

LiDAR Surveys and Flood Mapping of San Jose River

© University of the Philippines and Ateneo de Zamboanga University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP)
College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program (GIS) and is to be cited as:

E.C. Paringit, M.S. Rodriguez, L. P. Balicanta, C. Cruz, L. G. H. Acuña, G. Hipolito, I. N. D. Roxas, R. M. Gabua, M. R. C. O. Ang, J. L. D. Fabila, S. J. D. Samalburo, G. M. Apat, M. A. L. Olanda, D. M. B. Banatin, M. J. I. Balaga, C. Lubiano, D. L. M. Bool, E. L. C. Tong, J. S. Caballero, P. M. P. dela Cruz, K. A. B. Borromeo, D. R. P. C. Tajora, E. B. Salvador, R. C. Alberto, A. M. Lagmay, C. Uichanco, S. Sueno, M. Moises, H. Ines, M. del Rosario, K. Punay, N. Tingin(2017), LiDAR Surveys and Flood Mapping Report of San Jose River, in Enrico C. Paringit (Ed.) Flood Hazard Mapping of the Philippines using LIDAR. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry. 163 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Mr. Mario S. Rodriguez

Project Leader, Phil-LiDAR 1 Program Ateneo de Zamboanga University Zamboanga City, Philippines 7000 rodriguezmars@adzu.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

TABLE OF CONTENTS

LIST OF FIGURES	١
LIST OF TABLES	. vii
LIST OF ACRONYMS AND ABBREVIATIONS)
CHAPTER 1: INTRODUCTION	
1.1 Background of the Phil-LiDAR 1 Program	
1.2 Overview of the San Jose River Basin	
Chapter 2: LiDAR Acquisition in San Jose Floodplain	
2.1 Flight Plans	
2.3 Flight Missions	
2.4 Survey Coverage	
, ,	
Chapter 3: LiDAR Data Processing for San Jose Floodplain	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	27
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SAN JOSE RIVER BASIN	
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.6 Validation Points Acquisition Survey	
4.7 Bathymetric Survey	
,	
CHAPTER 5: FLOOD MODELING AND MAPPING	
5.1 Data Used for Hydrologic Modeling	
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	
5.2 RIDF Station	
5.3 HMS Model	
5.5 Flo 2D Model	
5.6 Results of HMS Calibration	64
5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods.	65
5.7.1 Hydrograph using the Rainfall Runoff Model	65
5.8 River Analysis (RAS) Model Simulation	
5.9 Flood Hazard and Flow Depth	
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	
REFERENCES	98

Annexes	99
Annex 1. Technical Specifications of the LIDAR Sensors used in the San Jose Floodplain Surv	ey99
Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey	102
Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	104
Annex 4. The LIDAR Survey Team Composition	108
Annex 5. Data Transfer Sheet for San Jose Floodplain	109
Annex 6. Flight Logs for the Flight Missions	112
Annex 7. Flight Status Reports	117
ANNEX 8. Mission Summary Reports	123
Annex 9. San Jose Model Basin Parameters	153
Annex 10. San Jose Model Reach Parameters	154
Annex 11. San Jose Field Validation Points	155
Annex 12. Educational Institutions affected by flooding in San Jose Floodplain	160
Annex 13. Health Institutions affected by flooding in San Jose Floodplain	163

LIST OF FIGURES

Figure 1.	Concrete banks of San Jose River	1
Figure 2.	Human wastes along San Jose River	2
Figure 3.	Map of San Jose River Basin (in brown)	3
Figure 4.	Flight plan and base stations used for San Jose Floodplain	5
Figure 5.	GPS set-up over ZGS-100 in Brgy. Manicahan, Zamboanga del Sur (a)	
	and NAMRIA reference point ZGS-100 (b) as recovered by the field team	6
Figure 6.	GPS set-up over ZS-131 in Curuan, Zamboanga City(a) and NAMRIA benchmark	
	reference point ZS-131 (b) as recovered by the field team	7
Figure 7.	GPS set-up overZGS-99beside the seawall in Calarian, Zamboanga City(a)	
	and NAMRIA reference point ZGS-99 (b) as recovered by the field team	8
Figure 8.	GPS set-up over BVA-1 established in Brgy. Buenavista, Zamboanga City (a)	
	and Reference point BVA-1 (b) as established by the field team	10
Figure 9.	LiDAR coverage for San Jose Floodplain	14
Figure 10.	Schematic Diagram for Data Pre-Processing Component	15
Figure 11.	Smoothed Performance Metric Parameters of San Jose Flight 23394P	16
	Solution Status Parameters of San Jose Flight 23394P	
	Best Estimated Trajectory for San Jose Floodplain	
	Boundary of the processed LiDAR data over San Jose Floodplain	
	Image of data overlap for San Jose Floodplain	
	Pulse Density map of merged LiDAR data for San Jose Floodplain.	
	Elevation difference map between flight lines for San Jose Floodplain	
	Quality checking for San Jose flight 23394P using the Profile Tool of QT Modeler	
	Tiles for San Jose Floodplain (a) and classification results (b) in TerraScan	
	Point cloud before (a) and after (b) classification	
	The production of last return DSM (a) and DTM (b), first return DSM (c)	23
1 1841 C 21.	and secondary DTM (d) in some portion of San Jose Floodplain.	23
Figure 22	San Jose floodplain with available orthophotographs	
	Sample orthophotograph tiles for San Jose Floodplain	
	Portions in the DTM of San Jose Floodplain— a river embankment field before (a)	
rigure 24.	and after (b) data retrieval; a bridge before (c) and after (d) manual editing	25
Figure 25	Map of Processed LiDAR Data for San Jose Floodplain	
	Map of San Jose Floodplain with validation survey points in green	
	Correlation plot between calibration survey points and LiDAR data	
	Correlation plot between validation survey points and LiDAR data	
	Map of San Jose Floodplain with bathymetric survey points shown in blue	
	Blocks (in blue) of San Jose building features that were subjected in QC	
	Extracted features for San Jose floodplain.	
	San JoseRiver Survey Extent	
	GNSS Network covering San JoseRiver	
	GNSS base set-up, Trimble* SPS 852, atZGS-99located beside a seawall	
i igui e 54.	at Airforce Beach, Brgy. Sinunoc, Zamboanga City, Zamboanga Del Sur	20
Figure 35	GNSS receiver set-up, Trimble® SPS 985, atZGS-3508 located at the approach	
rigule 33.	of Tumaga Bridge, Brgy. Tumaga, Zamboanga City, Zamboanga Del Sur	20
Eiguro 26	GNSS receiver set-up, Trimble® SPS 852, at UP-SJS located at the approach	
i igui e 30.	Townsville Bridge, Brgy. San Roque, Zamboanga City, Zamboanga Del Sur	30
Eiguro 27	Townsville Bridge facing upstream	
Figure 37.	Bridge As-Built Survey using PPK Technique.	42 12
	Townsville Bridge cross-section diagram	
	Townsville bridge cross-section planimetric map	
	Bridge as-built form of Townsville Bridge	
	Water-level markings on TownsvilleBridge	
	Validation points acquisition survey set up along San JoseRiver Basin	
	Validation point acquisition survey of San Jose River Basin	
	Bathymetric survey using OHMEX™ single beam echo sounder in San Jose River	49
Figure 46.	Bathymetric survey using Trimble® SPS 985 in GNSS PPK survey	
F: 4-	technique in Townsville River	
	Bathymetric Survey using Total Station	
	Bathymetric survey of San Jose River	
	San Jose Riverbed Profile, from Brgy. San Roque upstream	
Figure 50.	San Jose Riverbed Profile, from Brgy. Canelar upstream	53

Figure 51.	The location map of San Jose HEC-HMS model used for calibration	54
	Cross-Section Plot of Townsville Footbridge	
Figure 53.	Rating Curve at Townsville Footbridge, San Jose, Zamboanga del Norte	55
Figure 54.	Rainfall and outflow data at Townsville Footbridgeused for modeling	56
	Dipolog City RIDF location relative to San Jose River Basin	
	Synthetic storm generated for a 24-hr period rainfall for various return periods	
	Soil Map of San Jose River Basin	
Figure 58.	Land Cover Map of San Jose River Basin	59
Figure 59.	Slope Map of San Jose River Basin	59
	Stream delineation map of San Jose river basin	
Figure 61.	The San Jose river basin model generated using HEC-HMS 5.4 Cross-section Data	61
Figure 62.	River cross-section of San Jose River generated through Arcmap HEC GeoRAS tool	62
Figure 63.	Screenshot of subcatchment with the computational area to be modeled	
	in FLO-2D GDS Pro	62
	Generated 100-year rain return hazard map from FLO-2D Mapper	
Figure 65.	Generated 100-year rain return flow depth map from FLO-2D Mapper	63
Figure 66.	Outflow Hydrograph of San Jose River Basin produced by the HEC-HMS	
	model compared with observed outflow	64
Figure 67.	Outflow hydrograph at Townsville Footbridge Station generated using	
	Zamboanga City RIDF	
	simulated in HEC-HMS	
	Sample output of San Jose RAS Model	
	100-year Flood Hazard Map for Tumaga-San Jose Floodplain	
	100-year Flow Depth Map for Tumaga-San Jose Floodplain	
	25-year Flood Hazard Map for Tumaga-San Jose Floodplain	
	25-year Flow Depth Map for Tumaga-San Jose Floodplain	
	5-year Flood Hazard Map for Tumaga-San Jose Floodplain	
	5-year Flood Depth Map for Tumaga-San Jose Floodplain	
	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
	Affected Areas in Zamboanga City during 100-Year Rainfall Return Period	
_	Validation points for 5-year Flood Depth Map of San Jose Floodplain	
Figure 87.	Flood map depth vs actual flood depth	97

LIST OF TABLES

Table 1.	Flight planning parameters for Gemini LiDAR system	4
Table 2.	Flight planning parameters for Pegasus LiDAR system	
Table 3.	Details of the recovered NAMRIA horizontal control point ZGS-100	
	used as base station for the LiDAR data acquisition	7
Table 4.	Details of the recovered NAMRIA BenchmarkZS-131with processed coordinates	
	used as base station for the LiDAR data acquisition	7
Table 5.	Details of the recovered NAMRIA horizontal control point ZGS-99 used as base	
	station for the LiDAR data acquisition	g
Table 6.	Details of the established control point BVA-1 used as base station	
	for the LiDAR data acquisition	10
Table 7.	Details of the established point BLLM-161 used as base station for the LiDAR acquisition.	
Table 8.	Details of the established point ZC-1 used as base station for the LiDAR acquisition	
Table 9.	Details of the established control point ZGS-99A used as base station	
	for the LiDAR acquisition	11
Table 10.	Ground control points used during LiDAR data acquisition	
Table 11.	Flight missions for LiDAR data acquisition in San Jose Floodplain	
Table 12.	Actual parameters used during LiDAR data acquisition.	
Table 13.	List of municipalities and cities surveyed in San Jose floodplain LiDAR survey	13
Table 14.	Self-Calibration Results values for San Jose flights.	
Table 15.	List of LiDAR blocks for San Jose floodplain	19
Table 16.	San Jose classification results in TerraScan	22
Table 17.	LiDAR blocks with its corresponding area	25
Table 18.	Shift Values of each LiDAR Block of San Jose Floodplain	26
Table 19.	Calibration Statistical Measures	29
Table 20.	Validation Statistical Measures	
Table 21.	Quality Checking Ratings for San Jose Building Features.	
Table 22.	Building Features Extracted for San Jose Floodplain	
Table 23.	Total Length of Extracted Roads for San Jose Floodplain	
Table 24.	Number of Extracted Water Bodies for San Jose Floodplain	
Table 25.	List of Reference and Control Points occupied for San Jose River Survey	
Table 26.	Baseline Processing Summary Report for San JoseRiver Survey	
Table 27.	Control Point Constraints	
Table 28.	Adjusted Grid Coordinates	
Table 29.	Adjusted Geodetic Coordinates	
Table 30.	Reference and control points used and its location	
Table 31.	RIDF values for Zamboanga City Rain Gauge computed by PAGASA	
Table 32.	Range of Calibrated Values for San Jose	
Table 33.	Summary of the Efficiency Test of San Jose HMS Model	65
Table 34.	Peak values of the San Jose HEC-HMS Model outflow using the Zamboanga City RIDF	
Table 35.	Municipalities affected in Tumaga-San Jose floodplain	6/
Table 36.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	
Table 37.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	
Table 38.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	
Table 39.	Affected Areas in Zamboanga City during 5-Year Rainfall Return Period	
Table 40.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
Table 41.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
Table 42.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
Table 43. Table 44.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
Table 44.	o , o	
Table 45.	Affected Areas in Zamboanga City during 25-Year Rainfall Return Period	
Table 47.	Area covered by each warning level with respect to the rainfall scenario	
TUDIC 47.	The covered by each warring level with respect to the faillian scenario	

LIST OF ACRONYMS AND ABBREVIATIONS

A A C	Asian Asympton Carrage High
AAC	Asian Aerospace Corporation
Ab	abutment
ADNU	Ateneo de Zamboanga University
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
ATQ	Antique
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
НС	High Chord
IDW	Inverse Distance Weighted [interpolation method]
IMU	Inertial Measurement Unit
kts	knots
LAS	LiDAR Data Exchange File format
LC	Low Chord
LGU	local government unit
LiDAR	Light Detection and Ranging
LMS	LiDAR Mapping Suite
m AGL	meters Above Ground Level

MMS	Mobile Mapping Suite
MSL	mean sea level
NAMRIA	National Mapping and Resource Information Authority
NSTC	Northern Subtropical Convergence
PAF	Philippine Air Force
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
PDOP	Positional Dilution of Precision
PPK	Post-Processed Kinematic [technique]
PRF	Pulse Repetition Frequency
PTM	Philippine Transverse Mercator
QC	Quality Check
QT	Quick Terrain [Modeler]
RA	Research Associate
RIDF	Rainfall-Intensity-Duration-Frequency
RMSE	Root Mean Square Error
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
SRS	Science Research Specialist
SSG	Special Service Group
ТВС	Thermal Barrier Coatings
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
UTM	Universal Transverse Mercator
WGS	World Geodetic System

CHAPTER 1: INTRODUCTION

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program also aimed to produce an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled *Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods* (Paringit et al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Ateneo de Zamboanga University (ADZU). ADZU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the San Jose river basin in the Zamboanga Peninsula Region. The university is located in Zamboanga City in the province of Zamboanga Sibugay.

