25. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 25. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 26.

		Geographi	c Coordinates (W	GS 84)	UTN	M ZONE 51 N		
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)	
BTN-68	2nd order, GCP	13°55'14.18695"	122°36'12.89833"	59.636	1538981.558	457175.646	10.059	
BTN-71	2nd order, GCP	13°49'14.33596"	122°47'41.49841"	60.994	1527900.59	477829.729	10.576	
BA-196	1st order, BM	14°09'12.36125"	122°49'52.53365"	64.661	1564701.975	481789.697	14.905	
UP- MOR	UP Established	14°03'52.37147"	122°58'30.23146"	55.501	1554865.116	497307.927	5.214	

Table 26. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section, Bridge As-Built Survey, and Water Level Marking

Cross-section andas-built survey were conducted on July 29, and August 1, 2016 at the upstream side of Morong Bridge in Brgy. Binarian, Municipality of Morong, Bataanas shown in Figure 35. A Trimble[®] SPS 882 GNSS PPK survey technique were utilized for this survey.

Figure 35. Morong Bridge facing downstream

The cross-sectional line of Morong Bridge is about 117.55m with one hundred seventeen (117) crosssectional points using the control point UP-MOR as the GNSS base station. The cross-section diagram, bridge planimetric map, and the bridge data form are shown in Figure 36 and Figure 38, respectively.

Morong Bridge

Lat: 14°40'53.99236" N Long: 120°16'00.16944" E

				Bridge D	ata For	m			
Br	dge Name: <u>Morong Bridge</u>			Date: July 29 and Aug 1, 2016					
River Name: Morong River			Time: <u>5:39 PM</u>						
Lo	cation (Brgy, C	City,Region): Brgy. Binarita	n, Municipa	ality of I	<u>Morong, Bataan</u>			
Su	irvey Te	am: Ro	omalyn Boado, Lorenz Tag	use, Marion	Dimain	1			
Elow condition: normal						- Weather Cond	ition: fa	ir	
						149" F			
				0	BA3	BA4 BA = Brie Ab = Abu	lge Approach P = tment D =	= Pier LC = Low Cho = Deck HC = High Ch	
		Ab1		\sim	Ab2 H		<u> </u>		
Elev	vation: 5	.244 m	Deck (Please start your m Width:	easurement fro 9 m	m the left Span	side of the bank facing up (BA3-BA2): <u>94.790 m</u>	stream) L	LC	
			Station		High	h Chord Elevation	Low Cho	ord Elevation	
1			Not available			Not available No		available	
			Bridge Approach (Please	start your measure	ment from th	he left side of the bank facing ups	tream)		
		Stati	on(Distance from BA1)	Elevation		Station(Distance	from BA1)	Elevation	
	BA1		0	4.097 m	BA3	108.923 m		5.228 m	
	BA2		14,133 m	5.233 m	BA4	117.542 m		4.971 m	
	2712		111200 111	51255 111	2				
Abı	utment:	ls t	he abutment sloping? No ;	If yes, fill in t	he follov	ving information:			
			Station (D)	istance from	m RA1)		Floyatio	n	
	Δ	h1	Station (D	NA	II DAI)		NA	///	
		h2		NA			NA		
	~	92	Pier (Please start your me		n the left	ride of the bank facing up			
			rici (riease start your me	asurement from	in the left	side of the bank racing up	sueding		
			Shape: Cylindrical	lumber of Pie	ers: <u>5</u>	Height of column fo	oting: <u>N/A</u>		
			Station (Distance from	n BA1)	I	Elevation Pier		Diameter	
	Pier 1		31.767 m			6.103 m		NA	
	Pier 2		46.737 m			6.552 m	N	NA	
	Pier 3		61.829 m			6.699 m		NA	
	Pier 4		76.787 m			6.512 m	N	NA	
		er 5 91.747 m			1	6 000 m			

Figure 38. Bridge as-built form of Morong Bridge

Water surface elevation of Morong River was determined using a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on July 29, 2016 at 5:39PM with a value of -0.456m in MSL as shown in Figure C-8. This was translated into marking on one of the bridge's abutment using the same technique as shown in Figure 39. This will serve as reference for flow data gathering and depth gauge deployment of partner HEI responsible for Morong river, the Central Luzon State University.

Figure 39. Water-level markings on Morong Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on August 1, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted in front of a vehicle as shown in Figure 40. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna heights were 1.588 m and 1.945 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-MOR occupied as the GNSS base station.

Figure 40. Validation points acquisition survey set up along MorongRiver Basin

The survey started from Morong Bridge in Brgy. Binaritan, Municipality of Morong, going south traversing Brgy. Poblacion, Brgy. Binaritan, which ended in Brgy. Nagbalayaong; and going north traversing Brgy. Sabang and ending in Brgy. Mabayo; all in Municipality of Morong, Bataan. Atotal of 2,746 points were gathered with approximate length of 25km using UP-MOR as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 41.

Figure 41. Validation point acquisition survey of Morong River Basin

4.7 Bathymetric Survey

Bathymetric survey was executed on July 29, 2016 using an Ohmex[™] single beam echosounder and Trimble[®] SPS 882 in GNSSPPK survey technique in continuous topo mode as illustrated in Figure 42.The survey started at the upper part of Morong Bridge in Brgy. Binaritan, with coordinates 14°40′58.38854″N, 120°16′01.04799″E, and ended at the mouth of the river in Brgy. Poblacion with coordinates 14°40′45.41536″N, 120°15′41.93778″E.

Figure 42. Bathymetric survey using Ohmex[™] single beam echo sounder in MorongRiver

Manual bathymetric survey was executed on July 29, Aug 1 and 2, 2016 using Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode as shown in Figure 43. The survey started in the uppermost part of the river in Brgy. Binaritan, Municipality of Morong, with coordinates 14°42′43.20225″N, 120°17′59.87425″E, and ended at the starting point of the bathymetric using boat. The control point UP-MOR was used as the GNSS base station throughout the entire survey.

Figure 43. Manual Bathymetric Survey

The bathymetric survey for Morong River gathered a total of 18,621 points covering 6.505 km of the river traversing Brgy Sabang, Brgy. Binaritan, and Brgy. Polacion. A CAD drawing was also produced to illustrate the riverbed profile of Morong River. As shown in Figure 45, the highest and lowest elevation has a 38-m difference. The highest elevation observed was 36.241 m in MSL located at Brgy. Binaritan, while the lowest was -2.425m below MSL located at the downstream portion of the river in Brgy. Polacion, both in Municipality of Morong. Approximately 4 kilometers was not surveyed since the upstream portion of the river have available LiDAR data as advised by the Data Pre-Processing Component.

Figure 44. Bathymetric survey of MorongRiver

Figure 45. MorongRiverbed Profile

CHAPTER 5 FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Girlie David, Mariel Monteclaro, Eleazar Raneses, Jr. and Jose T. Gavino

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the river basin was monitored, collected, and analyzed. These include the rainfall, water level, and flow in a certain period of time.

5.1.2 Precipitation

In the absence of automatic rain gauge in Morong, precipitation data was recorded through manual reading in an 8 inches standard rain gauge installed in the study area. The rain gauge was installed one (1) kilometer upstream from the flow measurement site.

The total rain recorded in this event from the rain gauge is 197.29 mm. It peaked to 14.923 mm. on 09 July 2016 at 14:30. The lag time between the peak rainfall and discharge is 2 hours.

120°20'0"E

120°20'0"E

Figure 46. The location map of Morong HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Morong Bridge, Morong, Bataan (14°40' 55.416"N, 120°15' 58.167"E). It gives the relationship between the observed water levels at Morong Bridge and outflow of the watershed at this location.

For Morong Bridge, the rating curve is expressed as $Q = 8.8636e^{1.4753h}$ as shown in Figure 47.

