HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Tumaga River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Ateneo de Zamboanga University

IULY 201

© University of the Philippines and Ateneo de Zamboanga University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

M. Rodriguez, E. Epino, L.P. Balicanta, C. Cruz, L.G. Acuña, G. Hipolito, For. Ma. Verlina Tonga, J. Alviar, J.S. Caballero, P.P. dela Cruz, D.T. Lozano, D.C. Tajora, E.B. Salvador, R.C. Alberto, C.C. Atacador, L.R. Taguse, M.R. Ang, J.D. Fabila, S.D. Samalburo, G.M. Apat, H.F. Santos, M.A. Olanda, A.V. Araneta, C.T. Lubiano , J.P. Ballori, J.L. Paterno, A.M. Lagmay, C. Uichanco, S. Sueno, M. Moises, H. Ines, M. del Rosario, K. Punay, N. Tingin, G. Sumajit (2017), LiDAR Surveys and Flood Mapping of Tumaga River, in Enrico C. Paringit, (Ed.), Flood Hazard Mapping of the Philippines using LIDAR, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP TCAGP). 164 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Mr. Mario S. Rodriguez

Project Leader, Phil-LiDAR 1 Program Ateneo de Zamboanga University Zamboanga City, Philippines 7000 rodriguezmars@adzu.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Table of Contents

LIST OF FIGURES	v
LIST OF TABLES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	viii
Chapter 1: OVERVIEW OF THE PROGRAM AND TUMAGA RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of Tumaga River Basin	1
Chapter 2: LIDAR DATA ACQUISITION OF THE TUMAGA FLOODPLAIN	3
2.1. Flight Plans	3
2.2 Ground Base Station	4
2.3 Flight Missions	10
2.4 Survey Coverage	11
Chapter 3: DATA PROCESSING FOR THE TUMAGA FLOODPLAIN	. 13
3.1 Overview of the LiDAR Data Pre-Processing	13
3.2. Transmittal of Acquired LiDAR Data	14
3.3. Trajectory Computation	14
3.4 LIDAR Point Cloud Computation	16
3.5 LIDAR Data Quality Checking	16
3.6 LIDAR Point Cloud Classification and Rasterization	20
2.8 DEM Editing and Hydro-Correction	22
3.9 Mosaicking of Blocks	23
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	25
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	. 28
3.12. Feature Extraction	29
3.12.1 Quality Checking of Digitized Features' Boundary	. 30
3.12.2 Height Extraction	30
3.12.3 Feature Attribution	30
3.12.4 Final Quality Checking of Extracted Features	32
Chapter 4: SURVEY AND MEASUREMENTS IN THE TUMAGA RIVER BASIN SURVEY	33
4.1 Summary of Activities	33
4.2 Control Survey	34
4.3 Baseline Processing	38
4.4 Network Adjustment	39
4.5 Cross-section and Bridge-as-built survey and Water Level Marking	41
4.6 Validation Points Acquisition Survey	48
4.7 Balnymetric Survey	49
Chapter 5: FLOOD MODELING AND MAPPING	.52
5.1 Data Used for Hydrologic Modeling	52
5.1.1 Hydrometry and Rating Curves	52
5.1.2 Pitcipilduon	52
5.2 RIDE Station	54
5.3 HMS Model	56
5.4 Cross-Section Data	. 58
5.5 Flo-2D Model	59
5.6 Results of HMS Calibration	60
5.7 Calculated Outflow Hydrographs and Discharge Values for Different Rainfall Return Periods	. 62
5.7.1 Hydrograph using the Rainfall Runoff Model	62
5.8 River Analysis (RAS) Model Simulation	63
5.9 Flood Depth and Flood Hazard Maps	63
5.10 Inventory of Areas Exposed to Flooding	70
5.11 Flood Validation	95
REFERENCES	.96

Annexes		97
Annex 1.	Technical Specifications of the LiDAR Sensors used in the Tumaga Floodplain Su	rvey97
Annex 2.	NAMRIA Certification of Reference Points Used in the LiDAR Survey	101
Annex 3.	Baseline Procesing Reports of Control Points Used in the LiDAR Survey	
Annex 4.	The LiDAR Survery Team Composition	
Annex 5.	Data Transfer Sheet for Tumaga Floodplain	
Annex 6.	Flight logs for the flight missions	112
Annex 7.	Flight Status Report	117
Annex 8.	Mission Summary Reports	
ANNEX 9.	Tumaga Model Basin Parameters	153
ANNEX 10	D. Tumaga Model Reach Parameters	154
ANNEX 1	1. Tumaga Field Validation Points	
ANNEX 12	2. Educational Institutions affected in Tumaga-San Jose Floodplain	161
ANNEX 13	3. Health Institutions affected in Tumaga-San Jose Floodplain	

LIST OF FIGURES

Figure 1. Figure 2.	Carreon Falls of Zambanga City Sewer pipes draining into the river	2 2
Figure 3. Figure 4.	Flight plans used for Tumaga Floodplain GPS set-up over ZGS-100 in Brgy. Manicahan, Zamboanga del Sur and	4
0.	(a) NAMRIA reference point ZGS-100 (b) as recovered by the field team	5
Figure 5.	GPS set-up over ZS-131 in Curuan, Zamboanga City and (a) NAMRIA benchmark reference point ZS-131 (b) as recovered by the field team.	6
Figure 6.	GPS set-up over ZGS-99 beside the seawall in Calarian, Zamboanga City and	_
F ¹ · · · 7	(a) NAMRIA reference point ZGS-99 (b) as recovered by the field team	7
Figure 7.	GPS set-up over BVA-1 established in Brgy. Buenavista, Zamboanga City and	0
Eiguro 9	(d) Reference point BVA-1 (b) as established by the field team.	0
Figure 0.	Schematic Diagram for Data Pre-Processing Component	12
Figure 10	Smoothed Performance Metric Parameters of a Tumaga Flight 7450G	14
Figure 11.	Solution Status Parameters of Tumaga Flight 7450G.	
Figure 12.	Best Estimated Trajectory of the LiDAR missions conducted over the Tumaga Floodplain	15
Figure 13.	Boundary of the processed LiDAR data over Tumaga Floodplain	16
Figure 14.	Image of data overlap for Tumaga Floodplain	17
Figure 15.	Pulse density map of merged LiDAR data for Tumaga Floodplain	18
Figure 16.	Elevation difference map between flight lines for Tumaga Floodplain.	19
Figure 17.	Quality checking for a Tumaga flight 7450G using the Profile Tool of QT Modeler.	19
Figure 18.	Tiles for Tumaga Floodplain (a) and classification results (b) in TerraScan	20
Figure 19.	Point cloud before (a) and after (b) classification	21
Figure 20.	The production of last return DSM (a) and DTM (b), first return DSM (c)	24
E	and secondary DTM (d) in some portion of Tumaga Floodplain.	21
Figure 21.	Iumaga Floodplain with available orthophotographs.	
Figure 22.	Portions in the DTM of Tumaga Floodplain - a paddy field before (a) and after (b) data	
rigure 23.	retrieval: a road before (c) and after (d) manual editing: a building before (e)	
	and after (f) manual editing	24
Figure 24.	Map of Processed LiDAR Data for Tumaga Floodplain.	25
Figure 25.	Map of Tumaga Floodplain with validation survey points in green	26
Figure 26.	Correlation plot between calibration survey points and LiDAR data	27
Figure 27.	Correlation plot between validation survey points and LiDAR data	28
Figure 28.	Map of Tumaga Floodplain with bathymetric survey points shown in blue.	29
Figure 29.	QC blocks for Tumaga building features.	30
Figure 30.	Extracted features for Tumaga Floodplain	32
Figure 31.	Extent of the bathymetric survey (in blue line) in Tumaga River and the LiDAR	
F: 22	data validation survey (red)	34
Figure 32.	GNSS Network of Tumaga River Basin Survey	35
Figure 33.	Zamboanga City, Zamboanga Dol Sur	26
Figure 3/	GNSS receiver setup. Trimble [®] SDS 882 at 75-177 located in Rizal Dark in Broy. Zone IV	
ngure 54.	Zamboanga City Zamboanga Del Sur	36
Figure 35.	GNSS receiver occupation. Trimble [®] SPS 852 at ABO-1 located along approach of Abong	
	Bridge, in Brgv. Dulian, Zamboanga City, Zamboanga Del Sur	37
Figure 36.	GNSS base receiver setup, Trimble [®] SPS 882 at CUL-1 along approach	
0	of Culianan Bridge in Brgy. Culianan, Zamboanga City, Zamboanga Del Sur	37
Figure 37.	GNSS base receiver setup, Trimble [®] SPS 852 at ZGS-3508 along Tumaga Bridge in Brgy.	
	Tumaga, Zamboanga City, Zamboanga Del Sur	38
Figure 38.	(a) Tumaga Bridge, and (b) cross-section survey at Tumaga Bridge,	
	Brgy. Tumaga, Zamboanga City	41
Figure 39.	(a) Abong Abong Bridge, and (b) cross-section survey	
	at Abong Abong Bridge, Brgy Dulian, Zamboanga City	42
Figure 40.	Iumaga Bridge cross-sectional diagram	42
Figure 41.	Tumaga Bridge Data Form	43
Figure 42.	Abong-abong Bridge cross-sectional diagram	44 ⊿⊑
Figure 45.	Abong-abong bridge cross-section planimetric man	45 45
Figure 45	Abong-abong Bridge Data form	46
0.001		. •

Figure 46.	Water Marking on the Water Post near Tumaga Bridge	47
Figure 47.	(a) Marking on the existing water post in Abong-abong Bridge, and	
	(b) the finished water level markings in MSL	47
Figure 48.	(a) Ground validation set-up by the survey team: A Trimble [®] SPS 882	
	attached to the side of the vehicle	48
Figure 49.	LiDAR Ground Validation Survey along Tumaga River Basin	49
Figure 50.	Bathymetric survey in Tumaga River: (a) upstream and (b) downstream	50
Figure 51.	Bathymetric survey of Tumaga River	50
Figure 52.	Riverbed profile of Tumaga River	51
Figure 53.	The location map of Tumaga HEC-HMS model used for calibration	52
Figure 54.	Cross-Section Plot of Abong-Abong Bridge	53
Figure 55.	The rating curve at Upper Pasonanca Spillway (Abong-abong Bridge),	
	Pasonanca, Zamboanga City	53
Figure 56.	Rainfall and outflow data at Upper Pasonanca Spillway (Abong-abong Bridge) used for	
	modeling	54
Figure 57.	Zamboanga City RIDF location relative to Tumaga River Basin	55
Figure 58.	Synthetic storm generated for a 24-hr period rainfall for various return periods	55
Figure 59.	Soil Map of Tumaga River Basin	56
Figure 60.	Land Cover Map of Tumaga River Basin	56
Figure 61.	Stream delineation map of Tumaga river basin	57
Figure 62.	The Tumaga river basin model generated using HEC-HMS	58
Figure 63.	River cross-section of Tumaga River generated through Arcmap HEC GeoRAS tool	59
Figure 64.	Generated 100-year rain return hazard map from FLO-2D Mapper	59
Figure 65.	Generated 100-year rain return flow depth map from FLO-2D Mapper	60
Figure 66.	Outflow hydrograph of Tumaga produced by the HEC-HMS model	
C	compared with observed outflow	60
Figure 67.	The Outflow hydrograph at Tumaga Station, generated using Zamboanga City RIDF	
C	simulated in HEC-HMS.	62
Figure 68.	Sample output of Tumaga RAS Model	63
Figure 69.	A 100-year flood hazard map for the Tumaga Floodplain	64
Figure 70.	A 100-year flow depth map for Tumaga Floodplain	65
Figure 71.	A 25-vear flood hazard map for Tumaga Floodplain	66
Figure 72.	A 25-year flow depth map for Tumaga Floodplain	67
Figure 73.	A 5-year flood hazard map for Tumaga Floodplain	68
Figure 74.	A 5-year flood depth map for Tumaga Floodplain	69
Figure 75.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	72
Figure 76.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	74
Figure 77.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	76
Figure 78.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	78
Figure 79.	Affected Areas in Zamboanga City, during 25-Year Rainfall Return Period	80
Figure 80.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
Figure 81	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	84
Figure 82	Affected Areas in Zamboanga City, during 25-Year Rainfall Return Period	86
Figure 83	Affected Areas in Zamboanga City during 100-Year Rainfall Return Period	88
Figure 84	Affected Areas in Zamboanga City during 100-Year Rainfall Return Period	90
Figure 25	Affected Areas in Zambounga City during 100 Year Rainfall Return Period	
Figure 85.	Affected Areas in Zamboanga City during 100-lear Rainfall Return Period	<u>عرو</u> ۱۸۵
Figure 87	Validation points for 5-year flood depth map of Tumaga Floodplain	+ر ۹۶
Figure 82	Flood man denth vs actual flood dent	۵۵ ۵۵
inguie 00.	1000 map acplit vs actual 1000 acpl	

LIST OF TABLES

Table 1.	Flight planning parameters for Gemini LiDAR System	3
Table 2.	Flight planning parameters for Pegasus LIDAR System	3
Table 3.	Details of the recovered NAMRIA horizontal control point 2GS-100	_
	used as base station for the LIDAR data acquisition	5
Table 4.	Details of the recovered NAMRIA horizontal control point ZS-131	
	used as base station for the LiDAR data acquisition	6
Table 5.	Details of the recovered NAMRIA horizontal control point ZGS-99	
	used as base station for the LiDAR data acquisition	7
Table 6.	Details of the established ground control point BVA-1	
	used as base station for the LiDAR data acquisition	8
Table 7.	Details of the established ground control point BLLM-161	
	used as base station for the LiDAR acquisition	8
Table 8.	Details of the established ground control point ZC-1	
	used as base station for the LiDAR acquisition	9
Table 9.	Details of the established ground control point ZGS-99A	
	used as base station for the LiDAR acquisition	9
Table 10.	Ground control points used during LiDAR data acquisition	10
Table 11.	Flight missions for LiDAR data acquisition in Tumaga Floodplain	10
Table 12.	Actual parameters used during LiDAR data acquisition	10
Table 13.	List of municipalities and cities surveyed in Tumaga Floodplain LiDAR survey	11
Table 14.	Self-Calibration Results values for Tumaga flights.	16
Table 15.	List of LiDAR blocks for Tumaga Floodplain.	17
Table 16.	Tumaga classification results in TerraScan	20
Table 17.	LiDAR blocks with its corresponding area.	23
Table 18.	Shift Values of each LiDAR Block of Tumaga Floodplain.	24
Table 19.	Calibration Statistical Measures.	27
Table 20.	Validation Statistical Measures	28
Table 21.	Quality Checking Ratings for Tumaga Building Features.	30
Table 22.	Number of Building Features Extracted for Tumaga Floodplain	31
Table 23.	Total Length of Extracted Roads for Tumaga Floodplain	31
Table 24.	Number of Extracted Water Bodies for Tumaga Floodplain	32
Table 25.	References used and control points established in Tumaga River Basin.	35
Table 26.	Baseline Processing Report for Tumaga River static survey	38
Table 27.	Control Point Constraints	39
Table 28.	Adjusted Grid Coordinates	39
Table 29.	Adjusted Geodetic Coordinates	40
Table 30.	Reference and control points used and its location	41
Table 31.	RIDF values for Zamboanga City Rain Gauge computed by PAGASA	54
Table 32.	Range of Calibrated Values for Tumaga	61
Table 33.	ummary of the Efficiency Test of Tumaga HMS Model	61
Table 34.	Peak values of the Tumaga HECHMS Model outflow using the Zamboanga City RIDF	62
Table 35.	Municipalities affected in Tumaga-San Jose Floodplain	63
Table 36.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	71
Table 37.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	72
Table 38.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	74
Table 39.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	76
Table 40.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	78
Table 41.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	80
Table 42.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	83
Table 43.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	85
Table 44.	Affected Areas in Zamboanga City during 100-Year Rainfall Return Period	87
Table 45.	Affected Areas in Zamboanga City during 100-Year Rainfall Return Period	89
Table 46.	Affected Areas in Zamboanga City during 100-Year Rainfall Return Period	91
Table 47.	Affected Areas in Zamboanga City during 100-Year Rainfall Return Period	93
Table 48.	Area covered by each warning level with respect to the rainfall scenario	94

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation					
Ab	abutment					
ADZU	Ateneo de Zamboanga University					
ALTM	Airborne LiDAR Terrain Mapper					
ARG	automatic rain gauge					
ATQ	Antique					
AWLS	Automated Water Level Sensor					
BA	Bridge Approach					
BM	benchmark					
CAD	Computer-Aided Design					
CN	Curve Number					
CSRS	Chief Science Research Specialist					
DAC	Data Acquisition Component					
DEM	Digital Elevation Model					
DENR	Department of Environment and Natural Resources					
DOST	Department of Science and Technology					
DPPC	Data Pre-Processing Component					
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]					
DRRM	Disaster Risk Reduction and Management					
DSM	Digital Surface Model					
DTM	Digital Terrain Model					
DVBC	Data Validation and Bathymetry Component					
FMC	Flood Modeling Component					
FOV	Field of View					
GiA	Grants-in-Aid					
GCP	Ground Control Point					
GNSS	Global Navigation Satellite System					
GPS	Global Positioning System					
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System					
HEC-RAS	Hydrologic Engineering Center - River Analysis System					
HC	High Chord					
IDW	Inverse Distance Weighted [interpolation method]					
IMU	Inertial Measurement Unit					
kts	knots					
LAS	LiDAR Data Exchange File format					
LC	Low Chord					
LGU	local government unit					
Lidar	Light Detection and Ranging					
LMS	LiDAR Mapping Suite					
m AGL	meters Above Ground Level					

MMS	Mobile Mapping Suite
MSL	mean sea level
NAMRIA	National Mapping and Resource Information Authority
NSTC	Northern Subtropical Convergence
PAF	Philippine Air Force
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
PDOP	Positional Dilution of Precision
РРК	Post-Processed Kinematic [technique]
PRF	Pulse Repetition Frequency
PTM	Philippine Transverse Mercator
QC	Quality Check
QT	Quick Terrain [Modeler]
RA	Research Associate
RIDF	Rainfall-Intensity-Duration-Frequency
RMSE	Root Mean Square Error
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
SRS	Science Research Specialist
SSG	Special Service Group
ТВС	Thermal Barrier Coatings
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
UTM	Universal Transverse Mercator
WGS	World Geodetic System

Chapter 1: OVERVIEW OF THE PROGRAM AND TUMAGA RIVER

Enrico C. Paringit, Dr. Eng, Mario Rodriguez, and Emir Epino

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publiction entitled "FLOOD MAPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et al., 2017) available separately."

The implementing partner university for the Phil-LiDAR 1 Program is the Ateneo de Zamboanga (ADZU). ADZU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the Zamboanga Peninsula. The university is located in Zamboanga City.

1.2 Overview of Tumaga River Basin

Tumaga River is one of the biggest and most locally known rivers in the Zamboanga Peninsula. Its more or less thirty-kilometer reach, extends from Lumayang in the north to Arena Blanco in the south and traverses the following barangays of Zamboanga City: Dulian, Pasonanca, Sta Maria, Boalan, Tumaga, Zamboowood, Guiwan, Tetuan, Tugbungan, Talon-talon, and Mampang. Majority of these barangays are located in the urban parts of the city and are densely populated turning most of the downstream stretch of the river into a seemingly manmade semi-concrete creek and dumpsite. On the other hand, the watershed in the upstream part, more locally known as the Pasonanca Watershed or Pasonanca Natural Park, is heavily forested with endemic trees and covers some parts of Dulian in the west and Lunzuran in the east. The riverhas a catchment area approximately equal to 140.50 sq.km and drains into a stretch of mangrove forest fronting Sacol Island.