1.2 Overview of the San Jose River Basin

The San Jose River Basin covers Zamboanga City in Zamboanga Peninsula. The DENR River Basin Control Office identified the basin to have a drainage area of 127.44 km². It has an estimated 163 million cubic meter (MCM) annual run-off according to PHIL-LIDAR 1 partner HEI, Ateneo de Zamboanga University (AdZu) and UPD FMC.

Its main stem, San Jose River, is part of the 18 river systems in the Zamboanga Penisula Region. It is an urban river basin lying beside Tumaga River. It has a catchment area of 37.87 sq.km, enough to fully or partially cover 11 barangays of Zamboanga City. These barangays include Dulian, Capisan, Pasonanca, Sta Maria, Cabatangan, San Roque, Malagutay, Calarian, San Jose-Gusu, Canelar, and Baliwasan.

Figure 1. Concrete banks of San Jose River

According to the 2015 national census of NSO, a total of 74,998 persons are residing within the immediate vicinity of the river which is distributed among four (4) barangays in the Zamboanga City, namely San Roque, Campo Islam, Canelar, and Baliwasan.

Because it is not much forested in the upstream, the river is sometimes dry especially in dry seasons. The river only produces as little as 2, 160 cubic meters per day on normal weather conditions. This flow rate was measured at a footbridge (6.944259 E, 122.042434 N) on a small Muslim compound called Townsville in June 2016, a month after an El Niño struck the city. More than half of the river's stretch has concrete banks and runs through the most populated areas of the city making it a natural garbage pit. It passes beneath the runway of the Zamboanga International Airport and drains into the city's old and tarnished fishing docks in Baliwasan.

Local small-scale quarrymen therefore exploit the not much forested upstream riverbeds. Small-scale sand and gravel quarry has been an alternative means of livelihood for people living in the upstream parts of San Jose River. Quarrying takes place specifically in Brgy. San Roque and extensive enough to disrupt the natural course of the river. Although the local government issues environmental certification or clearance to local guarry establishments, most small-scale quarries are illegal.

There have been many cases of landslides particularly during rainy seasons due to excessive digging at the base of the river's banks. In May 2012, two were buried alive when a quarry caved in (Inquirer.net, 2012). That same month, a city resolution was passed mandating pertinent officials to earnestly monitor the ongoing quarries in San Roque.

In June 2015, Mayor Beng Climaco-Salazar ordered to stop all illegal quarrying operations in Zamboaga City.

Aside from landslide, with deforested uplands and clogged waterways downstream because of garbage accumulation, San Jose River easily gets flooded during rain events. Floods are even aggravated by the lack of open and unpaved ground surfaces which would supposedly absorbed some of the water. And even making it worse, houses are built along its riverbanks or even atop the concrete dikes.

Figure 2. Human wastes along San Jose River

Aside from the damages floods cause to the residents, they also disrupt the regular flights at the airport.

Last September 2012, Typhoon Lawin, internationally known as *Jelawat*, caused flooding and heavy rains for three days in Zamboanga City. A number of 171 families were evacuated in the city (http://newsinfo.inquirer.net/276310/1-missing-hundreds-evacuated-due-to-typhoon-lawin).

During a heavy rain in October 2013, the same rain event that flooded Tumaga River, the runway was flooded and flights were cancelled until the next day. These incidents somehow led to the plan of transferring the airport somewhere in Mercedes, Taluksangay, and Talabaan, which are located along Mercedes River.

San Jose was part of the Adopt-an-Estero/River Program of the Environmental Management Bureau of DENR 9 which was launched in June 2012. This program was implemented to encourage the local residents to take responsibility in cleaning the waterways in urban areas to mitigate flooding and contamination.

Sometimes referred to as San Jose-Gusu, the river got its name from the patron saint Joseph, the husband of Mary, the mother of Jesus. Gusu is the Spanish word for joy, "gozo." This term was used in the Spanish era to describe its inhabitants' simple and easy lifestyle.

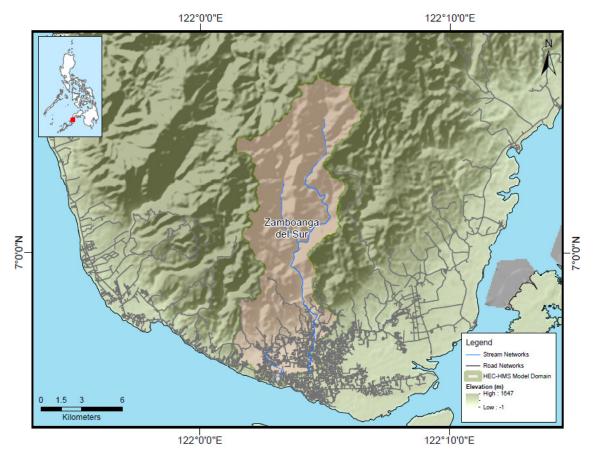


Figure 3. Map of San Jose River Basin (in brown)

Chapter 2: LiDAR Acquisition in San Jose Floodplain

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, Ms. Rowena M. Gabua

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento et al., 2014) and further enhanced and updated in Paringit et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for San Jose Floodplain in Zamboanga. These missions were planned for16 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The parameter used in the LiDAR system for acquisition is found in Table 1 and Table 2. Figure 4 shows the flight plans for San Jose Floodplain.

Table 1. Flight planning parameters for Gemini LiDAR system.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK75F	1100	20	40	100	50	120	5

Table 2. Flight planning parameters for Pegasus LiDAR system.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK75E	800, 1100, 1200	30	50	200	30	130	5
BLK75C	800, 1200	30	50	200	30	130	5
BLK75D	800, 1200	30	50	200	30	130	5
Sacol Island	800, 1200	30	50	200	30	130	5
BLK75AS	1000	30	50	200	30	130	5

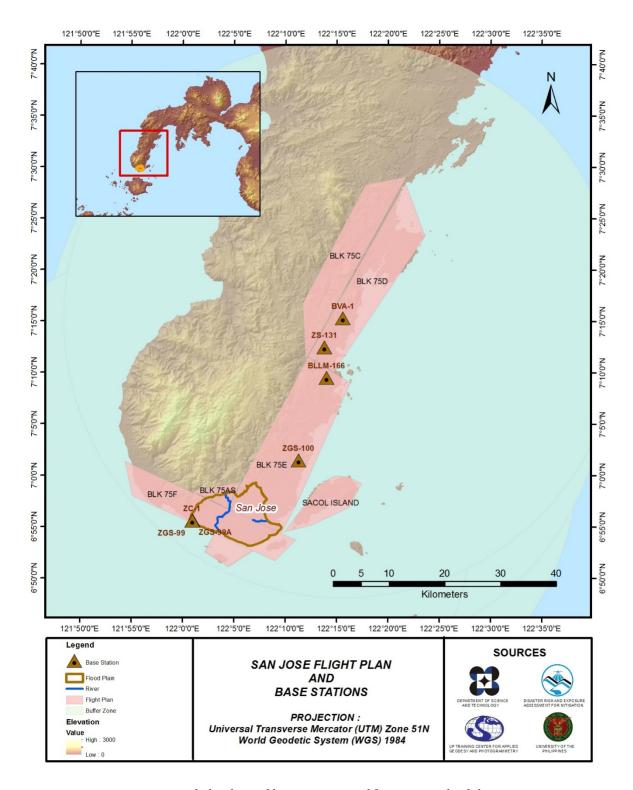


Figure 4. Flight plan and base stations used for San Jose Floodplain.

2.2 Ground Base Station

The project team was able to recover two (2) NAMRIA horizontal ground control points: ZGS-100 and ZGS-99 which are of second (2nd) order accuracy, and one (1) NAMRIA benchmark, ZS-131. This benchmark was used as vertical reference point and was also established as a ground control point. The project team also established four (4) reference points: ZC-1, BLLM-166, BVA-1 and ZG-99A. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing reports for the established ground control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (August 18-September 8, 2014; January 29-Febuary 12, 2015; May 19-31,

2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882, SPS 885, SPS 985, and TOPCON GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in San Jose floodplain are shown in Figure 4.

Figure 5 to Figure 8 show the recovered NAMRIA reference points within the area. Table 3 to Table 9 present the details about the following NAMRIA control stations and established points while Table 10 lists all ground control points occupied during the acquisition with the corresponding dates of utilization.

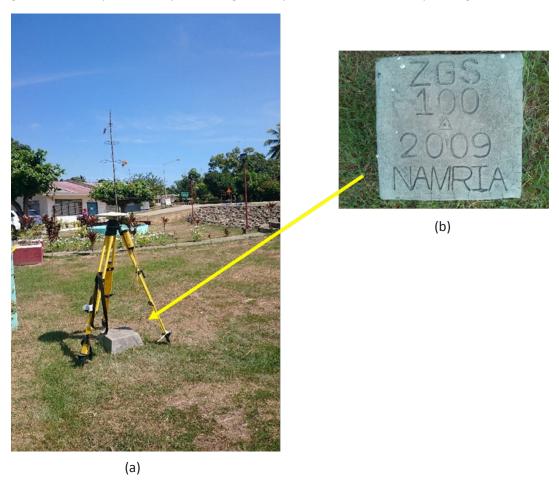


Figure 5. GPS set-up over ZGS-100 in Brgy. Manicahan, Zamboanga del Sur(a) and NAMRIA reference point ZGS-100 (b) as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point ZGS-100 used as base station for the LiDAR data acquisition

Station Name	ZGS-100		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 1' 26.72368" North 122° 11' 12.74401" East 11.27 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 4 PRS 92)	Easting Northing	410158.521 meters 776712.542 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 1' 23.30149" North 122° 11' 18.30044" East 75.603 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	410189.97 meters 776440.68 meters	

Figure 6. GPS set-up over ZS-131 in Curuan, Zamboanga City(a) and NAMRIA benchmark reference point ZS-131 (b) as recovered by the field team

Table~4.~Details~of~the~recovered~NAMRIA~Benchmark ZS-131 with~processed~coordinates~used~as~base~station~for~the~LiDAR~data~acquisition

Station Name	ZS-131		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1:50,000		
	Latitude	7°12'31.51602" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°13'42.69458" East	
	Ellipsoidal Height	15.557 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	414824.878 meters	
(UTM 51N PRS 1992)	Northing	796847.561 meters	
Geographic Coordinates, World Geodetic	Latitude	7°12'28.04890" North	
System 1984 Datum	Longitude	122°13'48.23382" East	
(WGS 84)	Ellipsoidal Height	79.651 meters	

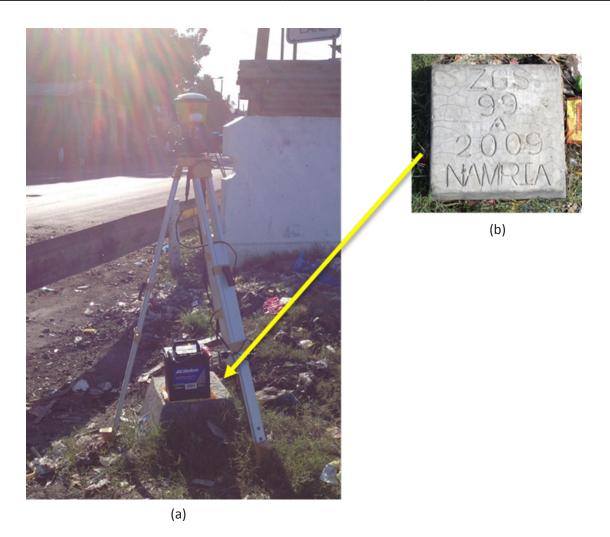


Figure 7. GPS set-up over ZGS-99 beside the seawall in Calarian, Zamboanga City(a) and NAMRIA reference point ZGS-99 (b) as recovered by the field team

Table 5. Details of the recovered NAMRIA horizontal control point ZGS-99 used as base station for the LiDAR data acquisition

Station Name	ZGS-99	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1:50,000	
	Latitude	5° 55′ 37.48971″ North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 0′ 52.66431″ East
	Ellipsoidal Height	8.14900 meters
Grid Coordinates, Philippine Transverse	Easting	766020.391 meters
Mercator Zone 4 (PTM Zone 4 PRS 92)	Northing	391103.346 meters
Geographic Coordinates, World Geodetic	Latitude	6° 55′ 34.07737″ North
System 1984 Datum	Longitude	122° 0′ 58.23072″ East
(WGS84)	Ellipsoidal Height	72.23000 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	765752.27 meters
(UTM 51N PRS 1992)	Northing	391141.46 meters

Station Name	ZGS-100	
Order of Accuracy	2 rd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	7° 1′ 26.72368″ North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 11′ 12.74401″ East
	Ellipsoidal Height	11.27 meters
Grid Coordinates, Philippine Transverse	Easting	410158.521 meters
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	776712.542 meters
	Latitude	7° 1′ 23.30149″ North
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 11′ 18.30044″ East
	Ellipsoidal Height	75.603 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS	Easting	410189.97 meters
1992)	Northing	776440.68 meters

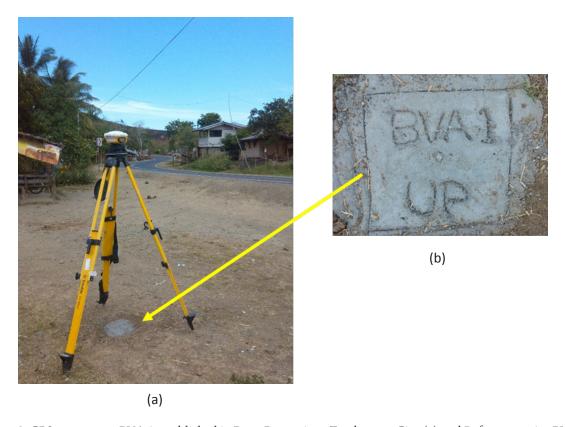


Figure 8. GPS set-up over BVA-1 established in Brgy. Buenavista, Zamboanga City (a) and Reference point BVA-1 (b) as established by the field team

Table 6. Details of the established control point BVA-1 used as base station for the LiDAR data acquisition

Station Name	BVA-1	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	7° 15' 19.31910" North122°
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	15' 28.78738" East
, ,	Ellipsoidal Height	82.446 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	417939.856 meters
(UTM 51N PRS 1992)	Northing	802333.522 meters
Geographic Coordinates, World Geodetic	Latitude	7° 15′ 15.84241″ North122°
System 1984 Datum	Longitude	15' 34.32212" East
(WGS 84)	Ellipsoidal Height	146.526 meters