Figure 47. Cross-Section Plot of Morong Bridge

Figure 48. Rating Curve at Morong Bridge, Morong, Bataan

This rating curve equation was used to compute the river outflow at Morong Bridge for the calibration of the HEC-HMS model shown in Figure 48. Peak discharge is 96.016 cms at 16:30 AM, July 09, 2016.

Figure 49. Rainfall and outflow data at Morong used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Sangley Point, Cavite Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to the Morong watershed. The extreme values for this watershed were computed based on a 26-year record

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	20.3	30	36.6	46.4	63.2	74.6	96.6	119.6	147.9
5	28.3	41.8	50.8	64.6	89.8	106.8	140.3	174	209.4
10	33.6	49.7	60.2	76.7	107.3	128.2	169.2	210	250.1
15	36.6	54.1	65.5	83.5	117.2	140.3	185.6	230.3	273.1
20	38.7	57.2	69.2	88.3	124.2	148.7	197	244.6	289.1
25	40.3	59.6	72.1	91.9	129.5	155.2	205.8	255.5	301.5
50	45.3	66.9	80.9	103.3	146	175.2	233	289.3	339.7
100	50.3	74.2	89.7	114.5	162.3	195.1	259.9	322.8	377.6

Table 27. RIDF values for Sangley Point Rain Gauge computed by PAGASA

Figure 50. Sangley Point RIDF location relative to Morong River Basin

Figure 51. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

Using the SAR-based DEM, the Morong basin was delineated and further subdivided into subbasin. The Morong basin model consists of 5 sub basins, 2 reaches, and 2 junctions as shown in Figure 52. Finally, it was calibrated using depth gauge installed in Morong Bridge.

Figure 52. The Morong river basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcMap.

Figure 53. River cross-section of MorongRiver generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 54. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 39.55225 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h) is set at 0 m²/s.

Figure 55. Generated 100-year rain return hazard map from FLO-2D Mapper

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 39 385 900.00 m².

Figure 56. Generated 100-year rain return flow depth map from FLO-2D Mapper

There is a total of 18 419 757.72 m³ of water entering the model. Of this amount, 10 725 727.85 m³ is due to rainfall while 7 694 029.87 m³ is inflow from other areas outside the model. 3 960 626.75 m³ of this water is lost to infiltration and interception, while 12 447 417.07 m³ is stored by the flood plain. The rest, amounting up to 2 011 714.06 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Morong HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 57 shows the comparison between the two discharge data.

Figure 57. Outflow Hydrograph of Morong produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 28 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	4.50 – 6.66
LOSS	LOSS	SCS Curve number	Curve Number	35.175 – 39.25
Desire	in Transform Cla		Time of Concentration (hr)	0.232 – 3.953
Basin		Clark Unit Hydrograph	Storage Coefficient (hr)	0.99 – 3.63
	Baseflow	Decession	Recession Constant	0.119 – 0.175
		Recession	Ratio to Peak	0.272 – 0.423
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.025 – 0.057

Table 28. Range of Calibrated Values for Morong

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 4.55mm to 6.66mm means that there is minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 35.175 – 39.25 for curve number is lower than the advisable for Philippine watersheds depending on the soil and land cover of the area. For Morong, the basin mostly consists of brushlands and closed canopy and the soil consists of clay and undifferentiated soil.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.232 hours to 3.953 hours determines the reaction

time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.119 - 0.175 indicates that the basin will quickly go back to its original discharge. Ratio to peak of 0.272 - 0.423 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of values 0.025 – 0.057 are close to the common roughness of Philippine watersheds which is 0.04.

Accuracy Measure	Value
RMSE	4.4
r ²	4.4
NSE	0.97
PBIAS	1.89
RSR	0.15

Table 29. Summary of the Efficiency Test of Morong HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computedat 4.4 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. A value of $r_2 = 0.97$ was computed for this model. This means that the degree of collinearity between simulated and measured data is relatively high

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.98 which means that the model has a very good performance rating in simulating discharge.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is negative 1.89 which implies that the model was underestimated at 1.89 percent difference in streamflow volume between simulated and measured data for a particular period.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable are quantified. The model has an RSR value of 0.15 which indicates that the model has a better simulation performance due to low value of computed RSR.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 58) shows the Morong outflow using the Sangley Point Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 58. Outflow hydrograph at Morong Station generated using Sangley Point RIDF simulated in HEC HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Morong discharge using the Sangley Point Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³/s)	Time to Peak
5-Year	209.4	28.3	145.5	2 hours 30 minutes
10-Year	250.1	33.6	196.6	2 hours 30 minutes
25-Year	301.5	40.3	268.6	2 hours 20 minutes
50-Year	339.7	45.3	326.6	2 hours 20 minutes
100-Year	377.6	50.3	386.9	2 hours 20 minutes

Table 30. Peak values of the Morong HEC-HMS Model outflow using the Sangley Point RIDF

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website.

The Morong model has a minimum and maximum flow discharge of 30.07 and 96.016 m3/s, respectively and this was needed for unsteady flow analysis as input file. The simulation results also showed that there is no overflow of water along the banks of the river. However, some floodplain areas were being filled with water due to its elevation like agricultural areas located in Barangay Nagbalayong, Poblacion, Binaritan and Sabang (located at the downstream portion of the river). The sample 1D flood hazard map using the calibrated discharge of Morong river from HMS model is shown in Figure 59.

Figure 59. Sample output of Morong RAS Model

5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps for the 5-, 25-, and 100-year rain return scenarios of the Morong floodplain are shown in Figure 60 to Figure 65.

Figure 64. 5-year Flood Hazard Map for Bucao Floodplain

Figure 65. 5-year Flood Depth Map for Bucao Floodplain

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Morong river basin are listed below. For the said basin, one municipality consisting of five barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 48.08% of the municipality of Morong with an area of 64.44 sq. km. will experience flood levels of less than 0.20 meters. 2.71% of the area will experience flood levels of 0.21 to 0.50 meters while 2.92%, 3.51%, 2.02%, and 0.46% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	Affected Barangays in Morong (in sq. km.)								
(sq. km.) by flood depth (in m.)	Binaritan	Mabayo	Nagbalayong	Poblacion	Sabang				
0.03-0.20	3.39	7.58	2.53	0.17	17.3				
0.21-0.50	0.2	0.34	0.2	0.041	0.96				
0.51-1.00	0.28	0.28	0.16	0.094	1.07				
1.01-2.00	0.5	0.22	0.21	0.25	1.09				
2.01-5.00	0.36	0.053	0.18	0.16	0.55				
> 5.00	0.2	0	0	0.00032	0.1				

Table 31. Affected Areas in Morong, Bataan during 5-Year Rainfall Return Period

Figure 66. Affected Areas in Morong, Bataan during 5-Year Rainfall Return Period

For the 25-year return period, 46.30% of the municipality of Morong with an area of 64.435501 sq. km. will experience flood levels of less than 0.20 meters. 2.55% of the area will experience flood levels of 0.21 to 0.50 meters while 2.86%, 3.67%, 3.43%, and 0.90% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	Affected Barangays in Morong (in sq. km.)							
(sq. km.) by flood depth (in m.)	Binaritan	Mabayo	Nagbalayong	Poblacion	Sabang			
0.03-0.20	3.28	7.38	2.33	0.13	16.72			
0.21-0.50	0.13	0.38	0.23	0.026	0.88			
0.51-1.00	0.21	0.32	0.25	0.05	1			
1.01-2.00	0.38	0.28	0.19	0.22	1.29			
2.01-5.00	0.64	0.11	0.28	0.28	0.89			
> 5.00	0.29	0	0	0.0017	0.29			

Table 32. Affected Areas in Morong, Bataan during 25-Year Rainfall Return Period

Figure 67. Affected Areas in Morong, Bataan during 25-Year Rainfall Return Period

For the 100-year return period, 45.35% of the municipality of Morong with an area of 64.435501 sq. km. will experience flood levels of less than 0.20 meters. 2.55% of the area will experience flood levels of 0.21 to 0.50 meters while 2.73%, 3.58%, 4.26%, and 1.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	Affected Barangays in Morong (in sq. km.)								
(sq. km.) by flood depth (in m.)	Binaritan	Mabayo	Nagbalayong	Poblacion	Sabang				
0.03-0.20	3.22	7.27	2.26	0.11	16.36				
0.21-0.50	0.12	0.39	0.2	0.024	0.91				
0.51-1.00	0.18	0.34	0.27	0.041	0.92				
1.01-2.00	0.27	0.31	0.22	0.18	1.33				
2.01-5.00	0.77	0.17	0.33	0.35	1.13				
> 5.00	0.37	0	0	0.003	0.42				

Table 33. Affected Areas in Morong, Bataan during 100-Year Rainfall Return Period

Figure 68. Affected Areas in Morong, Bataan during 100-Year Rainfall Return Period

Among the barangays in the municipality of Morong, Sabang is projected to have the highest percentage of area that will experience flood levels at 32.71%. Meanwhile, Mabayo posted the second highest percentage of area that may be affected by flood depths at 13.15%.