Gifted with untainted scenic spots like the Carreon Falls and the Pasonanca Aviary and Butterfly Garden, the name "Tumaga" unsurprisingly came from a romantic expression of adoration from a Spanish commandant named Col. Pedro Real in the 1870s. In his admiration of the river's splendor, he wrote a poem with parts stating: "Tumaga triste na dita for crosar el mar distante como agua crystalante baniara cual quien bonita." Hence, the first word of the poem became the name of the river.

Figure 1. Carreon Falls of Zambanga City

Flood Incidence and Contamination

As a tropical city, Zamboanga has an annual average rainfall amounting to 1066.7mm, three times lower than Surigao's 3086.2mm (Climatemps, 2016). It's not frequently visited by strong typhoons but still experiences heavy rains all year round. Some rain events are remarkably intense enough to inundate the low-lying areas along the river.

Last October 2013, some areas of Zamboanga City, particulary those that are located near the river, experienced severe flooding due to a 28mm rainfall in just three hours (ASTI, 2013). According to the local authorities, the flood washed away a number of houses in the following barangays: Pasonanca, Sta. Maria, Sinunuc and Putik. Other barangays like Tugbungan, Baliwasan, San Jose Gusu, Guiwan, Tetuan, Boalan, Zambowood, Patalon, Ayala, Talon-talon, Vitali, Curuan and Lumayang were also seriously affected (Inquirer Mindanao, 2013).

Aside from flooding, the river is also in danger of contamination. The monthly water quality monitoring of the Environmental Management Bureau (EMB) of DENR conducted for the last quarter of 2015 revealed very alarming results. Tumaga, especially its downstream parts, contain high concentration of total and fecal coliform which makes its water not suitable for human use. Coliforms are bacteria present in human and animal wastes. This is an indication that people along the river are mindlessly throwing their wastes into the river. Regarded as one of the most important rivers in Zamboanga City, Tumaga deserves utmost care and protection.

Figure 2. Sewer pipes draining into the river

Chapter 2: LIDAR DATA ACQUISITION OF THE TUMAGA FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Grace B. Sinadjan, Ms. Julie Pearl S. Mars, Ms. Kristine Joy P. Andaya

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1. Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Tumaga Floodplain in Zamboanga. Each flight mission has an average of 16 lines and run for at most four and a half (4.5) hours including take-off, landing and turning time. The parameter used in the LiDAR system for acquisition is found in Table 1. Figure 3 shows the flight plans for Tumaga Floodplain.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK75F	1100	20	40	100	50	120	5

Table 1. Flight planning parameters for Gemini LiDAR System

	Table 2.	Flight plannin	g parameters for Pegasus	LiDAR System
--	----------	----------------	--------------------------	--------------

Block Name	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK75E	800/1100/1200	30	50	200	30	130	5
BLK75C	800/1200	30	50	200	30	130	5
BLK75D	800/1200	30	50	200	30	130	5
Sacol Island	800/1200	30	50	200	30	130	5
BLK75AS	1000	30	50	200	30	130	5

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 3. Flight plans used for Tumaga Floodplain

2.2 Ground Base Station

The project team was able to recover two (2) NAMRIA ground control points: ZGS-100 and ZGS-99 which are of second (2nd) order accuracy, one (1) benchmark point: ZS-131 and four (4) established control points: ZC-1, BLLM-166, BVA-1 and ZG-99A. The certifications for the NAMRIA reference points and processing report for the established points are found in Annex 2. These were used as base stations during flight operations for the entire duration of the survey (August 18-September 8, 2014; January 29-Febuary 12, 2015; May 19-31, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS

882, SPS 852, SPS 985, and TOPCON GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Tumaga Floodplain are also shown in Figure 4.

Figures 5 to 7 shows the recovered NAMRIA control stations within the area, in addition Tables 3 to 9 show the details about the following NAMRIA control stations and established points. Table 10 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

Figure 4. GPS set-up over ZGS-100 in Brgy. Manicahan, Zamboanga del Sur and (a) NAMRIA reference point ZGS-100 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point ZGS-100 used as base station for t	the
LiDAR data acquisition	

Station Name	ZGS-100				
Order of Accuracy	2 nd Order				
Relative Error (horizontal positioning)	1	L in 50,000			
	Latitude	7° 1' 26.72368" North			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 11' 12.74401" East			
	Ellipsoidal Height	11.27 meters			
Grid Coordinates, Philippine Transverse	Easting	410158.521 meters			
Mercator Zone 4 (PTM Zone 4 PRS 92)	Northing	776712.542 meters			
	Latitude	7° 1' 23.30149" North			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 11' 18.30044" East			
	Ellipsoidal Height	75.603 meters			
Grid Coordinates, Universal Transverse	Easting	410189.97 meters			
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	776440.68 meters			

(a)

Figure 5. GPS set-up over ZS-131 in Curuan, Zamboanga City and (a) NAMRIA benchmark reference point ZS-131 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point ZS-131 used as base station for the	
LiDAR data acquisition.	

Station Name		ZS-131	
Order of Accuracy		2 nd Order	
Relative Error (horizontal positioning)	1	in 50,000	
	Latitude	7°12'31.51602" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°13'42.69458" East	
	Ellipsoidal Height	15.557 meters	
Grid Coordinates, Universal Transverse	Easting	414824.878 meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	796847.561 meters	
	Latitude	7°12'28.04890" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122°13'48.23382" East	
	Ellipsoidal Height	79.651 meters	

Figure 6. GPS set-up over ZGS-99 beside the seawall in Calarian, Zamboanga City and (a) NAMRIA reference point ZGS-99 (b) as recovered by the field team.

Station Name	ZGS-99			
Order of Accuracy	2 nd Order			
Relative Error (horizontal positioning)	1	L in 50,000		
	Latitude	5° 55′ 37.48971″ North		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 0' 52.66431" East		
	Ellipsoidal Height	8.14900 meters		
Grid Coordinates, Philippine Transverse	Easting	766020.391 meters		
Mercator Zone 4 (PTM Zone 4 PRS 92)	Northing	391103.346 meters		
	Latitude	6° 55′ 34.07737″ North		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 0' 58.23072" East		
	Ellipsoidal Height	72.23000 meters		
Grid Coordinates, Universal Transverse	Easting	765752.27 meters		
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	391141.46 meters		

Table 5. Details of the recovered NAMRIA horizontal control point ZGS-99 used as base station for theLiDAR data acquisition.

(a)

Figure 7. GPS set-up over BVA-1 established in Brgy. Buenavista, Zamboanga City and (a) Reference point BVA-1 (b) as established by the field team.

Station Name		BVA-1
Order of Accuracy		2 nd Order
Relative Error (horizontal positioning)	1	in 50,000
	Latitude	67° 15′ 19.31910″North 122° 15′ 28.78738″Fast 82.446
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	meters
	Ellipsoidal Height	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS	Easting	417939.856 meters
1992)	Northing	802333.522 meters
	Latitude	7° 15′ 15.84241″ North 122°
Geographic Coordinates, World Geodetic	Longitude	15' 34.32212" East
System 1984 Datum (WGS 84)	Ellipsoidal Height	146.526 meters

Table 6. Details of the established ground control point BVA-1 used as base stationfor the LiDAR data acquisition.

Table 7. Details of the established ground control point BLLM-161 used as base station for the LiDAR acquisition.

Station Name	BLLM
Order of Accuracy	2 nd Order
Relative Error (horizontal positioning)	1 in 50,000

	Latitude	7°09'33.60926" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°13'54.54820" East	
	Ellipsoidal Height	124.333 meters	
Grid Coordinates, Universal Transverse	Easting	415179.269 meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	791383.716 meters	
	Latitude	7°09'30.15553" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122°14'00.09187" East	
	Ellipsoidal Height	188.527 meters	

Table 8. Details of the established ground control point ZC-1 used as base station for the LiDARacquisition.

Station Name	ZC-1		
Order of Accuracy		2 nd Order	
Relative Error (horizontal positioning)	1	in 50,000	
	Latitude	6°55'37.81337" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°00'52.07695" East	
	Ellipsoidal Height	7.666 meters	
Grid Coordinates, Universal Transverse	Easting	391123.456 meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	765762.247 meters	
	Latitude	6°55'34.40099" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122°00'57.64335" East	
	Ellipsoidal Height	71.746 meters	

Table 9. Details of the established ground control point ZGS-99A used as base station for the LiDARacquisition.

Station Name		ZGS-99A		
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1	in 50,000		
	Latitude	6° 55' 37.63895"North 122°		
Geographic Coordinates, Philippine	Longitude	00' 52.48834"East		
Reference of 1992 Datum (PRS 92)	Longitude	7.850 meters		
	Ellipsoidal Height			
Grid Coordinates, Universal Transverse	Easting	391136.071 meters		
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	765756.864 meters		
	Latitude	6° 55' 34.22659" North 122°		
Geographic Coordinates, World Geodetic	Longitudo	00' 58.05475" East		
System 1984 Datum (WGS 84)	Longitude	71.931 meters		
	Ellipsoidal Height			

Date Surveyed	Surveyed Flight Number Mission Name		Ground Control Points	
August 23, 2014	7450GC	2BLKSF235A	ZGS-99 and ZC-1	
February 5, 2015	2535P	1BLK75E36A	BLLM-166 and ZGS-100	
February 8, 2015	2545P	1BLK75S39A	BVA-1 and ZGS-100	
February 11, 2015	2557P	1BLK75S42A	ZGS-99 and ZGS-99A	
May 26, 2106	23394P	1BLK75AS147B	ZGS-100 and ZS-131	

Table 10. Ground control points used during LiDAR data acquisition

2.3 Flight Missions

Five (5) missions were conducted to complete LiDAR data acquisition in Tumaga Floodplain, for a total of 18 hours and 25 minutes of flying time for RP-C9022. All missions were acquired using the Gemini and Pegasus Systems. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 12 shows the actual parameters used during the LiDAR data acquisition.

		Flight Plan Area (km2)		Area Surveyed	Area Surveved	No. of	Fly Ho	ving ours
Date Surveyed	Flight Number		Surveyed Area (km2)	within the Floodplain (km ²)	Outside the Floodplain (km ²)	Images (Frames)	Hr	Min
August 23, 2014	7450GC	155.5	166.89	63.47	62.11	NA	4	11
February 5, 2015	2535P	137.24	331.7	-	133.04	715	3	53
February 8, 2015	2545P	906.64	318.38	10.08	227.05	608	4	11
February 11, 2015	2557P	234.33	228.21	8.34	124.82	474	4	23
May 26, 2106	23394P	8.52	54.57	33.04	2	NA	1	47
тот	AL	1442.23	1101.75	114.93	549.02	1797	18	25

Table 11. Flight missions for LiDAR data acquisition in Tumaga Floodplain

Table 12. Actual paramet	ers used during LiDAR	data acquisition
--------------------------	-----------------------	------------------

Block Name	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
------------	---------------------------	----------------	----------------------------	---	---------------------------	---------------------------	-----------------------------------

7450GC	1100	20	40	100	50	120	5
2535P	1100	30	50	200	30	130	5
2545P	1100	30	50	200	30	130	5
2557P	800/1200	30	50	200	30	130	5
23394P	1000	30	50	200	30	130	5

2.4 Survey Coverage

Tumaga Floodplain is located in the Province of Zamboanga del Sur with the floodplain situated within Zamboanga City. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 13. The actual coverage of the LiDAR acquisition for Tumaga Floodplain is presented in Figure 8.

Table 13. List of municipalities and cities surveyed	d in Tumaga Floodplain LiDAR survey
--	-------------------------------------

Province	Municipality/City	Area of Municipality/City (km²)	Total Area Surveyed (km ²)	Percentage of Area Surveyed (Total Area covered/ Area of Municipality)*100
Zamboanga del Norte	Kalawit	329.51	5.03	2%
Zamboanga del sur	Zamboanga City	1461.05	522.74	36%
	Ipil	130.90	60	46%
Zamboanga Sibugay	Roseller Lim	272.39	9.61	4%
	Titay	176.50	58.4	33%
	Tungawan	441.86	26.7	6%
Total		2812.21	682.48	24.27%

Figure 8. Actual LiDAR surver coverage for Tumaga Floodplain

Chapter 3: DATA PROCESSING FOR THE TUMAGA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Engr. Ma. Ailyn L. Olanda , Engr. Don Matthew B. Banatin, Engr. Jovelle Anjeanette S. Canlas, Engr. Christy Lubiano , Deane Leonard M. Bool, Eriasha Loryn C. Tong

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).]

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

Figure 9. Schematic Diagram for Data Pre-Processing Component

3.2. Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Tumaga Floodplain can be found in Annex 5. Missions flown during the first survey conducted on August 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini System, while missions acquired during the second and third survey on February 2015 and May 2016 were flown using the Pegasus System over Zamboanga City. The Data Acquisition Component (DAC) transferred a total of 103.83 gigabytes of range data, 1.099 gigabytes of POS data, 162.71 megabytes of GPS base station data, and 120.2 gigabytes of raw image data to the data server on August 23, 2014 for the first survey, February 11, 2015 for the second survey and May 26, 2014 for the third survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Tumaga was fully transferred on July 14, 2016, as indicated on the Data Transfer Sheets for Tumaga Floodplain.

3.3. Trajectory Computation

The *Smoothed Performance Metric* parameters of the computed trajectory for Flight 7450G, one of the Tumaga flights, which is the North, East, and Down position RMSE values are shown in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on August 23, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 10. Smoothed Performance Metric Parameters of a Tumaga Flight 7450G.

The time of flight was from 516400 seconds to 530000 seconds, which corresponds to morning of August 23, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 shows that the North position RMSE peaks at 1.15 centimeters, the East position RMSE peaks at 1.55 centimeters, and the Down position RMSE peaks at 3.0 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution Status Parameters of Tumaga Flight 7450G.

The Solution Status parameters of Flight 7450G, one of the Tumaga flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 11. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 7 and 12. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Tumaga flights is shown in Figure 12.

Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Tumaga Floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 55 flight lines, with each flight line containing one channel for Gemini System and two channels for Pegasus System. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Tumaga Floodplain are given in Table 14.

Parameter		Value
Boresight Correction stdev	(<0.001degrees)	0.000318
IMU Attitude Correction Roll and Pitch Corrections sto	dev (<0.001degrees)	0.000807
GPS Position Z-correction stdev	(<0.01meters)	0.0096

Table 14. Self-Calibration Results values for Tu	ımaga flights.
--	----------------

The optimum accuracy is obtained for all Tumaga flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Mission Summary Reports in Annex 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Tumaga Floodplain is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 13. Boundary of the processed LiDAR data over Tumaga Floodplain

The total area covered by the Tumaga missions is 700.08 sq.km that is comprised of five (5) flight acquisitions grouped and merged into six (6) blocks as shown in Table 15.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Zambaanga DIKZEE	2535P	204.02
	2545P	394.93
Zamboanga_Blk75F	7450G	146.15
Zamboanga_Blk75F_additional	2557P	2.48
Zamboanga_Sacol	2557P	96.90
Zamboanga_reflights_Blk75AS	23394P	35.24
Zamboanga_reflights_Blk75F_supplement	23394P	24.38
	TOTAL	700.08 sq.km

Table 15	List of LiDA	R blocks f	or Tumaga	Floodplain
Tuble 19.	LISC OI LIDI	III DIOCIGO I	or runnaga	r iooapianii.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Gemini System employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines. While the Pegasus System employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 14. Image of data overlap for Tumaga Floodplain.

The overlap statistics per block for the Tumaga Floodplain can be found in Annex 8. One pixel corresponds to 25.0 sq.km. on the ground. For this area, the minimum and maximum percent overlaps are 26.46% and 90.58% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 15. It was determined that all LiDAR data for Tumaga Floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.78 points per square meter.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 15. Pulse density map of merged LiDAR data for Tumaga Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 16. Elevation difference map between flight lines for Tumaga Floodplain.

A screen capture of the processed LAS data from a Tumaga Flight 7450G loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for a Tumaga flight 7450G using the Profile Tool of QT Modeler.

3.6 LIDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	574,137,102	
Low Vegetation	452,634,231	
Medium Vegetation	680,777,952	
High Vegetation	1,284,794,811	
Building	73,546,016	

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Tumaga floodplain is shown in Figure 18. A total of 1,026 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 588.90 meters and 64.94 meters respectively.

Figure 18. Tiles for Tumaga Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 19. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 20. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Tumaga Floodplain.

3.7 LIDAR Image Processing and Orthophotograph Rectification

The 697 1km by 1km tiles area covered by Tumaga Floodplain is shown in Figure 21. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Tumaga Floodplain has a total of 552.42 sq.km orthophotogaph coverage comprised of 1,319 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 22.

Figure 21. Tumaga Floodplain with available orthophotographs.

Figure 22. Sample orthophotograph tiles for Tumaga Floodplain.

3.8 DEM Editing and Hydro-Correction

Six (6) mission blocks were processed for Tumaga Floodplain. These blocks are composed of Zamboanga and Zamboanga reflights blocks with a total area of 700.08 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Zamboanga_Blk75F	146.15
Zamboanga_Blk75E	394.93
Zamboanga_Blk75F_additiional	2.48
Zamboanga_Sacol	96.90
Zamboanga_reflights_BLK75AS	35.24
Zamboanga_reflights_BLK75F_supplement	24.38
TOTAL	700.08 sq.km

Table 17.	LiDAR	blocks	with it	s corresp	onding	area.

Figure 23 shows portions of DTM before and after manual editing. The river embankment (Figure 23a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 23b) to allow the correct flow of water. The bridge (Figure 23c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 24d) in order to hydrologically correct the river. Another example is a building that is still present in the DTM after classification (Figure 23e) and has to be removed through manual editing (Figure 23f).

Figure 23. Portions in the DTM of Tumaga Floodplain – a paddy field before (a) and after (b) data retrieval; a road before (c) and after (d) manual editing; a building before (e) and after (f) manual editing.

3.9 Mosaicking of Blocks

Simultaneous mosaicking was done to all the available LiDAR data (Zamboanga_Blk75G, Zamboanga_Blk75F, Zamboanga_Blk75E, Zamboanga_Blk75F_additional, Zamboanga_Blk75D, Zamboanga_Blk75C and Zamboanga_Sacol). Zamboanga_Blk75G was used as the reference block at the start of mosaicking because it is the first available LiDAR data. Table 18 shows the shift values applied to each LiDAR block during mosaicking.

Mission Blocks	Shift Values (meters)			
	х	у	Z	
Zamboanga_Blk75F	0.31	0.30	0.90	
Zamboanga_Blk75E	0.00	0.00	0.47	
Zamboanga_Blk75F_additional	0.00	0.00	0.90	
Zamboanga_Sacol	0.00	0.00	0.47	
Zamboanga_reflights_Blk75AS	0.00	0.00	0.44	
Zamboanga_reflights_Blk75F_supplement	0.00	0.00	0.44	

Table 18. Shift Values of each LiDAR Block of Tumaga Floodplain.

Mosaicked LiDAR DTM for Tumaga Floodplain is shown in Figure 24. It can be seen that the entire Tumaga Floodplain is 100% covered by LiDAR data.