Table 7. Details of the established point BLLM-161 used as base station for the LiDAR acquisition

Station Name	BLLM-161	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	7°09'33.60926" North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°13'54.54820" East
. ,	Ellipsoidal Height	124.333 meters
Grid Coordinates, Universal Transverse	Easting	415179.269 meters
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	791383.716 meters
Geographic Coordinates, World Geodetic	Latitude	7°09'30.15553" North
System 1984 Datum	Longitude	122°14'00.09187" East
(WGS 84)	Ellipsoidal Height	188.527 meters

Table 8. Details of the established point ZC-1 used as base station for the LiDAR acquisition

Station Name	ZC-1	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	6°55'37.81337" North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°00'52.07695" East
	Ellipsoidal Height	7.666 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	391123.456 meters
(UTM 51N PRS 1992)	Northing	765762.247 meters
Geographic Coordinates, World Geodetic	Latitude	6°55'34.40099" North
System 1984 Datum	Longitude	122°00'57.64335" East
(WGS 84)	Ellipsoidal Height	71.746 meters

Table 9. Details of the established control point ZGS-99A used as base station for the LiDAR acquisition

Station Name	ZGS-99A	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	6° 55′ 37.63895"North122°
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	00' 52.48834"East
0. 1332 Butain (1.16.32)	Ellipsoidal Height	7.850 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	391136.071 meters
(UTM 51N PRS 1992)	Northing	765756.864 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	6° 55' 34.22659" North122° 00' 58.05475" East 71.931 meters

Table 10. Ground control points used during LiDAR data acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points
23-Aug-14	7450GC	2BLK75F235A	ZGS-99 and ZC-1
5-Feb-15	2535P	1BLK75E36A	BLLM-166 and ZGS-100
8-Feb-15	2545P	1BLK75S39A	BVA-1 and ZGS-100
11-Feb-15	2557P	1BLK75S42A	ZGS-99 and ZGS-99A
26-May-16	23394P	1BLK75AS147B	ZGS-100 and ZS-131

2.3 Flight Missions

Five (5) missions were conducted to complete LiDAR data acquisition in San Josefloodplain, for a total of 18 hours and 25 minutes of flying time (18+25) for RP-C9022 and RP-C9122.All missions were acquired using the Gemini and Pegasus LiDAR systems. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission while Table 12 presents the actual parameters used during the LiDAR data acquisition.

Table 11. Flight missions for LiDAR data acquisition in San Jose Floodplain.

Date	Flight	Flight Plan	Surveyed	Area Surveyed	Area Surveyed	No. of		ing ours
Surveyed	Number	Area (km²)	Area (km²)	within the Floodplain (km²)	Outside the Floodplain (km²)	Images (Frames)	Hr	Min
August 23, 2014	7450GC	155.5	166.89	63.47	62.11	NA	4	11
February 5, 2015	2535P	137.24	331.7	-	133.04	715	3	53
February 8, 2015	2545P	906.64	318.38	10.08	227.05	608	4	11
February 11, 2015	2557P	234.33	228.21	8.34	124.82	474	4	23
May 26, 2106	23394P	8.52	54.57	33.04	2	NA	1	47
TOTAL		1442.23	1101.75	114.93	549.02	1797	18	25

Table 12. Actual parameters used during LiDAR data acquisition.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7450GC	1100	20	40	100	50	120	5
2535P	1100	30	50	200	30	130	5
2545P	1100	30	50	200	30	130	5
2557P	800, 1200	30	50	200	30	130	5
23394P	1000	30	50	200	30	130	5

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the San Jose Floodplain (See Annex 7). San Jose Floodplain is located in the province of Zamboanga del Sur, with the floodplain situated within the municipality of Zamboanga City. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage is shown in Table 13. The actual coverage of the LiDAR acquisition for San Jose floodplain is presented in Figure 9.

Table 13. List of municipalities and cities surveyed in San Jose floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed
Zamboanga del Norte	Kalawit	329.51	5.03	1.53%
Zamboanga del Sur	Zamboanga City	1461.05	522.74	35.78%
	Ipil	130.9	60	45.84%
Zamboanga Sibugay	Roseller Lim	272.39	9.61	3.53%
Zamboanga Sibugay	Titay	176.5	58.4	33.09%
	Tungawan	441.86	26.7	6.04%
Total		2812.21	682.48	20.97%

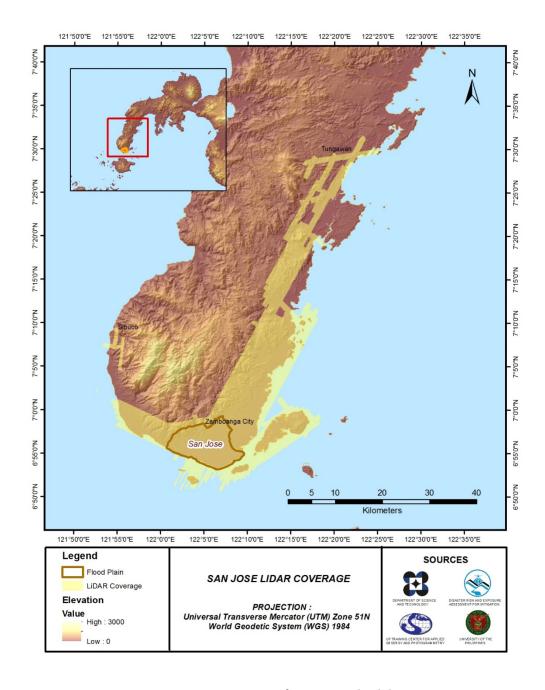


Figure 9. LiDAR coverage for San Jose Floodplain

Chapter 3: LiDAR Data Processing for San Jose Floodplain

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat, Engr. Ma. Ailyn L. Olanda, Engr. Don Matthew B. Banatin, Engr. Ma. Joanne I. Balaga, Engr. Christy Lubiano, Deane Leonard M. Bool, Eriasha Loryn C. Tong

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done to obtain the exact location of the LiDAR sensor when the laser was shot.

Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that are barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines.

Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 10.



Figure 10. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for San Jose floodplain can be found in Annex 5. Missions flown during the first survey conducted in September 2014 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Gemini system while missions acquired during the second and third survey were flown using the Pegasus system over Zamboanga City. The Data Acquisition Component (DAC) transferred a total of 103.43 Gigabytes of Range data, 1.099 Gigabytes of POS data, 162.71 Megabytes of GPS base station data, and 120.2 Gigabytes of raw image data to the data server on September 23, 2014 for the first survey, February 24, 2015 for the second survey and July 11, 2016 for the third survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for San Jose was fully transferred on July 14, 2016, as indicated in the Data Transfer Sheets for San Jose Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 23394P, one of the San Jose flights, which is the North, East, and Down position RMSE values are shown in Figure 11. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 26, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 11. Smoothed Performance Metrics of San Jose Flight 23394P

The time of flight was from 376000 seconds to 380000 seconds, which corresponds to afternoon of May 26, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 0.92 centimeters, the East position RMSE peaks at 1.14centimeters, and the Down position RMSE peaks at 3.39centimeters, which are within the prescribed accuracies described in the methodology.

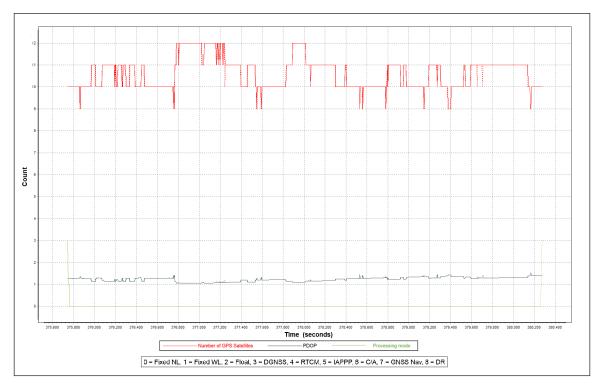


Figure 12. Solution Status Parameters of San Jose Flight 23394P

The Solution Status parameters of flight 23394P, one of the San Jose flights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 12. The graphs indicate that the number of satellites during the acquisition did not go down to 9. Most of the time, the number of satellites tracked was between 9 and 12. The PDOP value also did not go above the value of 2, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all San Jose flights is shown in Figure 13.

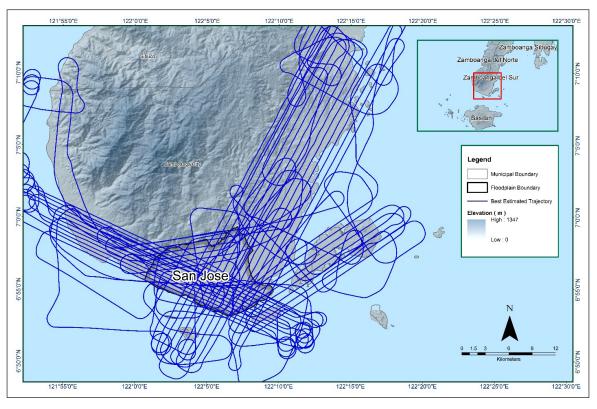


Figure 13. Best estimated trajectory for San Jose Floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 54 flight lines, with each flight line containing one channel for the Gemini system and two channels for the Pegasus system. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over San Jose Floodplain are given in Table 14.

Table 14. Self-Calibration Results values for San Jose flights	Table 14.	Self-Calibrat	tion Results	values for	San	Iose flights.
--	-----------	---------------	--------------	------------	-----	---------------

Parameter	Value
Boresight Correction stdev(<0.001degrees)	0.000190
IMU Attitude Correction Roll and Pitch Corrections stdev(<0.001degrees)	0.000887
GPS Position Z-correction stdev(<0.01meters)	0.0028

The optimum accuracy was obtained for all San Jose flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 14. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

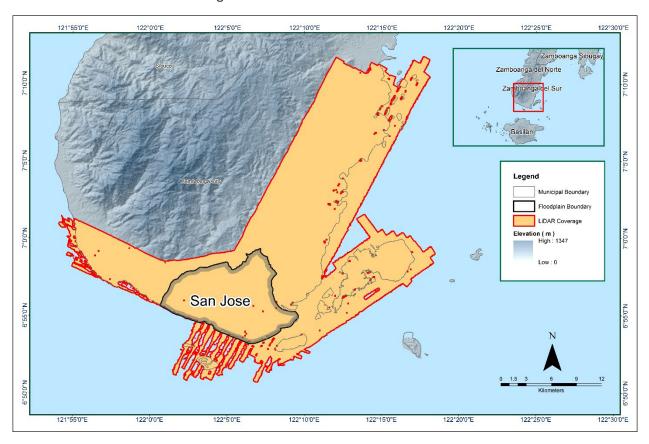


Figure 14. Boundary of the processed LiDAR data on top of a SAR Elevation Data over San Jose Floodplain.

The total area covered by the San Jose missions is 758.24 sq.km that is comprised of five (5) flight acquisitions grouped and merged into six (6) blocks as shown in Table 15.

Table 15. List of LiDAR blocks for San Jose floodplain.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Zamboanga_Blk75E	2535P	422.89	
	2545P		
Zamboanga_Blk75F	7450G	140.87	
Zamboanga_Blk75F_additional	2557P	2.48	
Zamboanga_Sacol	2557P	132.22	
Zamboanga_reflights_Blk75AS	23394P	35.31	
Zamboanga_reflights_Blk75F_supplement	23394P	24.47	
	TOTAL	758.24 sq.km.	

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 15. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines. While for the Pegasus system which employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

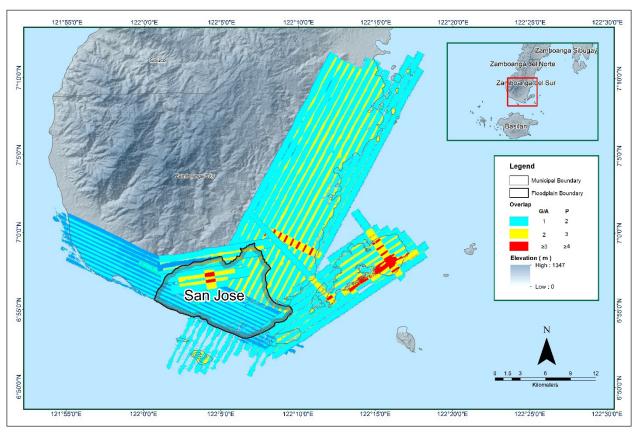


Figure 15. Image of data overlap for San Jose Floodplain

The overlap statistics per block for the San Jose Floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 26.46% and 90.58% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 16. It was determined that all LiDAR data

for San Jose Floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.77 points per square meter.

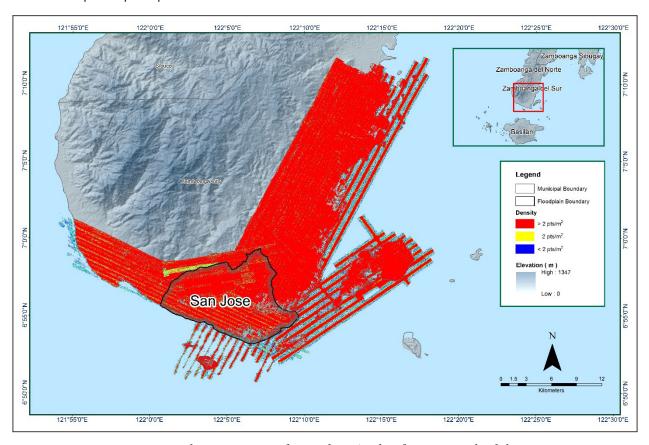


Figure 16. Pulse Density map of merged LiDAR data for San Jose Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 17. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

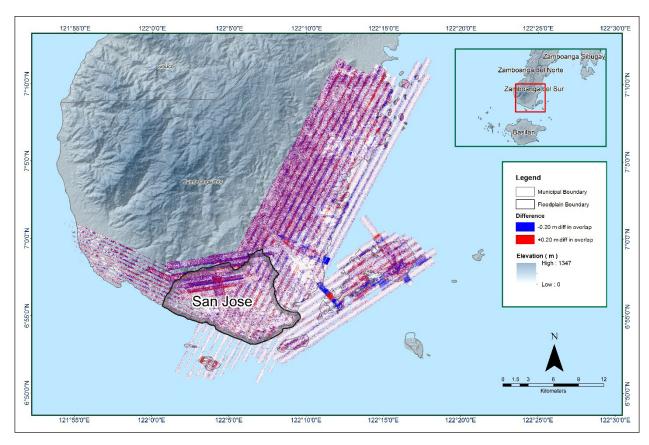


Figure 17. Elevation difference map between flight lines for San Jose Floodplain.