Moreover, the generated flood hazard maps for the Morong Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Manaina Laval	Area Covered in sq. km.					
warning Level	5 year	25 year	100 year			
Low	1.7573	1.6701	1.6907			
Medium	3.0407	2.9457	2.8419			
High	2.8065	4.1475	4.8648			

Table 34. Area covered by each warning level with respect to the rainfall scenario

As seen in Annex 12 Of the 42 identified Education Institute in Morong Flood plain, 7 schools were assessed to be exposed to the Low level flooding during a 5 year scenario while 15 schools were assessed to be exposed to medium level flooding and 5 schools were assessed to be exposed to high level flooding in the same scenario. In the 25 year scenario, 6 schools were assessed to be exposed to the Low level flooding while 22 schools were assessed to be exposed to medium level flooding. For the 100 year scenario, 2 school was assessed for low level flooding and 18 schools for medium level flooding. In the same scenario, 13 schools were assessed to be exposed to high level flooding.

One (1) Medical Institutions were identified in Morong Floodplain and was assessed to be exposed to medium level flooding in the 5 and 25 year scenario and to high level flooding in the 100 year scenario.

5.11 Flood validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 180 points randomly selected all over the Morong flood plain. It has an RMSE value of 0.68.

The flood validation data were obtained on January 10-14, 2017

120°15'0"E

Figure 69. Validation points for 5-year Flood Depth Map of Morong Floodplain

MORON	IG BASIN	Modeled Flood Depth (m)										
		0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total				
<u>ل</u>	0-0.20	52	13	14	0	0	0	79				
th (i	0.21-0.50	4	17	7	5	3	0	36				
Dep	0.51-1.00	1	0	11	14	2	0	28				
poo	1.01-2.00	1	1	5	22	8	0	37				
I Flo	2.01-5.00	0	0	0	0	0	0	0				
ctua	> 5.00	0	0	0	0	0	0	0				
A.	Total	58	31	37	41	13	0	180				

Table 35. Actual Flood Depth vs Simulated Flood Depth in Morong

The overall accuracy generated by the flood model is estimated at 56.67%, with 102 points correctly matching the actual flood depths. In addition, there were 51 points estimated one level above and below the correct flood depths while there were 23 points and 4 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 66 points were overestimated while a total of 12 points were underestimated in the modelled flood depths of Morong.

	No. of Points	%
Correct	102	56.67
Overestimated	66	36.67
Underestimated	12	6.67
Total	180	100.00

Table 36. Summary of Accuracy Assessment in Morong

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specification of the Optech Sensors Used in the LiDAR Survey

1. Pegasus

Control Rack

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size \geq laser footprint5 Dependent on system configuration

2. Gemini

Control Rack

Laptop

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certificates of Reference Points Used

1. BTN-71

	÷.,				×.		
RESOURCE	<u> </u>			2	-		
	Republic of the Philippin Department of Environm NATIONAL MAPPII	es ent and Natural F NG AND RES	Resources OURCE INFORMA	TION AUTH	ORITY		
							January 02, 2014
		CER	TIFICATION				
whom it may con	cern:						
This is to certify	that according to the	records on fi	le in this office, th	e requested	d survey in	forma	tion is as follows
		Provinc	e: BATAAN				
		Station N	ame: BTN-71				
Island: LUZON		Order	2nd	E	Barangav:	MARI	AFE
Municipality: OR	ANI	PRSS	2 Coordinates				
Latitude: 14º 47	30.18239"	Longitude:	120° 32' 9.9586	0'' E	Ellipsoidal	Hgt:	7.56300 m.
		WGS	84 Coordinates				
Latitude: 14º 47	24.68277"	Longitude:	120° 32' 14.8385	5 5" E	Ellipsoidal	Hgt:	49.42500 m.
		PTM	Coordinates				
Northing: 16358	12.88 m.	Easting:	450060.675 m.	Z	Zone:	3	
Northing: 1,636	,645.28	UTN Easting:	Coordinates 234,782.54	Z	Zone:	51	
		Loooti	on Departmention				
TN-71 located in Brgy. M lapel of the said ba ark is the head of scriptions BTN-71	aria Fe, 30 m Sw of t arangay. It is also situ a 4" copper nail cente 2007 NAMRIA.	the Day Care lated on the vered on a 30	Center, 20 m SE W edge of the cor cm x 30 cm conc	of the bask ncrete pave rete monum	ketball cou ment used nent flushe	urt and d as vo ed on t	15 m NE of the bleyball court. he ground with
equesting Party:	UP DREAM				1.0		
R Number:	8794989 A			/	alle	/	
N.:	2014-4			RUEL	DM. BEL	EN, MI	NSA
			D	irector Map	oping And	Geode	esy Branch
				/			LI.
						ACCESSION OF THE OWNER.	
				99010	2201	4 1 2	3502

2. ZBS-64

Annex 3. Baseline Processing Reports of Reference Points Used

1. AAC-01

Vector Component	nts (Mari	k to Mark)							
From:	TRC-0	01							
	Grid			Lo	cal			Glo	bal
Easting		242278.307 m	Latit	ude	N15°28'44	4.13767"	Latitude		N15°28'38.48550"
Northing		1712636.202 m	Long	Longitude E120°35'52.67202"		Longitude		E120°35'57.49329"	
Elevation		44.420 m	Heig	ght	4	46.891 m	Height		86.902 m
To: AAC-01									
	Grid			Local		Global			
Easting		236272.483 m	Latit	ude	N15°11'2	7.81685"	31685" Latitude		N15°11'22.22626"
Northing		1680836.256 m	Long	gitude	E120°32'43	3.37833"	" Longitude		E120°32'48.22418"
Elevation		151.882 m	Heig	jht	15	54.260 m	Height		194.988 m
Vector									
∆Easting		-6005.82	24 m	NS Fwd Azimuth			190°03'34"	ΔX	523.697 m
∆Northing		-31799.94	16 m	Ellipsoid Dist.			32347.854 m	ΔY	10213.192 m
∆Elevation		107.46	61 m	∆Height			107.369 m	ΔZ	-30689.417 m

Standard Errors

Vector errors:								
σ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.006 m			
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.011 m			
σ ΔElevation	0.013 m	σ ∆Height	0.013 m	σΔZ	0.004 m			

Aposteriori Covariance Matrix (Meter²)

	x	Y	Z
x	0.0000413905		
Y	-0.0000661260	0.0001225849	
Z	-0.0000191610	0.0000334556	0.0000154812