Figure 24. Map of Processed LiDAR Data for Tumaga Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Tumaga to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 1,739 survey points were used for calibration and validation of Tumaga LiDAR data. Random selection of 80% of the survey points, resulting to 1,391 points, were used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure

26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 8.06 meters with a standard deviation of 0.07 meters. Calibration of Tumaga LiDAR data was done by adding the height difference value, 8.06 meters, to Tumaga mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 25. Map of Tumaga Floodplain with validation survey points in green.

Figure 26. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	8.06
Standard Deviation	0.07
Average	8.06
Minimum	7.91
Maximum	8.20

|--|

The remaining 20% of the total survey points, resulting to 347 points, were used for the validation of calibrated Tumaga DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 8.06 meters with a standard deviation of 0.07 meters, as shown in Table 20.

Figure 27. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.07
Standard Deviation	0.07
Average	0.008
Minimum	-0.13
Maximum	0.15

Table	20 V	alidation	Statistical	Measures
rabic	20. V	andation	otatistical	measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Tumaga with 592 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.24 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Tumaga integrated with the processed LiDAR DEM is shown in Figure 28.

Figure 28. Map of Tumaga Floodplain with bathymetric survey points shown in blue.

3.12. Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Tumaga Floodplain, including its 200 m buffer, has a total area of 112.78 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 6,918 building features, are considered for QC. Figure 29 shows the QC blocks for Tumaga Floodplain.

Figure 29. QC blocks for Tumaga building features.

Quality checking of Tumaga building features resulted in the ratings shown in Table 21.

Table 21. Ouality	Checking Rat	ings for Tumaga	Building Features.
		0 0	0

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Tumaga	97.63	99.79	90.80	PASSED

3.12.2 Height Extraction

Height extraction was done for 80,920 building features in Tumaga Floodplain. Of these building features, 892 was filtered out after height extraction, resulting to 80,028 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 17.85 m.

3.12.3 Feature Attribution

One of the research associates of ADZU Phil LiDAR 1 was able to develop GEONYT, an offline web-based application for feature attribution extracted from a LiDAR-based Digital Surface Model and which attribution is conducted by combining automatic data consolidation, geotagging and offline navigation. The app is conveniently integrated in a smart phone/ tablet. The data collected are automatically stored in database and can be viewed as CSV (or excel) and KML (can viewed via Google Earth). The Geonyt App was the main tool used in all feature attribution activity of the team.

The team, thru the endorsement of the local government units of the municipality/ city hired a number of enumerators who conducted the house-to-house survey of the features using the GEONYT application. The team provided the enumerators smart tablets where the GEONYT is integrated. The number of days by which the survey was conducted was dependent on the number of features of the floodplain of the riverbasin; likewise, the number of enumerators are also dependent on the availability of the tablet and the number of features of the floodplain.

Table 22 summarizes the number of building features per type. On the other hand, Table 23 shows the total length of each road type, while Table 24 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	74,440
School	750
Market	1,949
Agricultural/Agro-Industrial Facilities	89
Medical Institutions	86
Barangay Hall	29
Military Institution	406
Sports Center/Gymnasium/Covered Court	52
Telecommunication Facilities	9
Transport Terminal	25
Warehouse	184
Power Plant/Substation	6
NGO/CSO Offices	8
Police Station	21
Water Supply/Sewerage	41
Religious Institutions	163
Bank	20
Factory	215
Gas Station	45
Fire Station	4
Other Government Offices	138
Other Commercial Establishments	1,114
N/A	234
Total	80,028

Table 22. Number	of Building Featur	es Extracted for	Tumaga Floodplain.
	0		0 1

Table 23. Total Length of Extracted Roads for	Tumaga Floodplain
---	-------------------

	Road Network Length (km)							
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total		
Tumaga	376.36	137.81	0.00	50.29	0.00	564.46		

Table 24. Number of Extracted Water Bodies for Tumaga Floodplain

Elecadolain		Water Body	Туре			Total		
FIOOUPIAIII	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total		
Tumaga	28	0	1	0	152	181		

A total of 19 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 30 shows the Digital Surface Model (DSM) of Tumaga Floodplain overlaid with its ground features.

Figure 30. Extracted features for Tumaga Floodplain.

Chapter 4: SURVEY AND MEASUREMENTS IN THE TUMAGA RIVER BASIN SURVEY

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Tumaga River Basin is located in Zamboanga City, Zamboanga Peninsula. It covers the southernmost part of the city and is a part of the larger Pasonaca Watershed which covers 10,560 ha of the southern half of Zamboanga. The Tumaga River Basin alone has a catchment area of 10,100 ha.

The Tumaga River, is one of the river systems in the Zamboanga Peninsula. It encompasses 14 barangays, namely: Lumayang, Lunzuran, Lumbangan, Pasobolong, Boalan, Tumaga, Divisoria, Guiwan, Putik, Tugbungan, Mampang, Arena Blanco, Zambowood and Talon-Talon. Barangays Lumayang, Lunzuran, Lumbangan, Pasobolong and Boalan are known to be agricultural areas with livelihoods consisting of coconut, corn and mango orchard plantations. On the other hand, barangays Divisoria, Guiwan, Putik and Tugbungan are commercial and residential areas. Aquaculture is common for coastal barangays such as Talon-Talon, Zambowood, Arena Blanco and Mampang.

The areas near Tumaga River have a population of 186,736 people according to the 2010 NSO census data. Settlements in the area are in constant threat of flooding due to heavy rainfall. On October 8, 2013, floods due to intermittent heavy rains since October 4, 2013 submerged parts of the city, with 2,869 families (8,848 persons) had been displaced by the floods. With damaged agricultural crops of 640 ha of riceland; 1,243 has corn; 200 ha of assorted vegetables. About 2,000 ha of fishpond and 900 ha of seaweed were also among those flooded.

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Tumaga River from September 19 to 22, 2014 (Phase 1) and from January 20 to February 1, 2015. The scope of work covered reconnaissance, control survey for the establishment of control points, cross-section survey with bridge asbuilt and water level marking, and validation points acquisition survey. Bathymetric survey with a length of 15.6 km from the upstream Brgy. Dulian down to the mouth of the river in Brgy. Zambowood in Zamboanga City was conducted during the second phase of the survey as shown in Figure .

Figure 31. Extent of the bathymetric survey (in blue line) in Tumaga River and the LiDAR data validation survey (red)

4.2 Control Survey

The GNSS network used for Tumaga River Basin is composed of a single loop and two baseline established on September 19 – 22, 2014 occupying the following reference points: ZGS-99, a second-order GCP, located off-road near the highway in Sinunoc, Zamboanga City; and ZS-177, a first-order benchmark located at the Rizal Park in Brgy. Zone IV, Zamboanga City.

Two control points were established along approach of bridges namely: ABO-1, located in Abong Bridge in Brgy. Dulian, Zamboanga City; and CUL-1, in Culianan Bridge in Brgy. Culianan, Zamboanga City. A NAMRIA established control point, namely ZGS-3508, in Brgy. Tumaga, also in Zamboanga City, was also occupied to use as marker during the survey.

The summary of reference and control points used in the survey is summarized in Table 25, while the GNSS network is illustrated in Figure 32.

Figure 32. GNSS Network of Tumaga River Basin Survey

Table 25. References used and control points established in Tumaga River Basin. (Source: NAMRIA, UP-
TCAGP)

			Geographic Coc	ordinates (WO	GS 84)	
Control Point Name	Order of Accuracy	Latitude	Longitude	Ellipsoid Height <i>,</i> (m)	Elevation in MSL (m)	Date Established
ZGS-99	2 nd Order, GCP	6°55′34.07737″N	122°00′58.23072″E	81.427	-	2009
ZS-177	1 st Order, BM	-	-	80.002	12.311	2009
ABO-1	UP Established	-	-	-	-	9-19-2014
CUL-1	UP Established	-	-	-	-	9-20-2014
ZGS-3508	Used as Marker	-	-	-	-	9-20-2014

The GNSS set ups made in the location of the reference and control points are exhibited in Figure 37.

Figure 33. GNSS base receiver setup, Trimble[®] SPS 852 at ZGS-99 in Brgy. Sinunoc, Zamboanga City, Zamboanga Del Sur

Figure 34. GNSS receiver setup, Trimble^{*} SPS 882 at ZS-177, located in Rizal Park in Brgy. Zone IV, Zamboanga City, Zamboanga Del Sur

Figure 35. GNSS receiver occupation, Trimble[®] SPS 852 at ABO-1 located along approach of Abong Bridge, in Brgy. Dulian, Zamboanga City, Zamboanga Del Sur

Figure 36. GNSS base receiver setup, Trimble[®] SPS 882 at CUL-1 along approach of Culianan Bridge in Brgy. Culianan, Zamboanga City, Zamboanga Del Sur

Figure 37. GNSS base receiver setup, Trimble* SPS 852 at ZGS-3508 along Tumaga Bridge in Brgy. Tumaga, Zamboanga City, Zamboanga Del Sur

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within \pm 20 cm and \pm 10 cm requirement, respectively. In cases when one or more baselines did not meet all of these criteria, masking is performed. Masking is the removal or covering portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 26 presents the baseline processing result of control points in Tumaga River Basin, as generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
ZGS-99 ABO-1	9-19-2014	Fixed	0.004	0.028	57°53'41"	7493.070	37.518
ZGS-99 ZS-177	9-19-2014	Fixed	0.004	0.019	109°39'22"	7070.332	-1.438
ZGS-99 CUL-1	9-20-2014	Fixed	0.011	0.062	69°32'00"	14392.717	19.213
ZGS-99 ZGS-3508	9-20-2014	Fixed	0.006	0.020	83°43'43"	6906.042	10.778
ABO-1 ZS- 177	9-19-2014	Fixed	0.006	0.030	177°12'23"	6368.267	-38.883

Table 26. Baseline Processing Report for Tumaga River static survey

As shown in Table 26, a total of nine (9) baselines were processed with reference point ZGS-99 held fixed for coordinate values; and ZS-177 fixed for elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20cm and z less than 10 cm, in equation from:

 $\sqrt{((x_e)^2 + (y_e)^2)}_{<20cm \text{ and } z_e} < 10 cm$

Where:

- x_e is the Easting error,
- y is the Northing error, and
- z_{p} is the Elevation error

For complete details, see the Network Adjustment Report shown in Tables 27 to 30:

The five (5) control points, ZGS-99, ZS-177, ABO-1, CUL-1 and ZGS-3508 were occupied and observed simultaneously to form a GNSS loop. Coordinates of ZGS-99; and elevation values of ZS-177 were held fixed during the processing of the control points as presented in Table 27. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
ZGS-99	Local	Fixed	Fixed		
ZS-177	Grid				Fixed
Fixed = 0.000001(Meter)					

Table 27. Control Point Constraints

Likewise, the list of adjusted grid coordinates, (i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network) is indicated in Table 28. All fixed control points have no values for grid and elevation values.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BO-1	397667.079	0.006	769663.801	0.005	51.156	0.045	
ZGS-99	391313.321	?	765695.628	?	13.851	0.035	LL
ZS-177	397964.978	0.006	763304.232	0.005	12.311	?	е

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

The computation for the accuracy are as follows:

a.	ZGS-99		
	Horizontal accuracy	=	Fixed
	Vertical accuracy	=	cm < 10 cm
b.	ZS-177		
	Horizontal accuracy	=	$\sqrt{(0.8)^2 + (0.7)^2}$
		=	√(0.64 + 0.49)
		=	1.06 cm < 20 cm
	Vertical accuracy	=	Fixed
с.	ABO-1		
	Horizontal accuracy	=	$\sqrt{((1.2)^2 + (0.9)^2)}$
		=	√(1.44 + 0.81)
		=	1.50cm < 20 cm
	Vertical accuracy	=	Fixed
a.			-11/4 4 \2 + 14 0 \2
	Horizontal accuracy	=	$V((1.1)^2 + (1.0)^2)$
		=	V((1.21 + 1))
		=	1.49 cm < 20 cm
	Vertical accuracy	=	8.3 cm < 10 cm
e.	ZGS-3508		
	Horizontal accuracv	=	$\sqrt{((1.1)^2 + (0.9)^2)}$
	·····	=	√(1.21 + 0.81)
		=	. , 1.42 cm < 20 cm

Vertical accuracy = 8.2 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required accuracy of the project.

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
ABO-1	N6°57'43.70202"	E122°04'25.00864"	118.918	0.045	
ZGS-99	N6°55'34.07737"	E122°00'58.23072"	81.427	0.035	LL
ZS-177	N6°54'16.64514"	E122°04'35.11948"	80.002	?	е

|--|

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 30.

		Geograph	ic Coordinates (WGS 8	34)	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)	
ZGS-99	2 nd Order, GCP	6°55′34.07737″N	122°00'58.23072"E	81.427	765695.6	391313.3	13.851	
ZS-177	1 st Order, BM	6°54′16.64514″N	122°04'35.11948"E	80.002	763304.2	397965	12.311	
ABO-1	UP Established	6°57′43.70202″N	122°04'25.00864"E	118.918	769663.8	397667.1	51.156	
CUL-1	UP Established	6°58′17.84390″N	122°08′17.52714″E	100.641	770698.8	404804.3	32.832	
ZGS- 3508	Used as Marker	6°55′58.62095″N	122°04′41.85531″E	92.206	766435.6	398177.8	24.486	

Table 30. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge-as-built survey and Water Level Marking

A GNSS receiver Trimble[®] SPS 882 using PPK survey technique was utilized to get the cross-section of Tumaga Bridge and Abong Abong Bridge from September 19 to 21, 2014 as shown in Figure 38 and Figure 39, respectively.

In addition to cross-section survey, bridge as-built features determination was performed to get the distance of piers and abutments from the bridge approach. The bridge deck was measured using a GNSS receiver Trimble[®] SPS 882 to get the high cord and meter tapes to get its low chord elevation.

Figure 38. (a) Tumaga Bridge, and (b) cross-section survey at Tumaga Bridge, Brgy. Tumaga, Zamboanga City

Figure 39. (a) Abong Abong Bridge, and (b) cross-section survey at Abong Abong Bridge, Brgy Dulian, Zamboanga City

The cross-sectional line for the Tumaga Bridge is about 162.95 m, composed of 31 points and acquired on September 20, 2014. On the other hand, about 131.47 m composed of 15 points were gathered for Abongabong Bridge on September 21, 2014. The cross-section diagram, planimetric map, and bridge as-built form for Tumaga Bridge are shown in Figure to Figure 42, while Figure 43 to Figure 45, for Abong-abong bridge.

Figure 40. Tumaga Bridge cross-sectional diagram

Figure 41. Tumaga Bridge cross-section planimetric map

Biver Name: TUMAGA RIVER Time: 2:09 pm Location (Brgy, City, Region): Brgy, Tumaga, Zamboanga City Survey Team DVBC Zamboanga City Survey Team Flow condition: Ipw normal high Weather Condition: Cair rainy Latitude:	Brid	ige Na	me: _I	UMAGA BRIDGE			ĺ	Date: <u>Sep</u>	temb	er 20, 2014
Location (Brgy, City, Region): <u>Brgy. Tumaga, Zamboanga City</u> Survey Team: <u>DVBC Zamboanga City Survey Team</u> Flow condition: (bw) normal high Weather Condition: (air) rainy Latitude: <u></u>	Rive	er Nam	ie: T	UMAGA RIVER			1	ime: 2:0	9 pm	
Survey Team:	Loca	ution (Brgy, C	ity, Region): Brgy. Tu	maga, Zamboa	anga City	,			
Flow condition: (aw) normal high Weather Condition: (air) rainy Latitude:	Surv	rey Te	am:	DVBC Zamboanga City Si	urvey Team					
Latitude:	Flov	v cond	lition:	low norma	al high		Weather	Condition:	(f 2	ir) rainy
BA2 D BA3 BA4 Ispect: Ispect: Ispect: Ispect: Ispect: BA4 Ispect: Ispec: Ispec: Ispect: Isp	Lati	tude:	<u>6d5</u>	5'58.03334" N	_		Longitude	: <u>122d04</u>	41.85	627" E
A1 B12 B12 B12 B12 B12 B14		043	-		_					
Ab1 P Ab2 Ab1 P Ab2 Deck (Please start your measurement from the left side of the back facing downstream) 24.414 m (MSL) Width:	A1	DAZ			-	(BA3	BA4	ent: Dilian kommu	+ D-0	lar IC micael
Ab1 P Ab2 Deck (Please start your measurement from the left side of the back facing downstream) Evention				V V V			and the second s	Abutment	D=1	Deck HC + High C
P HC Deck (Please start your measurement from the left side of the back facing downstream) tevation			Ab1=		\sim	Ab2				
Deck (Please start your measurement from the left side of the bask facing downstream) levation				P		н				
DECR [Please start your measurement from the left side of the bank tacing downstream] levation				Bard and						
Station High Chord Elevation Low Chord Elevation 1 24.359 23.007 2	leva	tion	24.41	A m (MSL) Width:	neasurement from 9.23 mil	the left si eters	de of the bank facin; Spain (BA3-	(downstream) BA2):	50.17	meters
1 24.359 23.007 2	Т	_		Station		High	Chord Elevation	- L	ow Cho	rd Elevation
2	1						24.359		23	3.007
3	2									
4 Bridge Approach (Hease start year resourcement han the left side of the bask foring devectorsers) Station(Distance from BA1) Elevation Station(Distance from BA1) Elevation BA1 0 22.593 BA3 82.547 24.398 BA2 27.405 23.114 BA4 152.209 22.581 Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Station (Distance from BA1) Elevation Ab1 30.758 18.423 Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank facing downstream) Shape:	3									
Bridge Approach (House start year resourcement han the left side of the bask fusing devectorsen) Station(Distance from BA1) Elevation Station(Distance from BA1) Elevation BA1 0 22.593 BA3 82.547 24.398 BA2 27.405 23.114 BA4 152.209 22.581 Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Station (Distance from BA1) Elevation 18.423 Ab1 30.758 18.423 Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank facing downstream) Shape:	4									
Station(Distance from BA1) Elevation Station(Distance from BA1) Elevation BA1 0 22.593 BA3 82.547 24.398 BA2 27.405 23.114 BA4 152.209 22.581 Abutment: Is the abutment sloping? Tes No; If yes, fill in the following information: Abutment: Is the abutment sloping? Tes No; If yes, fill in the following information: Ab1 30.758 18.423 17.603 Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank facing downstream) Shape:				Bridge Approach (Hea	e start your measurem	ent from the	left side of the bank facin	(deversioners)		
Station(b)statice from BA1 O 22.593 BA3 82.547 24.398 BA2 27.405 23.114 BA4 152.209 22.581 Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Ab1 30.758 18.423 18.423 Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank facing downstream) Shape:			Static	on(Distance from BA1)	Elevation		Station/Dista	ince from	841)	Elevation
BA2 27.405 23.114 BA4 152.209 22.581 Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Ab1 30.758 18.423 17.603 Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank fading downstream) Shape: Shape: Cylindrical Number of Piers: 4 Vier 1 69.66323 24.398 17.603 Pier 2 84.64783 24.397 10.788 Pier 3 99.71156 24.432 10.788 Pier 4 110.788 24.432 10.432		RA1	oraris	o	22 503	RA3	82	.547	БАЦ	24.398
BA2 27.405 23.114 BA4 DA4 DA4 DA4 Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Ab1 30.758 18.423 Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank facing downstream) Shape:		DAT		27.405	22.353	DAA	15	2 209		22 581
Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information: Image: I		DAZ		27.405	23.114	B ,44				22.301
Station (Distance from BA1) Elevation Ab1 30.758 18.423 Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank facing downstream) Shape:Cylindrical Number of Piers: _4_ Height of column footing: Shape:Cylindrical Number of Piers: _4_ Height of column footing: Pier 1 69.66323 24.398 Pier 2 84.64783 24.397 Pier 3 99.71156 24.432 Pier 4 110.788 24.432		Abu	itment:	Is the abutment slopin	187 (Yes	No;	If yes, fill in th	e following i	nforma	ation:
Ab1 30.758 18.423 Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank facing downstream) Pier (Please start your measurement from the left side of the bank facing downstream) Shape: Cylindrical Number of Piers: Height of column footing: Station (Distance from BA1) Elevation Pier Width Pier 1 69.66323 24.398 Pier 2 84.64783 24.397				Station (Distance from	m BA1)		Ele	evatio	n
Ab2 78.183 17.603 Pier (Please start your measurement from the left side of the bank facing downstream) Shape: Cylindrical Number of Piers: 4 Height of column footing:		Ab1 30.758			30.758			1	8.423	
Pier (Please start your measurement from the left side of the bank facing downstream) Shape: Number of Plers: Height of column footing: Station (Distance from BA1) Elevation Pier Width Pier 1 69.66323 24.398 Pier 2 84.64783 24.397 Pier 3 99.71156 24.432 Pier 4 110.788 24.432	Ab2 78.183 17.603									
Shape: Cylindrical Number of Piers: Height of column footing: Station (Distance from BA1) Elevation Pier Width Pier 1 69.66323 24.398 Pier 2 84.64783 24.397 Pier 3 99.71156 24.432 Pier 4 110.788 24.432				Pier (Please start your m	easurement from	the left siz	de of the bank facing	(downstream)		
Station (Distance from BA1) Elevation Pier Width Pier 1 69.66323 24.398 Pier 2 84.64783 24.397 Pier 3 99.71156 24.432 Pier 4 110.788 24.432	Sł	ape: _	<u>Cylin</u>	dricalNum	ber of Piers:	4	Height of co	lumn footin	g:	
Pier 1 69.66323 24.398 Pier 2 84.64783 24.397 Pier 3 99.71156 24.432 Pier 4 110.788 24.432				Station (Distance fr	om BA1)		Elevation		Pier V	Vidth
Pier 2 84.64783 24.397 Pier 3 99.71156 24.432 Pier 4 110.788 24.432		Pier 1		69.66323			24.398			
Pier 3 99.71156 24.432 Pier 4 110.788 24.432 NOTE: Use the center of the pier as reference to its station		Pier 2		84.64783			24.397			
Pier 4 110.788 24.432 NOTE: Use the center of the pier as reference to its station		Pier 3		99.71156			24.432			
		Pier 4		110.788	to the center of the :	alar as raine	24.432			
				Holt. U			and the second second second			