A screen capture of the processed LAS data from a San Jose flight 23394P loaded in QT Modeler is shown in Figure 18. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

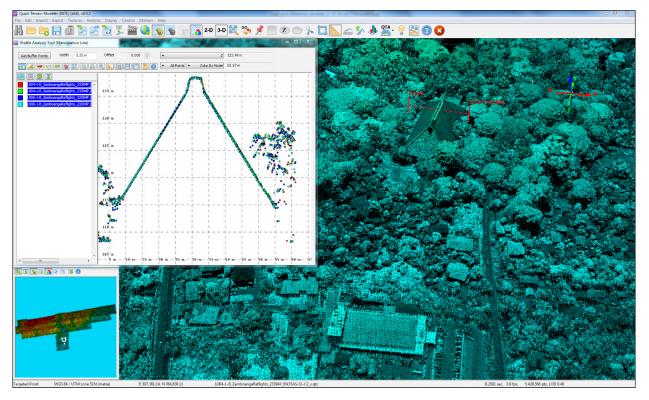


Figure 18. Quality checking for San Jose flight 23394P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 16. San Jose classification results in TerraScan.

Pertinent Class	Total Number of Points	
Ground	574,137,102	
Low Vegetation	452,634,231	
Medium Vegetation	680,777,952	
High Vegetation	1,284,794,811	
Building	73,546,016	

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in San Jose Floodplain is shown in Figure 19. A total of 1,035 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 588.90 meters and 64.94 meters respectively.

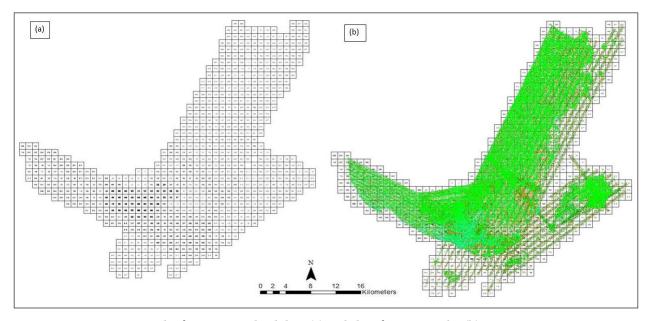


Figure 19. Tiles for San Jose Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 20. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

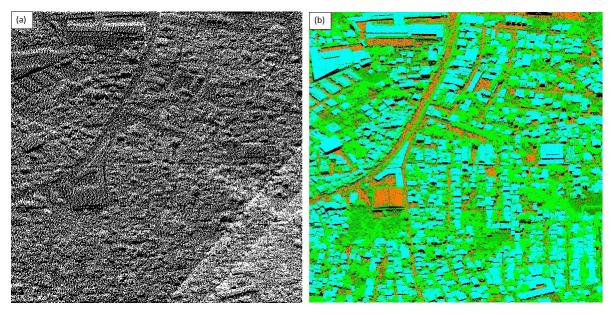


Figure 20. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 21. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

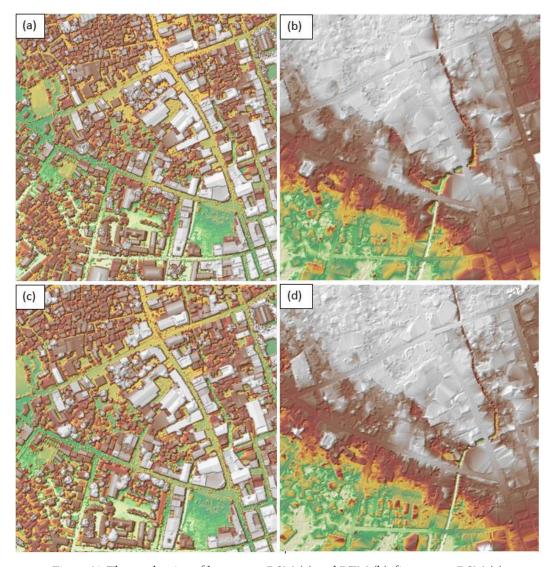


Figure 21. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of San Jose Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 697 1km by 1km tiles area covered by San Jose Floodplain is shown in Figure 22. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The San Jose Floodplain has a total of 573.57 sq.km orthophotogaph coverage comprised of 1,319 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 23.

Figure 22. San Jose floodplain with available orthophotographs

Figure 23. Sample orthophotograph tiles for San Jose Floodplain

35.31

24.47

758.24 sq.km

3.8 DEM Editing and Hydro-Correction

Zamboanga_reflights_Blk75AS

TOTAL

Zamboanga_reflights_Blk75F_supplement

Six (6) mission blocks were processed for San Jose Floodplain. These blocks are composed of Samar Leyte and Leyte blocks with a total area of 758.24 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)	
Zamboanga_Blk75E	422.89	
Zamboanga_Blk75F	140.87	
Zamboanga_Blk75F_additional	2.48	
Zamboanga_Sacol	132.22	

Table 17. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 24. The river embankment (Figure 24a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 24b) to allow the correct flow of water. The bridge (Figure 24c) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 24d) in order to hydrologically correct the river.

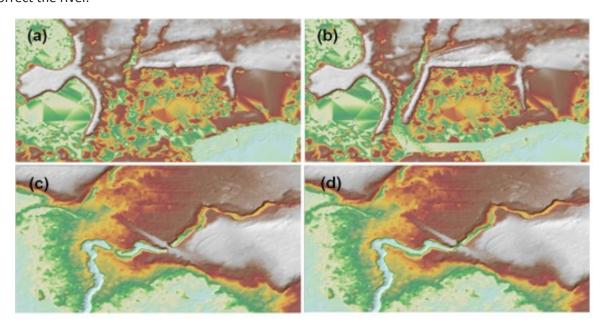


Figure 24. Portions in the DTM of San Jose Floodplain – a river embankment field before (a) and after (b) data retrieval; a bridge before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

Simultaneous mosaicking was done to all the available LiDAR data covering San Jose Floodplain, which are, in the order of being mosaicked, Zamboanga_Blk75G, Zamboanga_Blk75F, Zamboanga_Blk75E, Zamboanga_Blk75E, Zamboanga_Blk75E, Zamboanga_Blk75C and Zamboanga_Sacol. Zamboanga_Blk75G was used as the reference block at the start of mosaicking because it was the first available LiDAR data. The shift values applied to each LiDAR block during mosaicking is shown in Table 18.

Mosaicked LiDAR DTM for San Jose Floodplainis shown in Figure 25. It can be seen that the entire San Jose Floodplainis 100% covered by LiDAR data.

Table 18. Shift Values of each LiDAR Block of San Jose Floodplain

Mission Blocks	Shift Values (meters)		
	Х	у	z
Zamboanga_Blk75F	0.31	0.30	0.90
Zamboanga_Blk75E	0.00	0.00	0.47
Zamboanga_Blk75F_additional	0.00	0.00	0.90
Zamboanga_Sacol	0.00	0.00	0.47
Zamboanga_reflights_Blk75AS	0.00	0.00	0.44
Zamboanga_reflights_Blk75F_supplement	0.00	0.00	0.44

Figure 25. Map of Processed LiDAR Data for San Jose Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in San Jose Floodplains to collect points with which the LiDAR dataset is validated is shown in Figure 26.

Simultaneous mosaicking was done for the Zamboanga LiDAR blocks and the only available data that time was for Tumaga. The San Jose Floodplain is included in the set of blocks previously mosaicked. Therefore, the Tumaga calibration data and methodology were used.

A total of 1,739 survey points from Tumaga data were used for calibration and validation of all the blocks of Zamboanga LiDAR data. Eighty (80) % of the survey points, resulting in 1,391 points, were used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 27. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 8.06 meters with a standard deviation of 0.07 meters. Calibration for Zamboanga LiDAR data was done by adding the height difference value, 8.06 meters, to Zamboanga mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

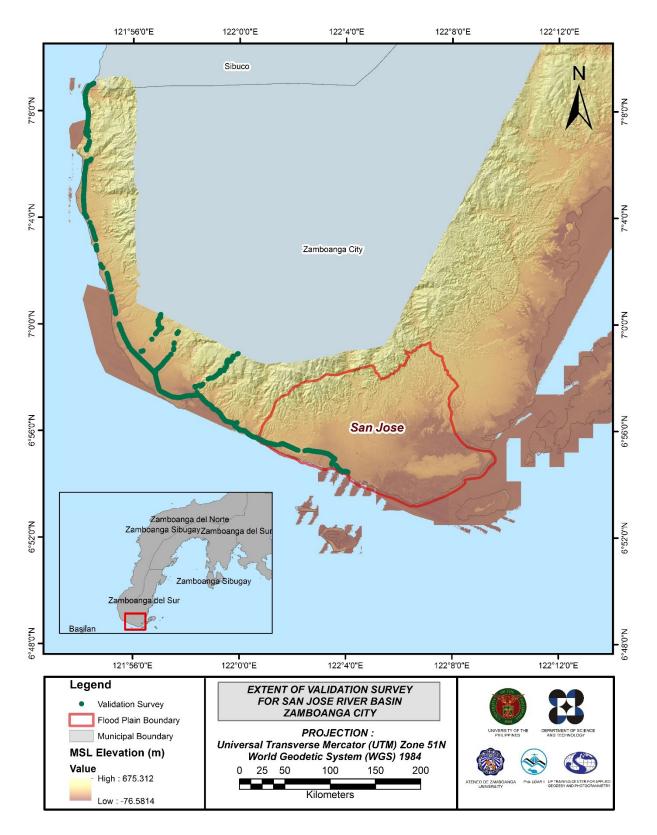


Figure 26. Map of San Jose Floodplain with validation survey points in green

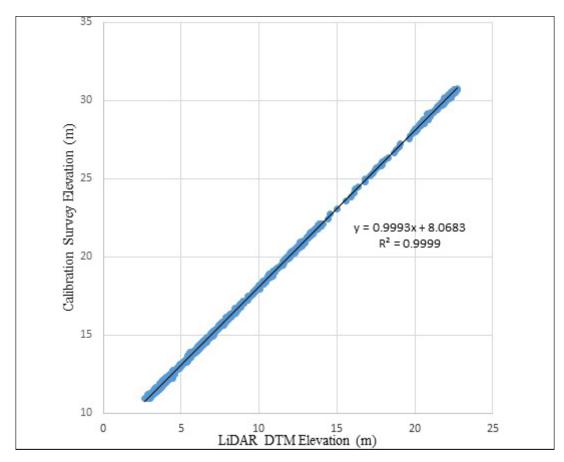


Figure 27. Correlation plot between calibration survey points and LiDAR data

Table 19. Calibration Statistical Measures

Calibration Statistical Measures	Value (meters)
Height Difference	8.06
Standard Deviation	0.07
Average	8.06
Minimum	7.91
Maximum	8.20

The remaining 20% of the total survey points, resulting in 944 points, were used for the validation of calibrated San Jose DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 28. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.16meters with a standard deviation of 0.15meters, as shown in Table 20.

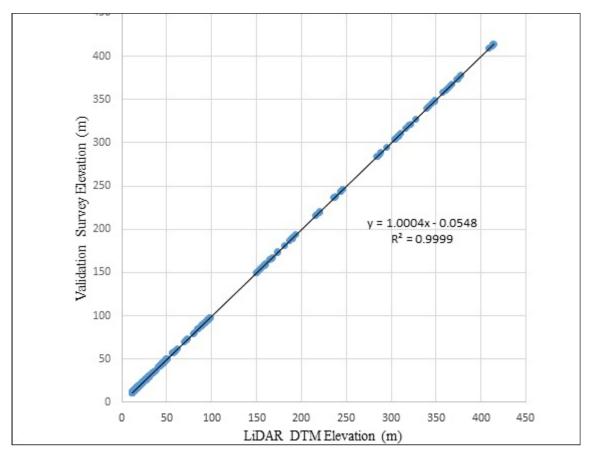


Figure 28. Correlation plot between validation survey points and LiDAR data.

Table 20. Validation Statistical Measures.

Validation Statistical Measures	Value (meters)
RMSE	0.16
Standard Deviation	0.15
Average	-0.04
Minimum	-0.34
Maximum	0.27

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for San Jose with 2,470 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.18 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in San Jose integrated with the processed LiDAR DEM is shown in Figure 29.

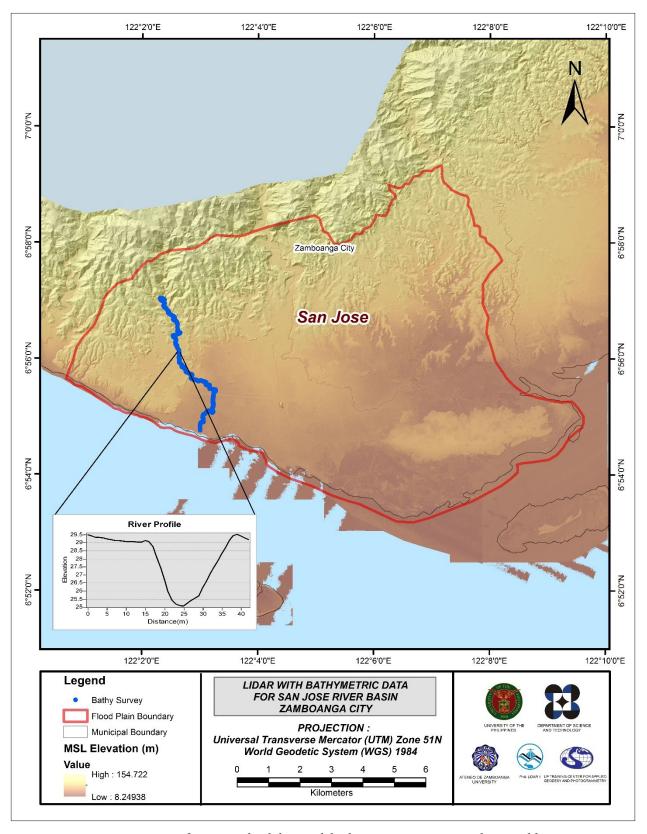


Figure 29. Map of San Jose Floodplain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

San Jose Floodplain, including its 200 m buffer, has a total area of 112.78sq km. For this area, a total of 5.00sq km, corresponding to a total of 6, 918 building features, are considered for QC. Figure 30 shows the QC blocks for San Jose floodplain.