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation	
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP	
Data Acquisition	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP	
Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP	
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP	
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP	
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP	
	FIEL	D TEAM		
	Senior Science Research Specialist (SSRS)	AUBREY PAGADOR	UP-TCAGP	
	Senior Science Research Specialist (SSRS) 2016/ RA (2014)	JASMINE ALVIAR	UP-TCAGP	
LIDAR Operation	Research Associate (RA)	ENGR. DAN CHRISTOFFER ALDOVINO	UP-TCAGP	
	RA	FOR. REGINA FELISMINO	UP-TCAGP	
	RA	MA. CATHERINE ELIZABETH BALIGUAS	UP-TCAGP	
	RA	ENGR. RENAN PUNTO	UP-TCAGP	
LiDAR Operation/ Ground Survey, Data	RA	ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP	
	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP	
		SSG DIOSCORO SOBERANO	PHILIPPINE AIR FORCE (PAF)	
	Airborne Security	SSG MARION TORRE	PAF	
		SSG PRADYUMA DAS RAMIREZ	PAF	
LiDAR Operation		CAPT. ALBERT PAUL LIM	ASIAN AEROSPACE CORPORATION (AAC)	
	Pilot	CAPT. JEFF JEREMY ALAJAR	AAC	
		CAPT. F. DE OCAMPO	AAC	
		CAPT. JERICHO JECIEL	AAC	

rt`																			13-21
7				SERVER LOCATION	Y:\Airborne_Raw\926G	Y:\Airborne_Raw\930G	Y:\Airborne_Raw\932G	Y:\Airborne_Raw\934G	Y:\Airborne_Raw\935G	Y:\Airborne_Raw\943P	Y:\Airborne_Raw\941P	Y:\Airborne_Raw\945P	Y:\Airborne_Raw\939P	Y:\Airborne_Raw\949P	Y:\Airborne_Raw\951P				
-			T PLAN	KML	101 KB	432 KB	432 KB	664 KB	145 KB	60.7 KB	53.4 KB	53.4 KB	18.6 KB	243 KB	158 KB				
_			FLIGH	Actual	4.68 KB	5.77 KB	5.77 KB	5.63 KB	19.0 KB	47.6 KB	22.6 KB	29.2 KB	29.6 KB	23.8 KB	19 KB				
_			OPERATOR	(OPLOG)	471 BYTES	485 BYTES	438 BYTES	527 BYTES	604 BYTES	616 BYTES	320 BYTES	374 BYTES	524 BYTES	558 BYTES	442 BYTES				
_			ATION(S)	Base Info (.txt)	174 BYTES	376 BYTES	376 BYTES	278 BYTES	174 BYTES	278 BYTES	376 BYTES	278 BYTES	376 BYTES	222 BYTES	221 BYTES	Q	r	0	
			BASE ST	BASE STATION(S)	8.23 MB	27.7 MB	27.7 MB	21.3 MB	8.23 MB	21.3 MB	27.7 MB	21.3 MB	27.7 MB	16.1 MB	12.8 MB	PRIET	F	100/2013 2013	
7				DIGITIZER	101 GB	1.29 GB	N/A	189 GB	87.3 GB	78.2 GB	36.3 GB	562 MB	121 GB	42.9 GB	41.5 GB	Joida	X	RIETO	
7	SHEET			RANGE	13.3 GB	18.9 GB	809 MB	27.6 GB	18.5 GB	21.6 GB	10.8 GB	4.69 GB	26.1 GB	12.9 GB	9.51 GB	Received by Name Position	Signature	203 A	
7	TRANSFER	TOT 'OT IIP		MISSION LOG FILE	201 KB	245 KB	N/A			of it is									
7	DATA			RAW IMAGES	27.2 GB	35.2 GB	N/A	7.19 GB	N/A		Verified by	Name Position Signature							
7				POS	243 MB	277 MB	86.8 MB	299 MB	265 MB	274 MB	205 MB /	172 MB	295 MB	228 MB	178 MB		~		
٦				LOGS	4.05 MB	848 KB	329 KB	0.99 MB	9.79 MB	11.6 MB	6.43 MB	5.52 MB	10.0 MB	7.24 MB	6.41 MB	applara	Contar		
٦			VLAS	KML (swath)	N/A	N/A	N/A	N/A	1124 KB	1152 KB	699 KB	258 KB	1.68 MB	823 KB	528 KB	rom Bot Ma	Mal		
-			RAV	Output LAS	N/A	N/A	N/A	N/A	970 KB	1415 KB	574 KB	211 KB	1.38 MB	671 KB	420 KB	Received 1 Name Position	Signature		
-				SENSOR	GEMINI	GEMINI	GEMINI	GEMINI	PEGASUS										
				MISSION NAME	2BALE002A	2BUCE003A	2BUCES003A	2BUCF004A	1BALAS002A	1BUCABC004A	1BUCBS003B	1BUCCS004B	1PLGA003A	1BUCGS005B	1BALF006A				
7				NO.	926G	930G	932G	934G	935P	943P	941P	945P	939P	949P	951P	4246			
7				DATE	Jan 2 2014	Jan 3 2014	Jan 3 2014	Jan 4 2014	Jan 2 2014	Jan 4 2014	Jan 3 2014	Jan 4 2014	Jan 3 2014	Jan 5 2014	Jan 6 2014	< ·			
~																2 F			

Annex 5. Data Transfer Sheet for Morong Floodplain

83

	SERVER	Z:\DAC\RAW DATA	Z:IDACIRAW DATA	Z:IDACIRAW DATA	Z:IDACIRAW DATA	Z:IDACIRAW DATA	2:IDACIRAW DATA	Z:IDACIRAW DATA		
PLAN	KML	ua Ua	na	na	na	na	na	Bu		
FLIGHT	Actual	50	44	na	113	113	63	89		
CDED ATOD	(oPLOG)	89 A	KB	K8	88	KB KB	8 XB	(B		
LION(S)	Base Info (.bt)	KB 1	KB	KB 1						
BASE STA	BASE STATION(S)	5.41	4,14	4.16 1	2.82 1	8.56 1	2.41 1	5.3 1		
	DIGITIZER	na	10							
	RANGE	15.5	16	10.2	24.4	6.71	7.47	20.7		
SIONTOG	LOGS	217	208	na	na	3682.4q	170	161	A CAR	
-	GESICASI	25.1	31	na	na	8.7/11.1	21	22.5	A particular antique a	
	POS	192	252	197	273	273 1	195	184		
	OGS(MB)	7.8	10.3	7.5	11.7	11.7	6.73	8.65		
	(swath)	na								
RAW LAS	ut LAS KMI	847	69.	.04	.44	.44	31	6.1	111	
	ISOR Outp	SI	st 1	s	st 2	15 2	st e	S	P ¹ ha	
	SEN	pegas	pegas	pegas	pegas	begas	pegasi	pegasi	and the second sec	
	MISSION NAME	1BUC020A	1BUC021A	1NEJ022A	1BTN023A	1BUC026A	1BUC027A	1BUC028A	Alama Signature	
	FLIGHT NO.	2471P	2473P	2477P	2481P	2493P	2497P	2501P	~	
	DATE	20-Jan	21-Jan	22-Jan	23-Jan	26-Jan	27-Jan	28-Jan		

SERVER	OCATION	DACIRAW VTA	IDACIRAW NTA	IDACIRAW ATA	DACIRAW VTA	DACIRAW ATA	
AN	KML L	7 Z:\	17 Z	30 Z:\	na Z:	7 Z:	
FLIGHT PL	ctual	80	10	12	12	5	
RATOR	PLOGS A						
V(S) OPE	se Info L (.txt) (0	1KB	1KB	1KB	1KB	1KB	10/21R
BASE STATION	ASE Ba	175 1KB	94.8 1KB	137 1KB	104 1KB	34.5 1KB	cality
	SITIZER E	1.22	537	0	673	321	The second se
	ANGE DIG	9.15	13.3	8.59	12.5	16.4	
DON LOG	E/CASI R	1/15/4	1/1/1	2/198	139	233	Brown Barad
MISS	GES/CASI FI	7/1.8/361 8	1.6/9.83	34/25.1	17.6	29.1	anved by The figure of the fig
	POS IMA	185 9.1	232 1	231 1	238	247	ଝ ଅ ଧିଯାଇ ଅଧିଯାଇ
۳ 	GS(MB)	385	623	482	554	635	
	(swath) LO	202	298	273	301	379	
RAW LAS	ut LAS KML	g	la	a	la	er	
	SOR Outp						I l
	SEN	gemini	gemini	gemini	gemini	gemini	A A A
	MISSION NAME	2BTNAB238B	2BTNCD239A	2UMYA240A	2UMYAB241A	2CLBUMYABS242A	Received from Name C · · Signature
	FLIGHT NO.	2656G	2658G	2662G	2666G	2670G	
	DATE	26-Aug-15	27-Aug-15	28-Aug-15	29-Aug-15	30-Aug-15	