Figure 42. Tumaga Bridge Data Form

Figure 43. Abong-abong Bridge cross-sectional diagram

Figure 44. Abong-abong bridge cross-section planimetric map

Bridge Na	me: _/	BONG-ABONG BRIDGE				Date:	Septembe	r 21, 2014	
River Nar	ne: <u>T</u>	UMAGA RIVER			T	ime: _	9:36 am		
Location	(Brgy, C	ity, Region):Brgy. Ab	ong-Abong, Za	mboan	ga City				
Survey Te	am:	DVBC Zamboanga Surve	y Team						
Flow con	dition:	low norma	al high		Weather	Condi	tion: (fi	air) rain	
Latitude:	<u>6d5</u>	7'44.11463" N	_		Longitude	e:1	22004"25.00	914" E	
DA:	-	0	~						
3A1					BA4	gend: La Brides	Approach P = 1	Ner LC = Low	
						- Abutm	ent D=	Deck HC = High	
	Ab1			Ab2					
		P		н					
			_				_		
levation		Deck (Please start your r 88 m (MSL) Width:	9.9 met	the left si ers	de of the bank facin Span (BA3-B	ig downs IA2):	<u>36.74 n</u>	eters	
		Station		High	Chord Elevatio	n	Low Cho	rd Elevation	
1									
2									
3									
4									
		Bridge Approach (Mea	se start your measurem	ent from the	left side of the bank fad	ng dawnst	ream)		
	Station(Distance from BA1) Elevation Station(Distance from BA1) Elevation								
BA1		0	49.106	BA3	63	2.251		51.013	
BA2		27.045	51.068	BA4	12	9.118		49.878	
Abi	utment	: Is the abutment slopin	ng? Yes	(No;)	If yes, fill in t	he follo	wing inform	ation:	
Station (Distance from BA1) Elevation									
А	Ab1								
А	b2								
Pier (Please start your measurement from the left side of the bank facing downstream)									
Shape: Number of Piers: 0 Height of column footing:									
		Station (Distance fr	om BA1)	Elevation			Pier Width		
Pier 1									
Pier 2	!								
Pier 3									
Pier 4									
Pier 5	i								
	i								
Pier 6									
Pier 6 Pier 7									

Figure 45. Abong-abong Bridge Data form

Figure 46. Water Marking on the Water Post near Tumaga Bridge

Figure 47. (a) Marking on the existing water post in Abong-abong Bridge, and (b) the finished water level markings in MSL

Water surface elevation of Tumaga River was determined using Trimble[®] SPS 882 in PPK mode on September 21, 2014 at 2:47 PM along the banks of Tumaga Bridge. Water surface elevation along Abong-abong Bridge was observed and recorded on September 21, 2014 at 10:01 AM. Both water surface elevations were then translated on bridge piers in MSL using a Digital Level. The marked pier will serve as reference for flow data gathering and depth gauge deployment by the accompanying HEI, Ateneo de Zamboanga University.

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on September 20, 2014 and January 28, 2015 using a survey grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached at the side of a vehicle. It was secured with a cable tie to ensure that it was horizontally and vertically balanced. The antenna height was measured as 2.602 m from the ground up to the bottom of the notch of the GNSS Rover receiver. The survey was conducted using PPK survey technique on a continuous topography mode.

Ground validation survey conducted on September 20, 2014 started near its base station at ZGS-99 in Calarian, Zamboanga City to ZGS-3508 at Tumaga Bridge, Brgy. Tumaga, Zamboanga City. The survey acquired 1,764 validation points within 11.81 km road distance. Additional validation points were acquired on January 28, 2015, which gathered 1,058 points within 2.90 km road distance using ZGS-3508 as base station. Figure 48 shows all acquired validation points. Data gaps in the survey were due to canopy cover along the roads.

Figure 48. (a) Ground validation set-up by the survey team: A Trimble* SPS 882 attached to the side of the vehicle

Figure 49. LiDAR Ground Validation Survey along Tumaga River Basin

4.7 Bathymetric Survey

Bathymetric survey was conducted on January 26 and 30, 2015 using Trimble[®] SPS 882 in GNSS PPK survey technique and an OHMEX[™] Single Bean echo sounder mounted on a boat as shown in Figure 50. The survey started in Brgy. Tumaga with coordinates 6°55′57.94036″ 122°04′44.68689″, down to its mouth in Brgy. Arena Blanco with coordinates 6°55′25.93272″ 122°08′53.00195″.

Manual Bathymetric survey on the other hand was conducted on January 23, 27 and 28, 2015 using Trimble[®] SPS 882 in GNSS PPK survey technique as shown in Figure 51. The survey started in the upstream part of the river in Brgy. Dulian, with coordinates 6°57′52.09403″ 122°04′13.42916″ traversed the river y foot and ended at the starting point of bathymetric survey using boat. Both ZGS-99 and ZGS-3508 were used as base stations for the survey.

Figure 50. Bathymetric survey in Tumaga River: (a) upstream and (b) downstream

Figure 51. Bathymetric survey of Tumaga River

Bathymetric line length is 15.6 km with total of 612 bathymetric points gathered covering at least four (4) barangay boundaries: Brgys. Dulian, Guiwan, Tugbungan and Arena Blanco. A CAD drawing was also produced to illustrate the Tumaga riverbed profile as shown in Figure 52. An elevation drop of 42.7 m (MSL) was observed within 15.6 km. The highest elevation observed was 51.11 m in MSL located in Brgy. Dulian, while the lowest elevation observed was 6.55 m in MSL located in Brgy. Tugbungan, Zamboanga City.

Figure 52. Riverbed profile of Tumaga River

Chapter 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the river basin was monitored, collected, and analyzed. These include the rainfall, water level, and flow in a certain period of time.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology of Region 9 (DOST-IX). The ARG was installed in the Tandem Station in the Upper Pasonanca Spillway at Brgy. Pasonanca, Zamboanga City (Figure 53). The precipitation data collection started from September 30, 2013 at 08:10 AM to October 2, 2013 at 11:40 PM with 10 minutes recording interval.

The total precipitation for this event in Cabonegro Repeater Station ARG was 28.194 mm. It has a peak rainfall of 6.096 mm. on October 1, 2013 at 11:40 AM. The lag time between the peak rainfall and discharge is 2 hours and 40 minutes.

Figure 53. The location map of Tumaga HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Upper Pasonanca Spillway (Abong-abong Bridge), Pasonanca, Zamboanga City (6° 57' 51.97" N, 122° 4' 33.6" E). It gives the relationship between the observed water levels at Upper Pasonanca Spillway and outflow of the watershed at this location.

For Abong-abong Bridge, the rating curve is expressed as $Q = 9E-35e^{1.7924h}$ as shown in Figure 55.

Figure 54. Cross-Section Plot of Abong-Abong Bridge

Figure 55. The rating curve at Upper Pasonanca Spillway (Abong-abong Bridge), Pasonanca, Zamboanga City

This rating curve equation was used to compute the river outflow at Upper Pasonanca Spillway for the calibration of the HEC-HMS model shown in Figure 56. Peak discharge is 7.14 cubic meters per second at 2:20 PM, October 1, 2013.

Figure 56. Rainfall and outflow data at Upper Pasonanca Spillway (Abong-abong Bridge) used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Zamboanga City RIDF (Figure 57). The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time (Figure 58). This station was selected based on its proximity to the Tumaga watershed. The extreme values for this watershed were computed based on a 59-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs		
2	15.5	23.3	28.4	36.9	45.6	50.7	60	66.1	77.3		
5	21.4	31.6	38.3	50.4	61.2	38.2	82.5	91.5	107.8		
10	25.3	37.1	44.8	59.4	71.6	79.8	97.5	108.3	127.9		
15	27.5	40.2	48.5	64.4	77.4	86.4	105.9	117.8	139.3		
20	29	42.3	51.1	68	81.5	91	111.8	124.4	147.3		
25	30.2	44	53.1	70.7	84.7	94.5	116.3	129.5	153.4		
50	33.9	49.1	59.2	79.1	94.4	105.4	130.4	145.3	172.3		
100	37.5	54.2	65.3	87.4	104	116.2	144.3	161	191.1		

Table 31. RIDF values for Zamboanga City Rain Gauge computed by PAGASA

Figure 57. Zamboanga City RIDF location relative to Tumaga River Basin

Figure 58. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil shapefile was taken in 2004 from the Bureau of Soils and Water Management (BSWM) under the Department of Environment and Natural Resources Management (DENR). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Tumaga River Basin are shown in Figures 59 and 60, respectively.

Figure 59. Soil Map of Tumaga River Basin

Figure 60. Land Cover Map of Tumaga River Basin

For Tumaga, the soil classes identified were loam and mountain soil. The land cover types identified were cultivated areas and shrubland.

[insert Slope Map]

Figure 61. Stream delineation map of Tumaga river basin

Using the SAR-based DEM, the Tumaga basin was delineated and further subdivided into subbasins. The model consists of 7 sub basins, 3 reaches, and 3 junctions as shown in Figure 62 (See Annex 10). The main outlet is at Upper Pasonanca Spillway.

Figure 62. The Tumaga river basin model generated using HEC-HMS

5.4 Cross-Section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived ffrom the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 63).

Figure 63. River cross-section of Tumaga River generated through Arcmap HEC GeoRAS tool

5.5 Flo-2D Model

Figure 64. Generated 100-year rain return hazard map from FLO-2D Mapper

Figure 65. Generated 100-year rain return flow depth map from FLO-2D Mapper

5.6 Results of HMS Calibration

After calibrating the Tumaga HEC-HMS river basin model (See Annex 9), its accuracy was measured against the observed values. Figure 66 shows the comparison between the two discharge data.

Figure 66. Outflow hydrograph of Tumaga produced by the HEC-HMS model compared with observed outflow

Table 32 shows are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	7.27 – 8.19
		SCS Curve number	Curve Number	58.29 – 61.6
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.05 – 0.29
			Storage Coefficient (hr)	1.99 – 12.49
	Baseflow	Decession	Recession Constant	0.75
		Recession	Ratio to Peak	0.2
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.018

Table 32. Range of Calibrated Values for Tumaga

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 7.27mm to 8.19mm means that there is a moderate amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 58.29 to 61.6 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Tumaga, the basin mostly consists of built-up, brushland and closed canopy forests and the soil consists of loams and mountain soil.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.05 hours to 12.49 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events, while ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.75 indicates that the basin is moderately likely to quickly go back to its original discharge. Ratio to peak of 0.2 indicates a steeper receding limb of the outflow hydrograph.

RMSE	12.20041	
r ²	0.946	
NSE	0.749342	
PBIAS	-11.5329	
RSR	0.500658	

Table 33. ummary of the Efficiency Test of Tumaga HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 12.20041 (m3/s).

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.946.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.749342.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -11.5329.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.500658.

5.7 Calculated Outflow Hydrographs and Discharge Values for Different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 67) shows the Tumaga outflow using the Zamboanga City Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100year rainfall time series) based on the PAG-ASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 67. The Outflow hydrograph at Tumaga Station, generated using Zamboanga City RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Tumaga discharge using the Zamboanga City Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 34.

Table 34. Peak values of the Tumaga HECHMS Model outf	flow using the Zamboanga City RIDF
---	------------------------------------

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³/s)	Time to Peak
5-Year	107.80	21.40	90.60	1 hour, 20 minutes
10-Year	127.90	25.30	120.40	1 hour, 20 minutes
25-Year	153.40	30.20	162.20	1 hour, 20 minutes
50-Year	172.30	33.90	195.30	1 hour, 20 minutes
100-Year	191.10	37.50	228.90	1 hour, 20 minutes
5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Tumaga River using the calibrated HMS base flow is shown in Figure 68.

Figure 68. Sample output of Tumaga RAS Model

5.9 Flood Depth and Flood Hazard Maps

The resulting hazard and flow depth maps have a 10 m resolution. Figures 69 to Figure 74 show the 5-, 25-, and 100-year rain return scenarios of the Tumaga Floodplain.

The generated flood hazard maps for the Tumaga Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Table 35. Municipalities affected in T	Fumaga-San J	ose Floodplain
--	--------------	----------------

Municipality	Total Area	Area Flooded	% Flooded
Zamboanga City	1496.29	124.38	8%

65

66

69

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Salug River Basin, grouped by municipality, are listed below. For the said basin, 11 barangays in two municipalities are expected to experience flooding when subjected to the flood hazard scenarios.

For the 5-year return period, 6.82% of the municipalities of Zamboanga City with an area of 1496.293 sq. km. will experience flood levels of less than 0.20 meters. 0.76% of the area will experience flood levels of 0.21 to 0.50 meters while 0.42%, 0.20%, 0.09%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 36 to 39 are the affected areas in square kilometers by flood depth per barangay.

					ł	Vffected Bara	Ingays in Zam	boanga City				
TUMAG	A-SAN ASIN	Arena Blanco	Baliwasan	Barangay Zone I	Barangay Zone II	Barangay Zone III	Barangay Zone IV	Boalan	Cabatangan	Calarian	Camino Nuevo	Campo Islam
	1	1.025293	0.70861	0.520313	0.620465	0.625355	0.544432	7.206508	3.433914	0.986504	0.445678	3.12852
еэ	2	0.493011	0.114796	0.040038	0.056534	0.093055	0.044288	1.389019	0.12652	0.052328	0.129612	0.530001
rd Ar km.)	3	0.017093	0.020657	0.002655	0.01396	0.0715	0.00159	1.122207	0.098665	0.044173	0.188435	0.164384
fecte (sq.	4	0.000852	0.009613	0.0002	0.00106	0.060406	0.0005	0.266264	0.093199	0.001037	0.099897	0.027598
ĴΑ	5	0.002467	0.00254	0	0	0	0	0.032181	0.040215	0	0.009994	0.010114
	9	0	0	0	0	0	0	0.00306	0.001898	0	0.00079	0

	Return Period
	Rainfall
	uring 5-Yeai
	a City d
,	Zamboanga
	Areas in
	Affected
	Table 36.

Figure 75. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

Table 37. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

						Affected Bai	rangays in Zam	boanga City				
TUMAGA JOSE BA	-SAN SIN	Canelar	Capisan	Divisoria	Dulian	Guiwan	Kasanyangan	Lumayang	Lumbangan	Lunzuran	Maasin	Malagutay
	-	1.968468	3.409108	1.206391	5.85675	2.137196	4.038134	0.811814	10.34449	3.641315	0.178466	0.150556
eə.	2	0.315573	0.067812	0.057952	0.151995	0.61057	0.442212	0.015957	0.426386	0.171321	0.004166	0.000265
IA b: .my	æ	0.197749	0.038521	0.060934	0.101397	0.697935	0.065204	0.009798	0.267604	0.122181	0.0026	0.0002
ecte.	4	0.056783	0.022546	0.054552	0.12303	0.590583	0.0016	0.00769	0.194679	0.147404	0.0016	0.0001
₩A)	2	0.0025	0.01192	0.038129	0.198622	0.010111	0	0.003819	0.13981	0.095921	0.000265	0
	9	0	0.0009	0.00034	0.031566	0.0006	0	0.0003	0.0235	0.023643	0	0

Figure 76. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

Table 38. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

	San Jose San Jose San awa-Cawa Gusu Roque	0.422482 2.538761 8.74361	0.056607 0.396566 0.629015	0.006 0.129486 0.493795	0 0.020731 0.178777	0 0.0059 0.075823	0 0.0002 0.0062
	Salaan C	3.204667	0.228496	0.13793	0.073103	0.148341	0.1355
oanga City	Rio Hondo	0.478533	0.074811	0.002	0	0	0
ys in Zambo	Putik	2.027187	0.392965	0.457668	0.227064	0.032598	0
cted Baranga	Pasonanca	1.388451	0.134143	0.117659	0.120941	0.107536	0.015457
Affe	Pasobolong	0.012413	0	0	0	0	0
	Mercedes	4.072397	0.453707	0.082053	0.053071	0.057577	0.012923
	Mariki	1.265641	0.121199	0.0002	0	0	0
	Mampang	4.051447	0.386695	0.053421	0.0034	0	0
e (OSE IN	1	2	3	4	5	9
TIAAA	SAN JUNI) LGg	A b: .my	ecte. sd.))	