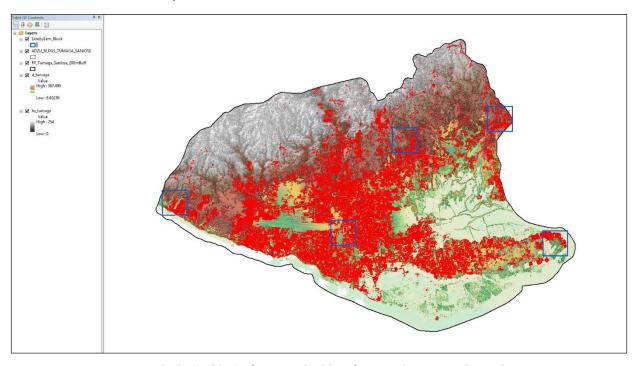


Figure 30. Blocks (in blue) of San Jose building features that were subjected in QC

Quality checking of San Jose building features resulted in the ratings shown in Table 21.

Table 21. Quality Checking Ratings for San Jose Building Features.

FLOODPLAIN	FLOODPLAIN COMPLETENESS		QUALITY	REMARKS
San Jose	97.63	99.79	90.80	PASSED

3.12.2 Height Extraction

Height extraction was done for 80,920 building features in San Jose Floodplain. Of these building features, 892 were filtered out after height extraction, resulting in 80,028 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 17.85 m.

3.12.3 Feature Attribution

One of the Research Associates of ADZU Phil LiDAR 1 was able to develop GEONYT, an offline web-based application for feature attribution extracted from a LiDAR-based Digital Surface Model and which attribution is conducted by combining automatic data consolidation, geotagging, and offline navigation. The app is conveniently integrated in a smart phone/ tablet. The data collected are automatically stored in

database and can be viewed as CSV (or excel) and KML (can viewed via google earth). The Geonyt App was the main tool used in all feature attribution activity of the team.

The team, through the endorsement of the Local Government Units of the Municipality/ City hired a number of enumerators who conducted the house-to-house survey of the features using the GEONYT application. The team provided the enumerators smart tablets where the GEONYT is integrated. The number of days by which the survey was conducted was dependent on the number of features of the floodplain of the river basin; likewise, the number of enumerators is also dependent on the availability of the tablet and the number of features of the floodplain.

Table 22 summarizes the number of building features per type. On the other hand, Table 23 shows the total length of each road type while Table 24 shows the number of water features extracted per type.

Table 22. Building Features Extracted for San Jose Floodplain

Facility Type	No. of Features
Residential	74,4440
School	750
Market	1,949
Agricultural/Agro-Industrial Facilities	89
Medical Institutions	86
Barangay Hall	29
Military Institution	406
Sports Center/Gymnasium/Covered Court	52
Telecommunication Facilities	9
Transport Terminal	25
Warehouse	184
Power Plant/Substation	6
NGO/CSO Offices	8
Police Station	21
Water Supply/Sewerage	41
Religious Institutions	163
Bank	20
Factory	215
Gas Station	45
Fire Station	4
Other Government Offices	138
Other Commercial Establishments	1,114
N/A	234
Total	80,028

Table 23. Total Length of Extracted Roads for San Jose Floodplain

		Road Network Length (km)						
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total		
San Jose	376.36	137.81	0.00	50.29	0.00	564.46		

Table 24. Number of Extracted Water Bodies for San Jose Floodplain

Floodulain		Total				
Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
San Jose	28	0	1	0	152	181

A total of 19 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 31 shows the Digital Surface Model (DSM) of San Jose floodplain overlaid with its ground features.

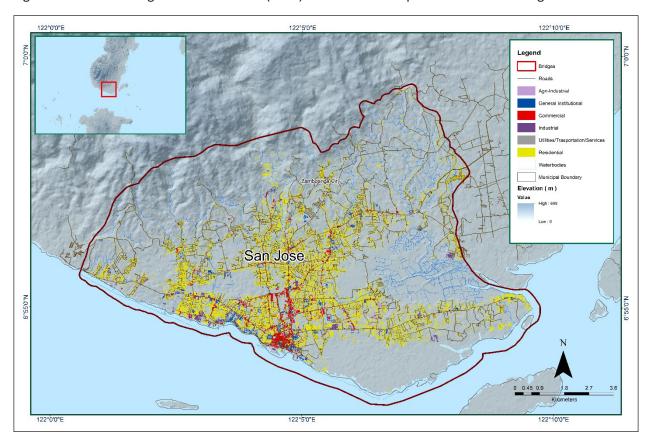


Figure 31. Extracted features for San Jose floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SAN JOSE RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta et al., 2014) and further enhanced and updated in Paringit et al. (2017).

4.1 Summary of Activities

The DVBC conducted a field survey in San Jose River on August 12 to 20, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built survey at Townsville Bridge in Brgy. San Roque, Zamboanga City, Zamboanga Peninsula; validation points acquisition of about 49.545 km covering the San Jose River Basin area; and bathymetric survey from its upstream in Brgy. San Roque, down to the mouth of the river located in Brgy. Baliwasan, both in Zamboanga City, with an approximate total length of 7.241 km using Hi™ single beam echo sounder and Trimble® SPS 985 GNSS PPK survey technique as shown in Figure 32.

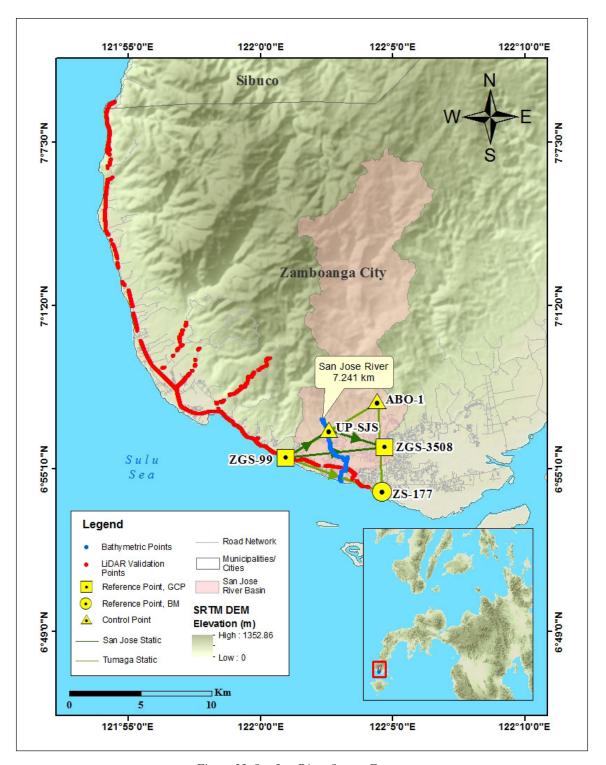


Figure 32. San JoseRiver Survey Extent

4.2 Control Survey

A GNSS network from Tumaga River Survey was established on September 19, 2015 occupying the control points ZGS-99, a second-order GCP, in Brgy. Sinunoc, Zamboanga City; and ZS-177, a first-order BM, in Brgy. Zone 4, Zamboanga City; both in Zamboanga Del Sur.

The GNSS network used for San Jose River Basin is composed of a single loop established on August 13, 2016 occupying the reference point with fixed elevation and coordinate values from Tumaga Survey, ZGS-99, a second-order GCP in Brgy. Sinunoc, Zamboanga City, Zamboanga Del Sur.

A control point was established at the approach of Townsville Bridge namely; UP-SJS, in Brgy. San Roque; and aNAMRIA-established control pointnamely ZGS-3508, located at the approach of Tumaga Bridge, in

Brgy. Tumaga; both in Zamboanga City, Zamboanga Del Sur, were also occupied and used as marker.

The summary of reference and control points and its location is summarized in Table 25 while the GNSS network established is illustrated in Figure 33.

Table 25. List of Reference and Control Points occupied for San Jose River Survey Source: NAMRIA; UP-TCAGP)

			Geographic Coord	dinates (WGS 8	4)	
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established
		Control Su	urvey on August 13, 20	016		
ZGS-99	2nd order, GCP 6°55'34.07738"N		122°00'58.23071"E	81.385	13.808	2014
ZGS-3508	Used as Marker	-	-	-	-	08-13-16 11:48 AM
UP-SJS	UP-Established	-	-	-	-	08-13-16 11:48AM
		Control Sur	vey on September 19,	2014		
ZGS-99	99 2nd order, GCP 6°55'34.07737"N		122°00'58.23072"E	72.230	13.808	2014
ZS-177	1 st order, BM	6°54'16.64510"N	122°04'35.11998"E	70.847	12.311	2014
ABO-1	UP-Established	6°57'43.70228"N	122°04'25.00909"E	109.733	51.125	9-19-14 3:46 PM

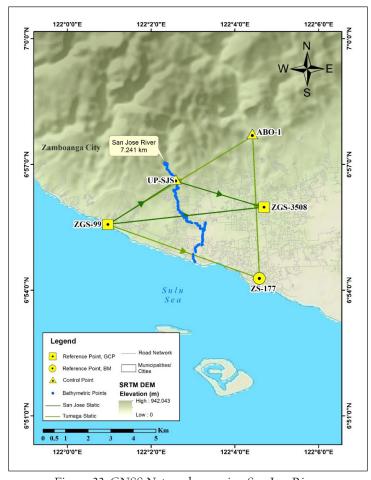


Figure 33. GNSS Network covering San JoseRiver

The GNSS set-ups on recovered reference points and established control points in San Jose River are shown in Figure 34 to Figure 36.

Figure 34. .GNSS base set-up, Trimble* SPS 852, at ZGS-99located beside a seawall at Airforce Beach, Brgy. Sinunoc, Zamboanga City, Zamboanga Del Sur

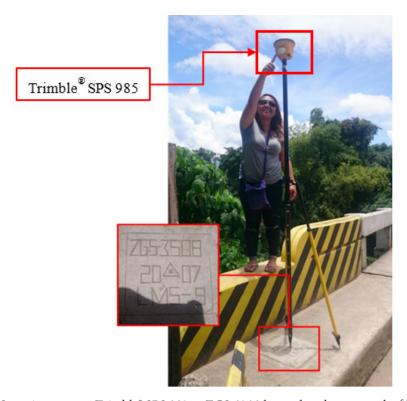


Figure 35. GNSS receiver set-up, Trimble* SPS 985, at ZGS-3508 located at the approach of Tumaga Bridge, Brgy. Tumaga, Zamboanga City, Zamboanga Del Sur

Figure 36. GNSS receiver set-up, Trimble* SPS 852, at UP-SJS located at the approach Townsville Bridge, Brgy. San Roque, Zamboanga City, Zamboanga Del Sur

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in San Jose River Basin is summarized in Table 26 generated by TBC software.

Table 26. Baseline Processing Summary Report for San JoseRiver Survey

Observation	Date of Observation		H.Prec. (Meter)	V.Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
UPSJS ZGS99	08-13-2016	Fixed	0.005	0.017	56°21'54"	3576.307	28.119
UPSJS ZGS3508	08-13-2016	Fixed	0.006	0.025	107°30'54"	4076.059	-17.345
ZGS99 ZGS3508	08-13-2016	Fixed	0.004	0.013	83°43'42"	6906.058	10.786

As shown Table 26, a total of three (3) baselines were processed with reference point ZGS-99 held fixed for coordinate value; and its fixed value from Tumaga fieldwork for elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
<20cm and z_e < 10 cm

Where:

 $x_{_{p}}$ is the Easting error,

y is the Northing error, and

 z_{s} is the Elevation error

for each control point. See the Network Adjustment Report shown in Table 27 to Table 30 for complete details.

The three (3) control points, ZGS-99, ZGS-3508, and UP-SJSwere occupied and observed simultaneously to form a GNSS loop. Coordinates of ZGS-99; and its elevation valuefixed from Tumaga control surveywere held fixed during the processing of the control points as presented in Table 27. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Point IDTypeEast σ (Meter)North σ (Meter)Height σ (Meter)Elevation σ (Meter)ZGS-99GridFixedFixedFixed

Table 27. Control Point Constraints

Fixed = 0.000001 (Meter)

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 28. The fixed control ZGS-99has no value for grid error elevation error.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
ZGS-99	391313.321	?	765695.628	?	13.808	?	ENe
ZGS-3508	398177.791	0.002	766435.635	0.002	24.450	0.011	
UP-SJS	394294.224	0.002	767669.863	0.002	41.835	0.012	

Table 28. Adjusted Grid Coordinates

With the mentioned equation, $\sqrt{((x_s)^2 + (y_s)^2)} < 20cm$ for horizontal and $z_s < 10 cm$ for the vertical; the computation for the accuracy are as follows:

ZGS-99

horizontal accuracy = Fixed vertical accuracy = Fixed

ZGS-3508

horizontal accuracy = $V((0.2)^2 + (0.2)^2$

= $\sqrt{(0.04 + 0.04)}$

= 0.28< 20 cm

vertical accuracy = 1.1 < 10 cm

MQ-120

horizontal accuracy = $V((0.2)^2 + (0.2)^2$

= $\sqrt{(0.04 + 0.04)}$

= 0.28< 20 cm

vertical accuracy = 1.2 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Table 29. Adjusted Geodetic Coordinates

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
ZGS-99	N6°55'34.07738"	E122°00'58.23071"	81.385	?	ENe
ZGS-3508	N6°55'58.62125"	E122°04'41.85581"	92.169	0.011	
UP-SJS	N6°56'38.55865"	E122°02'35.23021"	109.507	0.012	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 29. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 30.

Table 30. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

		Geograpi	hic Coordinates (WC	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
		(Control Survey on A	ugust 13, 201	16		
ZGS-99	2nd order, GCP	6°55'34.07738"	122°00'58.23071"	81.385	765695.628	391313.321	13.808
ZGS-3508	Used as Marker	6°55'58.62125"	122°04'41.85581"	92.169	766435.635	398177.791	24.45
UP-SJS	UP Established	6°56'38.55865"	122°02'35.23021"	109.507	767669.863	394294.224	41.835
		Co	ntrol Survey on Sep	tember 19, 2	014		
ZGS-99	2nd order, GCP	6°55'34.07737"	122°00'58.23072"	72.230	765695.628	391313.321	13.808
ZS-177	1 st order, BM	6°54'16.64510"	122°04'35.11998"	70.847	763304.231	397964.993	3.156
ABO-1	UP Established	6°57'43.70228"	122°04'25.00909"	109.733	769663.809	397667.093	51.125

4.5 Cross-section and Bridge As-Built Survey and Water Level Marking

Cross-section and as-built survey were conducted on August 15, 2016 at the downstream side of Townsville Bridge in Brgy. San Roque, Zamboanga City, Zamboanga Del Sur as shown in Figure 37. A Total Station and Trimble* SPS 985 GNSS PPK survey technique were utilized for this survey as shown in Figure 38.