Annex 6. Flight Logs

1. Flight Log for 926G Mission

Flight Log No.: 910	ation: 1894 22		ie:		Q
	6 Aircraft Identific		18 Total Flight Tim		Lidar Operator
	5 Aircraft Type: Cesnna T206H	Airport, City/Province):	17 Landing:		d On-IVI 20 Inted Name
	4 Type: VFR	12 Airport of Arrival (/	16 Take off:		Pilot-in-Comman + 13 D - 24 Signature over Pri
	3 Mission Name:	e koute: irport, City/Province):	15 Total Engine Time: キチ o ^S	1 freetoo	In Flight Certified by
	No 2 ALTM Model: GUNINI	12 Airport of Departure (A	Engine Off: 16+25	662 NA 1331W	Acquisitio
AM Data Acquisition Flight Log	LLIDAR Operator: DC AUDUVI	10 Date: JANUARY 2, 2014	L3 Engine On: 12 + 20	21 Prohlome and Solutions -	Acquisition Flight Approved

Flight Log No.:2481 6 Aircraft Identification: P-C2022 over Printed Nam 18 Total Flight Time: イナル3 oxas Lidar Operator 5 Aircraft Type: Cesnna T206H 12 Airport of Arrival (Airport, City/Province): 1623H 17 Landing: Signature over Printed Name JA A ANAR Pilot-in-Command 4 Type: VFR 16 Take off: |200 H 2 ALTM Model: Pegasus 3 Mission Name: 13TN 0234 2 ALI IN MILLING STATUS 9 ROUTE: Clark 15 Total Engine Time: イヤころ Nipel (N Too IF) Signature over Printed Name (PAF Representative) Acquisition Flight Certified by # 820 Successful flight 14 Engine Off: 8 Co-Pilot: Acquisition Flight Approved by Signature over Printed Name (End User Representative) **DREAM Data Acquisition Flight Log** Roxas Awar 21 Problems and Solutions: 10 Date: Jan 23, 2015 Alaport 1205H 1 LIDAR Operator: T. 13 Engine On: 19 Weather 20 Remarks: 7 Pilot:

2. Flight Log for 2481P Mission

6 Aircraft Identification: 19/22 Signature over Printed Name 18 Total Flight Time: rayleluming 3+54 Lidar Operator Flight Log No.: 5 Aircraft Type: Cesnna T206H FREEPORT ZONE 8 Co-Pilot: J. Jeller, 9 Route: CLARY- BATAAN 12 Airport of Departure (Airport, Gity/Province): 12 Airport of Arrival (Airport, Gity/Province): 12:22 17 Landing: nted Name Pilot-in-Command SUBIC - NORONG Char 16 Take off: 1 LIDAR Operator: PAGADXY HEXCMMP ALTM Model: Cempi 3 Mission Name: 2 BTNCO 209A 4 Type: VFR 8:33 CASTILLEUOS OVER 15 Total Engine Time: Telan Shoan H light Certified by Signature over Printed Name 3+59 FLIGHT AND (PAF Representative) Success Pur JANAL Sap MY TS: SI U OWING 14 Engine Off: partlet PAGA DOF Acquisition Flight Approved by Signature over Printed Name (End User Representative) and 21 Problems and Solutions: K:28AM 7 Pilot: A. Lim 10 Date: 8-27-15 4 13 Engine On: 20 Remarks: **19 Weather**

Flight Log for 2658G

Annex 7. Flight Status

FLIGHT STATUS REPORT Bataan and Umiray; Clark Reflights January 2, 2014, January 23, 2015, and August 26, 2015										
FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS					
926G	BALE	2BALE002A	DC ALDOVINO	January 2, 2014	Surveyed BALE					
2481P	BTN	1BTN023A	I ROXAS	January 23, 2015	Filled up gaps in Bucao, surveyed Morong					
2658G	BTNCD	2BTNCD239A	AM PAGADOR & MCE BALIGUAS	August 27, 2015	Successful flight over Subic-Morong Freeport Zone and Castillejos					

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

SWATH/LAS PER MISSION

Flight No. :926GArea:BALEMission Name:2BALE002AParameters:Altitude: 1000Scan Frequency: 50Scan Angle: 20Overlap: 30

SWATH

Flight No. :2481PArea:BTNMission Name:1BTN023AParameters:Altitude: 1000Scan Frequency: 30Scan Angle: 25Overlap: 30

LAS

Flight No. :	2658G	
Area:	BTNCD	
Mission Name:	2BTNCD239A	
Parameters:	Altitude: 800	Scan Frequency: 40
	Scan Angle: 25	Overlap: 30

Flight Area	Bataan
Mission Name	BataanZambales_BalE
Inclusive Flights	926G
Range data size	13.3 GB
POS	243 MB
Image	27.2 GB
Base	N/A
Transfer date	January 10, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.0
RMSE for East Position (<4.0 cm)	5.0
RMSE for Down Position (<8.0 cm)	8.5
Boresight correction stdev (<0.001deg)	0.000148
IMU attitude correction stdev (<0.001deg)	0.000709
GPS position stdev (<0.01m)	0.0068
Minimum % overlap (>25)	
Ave point cloud density per sq.m. (>2.0)	
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	119
Maximum Height	473.01 m
Minimum Height	41.26 m
Classification (# of points)	
Ground	34,074,245
Low vegetation	27,623,561
Medium vegetation	85,714,678
High vegetation	178,053,916
Building	5,464,959
Orthophoto	Yes
Processed by	Engr. Charmaine Cruz, Engr. Elainne Lopez

Annex 8. Mission Summary Report

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR Data

Image of data overlap

Pulse Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Bataan_Reflights
Mission Name	Bal_E_Additional
Inclusive Flights	2481P
Range data size	24.4 GB
POS	273 MB
Image	NA
Base	2.82
Transfer date	March 9, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.60
RMSE for East Position (<4.0 cm)	1.69
RMSE for Down Position (<8.0 cm)	3.98
Boresight correction stdev (<0.001deg)	0.000241
IMU attitude correction stdev (<0.001deg)	0.000948
GPS position stdev (<0.01m)	0.0117
Minimum % overlap (>25)	29.32
Ave point cloud density per sq.m. (>2.0)	3.87
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	144
Maximum Height	382.64 m
Minimum Height	29.33 m
Classification (# of points)	
Ground	121,193,806
Low vegetation	103,902,742
Medium vegetation	151,989,087
High vegetation	377,494,365
Building	22,763,644
Orthophoto	No

Solution Status

Smoothed Performance Metric Parameters

Best Estimate Trajectory

Coverage of LiDAR data

Image of data overlap

Density Map of merged LiDAR data

Elevation Difference Between flight lines

Flight Area	Clark Reflights			
Mission Name	BlkBtn_CD			
Inclusive Flights	2658G			
Range data size	13.3 GB			
POS	232 MB			
Image	11.6 GB			
Base	94.8			
Transfer date	August 27, 2015			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	Yes			
Processing Mode (<=1)	Yes			
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	2.55			
RMSE for East Position (<4.0 cm)	2.20			
RMSE for Down Position (<8.0 cm)	4.50			
Boresight correction stdev (<0.001deg)	0.000479			
IMU attitude correction stdev (<0.001deg)	0.001994			
GPS position stdev (<0.01m)	0.0252			