Figure 77. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

Table 39. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

					Affected	Barangays i	in Zamboan ₈	ga City			
TUMAGA BA:	-SAN JOSE SIN	Santa Barbara	Santa Catalina	Santa Maria	Santo Niño	Sinunoc	Talon-Talon	Tetuan	Tugbungan	Tumaga	Zambowood
	1	1.308469	1.67878	1.2771	0.197955	0.073385	5.071679	1.769732	4.674742	0.909947	3.903953
) LGg	2	0.311894	0.240244	0.591457	0.030006	0.001154	0.510002	0.343891	0.648353	0.174099	0.330376
A b: .my	3	0.148482	0.027795	0.369783	0.0002	0.001197	0.019374	0.178517	0.265248	0.18475	0.22755
ecte .ps	4	0.00691	0.0003	0.143492	0	0.000363	0.0007	0.05832	0.065405	0.198905	0.05931
))	5	0.000071	0	0.04611	0	0	0	0.070234	0.035227	0.163853	0.025614
	9	0	0	0	0	0	0	0.011978	0.0008	0.096067	0.005977

Figure 78. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

For the 25-year return period, 6.08% of the municipalities of Zamboanga City with an area of 1496.293 sq. km. will experience flood levels of less than 0.20 meters. 0.99% of the area will experience flood levels of 0.21 to 0.50 meters while 0.70%, 0.36%, 0.13%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 40 to 43 are the affected areas in square kilometers by flood depth per barangay.

Table 40. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

TIMAGA				Affecte	ed Barangays i	n Zamboang	a City					
BA	SIN	Arena Blanco	Baliwasan	Barangay Zone I	Barangay Zone II	Barangay Zone III	Barangay Zone IV	Boalan	Cabatangan	Calarian	Camino Nuevo	Campo Islam
	1	0.729205	0.484226	0.486412	0.578867	0.543528	0.497467	6.076987	3.358161	0.954262	0.379797	2.667151
) LGg	2	0.662959	0.198871	0.069409	0.085779	0.129862	0.086828	1.231017	0.103027	0.062692	0.123466	0.599789
A b .my	3	0.142659	0.136057	0.006785	0.023658	0.083099	0.005816	1.70345	0.125544	0.037918	0.181006	0.454233
ecte .ps	4	0.001325	0.03015	0.0006	0.003917	0.093727	0.0007	0.930136	0.120129	0.02917	0.178864	0.123602
) ЭНА)	5	0.002567	0.006912	0	0	0	0	0.072289	0.084806	0	0.011682	0.015842
	9	0	0	0	0	0	0	0.00536	0.003044	0	0.00079	0

Figure 79. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Table 41. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

TUMAGA	-SAN					Affected Bara	angays in Zam	boanga City				
JOSE BA	SIN	Canelar	Capisan	Divisoria	Dulian	Guiwan	Kasanyangan	Lumayang	Lumbangan	Lunzuran	Maasin	Malagutay
	1	1.537594	3.379485	1.166717	5.764327	1.32283	3.677343	0.803513	10.09004	3.553325	0.177566	0.150356
) LG9	2	0.484663	0.074907	0.062265	0.149263	0.557454	0.691334	0.017886	0.435399	0.160179	0.004166	0.000365
A b .my	3	0.255622	0.047657	0.065676	0.090823	1.171269	0.164587	0.011649	0.357359	0.15508	0.0027	0.0002
ecte .ps	4	0.252994	0.029564	0.06338	0.116431	0.982351	0.013887	0.009994	0.261196	0.127456	0.0021	0.0002
))	5	0.0102	0.017893	0.058121	0.230218	0.012492	0	0.00553	0.210371	0.16399	0.000565	0
	9	0	0.0015	0.00214	0.113999	0.0006	0	0.0008	0.042106	0.041755	0	0

Figure 80. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

						Affected Bar	angays in Z	amboanga (City			
BASI	N JOSE	Mampang	Mariki	Mercedes	Pasobolong	Pasonanca	Putik	Rio Hondo	Salaan	San Jose Cawa-Cawa	San Jose Gusu	San Roque
	1	3.669075	1.08513	3.747959	0.012413	1.28493	1.812623	0.329449	2.934301	0.374387	2.396627	8.361439
) LGg	2	0.678397	0.300111	0.650794	0	0.10581	0.290541	0.117851	0.301784	0.093846	0.19777	0.565527
A b: .my	3	0.13119	0.0018	0.185882	0	0.161455	0.569121	0.106444	0.232838	0.016856	0.428745	0.693312
.ps .ps	4	0.0163	0	0.064381	0	0.132849	0.355911	0.0016	0.120093	0	0.058102	0.380295
))	5	0	0	0.065594	0	0.1715	0.109286	0	0.154121	0	0.0102	0.114547
	9	0	0	0.017118	0	0.028043	0	0	0.1853	0	0.0002	0.0121

Rainfall Return Period
25-Yeai
during
City
2. Affected Areas in Zamboanga
Table 42

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 81. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

												ſ
					Affected	d Barangays	in Zamboang	a City				
TUMAGA BA	-SAN JOSE SIN	Santa Barbara	Santa Catalina	Santa Maria	Santo Niño	Sinunoc	Talon-Talon	Tetuan	Tugbungan	Tumaga	Zambowood	
	1	1.154432	1.372735	0.908451	0.174648	0.073085	4.253943	1.622686	2.581191	0.823404	3.650124	0
) LGg	2	0.409268	0.489025	0.514552	0.052213	0.001054	1.297814	0.430097	1.884029	0.101946	0.326565	0
A b؛ ۳.m۸	3	0.198945	0.084858	0.626528	0.0013	0.000997	0.044885	0.204178	1.051795	0.226829	0.347072	0
etce. bs	4	0.01311	0.0005	0.305825	0	0.000963	0.005113	0.091701	0.126429	0.216046	0.179022	0
) ЭНА)	5	0.000071	0	0.075787	0	0	0	0.071634	0.04553	0.245137	0.041514	0
	9	0	0	0	0	0	0	0.012378	0.0008	0.114259	0.008482	0

Table 43. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Figure 82. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

For the 100-year return period, 6.46% of the municipality of Liloy with an area of 122.4937 sq. km. will experience flood levels of less than 0.20 meters. 0.38% of the area will experience flood levels of 0.21 to 0.50 meters while 0.45%, 0.93%, 0.50%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 44 to 47 are the affected areas in square kilometers by flood depth per barangay.

						Affected Baran	gays in Zamboa	inga City				
TUMAGA BA	-SAN JOSE SIN	Arena Blanco	Baliwasan	Barangay Zone I	Barangay Zone II	Barangay Zone III	Barangay Zone IV	Boalan	Cabatangan	Calarian	Camino Nuevo	Campo Islam
	1	0.635194	0.335158	0.463535	0.551517	0.481245	0.465294	5.649828	3.325582	0.932817	0.346199	2.415739
) LGg	2	0.560746	0.210184	0.089403	0.103494	0.162754	0.110611	0.95825	0.089219	0.069949	0.122079	0.603537
A b: .my	3	0.338683	0.238461	0.009568	0.031174	0.09079	0.014005	1.727314	0.120444	0.04037	0.165563	0.568765
ecte. sq.	4	0.001526	0.061024	0.0007	0.005816	0.115545	0.0009	1.552527	0.122965	0.040906	0.228094	0.250673
) ЭНА)	5	0.002567	0.011389	0	0.0002	0	0	0.12396	0.129733	0	0.012846	0.021904
	9	0	0	0	0	0	0	0.00736	0.007167	0	0.000924	0

fall Return Period
g 100-Year Rain
. City during
as in Zamboanga
4. Affected Are
Table 4

Figure 83. Affected Areas in Zamboanga City during 100-Year Rainfall Return Period

						Affected Bar	angays in Zam	boanga City				
TUMAGA BA	-SAN JOSE SIN	Canelar	Capisan	Divisoria	Dulian	Guiwan	Kasanyangan	Lumayang	Lumbangan	Lunzuran	Maasin	Malagutay
	1	1.286994	3.36235	1.142243	5.700953	1.105597	3.333783	0.798402	9.959194	3.506855	0.176766	0.149917
) LG9	2	0.564556	0.077538	0.068856	0.16334	0.45052	0.642129	0.019441	0.408348	0.154857	0.004185	0.000804
A b: .my	3	0.341686	0.052195	0.063752	0.079238	1.051286	0.53057	0.012097	0.416616	0.168958	0.003182	0.0002
ecte. sd.	4	0.324424	0.03533	0.073721	0.113224	1.382779	0.04057	0.011268	0.298282	0.124724	0.0021	0.0002
) ЭНА)	5	0.023414	0.022193	0.066287	0.222709	0.056212	0.0001	0.007265	0.251396	0.182348	0.000865	0
	9	0	0.0018	0.00344	0.186996	0.0006	0	0.0013	0.062636	0.064044	0	0

Table 45. Affected Areas in Zamboanga City during 100-Year Rainfall Return Period

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 84. Affected Areas in Zamboanga City during 100-Year Rainfall Return Period

					Affect	ted Barangays	s in Zamboa	nga City				
TUMAG	A-SAN ASIN	Mampang	Mariki	Mercedes	Pasobolong	Pasonanca	Putik	Rio Hondo	Salaan	San Jose Cawa- Cawa	San Jose Gusu	San Roque
	1	3.24532	0.920024	3.531272	0.012413	1.239682	1.714168	0.271654	2.76601	0.343318	2.320483	8.154021
) LGg	2	0.967348	0.450228	0.774769	0	0.094872	0.251438	0.144311	0.329366	0.113851	0.176106	0.546334
km. الاس.	3	0.250494	0.016788	0.253575	0	0.14027	0.4942	0.13618	0.309027	0.02792	0.356193	0.713061
.ps	4	0.0316	0	0.079446	0	0.16157	0.54909	0.0032	0.155553	0	0.225167	0.551854
))	5	0.0002	0	0.073619	0	0.194603	0.128586	0	0.164701	0	0.013295	0.14265
	9	0	0	0.019048	0	0.053691	0	0	0.20378	0	0.0004	0.0193

Table 46. Affected Areas in Zamboanga City during 100-Year Rainfall Return Period

Figure 85. Affected Areas in Zamboanga City during 100-Year Rainfall Return Period

					Affected	d Barangays i	n Zamboang	a City			
TUMAGA-S BASI	AN JOSE N	Santa Barbara	Santa Catalina	Santa Maria	Santo Niño	Sinunoc	Talon- Talon	Tetuan	Tugbungan	Tumaga	Zambowood
	1	1.039073	1.05156	0.762173	0.157552	0.072585	3.652149	1.484194	1.691951	0.789006	3.537432
) LG9	2	0.474042	0.762939	0.432479	0.065997	0.001543	1.850505	0.50029	0.889264	0.073545	0.327058
A b؛ ۳.my	3	0.244383	0.129019	0.663693	0.004612	0.000807	0.089888	0.227709	2.672787	0.205755	0.372981
ecte .ps	4	0.018256	0.0036	0.459309	0	0.001163	0.009213	0.131566	0.379262	0.242681	0.251167
))	5	0.000071	0	0.112611	0	0	0	0.076269	0.055709	0.291939	0.054389
	9	0	0	0.000477	0	0	0	0.012644	0.0008	0.124694	0.009752

iod
ı Peı
eturi
ll R
ainfa
r Rá
Yea
100
ring
, du
City
ınga
ub o á
Zan
s in
Area
ted.
Affec
47. /
able .
H

Figure 86. Affected Areas in Zamboanga City during 100-Year Rainfall Return Period

Moreover, the generated flood hazard maps for the Tumaga-San Jose Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Marning Loval	Area	a Covered in sq.	km.
warning Level	5 year	25 year	100 year
Low	1.7086	1.9279	1.9625
Medium	1.3254	1.9483	2.2505
High	0.6145	0.9432	1.1749

Table 48. Area covered by each warning level with respect to the rainfall scenario

Of the 89 identified educational institutions in Tumaga-San Jose Floodplain, 42, 10 and 2 institutions were exposed to low, medium and high flood levels for the 5-year scenZario. 34, 24 and 6 institutions were exposed to the same flood levels for the 25-year scenario. 33, 28 and 6 institutions were exposed to the same flood levels for the 100-year scenario. 22 institutions were assessed as not exposed to any flooding for all the scenarios.

Of the 22 identified medical institutions in Tumaga-San Jose Floodplain, 5 institutions were exposed to low flood levels for the 5-year scenario. 7 and 1 institutions were exposed to low and medium flood levels for the 25-year scenario, respectively. 9 and 1 institutions were exposed to low and medium flood levels for the 100-year scenario, respectively. 12 institutions were assessed as not exposed to any flooding.

5.11 Flood Validation

The flood validation consists of 211 points randomly selected all over the Tumaga Floodplain. It has an RMSE value of 0.33.

Figure 87. Validation points for 5-year flood depth map of Tumaga Floodplain

Figure 88. Flood map depth vs actual flood dept

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Environmental Management Bureau, DENR 9

Inquirer.net

Zamboanga.climatemps.com

Zamboangacity.gov.ph

Zamboangatimes.ph

Zamboanga City Water District

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Tumaga Floodplain Survey

1. GEMINI SENSOR

Control Rack

Laptop

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM);
	220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
	Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing
2. PEGASUS SENSOR

Laptop

Control Rack

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

1 Target reflectivity \geq 20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence $\leq 20^{\circ}$

4 Target size \geq laser footprint5 Dependent on system configuration

OPTECH TECHNICAL SPECIFICATION OF THE D-8900 AERIAL DIGITAL CAMERA

Parameter	Specification				
Came	era Head				
Sensor type	60 Mpix full frame CCD, RGB				
Sensor format (H x V)	8, 984 x 6, 732 pixels				
Pixel size	6μm x 6 μm				
Frame rate	1 frame/2 sec.				
FMC	Electro-mechanical, driven by piezo technology (patented)				
Shutter	Electro-mechanical iris mechanism 1/125 to 1/500++ sec. f-stops: 5.6, 8, 11, 16				
Lenses 50 mm/70 mm/120 mm/210 mm					
Filter Color and near-infrared removable filters					
Dimensions (H x W x D) 200 x 150 x 120 mm (70 mm lens)					
Weight	~4.5 kg (70 mm lens)				
Contro	oller Unit				
	Mini-ITX RoHS-compliant small-form-factor embedded				
Computer	computers with AMD TurionTM 64 X2 CPU				
	4 GB RAM, 4 GB flash disk local storage				
	IEEE 1394 Firewire interface				
Removable storage unit	~500 GB solid state drives, 8,000 images				
Power consumption	~8 A, 168 W				
Dimensions	2U full rack; 88 x 448 x 493 mm				
Weight	~15 kg				
Image Pre-Pro	cessing Software				
Capture One	Radiometric control and format conversion, TIFF or JPEG				
	8,984 x 6,732 pixels				
Image output	8 or 16 bits per channel (180 MB or 360 MB per image)				

Annex 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey

1. ZGS-100

***** * 1967 * LU			
			August 29, 2014
	CERTIFICATION		
This is to certify that according to th	e records on file in this office, the reau	uested survev informa	ation is as follows -
F	Station Name: ZGS-100		
	Order: 2nd		
Island: MINDANAO	Barangay: MANICAHAN		
Manopanty. ZAMBOANGA ON T	PRS92 Coordinates		
Latitude: 7º 1' 26.72368"	Longitude: 122º 11' 12.74401"	Ellipsoidal Hgt:	11.27000 m.
	WGS84 Coordinates		
Latitude: 7º 1' 23.30149"	Longitude: 122º 11' 18.30044"	Ellipsoidal Hgt:	75.60300 m.
	PTM / PRS92 Coordinates		
Northing: 776712.542 m.	Easting: 410158.521 m.	Zone: 4	
	UTM / PRS92 Coordinates		
Northing: 776,440.68	Easting: 410,189.97	Zone: 51	
The station is marked by an 4" copper r canal with inscription " ZGS-100, 2009 I pole 7 meters km post 1916-ZC22 Requesting Party: ENGR. CHRISTOF Purpose: Reference OR Number: 8799780 A T.N.: 2014-1902	PHER CRUZ R Director /	of an cement putty or ngay Hal 7 meters Sc UEL DM. BELEN, M Mapping And Geod	n a concrete open outh from the flag NSA esy Branch

2. ZGS-99

						August 29, 201
		CERT	FICATION			
o whom it may concern:						
This is to certify that a	ocording to the reco	ords on file	in this office, the requ	ested survey	r informa	ation is as follows
	Provinc	e ZAMBO	DANGA DEL SUR			
	S	station Nat	me: ZGS-99			
Island: MINDANAO Municipality: ZAMBOAI	Bar NGA CITY MS	angay. C L Elevatio	nd CALARIAN m:			
Labbuda: 59 551 97 46	9074= lo:	PRS92	Coordinates	Elferoid	al Het	8 14000 m
Lautude. 0.09 31/40	ion Con	giude. 1	AA U U2.00431	Empaore	or rigit	5. 14900 m.
Latitude: 6º 55' 34.07	737" Lo:	wG584 noilude: 1	Coordinates	Elliosoid	al Hot	72,23000 m.
			592 Coordinates			
Northing: 766020.391	m. Ea	sting: 3	991103.346 m.	Zone:	4	
Northing: 765,752.27	Ea	UTM / PR: sting: 3	592 Coordinates 91,141.46	Zone:	51	
		Locatio	n Description			
GS-99						
The station is located bes Calarian. It is marked by inscriptions * ZGS-99, 200	ide a seawall, 10 m a 4° copper nail flus 39, NAMRIA".	from the o hed at the	centerline and 50 m fro center of a cement pi	om the Airford Ally on a con-	ce Beac crete op	h, in Brgy, Upper en canal with
Requesting Party: ENG	R. CHRISTOPHER	CRUZ		2	1	
	rence 780 A			Alle		
Purpose: Refe OR Number: 8799	10011		13	UEL DM. BE	LEN, M	NSAQ.
Purpose: Refe DR Number: 8799 (N : 2014	-1901		R			esy Branch
Purpose: Refe DR Number: 8799 .N.: 2014	-1901		R Directo/	Wapping Ar	nd Geod	
Purpose: Refe DR Number: 8799 .N.: 2014	-1901		Directo	Mapping Ar	nd Geod	
Purpose: Refe DR Number: 8799 .N.: 2014	-1901		Directo	Mapping A	nd Geod	
Purpose: Refe OR Number: 8799 .N.: 2014	-1901		B Directo	Mapping A	nd Geod	
Purpose: Refe DR Number: 8799 T.N.: 2014	-1901		Directo	/Mepping Ar	nd Geod	
Purpose: Refe OR Number: 8799 .N.: 2014	-1901		R Directo	Artepping Ar	nd Geod	

Annex 3. Baseline Processing Reports of Control Points Used in the LiDAR Survey

1. ZS-131

Vector Components	(Mark to Mark)
-------------------	----------------

From:	ZGS-100							
Grid Local			Global					
Easting	410189.967 m	Latitude	N7°01'26.72367"	Latitude	N7°01'23.30149"			
Northing	776440.678 m	Longitude	E122°11'12.74401"	Longitude	E122°11'18.30044"			
Elevation	7.745 m	Height	11.271 m	Height	75.603 m			

To:	ZS-131							
Grid		Local		Global				
Easting	414826.524 m	Latitude	N7°12'31.41328"	Latitude	N7°12'27.94616"			
Northing	796844.403 m	Longitude	E122°13'42.74840"	Longitude	E122°13'48.28765"			
Elevation	7.052 m	Height	10.811 m	Height	74.904 m			

Vector						
<u>ΔEasting</u>	4636.557 m	NS Fwd Azimuth	12°42'06"	ΔX	-2545.750 m	
<u>ANorthing</u>	20403.725 m	Ellipsoid Dist.	20930.290 m	ΔY	-4593.707 m	
<u>AElevation</u>	-0.693 m	<u>Alleight</u>	-0.460 m	۸Z	20260.657 m	

Standard Errors

Vector errors:						
σ <u>AEasting</u>	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.005 m	
σ <u>ANorthing</u>	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.008 m	
σ <mark>ΔElevation</mark>	0.009 m	σ <u>Alleight</u>	0.009 m	σΔZ	0.002 m	