Figure 37. Townsville Bridge facing upstream

Figure 38. Bridge As-Built Survey using PPK Technique.

The cross-sectional line of Townsville Bridge is about 12.318m withseven (7)cross-sectional points using the control point UP-SJSas the GNSS base station. The cross-section diagram, location map, and the bridge data form are shown in Figure 39 to Figure 41, respectively.

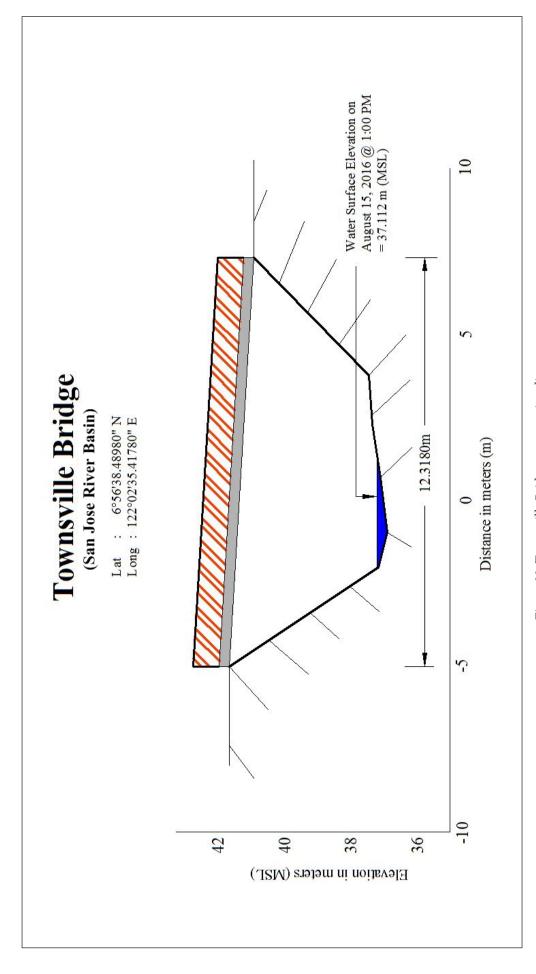


Figure 39. Townsville Bridge cross-section diagram

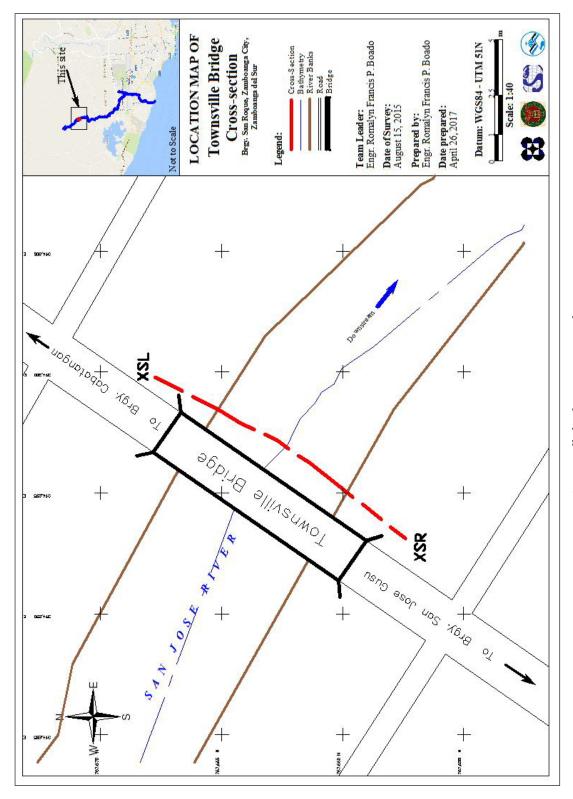


Figure 40. Townsville bridge cross-section location map

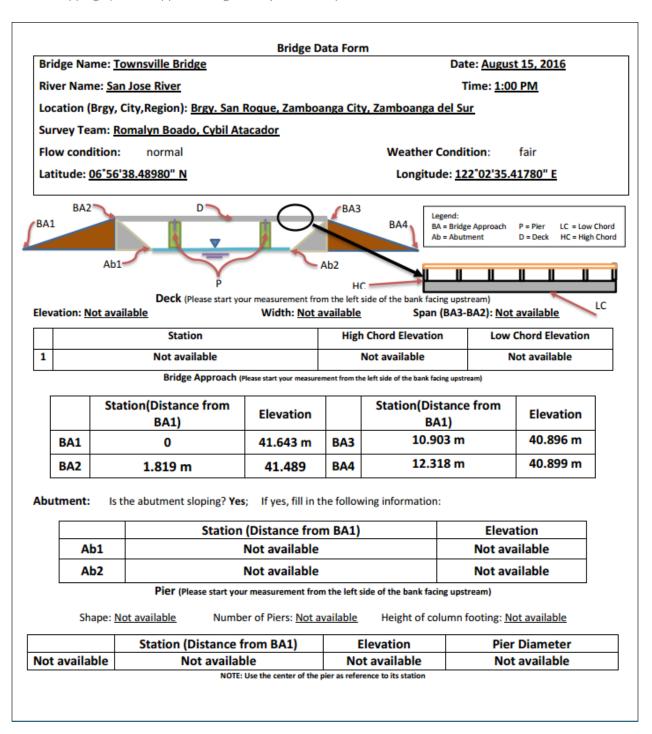


Figure 41. Bridge as-built form of Townsville Bridge

Water surface elevation of Townsville River was determined using a Total Station on August 15, 2016 at 1:00PM with a value of 37.112m in MSL as shown in Figure C-8. This was translated into marking on the wall under the bridge using the same technique as shown in Figure 42. The markings will serve as reference for flow data gathering and depth gauge deployment of partner HEI responsible for San Jose River, the ADZU.

Figure 42. Water-level markings on TownsvilleBridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on August 13, 15 and 19, 2016 using a survey-grade GNSS Rover receiver, Trimble® SPS 985, mounted in front of a vehicle as shown in Figure 43. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna heightswere 1.9 m and 2.34 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with ZGS-99 occupied as the GNSS base station.

Figure 43. Validation points acquisition survey set up along San JoseRiver Basin

The survey started from Tawiran Bridge in Brgy. Limpapa, Municipality of Sibuco; going south it traversed twenty (20) Barangays in Zamboanga City and ended in Brgy. Sto. Niño, also in Zamboanga City. Atotal of 6,266 points were gathered with approximate length of 49.545 km using ZGS-99 as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 44.



Figure 44. Validation point acquisition survey of San Jose River Basin

4.7 Bathymetric Survey

Bathymetric survey was executed on August 16 and 19, 2016 using an Ohmex ™ single beam echosounder and Trimble® SPS 985 in GNSSPPK survey technique in continuous topo mode as illustrated in Figure C-14. The survey was done by patch: one 200-m length at Brgy. Baliwasan with coordinates6°54'42.42621"N, 122°03'01.77140"E; and another 200-m at Brgy. Canelar with coordinates6°55'04.82940"N, 122°03'08.40959"E.

Figure 45. Bathymetric survey using OHMEX™ single beam echo sounder in San Jose River

Manual bathymetric survey was executed on August 14, 15 and 18, 2016 using Trimble® SPS 985 in GNSS PPK survey technique in continuous topo mode as shown in Figure 46. The survey was done in three locations. First started in Brgy. San Roque, with coordinates 6°57'02.13715"N, 122°02'18.94037"E, and ended at 6°56'25.03753"N, 122°02'37.30398"E. The second is a 300m strip in Brgy. Campo Islam with coordinates 6°55'53.43788"N, 122°02'40.79317"E. The third started from Brgy. Campo Islam with coordinates 6°55'37.41742"N, 122°02'5.42997"E and ended in Brgy. Canelar with coordinates 6°55'06.47533"N, 122°03'12.69133"E.

Figure 46. Bathymetric survey using Trimble® SPS 985 in GNSS PPK survey technique in Townsville River

Another technique using Total Station was used for bathymetric survey on August 17, 2016 as shown in Figure 47. The survey started from Brgy. San Roque with coordinates 6°57'27.06020"N, 122°02'37.61304"E, and ended at Brgy. Campo Islam with coordinates 6°55'50.89743"N, 122°02'41.28283"E. The control point UP-SJS was used as the GNSS base station throughout the entire survey.

Figure 47. Bathymetric Survey using Total Station

The bathymetric survey for San Jose River gathered a total of 2,925 points covering a total estimated length of 7.241 km of the river traversing Barangays San Roque, Campo Islam, Canelar and Baliwasan, in Zamboanga City. A CAD drawing was also produced to illustrate the riverbed profile of San Jose River. As shown in Figure 49 and Figure 50, the highest and lowest elevation has a 47-m difference. The highest

elevation observed was 54.673 m in MSL located in Brgy. San Roque while the lowest was 7.131 m below MSL located at the downstream portion of the river located in Brgy. Baliwasan, both in Zamboanga and Tagum.

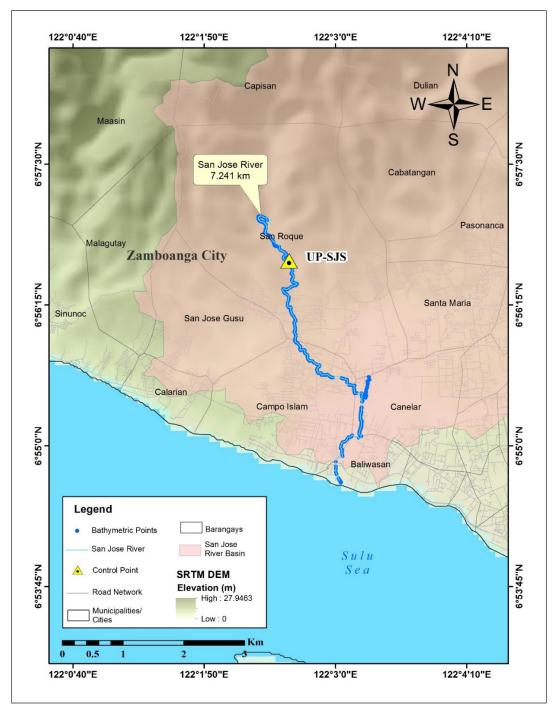


Figure 48. Bathymetric survey of San Jose River

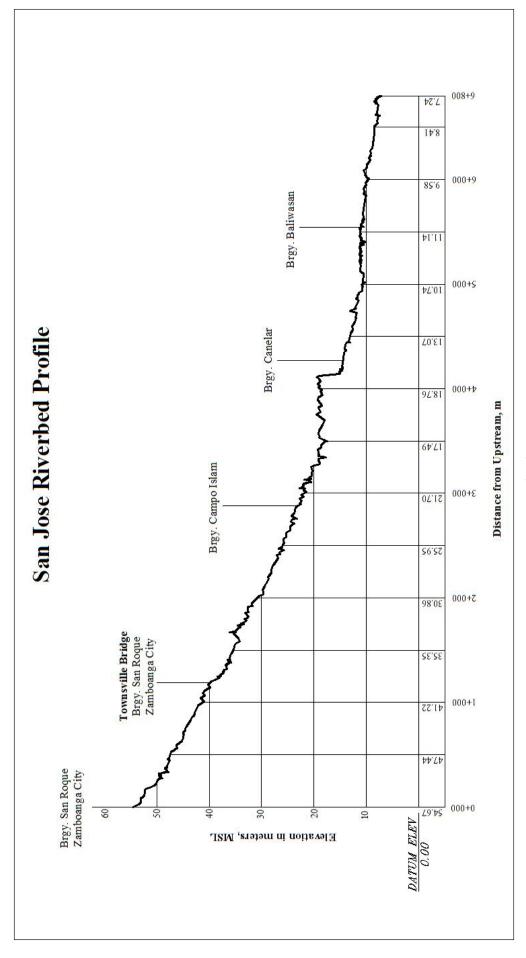


Figure 49. San Jose Riverbed Profile, from Brgy. San Roque upstream

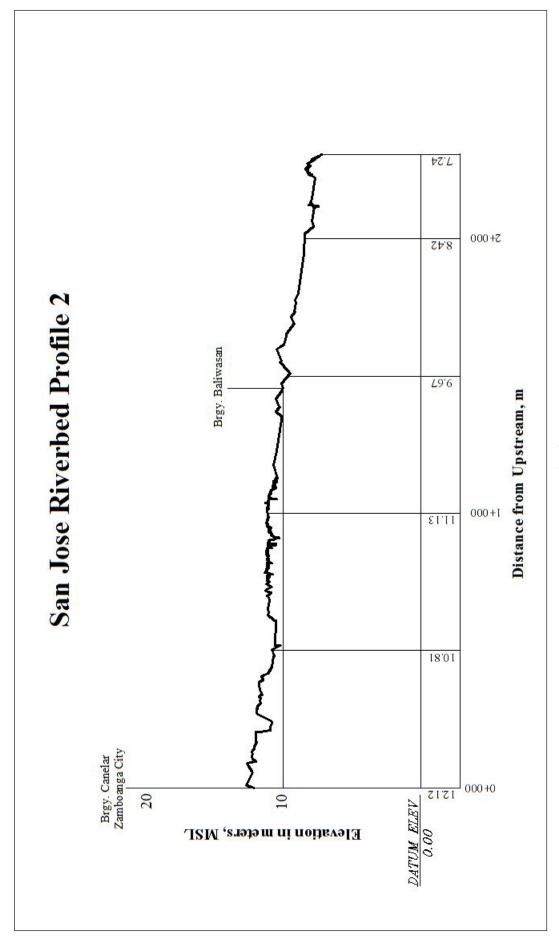


Figure 50. San Jose Riverbed Profile, from Brgy. Canelar upstream

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this chapter were based on the DREAM methods manual (Lagmay et al., 2014) and further enhanced and updated in Paringit et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the San Jose River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the San Jose River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from a manually read Rain Gauge at Brgy. Cabatangan, Zamboanga City(6° 57' 6.34" N, 122° 2' 22.46" E). (Figure 51). The precipitation data collection started from September26, 2016 at 4:45PM to September27, 2016 at 10:25PM with 10 minutes recording interval.

The total precipitation for this event in Brgy. Cabatangan was 17.5mm. It has a peak rainfall of 12 mm on September 26, 2016 at 08:00 PM. The lag time between the peak rainfall and discharge is 4 hours and 15 minutes.