Minimum % overlap (>25)	31.52%		
Ave point cloud density per sq.m. (>2.0)	4.47		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	138		
Maximum Height	756.92 m		
Minimum Height	42.19 m		
Classification (# of points)			
Ground	38,589,084		
Low vegetation	28,474,542		
Medium vegetation	130,248,906		
High vegetation	125,243,729		
Building	1,746,717		
Orthophoto	No		
Processed by	Engr. Edgardo Gubatanga, Jr., Kathryn Claudyn Zarate		

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

	io to Peak	0.27236	0.28372	0.28952	0.42354	0.27671
iseflow	Threshold Type	Ratio to Peak				
Recession Ba	Recession Constant	0.17502	0.17498	0.17495	0.17499	0.11909
	Initial Discharge (M3/S)	4.9508	7.7596	9.0348	7.2759	1.979
	Initial Type	Discharge	Discharge	Discharge	Discharge	Discharge
drograph rm	Storage Coefficient (HR)	1.7425	1.4011	3.6286	2.5532	0.99034
Clark Unit Hy Transfo	Time of Concentration (HR)	0.23232	1.7944	3.9539	1.6685	2.1623
Loss	Impervious (%)	0	0	0	0	0
rve Number L	Curve Number	39.25	35.286	35.175	35.223	35.233
SCS CI	Initial Abstraction (mm)	5.1877	6.6019	4.5047	5.4138	6.6594
	Basin Number	W100	W60	W70	W80	06M

Annex 9. Morong Model Basin Parameter

Annex 10. Morong Model Reach Parameters

Reach		Musł	kingum Cung	e Channel Routi	ng		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R20	Automatic Fixed Interval	7767.7	0.01704	0.0570478	Trapezoid	35.05	1
R50	Automatic Fixed Interval	4457.5	0.01	0.0253546	Trapezoid	54.04	T

Validation Coordinates Point Model Var Validation **Rain Return** Error **Event/Date** Number Points (m) /Scenario (m) Lat Long 14.70127 120.28538 0.05 -0.05 Habagat, 2016 1 0 5-Year 2 120.28599 0 14.70169 0.06 -0.06 Habagat, 2016 5 -Year 3 14.70055 120.27399 0.03 0.1 0.07 Habagat, 2016 5 -Year 4 14.70088 120.27306 0 -0.13 Habagat, 2016 5 -Year 0.13 5 0 -0.03 14.70011 120.27111 0.03 Habagat, 2016 5 -Year 0 6 14.69868 120.27143 -0.03 Habagat, 2016 5 -Year 0.03 7 14.68706 120.2648 0.03 0 -0.03 Habagat, 2016 5 -Year 8 14.68591 120.26382 0.03 0 -0.03 Habagat, 2016 5 -Year 9 14.68625 120.26545 0.03 0 -0.03 Habagat, 2016 5 -Year 10 120.27048 0 14.68119 0.03 -0.03 Habagat, 2016 5 -Year 11 14.67995 120.2698 0.03 0 -0.03 Habagat, 2016 5 -Year 12 14.68211 120.27324 0.03 0 -0.03 Habagat, 2016 5 -Year 5 -Year 13 14.67833 120.27015 0.03 0 -0.03 Habagat, 2016 14 14.67751 120.26897 0.11 0 -0.11 Habagat, 2016 5 -Year 0 -0.03 Habagat, 2016 15 14.68379 120.27438 0.03 5 -Year 0 Habagat, 2016 16 14.69223 120.24981 0.03 -0.03 5 -Year 17 14.6929 120.25004 0.14 0 -0.14 Habagat, 2016 5 -Year 0.37 18 14.71608 120.25234 0.03 0.4 Habagat, 2016 5 -Year 19 14.71683 120.25544 0.06 0.25 0.19 Habagat, 2016 5-Year 0.25 0.22 5 -Year 20 14.71839 120.25367 0.03 Habagat, 2016 0 21 14.70338 120.26896 0.03 -0.03 Habagat, 2016 5-Year 22 14.70535 120.2694 0.03 0 -0.03 Habagat, 2016 5 -Year 23 14.70557 120.27054 0.04 0 -0.04 Habagat, 2016 5 -Year 0 24 14.70373 120.26664 0.03 -0.03 Habagat, 2016 5 -Year 0 25 14.71237 120.28977 0.03 -0.03 Habagat, 2016 5-Year 26 14.7118 120.28836 0.03 0.4 0.37 Habagat, 2016 5 -Year 27 14.67054 120.26829 0.03 0 -0.03 Habagat, 2016 5 -Year 28 14.67084 120.26995 0.04 0 -0.04 Habagat, 2016 5 -Year 29 14.66947 120.26959 0.03 0 -0.03 Habagat, 2016 5 -Year 30 14.67088 120.27152 0.03 0 -0.03 Habagat, 2016 5 -Year 14.67096 120.27325 0.03 0 -0.03 5 -Year 31 Habagat, 2016 32 14.69387 120.25017 0.26 0 -0.26 Habagat, 2016 5 -Year 14.69441 120.25051 0.31 0 -0.31 Habagat, 2016 5 -Year 33 34 120.24938 0.4 0.25 -0.15 Habagat, 2016 5 -Year 14.69476 35 14.69512 120.25118 0.46 0 -0.46 Habagat, 2016 5 -Year 36 120.26763 0.45 0.5 0.05 14.6779 Habagat, 2016 5 -Year 37 0.5 Habagat, 2016 14.67857 120.26663 0.49 0.01 5-Year 38 14.67983 120.26742 0.41 0.25 -0.16 Habagat, 2016 5 -Year 39 14.6786 120.26554 0.44 0.5 0.06 Habagat, 2016 5 -Year 40 14.66967 120.26771 0.28 0.3 0.02 5 -Year Habagat, 2016 41 14.67171 120.27333 0.23 0 -0.23 Habagat, 2016 5 -Year