Aposteriori Covariance Matrix (Meter*)

	х	Y	Z
x	0.0000227893		
Y	-0.0000323435	0.0000634026	
z	-0.0000043665	0.0000093098	0.0000024763

2. BLLM-166

ZGS 100 - BLLM166 (12:55:14 PM-5:24:39 PM) (S2)

Baseline observation:	ZGS 100 BLLM166 (B2)
Processed:	3/5/2015 5:24:48 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.004 m
Vertical precision:	0.017 m
RMS:	0.007 m
Maximum PDOP:	1.981
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	2/5/2015 12:55:34 PM (Local: UTC+8hr)
Processing stop time:	2/5/2015 5:24:39 PM (Local: UTC+8hr)
Processing duration:	04:29:05
Processing interval:	5 seconds

Vector Components (Mark to Mark)

From:	ZGS 100							
6	Brid		Local			Global		bal
Easting	410189.967 m	Latit	tude	N7°01'2	6.72367"	Latitude		N7°01'23.30149"
Northing	776440.678 m	Long	gitude	E122°11'12	2.74401"	Longitude		E122°11'18.30044"
Elevation	7.745 m	Heig	ght	1	11.271 m	Height		75.603 m
To: BLLM166								
G	brid	Local		cal		Giobal		
Easting	415179.269 m	Latit	tude	N7°09'3	3.60926"	Latitude		N7°09'30.15553"
Northing	791383.716 m	Long	gitude	E122°13'5	4.54820"	C Longitude		E122°14'00.09187"
Elevation	120.669 m	Helg	ght	12	24.333 m	13 m Height		188.527 m
Vector								
ΔEasting	4989.30)2 m	NS Fwd Azimuth			18°21'47"	ΔX	-3276.482 m
ΔNorthing	14943.03	38 m	8 m Ellipsoid Dist.			15758.784 m	ΔY	-4113.808 m
ΔElevation	112.92	23 m	ΔHeight			113.062 m	ΔZ	14855.907 m

Standard Errors

Vector errors:							
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.005 m		
σΔNorthing	0.001 m	σ Ellipsold Dist.	0.001 m	σΔΥ	0.007 m		
σ Δ Elevation	0.009 m	σΔHeight	0.009 m	σΔΖ	0.002 m		

3. ZC-1

ZGS-99 - ZC-1 (7:04:04 AM-12:01:44 PM) (S1)

2	203-33 - 20-1 (1.04.04 AMP 12.01.44 PM) (31)					
Baseline observation:	ZGS-99 ZC-1 (B1)					
Processed:	9/18/2014 4:08:50 PM					
Solution type:	Fixed					
Frequency used:	Dual Frequency (L1, L2)					
Horizontal precision:	0.001 m					
Vertical precision:	0.001 m					
RMS:	0.000 m					
Maximum PDOP:	1.777					
Ephemeris used:	Broadcast					
Antenna model:	Trimble Relative					
Processing start time:	8/23/2014 7:04:14 AM (Local: UTC+8hr)					
Processing stop time:	8/23/2014 12:01:44 PM (Local: UTC+8hr)					
Processing duration:	04:57:30					
Processing interval:	5 seconds					

Vector Components (Mark to Mark)

From:	ZGS-99							
Grid		L	ocal		Global			
Easting	391141.462 m	Latitude	N6°55'37	7.48971"	Latitude		N6°55'34.07737"	
Northing	765752.270 m	Longitude	E122°00'52	2.66432"	Longitude		E122°00'58.23072"	
Elevation	4.653 m	Height		8.149 m	Height		72.230 m	
To:	ZC-1							
G	irid	Local		Global		obal		
Easting	391123.456 m	Latitude	N6°55'37.81337"		Latitude		N6°55'34.40099"	
Northing	765762.247 m	Longitude	E122°00'52.07695"		Longitude		E122°00'57.64335"	
Elevation	4.170 m	Height	7.666 m		Height		71.746 m	
Vector								
∆Easting	-18.00	6 m NS Fwd Azimuth	1		298°52'19"	ΔX	16.179 m	
∆Northing	9.97	7 m Ellipsoid Dist.			20.590 m	ΔY	8.136 m	
∆Elevation	-0.48	33 m ∆Height			-0.483 m	ΔZ	9.811 m	

Standard Errors

Vector errors:								
σ∆Easting	0.000 m	σ NS fwd Azimuth	0°00'02"	σΔX	0.000 m			
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔΥ	0.000 m			
$\sigma \Delta Elevation$	0.001 m	σ ΔHeight	0.001 m	σΔZ	0.000 m			

Aposteriori Covariance Matrix (Meter²)

	x	Y	Z
x	0.000001675		
Y	-0.000000621	0.000002067	
Z	-0.000000118	0.000000230	0.000000431

4. ZGS-99A

ZGS-99 - ZGS-99A (9:00:34 AM-1:46:19 PM) (S1)

Baseline observation:	ZGS-99 ZGS-99A (B1)
Processed:	3/6/2015 1:27:43 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.001 m
RMS:	0.000 m
Maximum PDOP:	4.130
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Proceesing start time:	2/11/2015 9:00:34 AM (Local: UTC+8hr)
Processing stop time:	2/11/2015 1:46:19 PM (Local: UTC+8hr)
Proceesing duration:	04:45:45
Processing Interval:	5 seconds

Vector Components (Mark to Mark)

From:	ZGS	/GS-99								
	Grid			Lo	cal			Globel		
Easting		391141.462 m	Lati	lude	N6°55'3	7.48971*	Latitude		N6°55'34.07737"	
Northing		765752.270 m	Lon	gitude	E122°00'5	2.66432*	Longitude		E122°00'58.23072*	
Elevation		4.653 m	Hel	ght		8.149 m	Height		72.230 m	
To: ZGS-99A										
	Grid		Local		Global					
Easting		391136.071 m	Lati	lude	N6°55'3	7.63895*	Latitude		N6°55'34.22659"	
Northing		765756.864 m	Lon	gitude	E122°00'5	2.48834*	Longitude		E122°00'58.05475*	
Elevation		4.354 m	Hel	ght		7.850 m	Height		71.931 m	
Vector										
ΔEasting		-5.39)1 m	NS Fwd Azimuth			310°19'07"	ΔX	5.031 m	
∆Northing		4.59	4 m	Ellipsoid Dist.			7.085 m	ΔY	2.144 m	
∆Elevation		-0.29	9 m	∆Height			-0.299 m	ΔZ	4.515 m	

Standard Errors

Vector errors:							
σ ΔEasting	0.000 m	σ NS fwd Azimuth	0°00'11"	σΔX	0.000 m		
σΔNorthing	0.000 m	σ Ellipsold Dist.	0.000 m	σΔY	0.001 m		
σ ΔElevation	0.001 m	σ∆Height	0.001 m	σΔZ	0.000 m		

Aposteriori Covariance Matrix (Meter*)

	x	Y	z
x	0.0000002239		
Y	-0.0000001250	0.0000004533	
z	-0.000000277	0.000000071	0.000000770

1

5. BVA-1

BVA-1 - BVA-2 (2:54:04 PM-5:12:34 PM) (S1)

	BVA-1 - BVA-2 (2:34:04 PM-3:12:34 PM) (31)				
Baseline observation:	BVA-1 BVA-2 (B1)				
Processed:	3/6/2015 3:31:41 PM				
Solution type:	Fixed				
Frequency used:	Dual Frequency (L1, L2)				
Horizontal precision:	0.001 m				
Vertical precision:	0.002 m				
RMS:	0.000 m				
Maximum PDOP:	2.093				
Ephemeris used:	Broadcast				
Antenna model:	NGS Absolute				
Processing start time:	2/6/2015 2:54:04 PM (Local: UTC+8hr)				
Processing stop time:	2/6/2015 5:12:34 PM (Local: UTC+8hr)				
Processing duration:	02:18:30				
Processing interval:	5 seconds				

Vector Components (Mark to Mark)

From:	BVA-1							
G	rid		Lo	cal		Giobai		bal
Easting	418087.142 m	Latit	tude	N7°15'1	9.31910"	Latitude		N7°15'15.84241"
Northing	801995.112 m	Long	gitude	E122°15'2	8.78739"	Longitude		E122°15'34.32212"
Elevation	78.652 m	Helg	ght	8	32.446 m	Height		146.526 m
To: BVA-2								
G	rid		Lo	cal	Global		bal	
Easting	418085.472 m	Latit	tude	N7°15'1	9.25198"	Latitude		N7°15'15.77529"
Northing	801993.053 m	Long	gitude	E122°15'2	8.73303" Longitude			E122°15'34.26776"
Elevation	78.729 m	Heig	ght	8	32.524 m	Height		146.603 m
Vector								
ΔEasting	-1.67	'0 m	NS Fwd Azimuth			218°57'49"	ΔX	1.230 m
ΔNorthing	-2.05	i9 m	Ellipsoid Dist.			2.652 m	ΔY	1.175 m
∆Elevation	0.07	7 m	∆Height			0.077 m	ΔZ	-2.036 m

Standard Errors

Vector errors:								
σ ΔEasting	0.000 m	σ NS fwd Azimuth	0°00'28"	σΔΧ	0.001 m			
σΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔΥ	0.001 m			
σ ΔElevation	0.001 m	σΔHeight	0.001 m	σΔΖ	0.000 m			

Annex 4. The LiDAR Survery Team Composition

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation	
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP	
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP	
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP	
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP	
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP	
	FIELD TEA	M		
	Senior Science Research Specialist (SSRS)	JULIE PEARL MARS	UP-TCAGP	
	SSRS	JASMINE ALVIAR	UP-TCAGP	
	SSRS	ENGR. IRO NIEL ROXAS	UP-TCAGP	
LiDAD Operation	Research Associate (RA)	ENGR. LARAH KRISTINA PARAGAS	UP-TCAGP	
LIDAR Operation	RA	FOR. MA. VERLINA TONGA	UP-TCAGP	
	RA	KRISTINE ANDAYA	UP-TCAGP	
	RA	ENGR. RENAN PUNTO	UP-TCAGP	
	RA	SANDRA POBLETE	UP-TCAGP	
	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP	
Ground Survey, Data Download and Transfer	RA	FRANK NICOLAS ILEJAY	UP-TCAGP	
	RA	JONATHAN ALMALVEZ	UP-TCAGP	
		SSG. JULIUS RENDON	PHILIPPINE AIR FORCE (PAF)	
	Airborne Security	SSG. ERWIN DELOS SANTOS	PAF	
		SSG. JAYCO MANZANO	PAF	
LiDAR Operation		CAPT. BRYAN DONGUINES	ASIAN AEROSPACE CORPORATION (AAC)	
	Pilot	CAPT. NEIL ACHILLES AGAWIN	AAC	
		CAPT. SHERWIN CESAR ALFONSO	AAC	
		CAPT. ANTON DAYO	AAC	

Annex 5. Data Transfer Sheet for Tumaga Floodplain

DATA TRANSFER SHEET 09/23/2014(Zamboanga ready)

	LOCATION	Z:\DAC\RA WDATA	Z:\DAC\RA WDATA
PLAN	KML	ø	NA
FLIGHT	Actual	4	4
OPERATOR	(OPLOG) LOGS	1KB	1KB
ATION(S)	Base Info (.txt)	1KB	1KB
BASE ST	BASE STATION(S)	5.94	3.07
	DIGITIZER	NA	NA
	RANGE	20.9	11
MISSION LOG	FILE/CASI LOGS	NA	NA
į	HAW IMAGES/CASI	NA	AN
	POS	252	138
	LOGS(MB)	493	262
LAS	KML (swath)	247	131
RAW	Output LAS	12.2	5.29
	SENSOR	Gemini	Gemini
	MISSION NAME	2BLK75F235A	2BLK75G236A
	FLIGHT NO.	7450G	7452G
	DATE	8/23/2014	8/24/2014

Received from

こうまつう Name Position Signature

JOIDA PRIETO Received by Name Position Signature

	SERVER	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:IDACIRAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA
	PLAN KML	NA						
	Actual	38	38	38	70/76	NA	68	31/88
OPERATOR	OPERATOR LOGS (OPLOG)	1KB	IKB	IKB	IKB	IKB	IKB	IKB
	ATION(S) Base Info (.txt)	1KB						
	BASE STA BASE STATION(S)	7.53	8.2	8.2	17.7	4.37	6.81	8.47
-	DIGITIZER	NA						
	RANGE	30.7	35.8	17.6	26.2	22.3	22.4	20.5
	MISSION LOG FILE/CASI LOGS	360	410	222	305	244	247	240
	RAW MAGES/CASI	43.6	52.4	25.2	41.7	32.6	31.9	34.9
-	POS	232	263	175	259	230	256	255
-	LOGS(MB)	12.7	13.9	7.95	11.3	10.9	11.3	10.6
-	ML (swath)	2608	1872	332	473	2608	566	301
1 1111 10	utput LAS K	2.95	3.55	1.37	2.33	3.95	2.03	1.62
	SENSOR	EGASUS	GASUS	GASUS	GASUS	GASUS	GASUS	GASUS
-		36A PE	37A PE	37B PE	39A PE	40A PE	41A PE	42A PE
	ISSION NAME	1BLK75E.	1BLK75C	1BLK75C	1BLK75C	1BLK75A	< 1BLK75S	1BLK755
	LIGHT NO. M	2535P	2537P	2539P	2545P	2549P	2553P	2557P
-	u.	Feb-15	Feb-15	Feb-15	Feb-15	Feb-15	-Feb-15	-Feb-15

	- SERVER LOCATION	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA
PLAN	KML	NA	NA	NA	NA	NA	NA
FLIGHT	Actual	53	68	NA	NA	NA	NA
OPERATOR	(OPLOG)	NA	NA	NA	NA	NA	NA
TION(S)	sase Info (.txt)	1KB	1KB	1KB	1KB	1KB	1KB
BASE STA	BASE STATION(S)	95.8	133	133	153	171	171
	DIGITIZER	NA	NA	NA	NA	NA	NA
	RANGE	5.63	24.7	5,13	22.6	7.88	12.6
IISSION LOG	FILE/CASI LOGS	NA	NA	NA	274	69	139
N MAG	MAGES/CASI	AN	NA	NA	30	8.73	15.3
	POS	91	253	101	281	173	192
	LOGS	4.08	Ŧ	3.37	11.6	6.09	6.75
AS	(ML (swath)	NA	NA	NA	NA	NA	NA
RAW L	Dutput LAS	518	2.28	506	2.09	546	1.1
	SENSOR	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS
	MISSION NAME	1BLK75BS146A	1BLK75FG147A	1BLK75AS147B	1BLK75CSDE148B	1BLK75HI151A	1BLK75CS151B
	FLIGHT NO.	23390P	23392P	23394P	23398P	23408P	23410P
	DAIE	Aay 25, 2016	Aay 26, 2016	Aay 26, 2016	Aay 27, 2016	Aay 30, 2016	Aay 30, 2016

R. PWNTU Name Position Signature

(Ith) Name A Position S

Annex 6. Flight logs for the flight missions

1. Flight Log for 7450GC Mission

ation: 9322			ie:				Name
6 Aircraft Identifie			18 Total Flight Tin				Lidar Operator
5 Aircraft Type: Cesnna T206H		(Airport, City/Province):	17 Landing:			7	Mand
354 4 Type: VFR		12 Airport of Arrival (16 Take off:				Pilot-in-Com
3 Mission Name: 26LK 75F2	9 Route: Zomboargo	Airport, City/Province):	15 Total Engine Time: $4 \neq 11$				isition Flight Certified by
Z ALIM MODEL DUTY VAL	Pilot: N. Achuin	12 Airport of Departure (ngine Off: //: 23		conple ted		
AR Operator: M & Tongn	t: B. Donguines 8 Co-	te: \$-22.14	gine On: 14 En	eather 7 hc	marks: Mi55ion o	roblems and Solutions:	Acquisition Flight Approve P.C11 No-5 Separative over Printed Nar (End User Representative)

Flight Log No.: 2535 5 Aircraft Type: Cesnna T206H 6 Aircraft I dentification: 27-29022 18 Total Flight Time: Signature over Printed Nar Frier 3 4 93 Lidar Operator 1 20 mb 2 12 Airport of Arrival (Airport, City/Province): 2 a w/s v 172814 10 17 Landing: Signature over Printed Name Tomoto Pilot-in-Command 16 Take off: 15/H 4 Type: VFR B Co-Pillot: θ₀ Op/MannS 3 Mission Name: IggY TF36A 8 Co-Pillot: θ₁ V0MANNS 9 Route: 7 a uub o - 7 aug 12 Airport of Departure (Airport, City/Province): 12 12 12 12 15 Total Engine Time: 3 たいろ BUR 756 at 1100 m Acquisition Flight Certified by Signature over Printed Name (PAF Representative) \$ Buter 1. Alvior 2 ALTM Model: Peopsus 14 Engine Off: 1733 H FOIL www. Acquisition Flight Approved by Signature over Printed Name (End/User Representative) Abriar M Data Acquisition Flight Log 21 Problems and Solutions: Feb . 512015 C. Alfonso H 040 H AR Operator: igine On: marks: leather ate: ot:

2. Flight Log for 2535P Mission

3. Flight Log for 2545P Mission

90 22							
6 Aircraft I dentification: $RP - CC$	18 Total Flight Time: $Q \neq OI$					ldar Operator	
5 Aircraft Type: Cesnna T206H	17 Landing: 12 Landing:					and *	
4 Type: VFR	16 Take off: $\mathcal{CS} \mathcal{E} \mathcal{H}$		÷			Pilot-in-Comm	
3 Mission Name: (Buk755394) 9 Route: Arroot Citv/Boovingol.	15 Total Engine Time: $\frac{1}{2}$	al pright	-		A rea	tion Flight Certified by	
LTM Model: Vegasus	Off: Zombranga Off: 1244 /7 Wy Chaudy	Sweeth				Acquis Signati (PAF RI	
LIDAR Operator: J. AlVIAV 2A Pilot: C. Alforco 8 Co-Pilot:	Tely. 8, 2015 3 fingine On: 08.33 A 14 Engine Weather 904) Remarks:	3	1 Problems and Solutions:		Acquisition Flight Approved by <u>A</u> Signature over Printed Name (End Jsee Representative)	

4. Flight Log for 2557P Mission

Flight Log No.: 2557 **6** Aircraft Identification: RP - CQ02018 Total Flight Time: イナ パラ ignature over Printed Nar 1 ian Lidar Operator 5 Aircraft Type: Cesnna T206H 57 59 2 2 342 Zeruu C v C (Ity/Province): 12 Airport of Arriva (Airport, City/Province): +1 1320 생 17 Landing: Signature over Printed Name alpener Pilot-in-Command 16 Take off: 1 Q 2020 Operator: J · Alviov 2 ALTM Model: IBIK15/약취3 Mission Name: IBIK152과 4 Type: VFR RLK Alfunto 8 Co-Pilot: 8 - Rengulnes 9 Route: 2 مسلمه - -12 Airport of Departure (Airport, City/Province): ~ 2 cho Ps 15 Total Engine Time: $d_1 \neq z \ge 3$ EL June Signature over Printed Name (PAF Representative) Acquisition Flight Certified by galan of Emmonery 14 Engine Off: forthy cloudu 1325/4 Sacol Jununa Acquisition Flight Approved by Signature over Printed Name (End User Representative) **Data Acquisition Flight Log** Aloly Feb . 11,2015 Problems and Solutions: 2020 0 ine On: eather marks:

5. Flight LoZg for 23394P Mission

Annex 7. Flight Status Report

FLIGHT STATUS REPORT

Zamboanga-Zamboanga Sibugay

August 23, 2014; February 5,8 and 11 2015; May 26, 2016

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7450GC	BLK75F	2BLK75F235A	M.V.E. TONGA	Aug. 23, 2014	COMPLETED BLK75F;FAST CLOUD BUILD UP
2535P	BLK75E	1BLK75E36A	J. ALVIAR	Feb. 5, 2015	FOR COMPLETION AND SOME GAP FILLING (TERRAIN)
2545P	BLK75C BLK75D BLK75E BLK75FS	1BLK75C39A	J. ALVIAR	Feb. 7, 2015	ABNORMAL PROGRAM TERMINATION (AVPOS)
2557P	BLK75C BLK75D BLK75GS BLK75FS SACOL IS.	1BLK75S42A	J. ALVIAR	Feb. 11, 2015	SURVEY 6 DESCENDED TO 1000 DUE TO CLOUDS; RETURNED TO 1100M FOR SURVEY OVER SACOL; GAPS DUE TO CLOUDS, DESCENDED TO 1000M TO FILL UP VOIDS IN SACOL AND BLK 75EFG; ADDED 1 SMALL LINE (CORRIDOR 18), DESCENDED TO 800M; CORRIDOR 16 WHICH SHOULD COVER GAP IN BLK75E, UP TO ALL
23394P	BLK75AS	1BLK75AS147B	I. ROXAS and S. POBLETE	May 26, 2016	COMPLETED BLK 75AS

LAS/SWATH BOUNDARIES PER MISSION FLIGHT

Flight No.:	7450GC
Area:	BLK75F
Mission Name:	2BLK75F235A
Parameters:	Altitude: 1100m; Scan Frequency: 50; Scan Angle: 40

Flight No.:	2535P
Area:	BLK75E
Mission Name:	1BLK75E36A
Parameters:	Altitude: 1100m; Scan Frequency: 30; Scan Angle: 50

Flight No. :	2545P
Area:	BLK 75C
Mission Name:	1BLK75C39A
Parameters:	Altitude: 1100m; Scan Frequency: 30; Scan Angle: 50

Flight No. :	2557P
Area:	BLK 75C, D, E, GS, FS, Sacol island
Mission Name:	1BLK75S42
Parameters:	Altitude: 800-1200m; Scan Frequency: 30; Scan Angle: 50

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Flight No.:	23394P
Area:	BLK75AS
Mission Name:	1BLK75AS147B
Parameters:	Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50

Annex 8. Mission Summary Reports

Flight Area	Zamboanga
Mission Name	Block 75E
Inclusive Flights	2535P, 2545P
Range data size	56.9 GB
Base data size	7.77 MB
POS	491 MB
Image	85.3 GB
Transfer date	February 27 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.08
RMSE for East Position (<4.0 cm)	1.42
RMSE for Down Position (<8.0 cm)	2.94
Boresight correction stdev (<0.001deg)	0.000223
IMU attitude correction stdev (<0.001deg)	0.000328
GPS position stdev (<0.01m)	0.0061
Minimum % overlap (>25)	96.73%
Ave point cloud density per sq.m. (>2.0)	5.11
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	522
Maximum Height	498.00 m
Minimum Height	65.50 m
Classification (# of points)	
Ground	369,443,876
Low vegetation	268,989,359
Medium vegetation	403,829,240
High vegetation	815,604,498
Building	37,951,116
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Velina Angela Bemida, Alex John Escobido

Figure 1.1.1 Solution Status

Figure 1.1.2 Smoothed Performance Metric Parameters

Figure 1.1.3 Best Estimated Trajectory

Figure 1.1.4 Coverage of LiDAR data

Figure 1.1.5 Image of data overlap

Figure 1.1.6 Density map of merged LiDAR data

Figure 1.1.7 Elevation difference between flight lines

Flight Area	Zamboanga
Mission Name	Blk75F
Inclusive Flights	7450GC, 2557P
Range data size	20.9 GB
Base data size	8.47 MB
POS	252 MB
Image	0 GB
Transfer date	September 23 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.16
RMSE for East Position (<4.0 cm)	1.43
RMSE for Down Position (<8.0 cm)	3.02
Boresight correction stdev (<0.001deg)	0.000318
IMU attitude correction stdev (<0.001deg)	0.000664
GPS position stdev (<0.01m)	0.0096
Minimum % overlap (>25)	45.16%
Ave point cloud density per sq.m. (>2.0)	3.30
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	208
Maximum Height	505.54 m
Minimum Height	64.94 m
Classification (# of points)	
Ground	46,501,319
Low vegetation	53,336,315
Medium vegetation	110,540,939
High vegetation	159,255,533
Building	24,154,268
Orthophoto	No
Processed by	Engr. Jommer Medina, Engr. Harmond Santos, Engr. Ma. Ailyn Olanda

Figure 1.2.1 Solution Status

Figure 1.2.2 Smoothed Performance Metric Parameters

Figure 1.2.5 Image of data overlap

Figure 1.2.4 Coverage of LiDAR data

Figure 1.2.5 Image of data overlap

Figure 1.2.6 Density map of merged LiDAR data

Figure 1.2.7 Elevation difference between flight lines

Flight Area	Zamboanga
Mission Name	Block 75F_additional
Inclusive Flights	2557P
Range data size	20.5 GB
Base data size	8.47 MB
POS	255 MB
Image	34.9 GB
Transfer date	February 27 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.141
RMSE for East Position (<4.0 cm)	1.744
RMSE for Down Position (<8.0 cm)	3.620
Boresight correction stdev (<0.001deg)	0.000683
IMU attitude correction stdev (<0.001deg)	0.001812
GPS position stdev (<0.01m)	0.0094
Minimum % overlap (>25)	90.58%
Ave point cloud density per sq.m. (>2.0)	3.12
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	10
Maximum Height	211.78 m
Minimum Height	71.72 m
Classification (# of points)	
Ground	4,965,841
Low vegetation	1,517,124
Medium vegetation	2,161,688
High vegetation	5,531,337
Building	767,278
Orthophoto	No
Processed by	Engr. Jommer Medina, Engr. Melanie Hingpit, Kathryn Claudyn Zarate

Figure 1.3.1 Solution Status

Figure 1.3.2 Smoothed Performance Metric Parameters

Figure 1.3.3 Best Estimated Trajectory

Figure 1.3.4 Coverage of LiDAR data

Figure 1.3.5 Image of data overlap

Figure 1.3.6 Density map of merged LiDAR data

Figure 1.3.7 Elevation difference between flight lines

Flight Area	Zamboanga
Mission Name	Sacol
Inclusive Flights	2557P
Range data size	20.5 GB
Base data size	8.47 MB
POS	255 MB
Image	34.9 GB
Transfer date	February 27 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.07
RMSE for East Position (<4.0 cm)	1.72
RMSE for Down Position (<8.0 cm)	3.35
Boresight correction stdev (<0.001deg)	0.000189
IMU attitude correction stdev (<0.001deg)	0.001474
GPS position stdev (<0.01m)	0.0028
Minimum % overlap (>25)	93.75%
Ave point cloud density per sq.m. (>2.0)	4.29
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	183
Maximum Height	422.16 m
Minimum Height	67.62 m
Classification (# of points)	
Ground	102,448,806
Low vegetation	102,238,659
Medium vegetation	104,811,352
High vegetation	138,074,781
Building	1,942,211
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Melanie, Hingpit, Alex John Escobido

Figure 1.4.1 Solution Status

Figure 1.4.2 Smoothed Performance Metric Parameters

Figure 1.4.3 Best Estimated Trajectory

Figure 1.4.4 Coverage of LiDAR data

Figure 1.4.5 Image of data overlap

Figure 1.4.6 Density map of merged LiDAR data

Figure 1.4.7 Elevation difference between flight lines

Flight Area	Zamboanga Reflights
Mission Name	Blk75AS
Inclusive Flights	23394P
Range data size	5.13 GB
Base data size	133 MB
POS	101 MB
Image	n/a
Transfer date	July 14, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.9
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	3.4
Boresight correction stdev (<0.001deg)	n/a
IMU attitude correction stdev (<0.001deg)	n/a
GPS position stdev (<0.01m)	n/a
Minimum % overlap (>25)	27.08
Ave point cloud density per sq.m. (>2.0)	2.98
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	60
Maximum Height	588.90 m
Minimum Height	77.48 m
Classification (# of points)	
Ground	31,359,118
Low vegetation	14,011,685
Medium vegetation	34,188,233
High vegetation	107,683,623
Building	2,927,347
Orthophoto	No
Processed by	Ben Joseph Harder, Erica Erin Elazequi, Engr. Jeffrey Delica

Figure 1.5.1 Solution Status

Figure 1.5.2 Smoothed Performance Metric Parameters

145

Figure 1.5.7 Elevation difference between flight lines

Mission Name	Block 75F_supplement
Inclusive Flights	23394P
Range data size	5.13 GB
Base data size	133 MB
POS	101 MB
Image	n/a
Transfer date	July 14, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
<i>Smoothed Performance Metrics</i> (in cm)	
RMSE for North Position (<4.0 cm)	0.926
RMSE for East Position (<4.0 cm)	1.126
RMSE for Down Position (<8.0 cm)	3.388
Boresight correction stdev (<0.001deg)	n/a
IMU attitude correction stdev (<0.001deg)	n/a
GPS position stdev (<0.01m)	n/a
Minimum % overlap (>25)	32.76
Ave point cloud density per sq.m. (>2.0)	2.57
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	43
Maximum Height	377.09 m
Minimum Height	73.58 m
Classification (# of points)	
Ground	19,418,142
Low vegetation	12,541,089
Medium vegetation	25,246,500
High vegetation	58,645,039
Building	5,803,796
Orthophoto	No
Processed by	Ben Joseph Harder, Engr. Harmond Santos, Maria Tamsyn Malabanan

Figure 1.6.1 Solution Status

Figure 1.6.2 Smoothed Performance Metric Parameters

Figure 1.6.3 Best Estimated Trajectory

Figure 1.6.4 Coverage of LiDAR data

Figure 1.6.5 Image of data overlap

Figure 1.6.6 Density map of merged LiDAR data

Figure 1.6.7 Elevation difference between flight lines

	SCS CI	urve Numbe	r Loss	Clark Unit Hydrogr	aph Transform		Rec	ession Baseflo	M	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W100	7.2736	61.6	0	0.076245	3.3181808	Discharge	0.18974	0.75	Ratio to Peak	0.2
W110	7.3013	61.49472	0	0.095883	4.1728392	Discharge	0.3437	0.75	Ratio to Peak	0.2
W120	7.2736	61.6	0	0.04569	1.9883728	Discharge	0.0441795	0.75	Ratio to Peak	0.2
W130	7.3923	61.15088	0	0.069843	3.0395352	Discharge	0.12877	0.75	Ratio to Peak	0.2
W140	8.1914	58.2904	0	0.091284	3.9726896	Discharge	0.20521	0.75	Ratio to Peak	0.2
W80	7.3721	61.22704	0	0.286995	12.4899584	Discharge	0.89669	0.75	Ratio to Peak	0.2
06M	7.2736	61.6	0	0.079554	3.462212	Discharge	0.16935	0.75	Ratio to Peak	0.2

ANNEX 9. Tumaga Model Basin Parameters

ANNEX 10. Tumaga Model Reach Parameters

Poach		Musk	ingum Cunge C	Channel Routing	ß		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R30	Automatic Fixed Interval	5830.4	0.0420993	0.018	Trapezoid	35	1
R60	Automatic Fixed Interval	2026.1	0.0234658	0.018	Trapezoid	35	1
R70	Automatic Fixed Interval	4641.5	0.0204807	0.018	Trapezoid	35	1

Validation Coordinates Model Point Validation **Rain Return Error Event/Date** Number Points (m) /Scenario Var (m) Lat Long 1 401544.5115 770406.9969 0.03 0 0.03 Not Defined 5 -Year 2 0 5 -Year 401313.2583 770329.7103 0.031 0.03 Not Defined 3 401994.8154 769947.7683 0 0.03 5 -Year 0.03 Not Defined 4 402234.7911 0 769786.4539 0.03 0.03 Not Defined 5 -Year 5 0 5 -Year 400109.1224 768660.4425 0.03 0.03 Not Defined 6 400504.4382 0 0.03 5 -Year 768852.0631 0.03 Not Defined 7 398446.5421 766996.1707 0.03 0 0.03 Not Defined 5 -Year 8 0 398637.9542 766113.5273 0.03 0.03 Not Defined 5 -Year 9 0 0.04 398640.2963 766239.23 0.04 Not Defined 5 -Year 10 0 0.03 398503.6875 766040.1536 0.034 Not Defined 5 -Year 0 11 398514.9066 766642.2445 0.183 0.18 Not Defined 5 -Year 0 12 398481.5097 766568.7864 0.209 0.21 Not Defined 5 -Year 0 13 398459.7517 767028.4287 0.03 0.03 Not Defined 5 -Year 14 0 398493.2 766729.2976 0.03 0.03 Not Defined 5 -Year 15 0 766790.6286 0.03 5 -Year 398280.6442 0.03 Not Defined 16 398175.2515 766793.4867 0.03 0 0.03 Not Defined 5 -Year 17 0.4 0.20 Not Defined 5 -Year 401514.647 765220.806 0.602 0.3 18 401803.9813 765564.6573 0.177 -0.12 Not Defined 5 -Year 19 401451.3933 765602.1344 0.041 0.15 -0.11 Not Defined 5 -Year 20 401588.0415 2.287 1.5 0.79 765592.591 Not Defined 5 -Year 21 402467.7505 766037.1668 0.07 0 0.07 Not Defined 5 -Year 22 402125.1158 766315.0882 0.03 0 0.03 Not Defined 5 -Year 23 404061.6194 767768.6777 0.03 0 0.03 Not Defined 5 -Year 24 0 403664.1639 768510.1542 0.03 0.03 Not Defined 5 -Year 25 0.03 0 0.03 Not Defined 5 -Year 403576.6673 768869.4119 26 403848.3487 768762.7746 0.03 0 0.03 Not Defined 5 -Year 27 0 403856.8999 768967.1827 0.03 0.03 Not Defined 5 -Year 28 0 5 -Year 403983.3301 768211.1682 0.03 0.03 Not Defined 29 0.079 0 404026.8329 768498.7631 0.08 Not Defined 5 -Year 0 30 403766.8027 768033.7869 0.035 0.04 Not Defined 5 -Year 0 31 403594.9728 768072.3567 0.03 0.03 Not Defined 5 -Year 32 402525.0188 764391.6054 0.03 0 0.03 Not Defined 5 -Year 0 33 404466.1705 766003.528 0.082 0.08 Not Defined 5 -Year 34 403891.4798 0 0.28 5 -Year 764811.7566 0.279 Not Defined 35 402972.7419 764473.9177 0.03 0 0.03 Not Defined 5 -Year 36 398321.7747 766807.0223 0 0.03 Not Defined 5 -Year 0.034 37 0 398584.6007 766917.8475 0.273 0.27 Not Defined 5 -Year 767033.9323 0 38 398700.8291 0.03 0.03 Not Defined 5 -Year 39 0 398643.7954 766963.2839 0.056 0.06 Not Defined 5 -Year 40 767102.3332 0.031 0 0.03 Not Defined 5 -Year 398662.2935 764823.4382 0 41 402352.8028 0.133 0.13 Not Defined 5 -Year

ANNEX 11. Tumaga Field Validation Points

Point	Validation (Coordinates	Model	Validation	_		Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	/Scenario
42	402809.3652	765206.343	0.03	0	0.03	Not Defined	5 -Year
43	402728.6786	765784.0543	0.031	0	0.03	Not Defined	5 -Year
44	403220.276	765520.6778	0.03	0	0.03	Not Defined	5 -Year
45	403707.8555	765293.0246	0.068	0	0.07	Not Defined	5 -Year
46	403975.8608	765763.1834	0.03	0	0.03	Not Defined	5 -Year
47	403573.3514	766048.9428	0.03	0	0.03	Not Defined	5 -Year
48	404467.0535	766003.0841	0.062	0	0.06	Not Defined	5 -Year
49	401900.7719	764563.4703	0.03	0	0.03	Not Defined	5 -Year
50	401712.7771	764589.6925	0.036	0	0.04	Not Defined	5 -Year
51	398329.0773	766014.9522	0.118	0	0.12	Not Defined	5 -Year
52	397683.6921	766380.8363	0.046	0	0.05	Not Defined	5 -Year
53	404979.3734	764672.7957	0.03	0	0.03	Not Defined	5 -Year
54	404107.7366	764350.2202	0.03	0	0.03	Not Defined	5 -Year
55	403040.1112	764280.2042	0.03	0	0.03	Not Defined	5 -Year
56	404738.9131	764767.4271	0.03	0	0.03	Not Defined	5 -Year
57	403361.4487	764487.3532	0.122	0	0.12	Not Defined	5 -Year
58	402385.2629	764157.1471	0.056	0	0.06	Not Defined	5 -Year
59	402638.8349	763923.6181	0.03	0	0.03	Not Defined	5 -Year
60	401991.0491	764451.3052	0.03	0	0.03	Not Defined	5 -Year
61	399095.3417	766167.7045	0.042	0	0.04	Not Defined	5 -Year
62	399281.0318	766152.5325	0.03	0	0.03	Not Defined	5 -Year
63	398838.6094	766124.1959	0.04	0	0.04	Not Defined	5 -Year
64	399005.7583	766004.3581	0.046	0	0.05	Not Defined	5 -Year
65	399065.99	766129.1754	0.03	0	0.03	Not Defined	5 -Year
66	402740.5146	764718.13	0.03	0	0.03	Not Defined	5 -Year
67	400216.604	767032.0185	0.484	0	0.48	Not Defined	5 -Year
68	400286.9703	767375.5052	0.03	0	0.03	Not Defined	5 -Year
69	400629.5265	767122.7773	0.157	0	0.16	Not Defined	5 -Year
70	400281.0945	767538.8136	0.054	0	0.05	Not Defined	5 -Year
71	400232.614	767491.0335	0.036	0	0.04	Not Defined	5 -Year
72	400195.5664	766543.4936	0.214	0	0.21	Not Defined	5 -Year
73	400591.6915	767270.4467	0.031	0	0.03	Not Defined	5 -Year
74	400916.8685	767173.9751	0.541	0	0.54	Not Defined	5 -Year
75	400871.3918	767253.7748	0.03	0	0.03	Not Defined	5 -Year
76	400101.0988	766481.8705	0.178	0	0.18	Not Defined	5 -Year
77	399945.4458	766604.9996	0.03	0	0.03	Not Defined	5 -Year
78	399983.3826	766800.7292	0.246	0	0.25	Not Defined	5 -Year
79	398916.988	767351.5972	0.127	0	0.13	Not Defined	5 -Year
80	398909.796	767174.2721	0.03	0	0.03	Not Defined	5 -Year
81	399049.9588	767327.7914	0.079	0	0.08	Not Defined	5 -Year
82	401874.9283	764805.3122	0.189	0	0.19	Not Defined	5 -Year
83	401584.0267	764747.1491	0.092	0	0.09	Not Defined	5 -Year