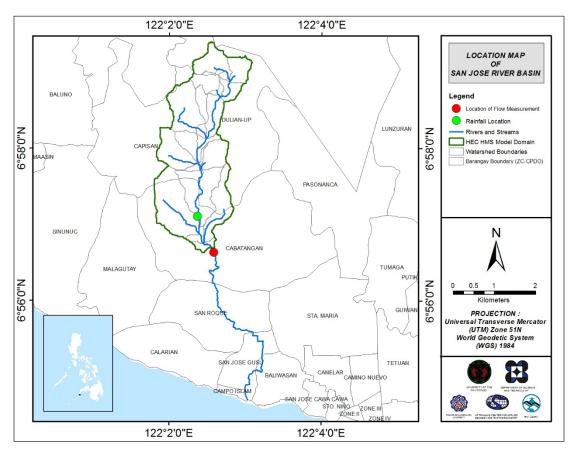


Figure 51. The location map of San Jose HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Townsville Footbridge, Brgy. San Roque, Zamboanga City(6° 56' 38.42" N, 122° 2' 35.06" E). It gives the relationship between the observed water levels at Townsville Footbridge and outflow of the watershed at this location.

For Townsville Footbridge, the rating curve is expressed as $Q = 5E-62e^{1.2569h}$ as shown in Figure 53.

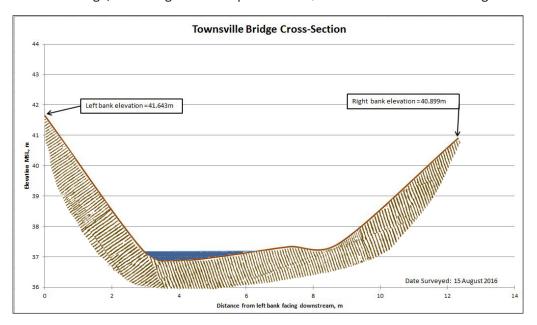


Figure 52. Cross-Section Plot of Townsville Footbridge

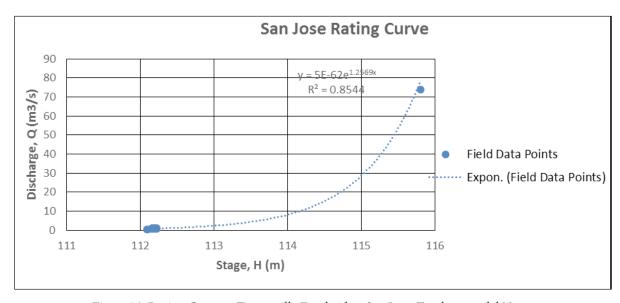


Figure 53. Rating Curve at Townsville Footbridge, San Jose, Zamboanga del Norte

This rating curve equation was used to compute the river outflow at Townsville Footbridge for the calibration of the HEC-HMS model shown in Figure 54. Peak discharge is 1.14 cubic meters per second at 12:15AM, September27, 2016.

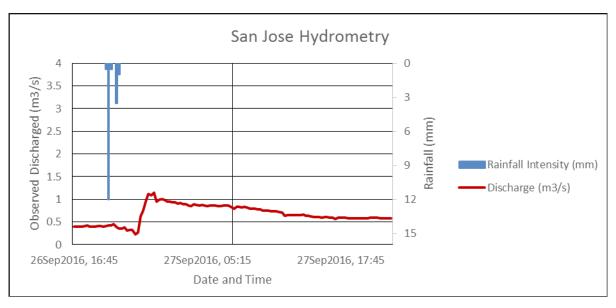


Figure 54. Rainfall and outflow data at Townsville Footbridge used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Zamboanga City Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station was chosen based on its proximity to the San Jose watershed. The extreme values for this watershed were computed based on a 59-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION											
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs			
2	15.5	23.3	28.4	36.9	45.6	50.7	60	66.1	77.3			
5	21.4	31.6	38.3	50.4	61.2	38.2	82.5	91.5	107.8			
10	25.3	37.1	44.8	59.4	71.6	79.8	97.5	108.3	127.9			
15	27.5	40.2	48.5	64.4	77.4	86.4	105.9	117.8	139.3			
20	29	42.3	51.1	68	81.5	91	111.8	124.4	147.3			
25	30.2	44	53.1	70.7	84.7	94.5	116.3	129.5	153.4			
50	33.9	49.1	59.2	79.1	94.4	105.4	130.4	145.3	172.3			
100	37.5	54.2	65.3	87.4	104	116.2	144.3	161	191.1			

Table 31. RIDF values for Zamboanga City Rain Gauge computed by PAGASA

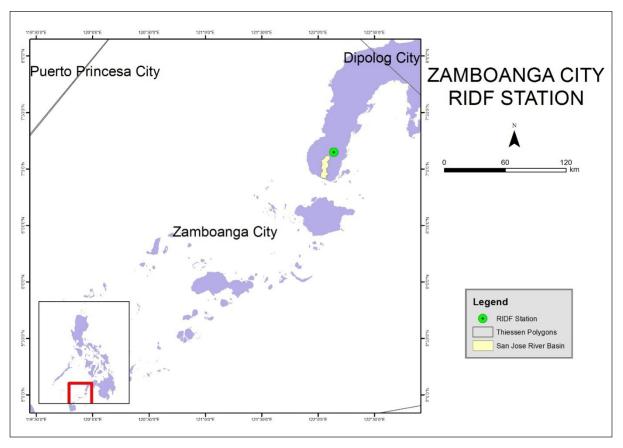


Figure 55. Dipolog City RIDF location relative to San Jose River Basin

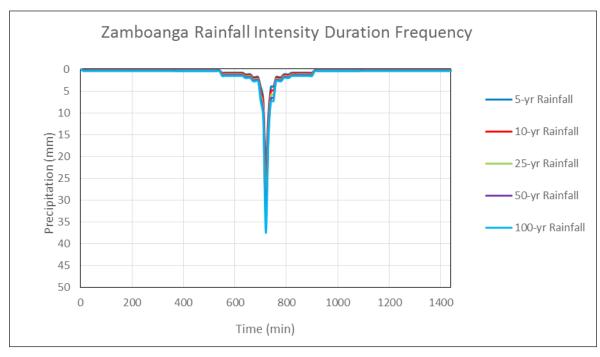


Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the San Jose River Basin are shown in Figures 57 and 58, respectively.

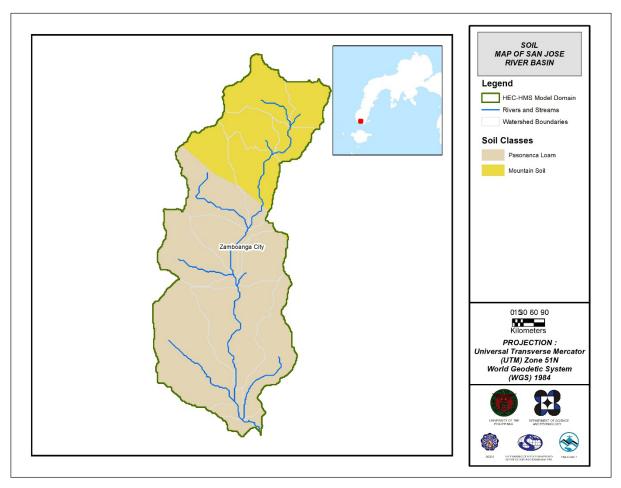


Figure 57. Soil Map of San Jose River Basin

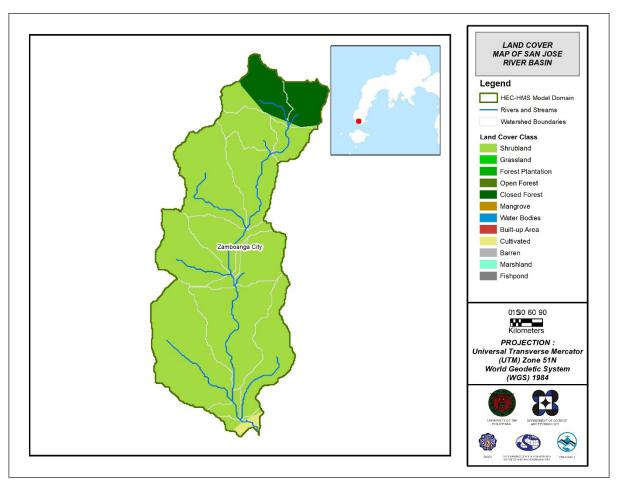


Figure 58. Land Cover Map of San Jose River Basin

For San Jose, the soil classes identified were loam and mountain soil. The land cover types identified were cultivated areas, shrubland, and closed canopy forests.

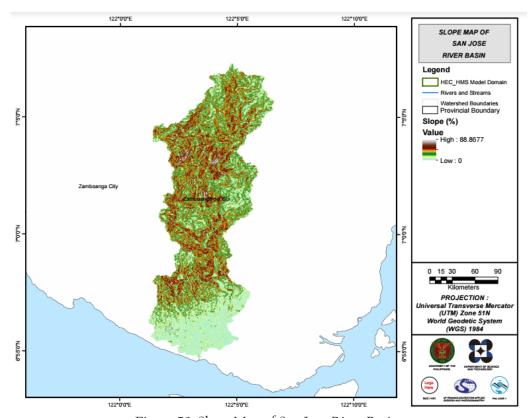


Figure 59. Slope Map of San Jose River Basin

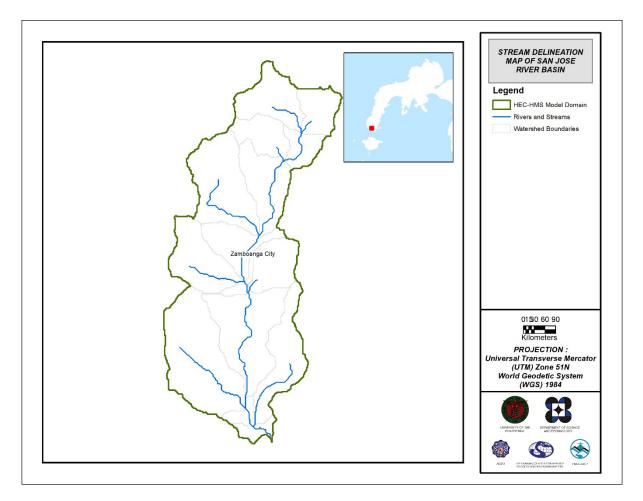


Figure 60. Stream delineation map of San Jose river basin

Using the SAR-based DEM, the San Jose basin was delineated and further subdivided into subbasins. The model consists of 15 sub basins, 7 reaches, and 7 junctions as shown in Figure 61 (See Annex 10). The main outlet is at Townsville Footbridge, Brgy. San Roque, Zamboanga City.

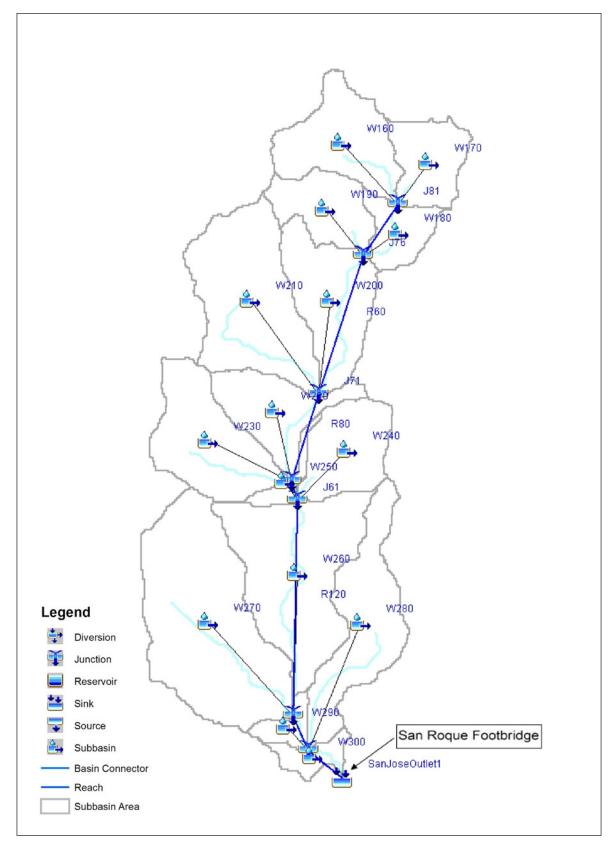


Figure 61. The San Jose river basin model generated using HEC-HMS 5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 62).

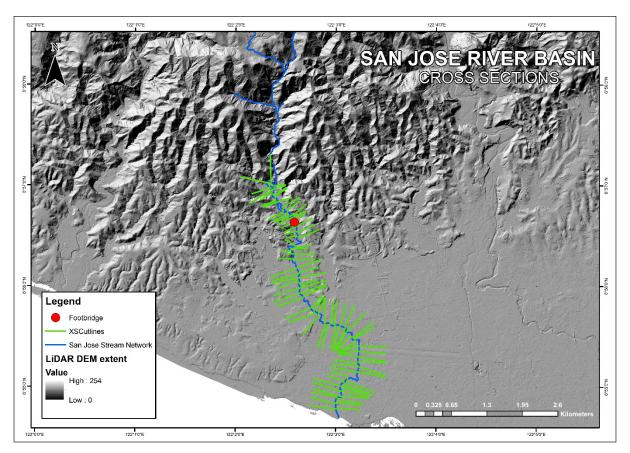


Figure 62. River cross-section of San Jose River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

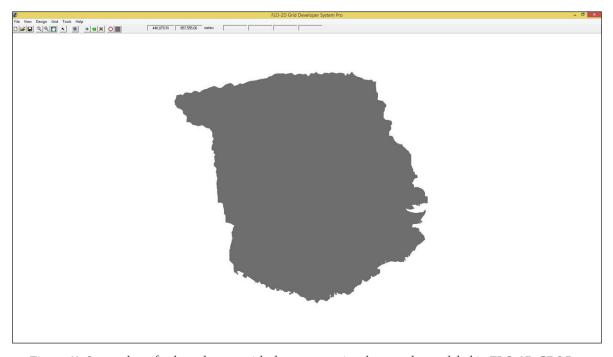


Figure 63. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

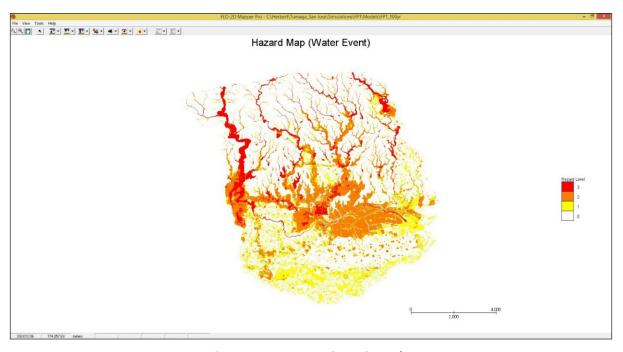


Figure 64. Generated 100-year rain return hazard map from FLO-2D Mapper

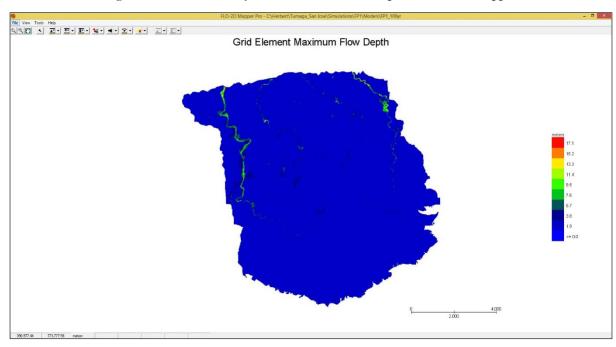


Figure 65. Generated 100-year rain return flow depth map from FLO-2D Mapper

5.6 Results of HMS Calibration

After calibrating the San Jose HEC-HMS river basin model (See Annex 9), its accuracy was measured against the observed values. Figure 66 shows the comparison between the two discharge data.