Annex 11. Morong Field Validation

Point	Validation C	Coordinates	Model Var	Validation	Error	Event/Data	Rain Return
Number	Lat	Long	(m)	Points (m)	EIIOI	Event/Date	/Scenario
42	14.72164	120.25643	0.22	0	-0.22	Habagat, 2016	5 -Year
43	14.69627	120.25189	0.46	0.46	0	Habagat, 2016	5 -Year
44	14.69692	120.25089	0.32	0.3	-0.02	Habagat, 2016	5 -Year
45	14.67073	120.2708	0.24	0	-0.24	Habagat, 2016	5 -Year
46	14.66952	120.26883	0.39	0	-0.39	Habagat, 2016	5 -Year
47	14.66969	120.26653	0.37	0	-0.37	Habagat, 2016	5 -Year
48	14.67117	120.26609	0.54	0.3	-0.24	Habagat <i>,</i> 2016	5 -Year
49	14.68265	120.26508	0.42	0.3	-0.12	Habagat, 2016	5 -Year
50	14.68148	120.26681	0.5	0	-0.5	Habagat <i>,</i> 2016	5 -Year
51	14.68055	120.26833	0.43	0	-0.43	Habagat <i>,</i> 2016	5 -Year
52	14.73124	120.27421	0.48	0.46	-0.02	Habagat <i>,</i> 2016	5 -Year
53	14.73103	120.27536	0.27	0.46	0.19	Habagat <i>,</i> 2016	5 -Year
54	14.73018	120.27513	0.49	0.3	-0.19	Habagat, 2016	5 -Year
55	14.73114	120.27586	0.41	0.3	-0.11	Habagat <i>,</i> 2016	5 -Year
56	14.73125	120.27763	0.25	0.3	0.05	Habagat <i>,</i> 2016	5 -Year
57	14.73158	120.27843	0.24	0.3	0.06	Habagat, 2016	5 -Year
58	14.73219	120.27926	0.27	0.3	0.03	Habagat, 2016	5 -Year
59	14.73292	120.2797	0.45	1.25	0.8	Habagat, 2016	5 -Year
60	14.72995	120.27272	0.27	0	-0.27	Habagat, 2016	5 -Year
61	14.68176	120.26956	0.43	0	-0.43	Habagat, 2016	5 -Year
62	14.68202	120.26923	0.85	0.25	-0.6	Habagat, 2016	5 -Year
63	14.68127	120.26889	0.85	0.25	-0.6	Habagat, 2016	5 -Year
64	14.6808	120.26821	0.89	1.07	0.18	Habagat, 2016	5 -Year
65	14.68019	120.26774	0.86	0	-0.86	Habagat, 2016	5 -Year
66	14.68089	120.26703	0.83	0.91	0.08	Habagat, 2016	5 -Year
67	14.67937	120.26642	0.79	0	-0.79	Habagat <i>,</i> 2016	5 -Year
68	14.67891	120.26713	0.69	0	-0.69	Habagat, 2016	5 -Year
69	14.67694	120.26703	0.67	0	-0.67	Habagat, 2016	5 -Year
70	14.67817	120.26695	0.7	0	-0.7	Habagat, 2016	5 -Year
71	14.677	120.26847	0.86	0.25	-0.61	Habagat, 2016	5 -Year
72	14.67778	120.2667	0.68	0	-0.68	Habagat, 2016	5 -Year
73	14.67816	120.26523	0.71	0	-0.71	Habagat, 2016	5 -Year
74	14.69601	120.2514	0.52	1.07	0.55	Habagat, 2016	5 -Year
75	14.69526	120.25034	0.56	0	-0.56	Habagat, 2016	5 -Year
76	14.69551	120.25012	0.67	0	-0.67	Habagat, 2016	5 -Year
77	14.6959	120.25101	0.6	0.91	0.31	Habagat, 2016	5 -Year
78	14.69676	120.25188	0.56	1.07	0.51	Habagat, 2016	5 -Year
79	14.69726	120.25092	0.81	0.91	0.1	Habagat, 2016	5 -Year
80	14.72063	120.25667	0.57	0	-0.57	Habagat, 2016	5 -Year
81	14.73064	120.27456	0.6	0.91	0.31	Habagat, 2016	5 -Year
82	14.73015	120.27474	0.56	0.91	0.35	Habagat, 2016	5 -Year
83	14.73027	120.2728	0.63	0.91	0.28	Habagat, 2016	5 -Year

Point	Validation C	Coordinates	Model Var	Validation	Error	Event/Date	Rain Return
Number	Lat	Long	(m)	Points (m)	LIIOI	Lventy Date	/Scenario
84	14.73059	120.27637	0.8	1.37	0.57	Habagat, 2016	5 -Year
85	14.7305	120.27876	0.66	0.91	0.25	Habagat, 2016	5 -Year
86	14.73146	120.27908	0.82	0.91	0.09	Habagat, 2016	5 -Year
87	14.7325	120.27977	0.85	0.3	-0.55	Habagat, 2016	5 -Year
88	14.67766	120.26719	0.86	0.2	-0.66	Habagat, 2016	5 -Year
89	14.67761	120.26809	0.71	0	-0.71	Habagat, 2016	5 -Year
90	14.67225	120.27284	0.78	0	-0.78	Habagat, 2016	5 -Year
91	14.73196	120.27843	0.53	0.91	0.38	Habagat, 2016	5 -Year
92	14.73048	120.27371	1.42	1.37	-0.05	Habagat, 2016	5 -Year
93	14.73044	120.274	1.27	1.37	0.1	Habagat <i>,</i> 2016	5 -Year
94	14.73274	120.2804	1.34	0.76	-0.58	Habagat <i>,</i> 2016	5 -Year
95	14.73245	120.28012	1.08	0.5	-0.58	Habagat <i>,</i> 2016	5 -Year
96	14.73252	120.2827	1.63	0.5	-1.13	Habagat, 2016	5 -Year
97	14.73188	120.28288	1.78	0.3	-1.48	Habagat, 2016	5 -Year
98	14.73134	120.2835	1.59	1.3	-0.29	Habagat, 2016	5 -Year
99	14.73144	120.28298	1.04	1.37	0.33	Habagat, 2016	5 -Year
100	14.68275	120.2681	1.69	1.22	-0.47	Habagat, 2016	5 -Year
101	14.68239	120.26737	1.67	1.37	-0.3	Habagat, 2016	5 -Year
102	14.68181	120.26815	1.67	1.22	-0.45	Habagat, 2016	5 -Year
103	14.68237	120.26948	1.4	0.6	-0.8	Habagat, 2016	5 -Year
104	14.6831	120.27045	1.51	0.6	-0.91	Habagat, 2016	5 -Year
105	14.68033	120.26749	1.16	0.91	-0.25	Habagat, 2016	5 -Year
106	14.67969	120.26687	1.14	1.07	-0.07	Habagat, 2016	5 -Year
107	14.68048	120.26606	1.31	0.3	-1.01	Habagat, 2016	5 -Year
108	14.67933	120.26604	1.29	1.22	-0.07	Habagat, 2016	5 -Year
109	14.67901	120.26541	1.45	0.91	-0.54	Habagat, 2016	5 -Year
110	14.67977	120.26491	1.43	1.37	-0.06	Habagat, 2016	5 -Year
111	14.67877	120.26471	1.47	1.07	-0.4	Habagat, 2016	5 -Year
112	14.67785	120.2652	1.64	0.8	-0.84	Habagat, 2016	5 -Year
113	14.67661	120.26662	1.41	0.6	-0.81	Habagat, 2016	5 -Year
114	14.67548	120.26632	1.61	1.22	-0.39	Habagat, 2016	5 -Year
115	14.68174	120.26345	1.11	0.91	-0.2	Habagat, 2016	5 -Year
116	14.6811	120.26376	1.49	1.37	-0.12	Habagat, 2016	5 -Year
117	14.68034	120.263	1.6	0.91	-0.69	Habagat, 2016	5 -Year
118	14.68067	120.26218	1.13	0.91	-0.22	Habagat, 2016	5 -Year
119	14.68113	120.26492	1.61	1.37	-0.24	Habagat, 2016	5 -Year
120	14.68163	120.26521	1.46	1.52	0.06	Habagat, 2016	5 -Year
121	14.67978	120.26588	1.38	1.22	-0.16	Habagat, 2016	5 -Year
122	14.68436	120.26921	1.75	1.83	0.08	Habagat, 2016	5 -Year
123	14.68406	120.26903	2.56	1.68	-0.88	Habagat, 2016	5 -Year
124	14.68339	120.2685	1.85	1.07	-0.78	Habagat, 2016	5 -Year
125	14.6827	120.26998	1.55	0.9	-0.65	Habagat, 2016	5 -Year