Point	Validation (Coordinates	Model	Validation			Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	/Scenario
84	401616.3756	764616.9599	0.133	0	0.13	Not Defined	5 -Year
85	398831.9742	767036.8852	0.03	0	0.03	Not Defined	5 -Year
86	398825.4261	766964.2596	0.03	0	0.03	Not Defined	5 -Year
87	398982.4255	767140.0794	0.03	0	0.03	Not Defined	5 -Year
88	398898.416	767059.4218	0.03	0	0.03	Not Defined	5 -Year
89	399006.0431	766955.1769	0.047	0	0.05	Not Defined	5 -Year
90	398887.2565	766715.3793	0.146	0	0.15	Not Defined	5 -Year
91	399013.1462	766570.6341	0.03	0	0.03	Not Defined	5 -Year
92	399031.2231	766663.5806	0.039	0	0.04	Not Defined	5 -Year
93	399082.6201	766848.0069	0.46	0	0.46	Not Defined	5 -Year
94	400216.604	767032.0185	0.166	0	0.17	Not Defined	5 -Year
95	400286.9703	767375.5052	0.03	0	0.03	Not Defined	5 -Year
96	400436.5687	767148.5725	1.048	0	1.05	Not Defined	5 -Year
97	400629.5265	767122.7773	0.157	0	0.16	Not Defined	5 -Year
98	400281.0945	767538.8136	0.054	0	0.05	Not Defined	5 -Year
99	400232.614	767491.0335	0.036	0	0.04	Not Defined	5 -Year
100	400195.5664	766543.4936	0.214	0	0.21	Not Defined	5 -Year
101	400591.6915	767270.4467	0.031	0	0.03	Not Defined	5 -Year
102	400916.8685	767173.9751	0.541	0	0.54	Not Defined	5 -Year
103	400871.3918	767253.7748	0.03	0	0.03	Not Defined	5 -Year
104	400101.0988	766481.8705	0.178	0	0.18	Not Defined	5 -Year
105	399945.4458	766604.9996	0.03	0	0.03	Not Defined	5 -Year
106	399983.3826	766800.7292	0.246	0	0.25	Not Defined	5 -Year
107	398177.5504	766213.7024	0.043	0.37	-0.33	Not Defined	5 -Year
108	398192.3003	766128.6526	0.03	0.4	-0.37	Not Defined	5 -Year
109	398148.3247	766467.938	6.165	3	3.17	Not Defined	5 -Year
110	398151.0748	766348.0849	0.03	0.1	-0.07	Not Defined	5 -Year
111	398120.2401	766228.9605	0.03	0.4	-0.37	Not Defined	5 -Year
112	398235.5923	766233.8223	0.142	0.4	-0.26	Not Defined	5 -Year
113	398177.5058	766361.4114	0.03	0.4	-0.37	Not Defined	5 -Year
114	398164.6592	766288.6875	0.03	0.35	-0.32	Not Defined	5 -Year
115	397961.5689	766218.8762	0.03	0.3	-0.27	Not Defined	5 -Year
116	397788.01	766222.8627	0.03	0.35	-0.32	Not Defined	5 -Year
117	397842.1601	766230.0542	0.07	0.37	-0.30	Not Defined	5 -Year
118	397676.6365	766275.3751	0.106	0.3	-0.19	Not Defined	5 -Year
119	397590.7038	766343.206	0.03	0.37	-0.34	Not Defined	5 -Year
120	398964.4174	767254.6547	0.031	0	0.03	Not Defined	5 -Year
121	399043.426	767205.6347	0.03	0	0.03	Not Defined	5 -Year
122	400254.6787	764802.2822	0.03	0	0.03	Not Defined	5 -Year
123	399783.5013	765111.1992	0.082	0	0.08	Not Defined	5 -Year
124	399664.7429	765232.8209	0.03	0	0.03	Not Defined	5 -Year
125	399219.3029	766685.5518	0.361	0	0.36	Not Defined	5 -Year

Point	Validation (Coordinates	Model	Validation			Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	/Scenario
126	399236.2124	766573.7428	0.342	0	0.34	Not Defined	5 -Year
127	399868.524	765201.1435	0.031	0	0.03	Not Defined	5 -Year
128	399930.7894	765176.3699	0.03	0	0.03	Not Defined	5 -Year
129	400000.8366	765234.8333	0.057	0	0.06	Not Defined	5 -Year
130	402436.6733	768451.6224	0.311	0	0.31	Not Defined	5 -Year
131	402117.9641	768576.7081	0.031	0	0.03	Not Defined	5 -Year
132	402268.511	769091.7447	0.918	0	0.92	Not Defined	5 -Year
133	402777.0192	769089.1377	0.03	0	0.03	Not Defined	5 -Year
134	401110.9721	767520.9873	0.03	0	0.03	Not Defined	5 -Year
135	401004.773	766979.2235	0.03	0	0.03	Not Defined	5 -Year
136	403179.9422	766234.8542	0.03	0	0.03	Not Defined	5 -Year
137	402803.5395	766534.6134	0.03	0	0.03	Not Defined	5 -Year
138	402652.8257	767059.3868	0.03	0	0.03	Not Defined	5 -Year
139	402043.297	767226.9151	0.128	0	0.13	Not Defined	5 -Year
140	403020.5294	767076.2838	0.29	0	0.29	Not Defined	5 -Year
141	403270.1106	767261.4513	0.03	0	0.03	Not Defined	5 -Year
142	402681.622	767573.6557	0.344	0	0.34	Not Defined	5 -Year
143	401987.9323	767100.7596	0.475	0	0.48	Not Defined	5 -Year
144	401047.0693	767262.5085	0.031	0	0.03	Not Defined	5 -Year
145	401279.9938	768569.8811	0.044	0	0.04	Not Defined	5 -Year
146	400506.8661	767805.3865	0.031	0	0.03	Not Defined	5 -Year
147	400761.9057	769058.2103	0.03	0	0.03	Not Defined	5 -Year
148	401038.3596	769840.3399	0.03	0	0.03	Not Defined	5 -Year
149	401506.205	769836.1382	0.039	0	0.04	Not Defined	5 -Year
150	400859.8222	771228.3178	0.03	0	0.03	Not Defined	5 -Year
151	400867.8753	771512.663	0.03	0	0.03	Not Defined	5 -Year
152	400464.5644	771866.672	0.03	0	0.03	Not Defined	5 -Year
153	401298.4509	771144.4545	0.03	0	0.03	Not Defined	5 -Year
154	402055.9809	771222.407	0.03	0	0.03	Not Defined	5 -Year
155	402616.4549	771195.7066	0.03	0	0.03	Not Defined	5 -Year
156	403682.0853	770918.5438	0.03	0	0.03	Not Defined	5 -Year
157	403935.2389	770595.0226	0.03	0	0.03	Not Defined	5 -Year
158	403002.9675	770947.0008	0.03	0	0.03	Not Defined	5 -Year
159	402381.7017	770544.2863	0.03	0	0.03	Not Defined	5 -Year
160	403237.4975	770114.3843	0.03	0	0.03	Not Defined	5 -Year
161	399026.0814	765886.6827	0.314	0	0.31	Not Defined	5 -Year
162	399201.6251	765937.8663	0.663	0	0.66	Not Defined	5 -Year
163	402261.5841	765735.6126	0.81	0.2	0.61	17 October 2016	5 -Year
164	401059.1306	764871.0773	0.285	1.105	-0.82	Not Defined	5 -Year
165	401419.9488	764800.9676	0.182	0.53	-0.35	Not Defined	5 -Year
166	401257.1672	765191.549	0.03	0.72	-0.69	Not Defined	5 -Year
167	401454.9691	765211.631	0.183	1.102	-0.92	Not Defined	5 -Year

Point	Validation (Coordinates	Model	Validation			Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	/Scenario
168	401492.5726	765291.495	0.113	0.92	-0.81	Not Defined	5 -Year
169	401656.3897	765394.2295	0.976	1.103	-0.13	Not Defined	5 -Year
170	401732.3706	765436.7633	0.586	1.101	-0.52	Not Defined	5 -Year
171	401135.206	765256.5664	0.125	0.49	-0.37	6 October 2013	5 -Year
172	401093.263	765336.6907	0.07	0.1	-0.03	Not Defined	5 -Year
173	399619.0112	766161.3927	0.03	0.75	-0.72	Not Defined	5 -Year
174	399498.2802	765597.6562	0.114	0.54	-0.43	Not Defined	5 -Year
175	402376.9529	764025.3758	0.324	0.92	-0.60	Not Defined	5 -Year
176	402305.0737	763990.9042	0.202	0.92	-0.72	Not Defined	5 -Year
177	400860.2156	770912.4469	0.036	0	0.04	Not Defined	5 -Year
178	399719.1711	767234.1879	0.031	0	0.03	Not Defined	5 -Year
179	399507.8865	767093.6285	0.03	0	0.03	Not Defined	5 -Year
180	399779.5068	767934.1397	0.03	0	0.03	Not Defined	5 -Year
181	399522.4802	767732.4178	0.03	0	0.03	Not Defined	5 -Year
182	397808.3616	766404.6954	0.07	0.2	-0.13	Not Defined	5 -Year
183	397937.2407	766434.5169	0.03	0.22	-0.19	18 September 2013	5 -Year
184	399677.0517	765487.7491	0.03	0	0.03	Not Defined	5 -Year
185	399776.2833	765323.5989	0.24	0	0.24	Not Defined	5 -Year
186	400376.1881	765547.3363	0.03	0	0.03	Not Defined	5 -Year
187	400222.2562	765531.5974	0.03	0	0.03	Not Defined	5 -Year
188	400165.0676	765379.0228	0.056	0	0.06	Not Defined	5 -Year
189	400343.3166	765283.8237	0.03	0	0.03	Not Defined	5 -Year
190	400358.4156	765147.8063	0.525	0	0.53	Not Defined	5 -Year
191	400223.7623	765045.02	0.1	0	0.10	Not Defined	5 -Year
192	400232.762	765129.8024	0.03	0	0.03	Not Defined	5 -Year
193	400091.6472	765057.2116	0.03	0	0.03	Not Defined	5 -Year
194	400042.014	764811.1994	0.03	0.1	-0.07	Not Defined	5 -Year
195	401974.9858	767797.9728	0.03	0	0.03	Not Defined	5 -Year
196	400575.6204	769799.6486	0.559	0	0.56	Not Defined	5 -Year
197	400697.7402	769301.4537	0.03	0	0.03	Not Defined	5 -Year
198	400733.3161	768663.3443	0.03	0	0.03	Not Defined	5 -Year
199	401222.8429	766325.8459	0.489	0	0.49	Not Defined	5 -Year
200	398829.118	765957.4891	0.03	0	0.03	Not Defined	5 -Year
201	404231.1981	764863.3201	0.04	0	0.04	Not Defined	5 -Year
202	403684.5698	764403.1776	0.038	0	0.04	Not Defined	5 -Year
203	404346.179	764360.289	0.09	0	0.09	Not Defined	5 -Year
204	398241.889	766688.8775	0.291	0	0.29	Not Defined	5 -Year
205	402475.5001	770312.3778	0.03	0	0.03	Not Defined	5 -Year
206	402042.9987	770780.5241	0.03	0	0.03	Not Defined	5 -Year
207	401289.9081	768730.2847	0.116	0	0.12	Not Defined	5 -Year

Point	Validation (Coordinates	Model	Validation			Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	/Scenario
208	401616.1694	768921.0486	0.321	0	0.32	Not Defined	5 -Year
209	402549.0453	769527.7098	0.302	0	0.30	Not Defined	5 -Year
210	401873.9123	768276.2221	0.03	0	0.03	Not Defined	5 -Year
211	402502.5019	769982.6387	0.144	0	0.14	Not Defined	5 -Year
				RMSE	0.33		

ANNEX 12. Educational Institutions affected in Tumaga-San Jose Floodplain

	Zamboanga City			
Duilding Norse	Deveneration	I	Rainfall Scena	ario
	Barangay	5-year	25-year	100-year
Spinola Child Learning Center	Tetuan	Low	Low	Low
Putik elementary school	Putik	Low	Low	Low
LUNZURAN ELEM. SCHOOL	Lunzuran	Low	Low	Low
ATENEO DE ZAMBOANGA UNIVERSITY	Barangay Zone I	Low	Low	Low
ATENEO DE ZAMBOANGA UNIVERSITY	Barangay Zone III	Low	Low	Low
TUMAGA ELEM. SCHOOL	Tumaga	Low	Low	Low
ARENA BLANCO ELEM. SCHOOL -WEST	Mampang	Low	Low	Low
Talon talon national highschool	Kasanyangan	Low	Low	Low
CENTRAL ELEMENTARY SCHOOL	Barangay Zone I	Low	Low	Low
CENTRAL ELEMENTARY SCHOOL	Barangay Zone IV	Low	Low	Low
SAINT JOSEPH SCHOOL	Canelar	Low	Low	Low
RIO HONDO	Rio Hondo	Low	Low	Low
sti	Barangay Zone IV	Low	Low	Low
ZSCMST college	Rio Hondo	Low	Low	Low
STA. BARBARA	Barangay Zone IV	Low	Low	Low
STA. BARBARA	Rio Hondo	Low	Low	Low
STA. BARBARA	Santa Catalina	Low	Low	Low
Icas	Santa Barbara	Low	Low	Low
Icas	Tetuan	Low	Low	Low
Pastor bonus semenary	Santa Barbara	Low	Low	Low
SOUTHCOM NATIONAL HIGH SCHOOL	Campo Islam	None	Low	Low
Southcom elem. School	Campo Islam	None	Low	Low
uz Senior high	Barangay Zone III	None	Low	Low
uz Senior high	Santa Barbara	None	Low	Low
Early childhood prep learning center	Putik	None	Low	Low
STA. MARIA ELEMENTARY SCHOOL	Camino Nuevo	None	Low	Low
Tetuan central school	Santa Barbara	None	Low	Low
Tetuan central school	Tetuan	None	Low	Low
BALIWASAN	Baliwasan	None	Low	Low
BALIWASAN	San Jose Cawa- Cawa	None	Low	Low
ZAMBOWOOD ELEM. SCHOOL	Zambowood	None	None	Low
MAMPANG ELEM. SCHOOL	Mampang	None	None	Low
chongwa school	Barangay Zone IV	None	None	Low
POLYTECHNIC SCHOOL	Baliwasan	Low	Low	Medium
POLYTECHNIC SCHOOL	San Jose Cawa- Cawa	Low	Low	Medium
Canelar elementary	Barangay Zone II	Low	Low	Medium
BRENT	Santo Niño	Low	Low	Medium
Ateneo de Zamboanga university	Lunzuran	Low	Medium	Medium

2	amboanga City			
Dutiding Norma	Damagasa	F	Rainfall Scena	irio
Building Name	Barangay	5-year	25-year	100-year
Ateneo de Zamboanga university	Tumaga	Low	Medium	Medium
Smart Ikids learning center	Putik	Low	Medium	Medium
PHILIPPINE ISLAMIC COLLEGE HMIJ	Baliwasan	Low	Medium	Medium
PHILIPPINE ISLAMIC COLLEGE HMIJ	Canelar	Low	Medium	Medium
COMPUTER TECHNOLOGIES INSTITUTE INC.	Baliwasan	Low	Medium	Medium
Southern city College	Canelar	Low	Medium	Medium
Southern city College	Santa Catalina	Low	Medium	Medium
DON PABLO LORENZO MEMORIAL HIGH SCHOOL	Canelar	Low	Medium	Medium
Sto nino village school	Putik	Low	Medium	Medium
Sto nino village school	Tetuan	Low	Medium	Medium
REGIONAL SCIENCE HIGH SCHOOL	San Roque	Low	Medium	Medium
Jong. Spirit senior memorial	Campo Islam	Low	Medium	Medium
TUGBUNGAN CENTRAL SCHOOL	Tugbungan	Low	Medium	Medium
PILAR COLLEGE	San Jose Cawa- Cawa	Low	Medium	Medium
WMSU	Baliwasan	Low	Medium	Medium
WMSU	San Jose Cawa- Cawa	Low	Medium	Medium
a.b simpson alliance school	Santa Barbara	Low	Medium	Medium
Chinese abalo	Camino Nuevo	Medium	Medium	Medium
Chinese abalo	Santa Barbara	Medium	Medium	Medium
SAN ROQUE ELEMENTARY SCHOOL	San Roque	Medium	Medium	Medium
Infancia	Santa Maria	Medium	Medium	Medium
STA. CATALINA	Santa Catalina	Medium	Medium	Medium
zchs main	Santa Barbara	Medium	Medium	Medium
maria clara lorenzo lobregat national high school	Putik	Medium	High	High
SAN JOSE GUSE ELEM. SCHOOL	Campo Islam	Medium	High	High
SAN JOSE GUSE ELEM. SCHOOL	Canelar	Medium	High	High
Bethany	Tumaga	Medium	High	High
UPPER PASONANCA ELEM. SCHOOL	Cabatangan	High	High	High
boalan elem.school	Boalan	High	High	High
imaculate elem school	Tetuan	None	None	None
LUYAHAN ELEM. SCHOOL	Lunzuran	None	None	None
DIVISORIA ELEM. SCHOOL	Boalan	None	None	None
day care center divisoria	Boalan	None	None	None
WES. MIN. COM	Campo Islam	None	None	None
SARANG BANGUN LEARNING CENTER AND HIGH SCHOOL	Baliwasan	None	None	None
avalokitesvara	Santa Barbara	None	None	None
Bahay bulilit	Barangay Zone II	None	None	None
yogi school	Tumaga	None	None	None

Zamboanga City							
Building Name	Barangay	Rainfall Scenario					
		5-year	25-year	100-year			
ARENA BLANCO NATIONAL HIGH SCHOOL	Mampang	None	None	None			
ARENA BLANCO NATIONAL HIGH SCHOOL	Tugbungan	None	None	None			
School of masjid	Talon-Talon	None	None	None			
boalal cindee	Boalan	None	None	None			
kinder garden school and extension	Kasanyangan	None	None	None			
UPPER CALARIAN 2	Calarian	None	None	None			
UPPER CALARIAN 2	Sinunoc	None	None	None			
UPPER CALARIAN	Calarian	None	None	None			
Malagutay elementary school	Malagutay	None	None	None			
west high school	San Jose Cawa- Cawa	None	None	None			
INIVERSIDAD DE ZAMBOANGA	Barangay Zone IV	None	None	None			
daycare center	Rio Hondo	None	None	None			
Uz	Tetuan	None	None	None			

ANNEX 13. Health Institutions affected in Tumaga-San Jose Floodplain

Zamboanga City						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Memorial hospital	Tetuan	Low	Low	Low		
Zamboanga doctors hospital	Santa Barbara	Low	Low	Low		
BRENT HOSPITAL	Santo Niño	Low	Low	Low		
ZCMC HOSPITAL	Santa Catalina	Low	Low	Low		
West metro medical center	Tetuan	None	Low	Low		
Wes.min.com hospital	Campo Islam	None	Low	Low		
catalina health center	Santa Catalina	None	Low	Low		
Dampen hospital	Putik	None	None	Low		
Health Center	Baliwasan	None	None	Low		
CAMP NAVARRO	Campo Islam	Low	Medium	Medium		
CIUDAD MEDICAL	Barangay Zone III	None	None	None		
Generika	Tetuan	None	None	None		
Oro	Tetuan	None	None	None		
Generics pharmacy	Barangay Zone III	None	None	None		
Generics pharmacy	Tetuan	None	None	None		
Aleli tan dental clinic	Camino Nuevo	None	None	None		
Cabato dental clinic	Tetuan	None	None	None		
healt center mampang	Mampang	None	None	None		
BALIWASAN	Baliwasan	None	None	None		
RedCross	Barangay Zone IV	None	None	None		
RedCross	Santa Catalina	None	None	None		
health center	Santa Catalina	None	None	None		