Point	Validation C	Coordinates	Model Var	Validation	Error	Event/Data	Rain Return
Number	Lat	Long	(m)	Points (m)	Error	Event/Date	/Scenario
126	14.68266	120.26785	2.32	1.68	-0.64	Habagat, 2016	5 -Year
127	14.68213	120.26797	1.83	0.3	-1.53	Habagat, 2016	5 -Year
128	14.68183	120.26688	2.01	1.68	-0.33	Habagat, 2016	5 -Year
129	14.68166	120.26732	1.42	1.83	0.41	Habagat, 2016	5 -Year
130	14.68129	120.26776	1.3	1.83	0.53	Habagat, 2016	5 -Year
131	14.68129	120.26618	2.69	0.3	-2.39	Habagat, 2016	5 -Year
132	14.70172	120.28729	2.5	0.3	-2.2	Habagat <i>,</i> 2016	5 -Year
133	14.70165	120.28709	3.03	1.25	-1.78	Habagat, 2016	5 -Year
134	14.70135	120.28678	3.94	1.5	-2.44	Habagat, 2016	5 -Year
135	14.70134	120.28623	2.17	0.5	-1.67	Habagat <i>,</i> 2016	5 -Year
136	14.67943	120.26423	1.69	1.37	-0.32	Habagat <i>,</i> 2016	5 -Year
137	14.6761	120.26606	1.5	0.91	-0.59	Habagat, 2016	5 -Year
138	14.67619	120.267	1.52	0.75	-0.77	Habagat, 2016	5 -Year
139	14.70209	120.24944	0.03	0	-0.03	Habagat <i>,</i> 2016	5 -Year
140	14.70143	120.24984	0.03	0	-0.03	Habagat <i>,</i> 2016	5 -Year
141	14.70105	120.24903	0.03	0	-0.03	Habagat, 2016	5 -Year
142	14.69954	120.24948	0.03	0	-0.03	Habagat, 2016	5 -Year
143	14.69878	120.24986	0.08	0	-0.08	Habagat, 2016	5 -Year
144	14.70303	120.24941	0.03	0	-0.03	Habagat, 2016	5 -Year
145	14.68046	120.27283	0.04	0	-0.04	Habagat, 2016	5 -Year
146	14.68005	120.27064	0.03	0	-0.03	Habagat, 2016	5 -Year
147	14.67914	120.27153	0.04	0	-0.04	Habagat, 2016	5 -Year
148	14.67701	120.27226	0.05	0	-0.05	Habagat <i>,</i> 2016	5 -Year
149	14.67965	120.26883	0.05	0	-0.05	Habagat, 2016	5 -Year
150	14.67945	120.27417	0.03	0	-0.03	Habagat, 2016	5 -Year
151	14.68558	120.27366	0.03	0	-0.03	Habagat <i>,</i> 2016	5 -Year
152	14.685	120.27325	0.03	0	-0.03	Habagat, 2016	5 -Year
153	14.68416	120.27283	0.03	0	-0.03	Habagat, 2016	5 -Year
154	14.67853	120.26867	0.04	0	-0.04	Habagat, 2016	5 -Year
155	14.67701	120.26572	1.26	0.6	-0.66	Habagat, 2016	5 -Year
156	14.67167	120.27088	0.24	0.3	0.06	Habagat, 2016	5 -Year
157	14.67115	120.26924	0.16	0	-0.16	Habagat, 2016	5 -Year
158	14.67203	120.26967	0.71	0	-0.71	Habagat, 2016	5 -Year
159	14.67027	120.27023	0.03	0	-0.03	Habagat <i>,</i> 2016	5 -Year
160	14.67843	120.26251	0.89	0.46	-0.43	Habagat, 2016	5 -Year
161	14.67792	120.26302	0.66	0.61	-0.05	Habagat, 2016	5 -Year
162	14.67552	120.26454	0.07	0	-0.07	Habagat, 2016	5 -Year
163	14.67462	120.26495	0.03	0	-0.03	Habagat, 2016	5 -Year
164	14.67327	120.26563	0.03	0	-0.03	Habagat, 2016	5 -Year
165	14.74066	120.28099	0.29	0	-0.29	Habagat, 2016	5 -Year
166	14.73968	120.2792	0.06	1.37	1.31	Habagat, 2016	5 -Year
167	14.73936	120.27967	0.05	0.61	0.56	Habagat, 2016	5 -Year

Point	Validation C	Coordinates	Model Var	Validation	Error	Event/Date	Rain Return
Number	Lat	Long	(m)	Points (m)	Error Eventy Date		/Scenario
168	14.74047	120.27954	0.04	0	-0.04	Habagat, 2016	5 -Year
169	14.67827	120.26621	0.63	0.75	0.12	Habagat, 2016	5 -Year
170	14.68034	120.26529	2.59	0.61	-1.98	Habagat, 2016	5 -Year
171	14.68474	120.2678	0.95	1.52	0.57	Habagat, 2016	5 -Year
172	14.68531	120.26956	4.25	1.75	-2.5	Habagat, 2016	5 -Year
173	14.68431	120.26873	4.67	1.85	-2.82	Habagat, 2016	5 -Year
174	14.68557	120.26888	1.93	1.68	-0.25	Habagat, 2016	5 -Year
175	14.68479	120.26314	0.09	0	-0.09	Habagat, 2016	5 -Year
176	14.68659	120.26451	0.03	0	-0.03	Habagat, 2016	5 -Year
177	14.68769	120.26554	0.03	0	-0.03	Habagat, 2016	5 -Year
178	14.68258	120.26711	4.4	1.85	-2.55	Habagat, 2016	5 -Year
179	14.67973	120.26426	2.73	0.76	-1.97	Habagat, 2016	5 -Year
180	14.67194	120.27088	0.93	0.34	-0.59	Habagat, 2016	5 -Year

Annex 12. Educational Institutions Affected in Morong Floodplain

Bataan							
	Morong						
Building Name	Barangay	Ra	infall Scena	rio			
	Darangay	5-year	25-year	100-year			
Binaritan Elementary School 1	Binaritan	High	High	High			
Binaritan Elementary School 2	Binaritan	High	High	High			
Binaritan Elementary School 3	Binaritan	High	High	High			
Binaritan Elementary School 4	Binaritan	High	High	High			
Binaritan Elementary School 5	Binaritan	High	High	High			
Binaritan Elementary School 6	Binaritan						
Mabayo Elementary School 1	Mabayo	Medium	Medium	Medium			
Mabayo Elementary School 2	Mabayo	Medium	Medium	Medium			
Mabayo Elementary School 3	Mabayo	Medium	Medium	High			
Mabayo Elementary School 4	Mabayo	Medium	Medium	High			
Mabayo Elementary School 5	Mabayo	Medium	Medium	Medium			
Mabayo Elementary School 6	Mabayo	Medium	Medium	Medium			
Mabayo High School 1	Mabayo						
Mabayo High School 2	Mabayo	Low	Low	Low			
Mabayo High School 3	Mabayo	Low	Low	Medium			
Mabayo High School 4	Mabayo	Low	Medium	Medium			
Mabayo High School 5	Mabayo	Low	Medium	Medium			
Mabayo High School 6	Mabayo						
Minanga Elementary School 1	Mabayo		Low	Medium			
Minanga Elementary School 2	Mabayo		Low	Medium			
Minanga Elementary School 3	Mabayo		Low	Low			
Minanga Elementary School 4	Mabayo		Low	Medium			
Minanga Elementary School 5	Mabayo		Medium	Medium			
Morong Elementary School 1	Poblacion	Low	Medium	Medium			
Morong Elementary School 10	Poblacion	Low	Medium	Medium			
Morong Elementary School 11	Poblacion	Medium	Medium	Medium			
Morong Elementary School 12	Poblacion	Medium	Medium	Medium			
Morong Elementary School 13	Poblacion	Medium	Medium	High			
Morong Elementary School 2	Poblacion		Medium	Medium			
Morong Elementary School 3	Poblacion	Medium	Medium	Medium			
Morong Elementary School 4	Poblacion	Medium	Medium	High			
Morong Elementary School 5	Poblacion	Medium	Medium	High			
Morong Elementary School 6	Poblacion	Medium	Medium	High			
Morong Elementary School 7	Poblacion	Medium	Medium	High			
Morong Elementary School 8	Poblacion	Low	Medium	Medium			
Morong Elementary School 9	Poblacion	Medium	Medium	High			
Maranhattta Christian Academy	Sabang						
Morong National High School 1	Sabang						

Bataan								
Morong								
Building Name	Barangay	Rainfall Scenario						
		5-year	25-year	100-year				
Morong National High School 2	Sabang							
Morong National High School 3	Sabang							
Morong National High School 4	Sabang							
Morong National High School 5	Sabang							

Annex 13. Medical Institutions Affected in Morong Floodplain

Bataan							
Morong							
Building Name	Barangay	Rainfall Scenario					
	Barangay	5-year	25-year	100-year			
Morong Municipal Health Center	Poblacion	Medium	Medium	High			