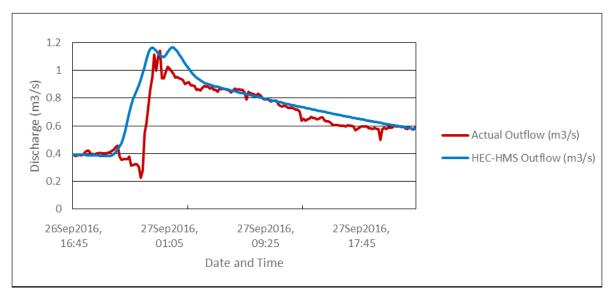


Figure 66. Outflow Hydrograph of San Jose River Basin produced by the HEC-HMS model compared with observed outflow

The adjusted ranges of values of the parameters used in calibrating the model are enumerated in Table 32.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values	
	Loss	SCS Curve number	Initial Abstraction (mm)	0.0042 – 0.0055	
			Curve Number	67 – 77	
Basin	Tuo no esta nua	Claule I limit I budua awa mb	Time of Concentration (hr)	0.39 – 1.41	
	Transform	Clark Unit Hydrograph	Storage Coefficient (hr)	0.64 – 2.29	
	Danaflaw	Decesion	Recession Constant	0.55	
	Baseflow	Recession	Ratio to Peak	0.5	
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.215	

Table 32. Range of Calibrated Values for San Jose

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.0042 - 0.0055mm means that there is a minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 67-77 fo curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For San Jose, the basin mostly consists of built-up, brushland and closed canopy forests and the soil consists of loams and undifferentiated mountain soil.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.39 hours to 2.29 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the

ratio of the baseflow discharge to the peak discharge. Recession constant of 0.55 indicates that the basin is moderately unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.5 indicates a steeper receding limb of the outflow hydrograph.

Table 33. Summary of the Efficiency Test of San Jose HMS Model

RMSE	1.979888
r²	0.8544
NSE	0.510597
PBIAS	-10.6761
RSR	0.699574

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 1.979888 (m3/s).

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.8544.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.510597.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -10.6761.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.699574.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 67) shows the San Jose outflow using the Zamboanga City Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on PAG-ASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

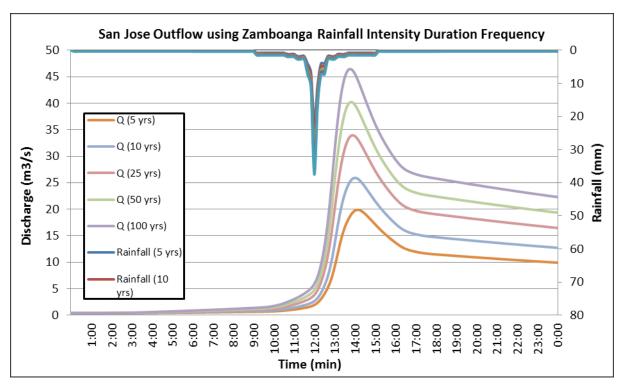


Figure 67. Outflow hydrograph at Townsville Footbridge Station generated using Zamboanga City RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the San Josedischarge using the Zamboanga CityRainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 34.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³/s)	Time to Peak
5-Year	107.8	21.4	19.89	14 hours 10 minutes
10-Year	127.9	25.3	25.92	14 hours
25-Year	153.4	30.2	33.90	13 hours 50 minutes
50-Year	172.3	33.9	40.21	13 hours 50 minutes
l .	İ	i e		

46.37

13 hours 50 minutes

37.5

Table 34. Peak values of the San Jose HEC-HMS Model outflow using the Zamboanga CityRIDF

5.8 River Analysis (RAS) Model Simulation

100-Year

191.1

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model was used in determining the flooded areas within the model. The simulated model was an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of San Jose River using the calibrated HMS base flow is shown in Figure 68.

Figure 68. Sample output of San Jose RAS Model

5.9 Flood Hazard and Flow Depth

The resulting hazard and flow depth maps have a 10m resolution. Figure 69 to Figure 74 show the 5-, 25-, and 100-year rain return scenarios of the Tumaga-San Jose Floodplain.

The generated flood hazard maps for the Tumaga-San Jose Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Table 35. Municipalities affected in Tumaga-San Jose floodplain

Municipality	Total Area	Area Flooded	% Flooded
Zamboanga City	1496.29	124.38	8%

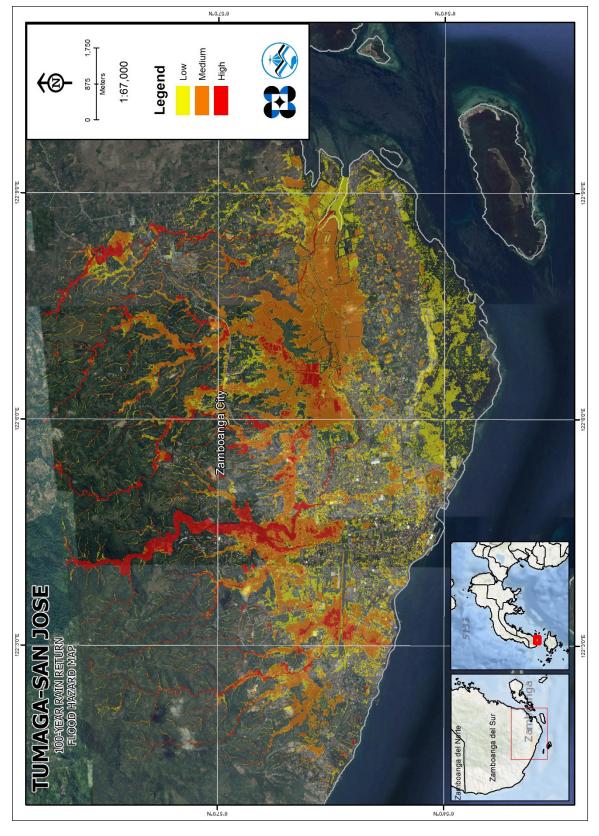


Figure 69. 100-year Flood Hazard Map for Tumaga-San Jose Floodplain

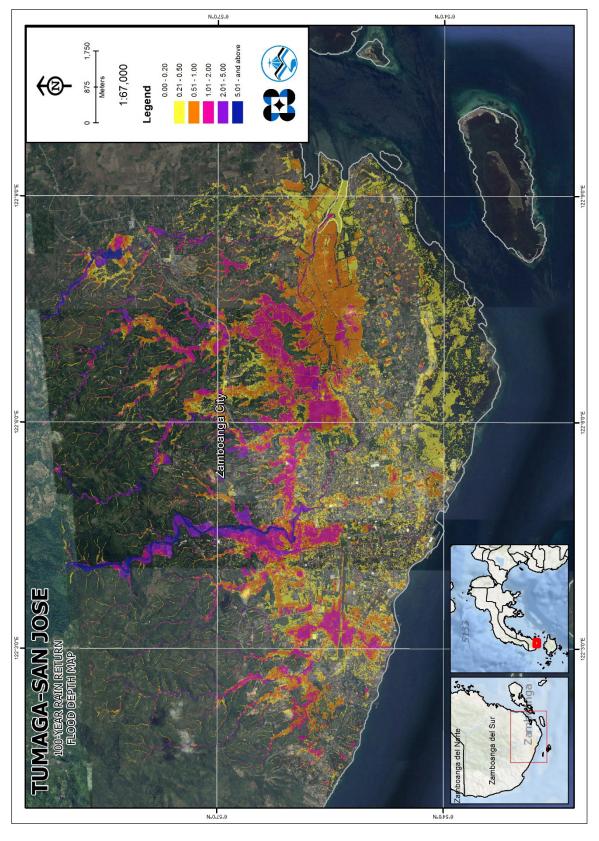


Figure 70. 100-year Flow Depth Map for Tumaga-San Jose Floodplain

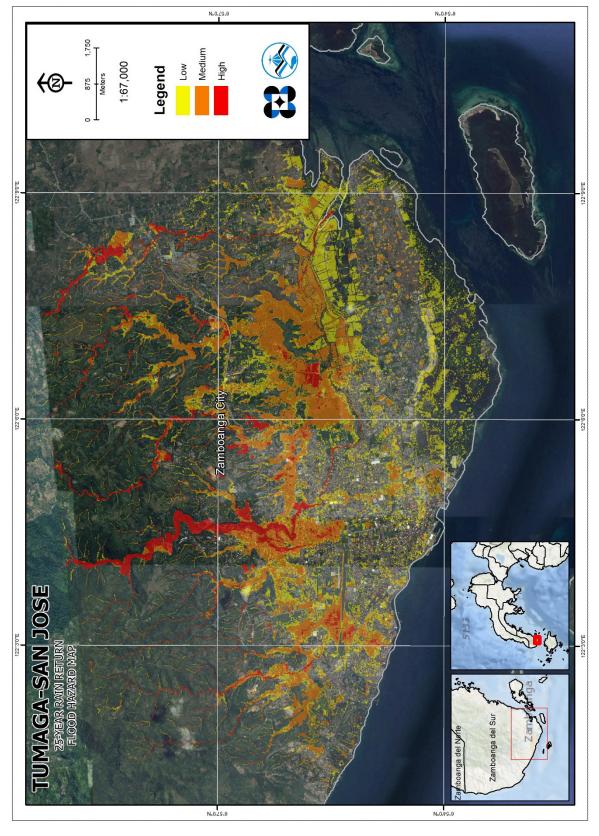


Figure 71. 25-year Flood Hazard Map for Tumaga-San Jose Floodplain

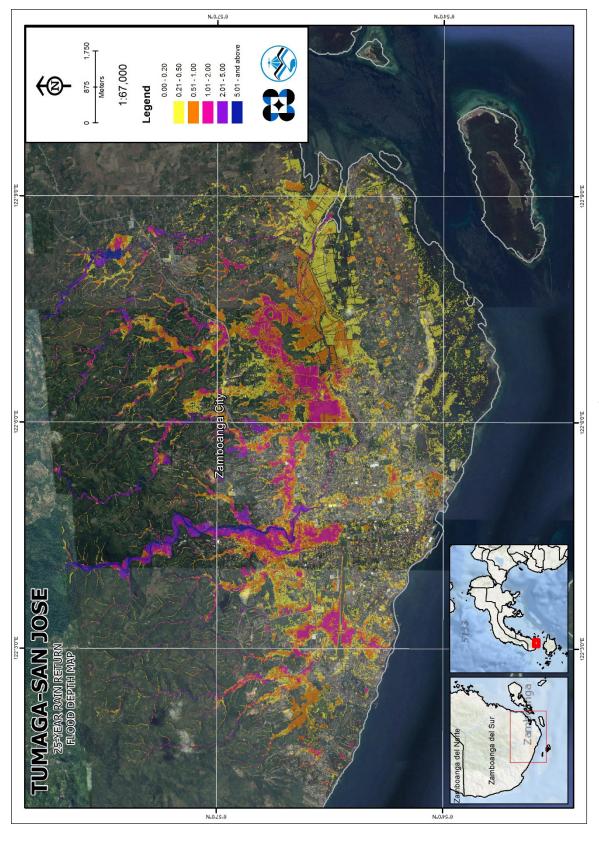


Figure 72. 25-year Flow Depth Map for Tumaga-San Jose Floodplain

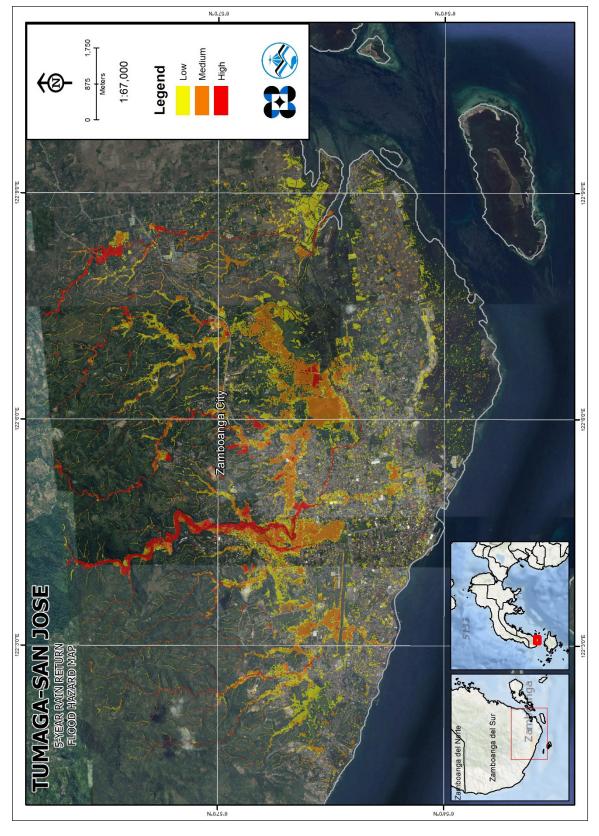


Figure 73. 5-year Flood Hazard Map for Tumaga-San Jose Floodplain

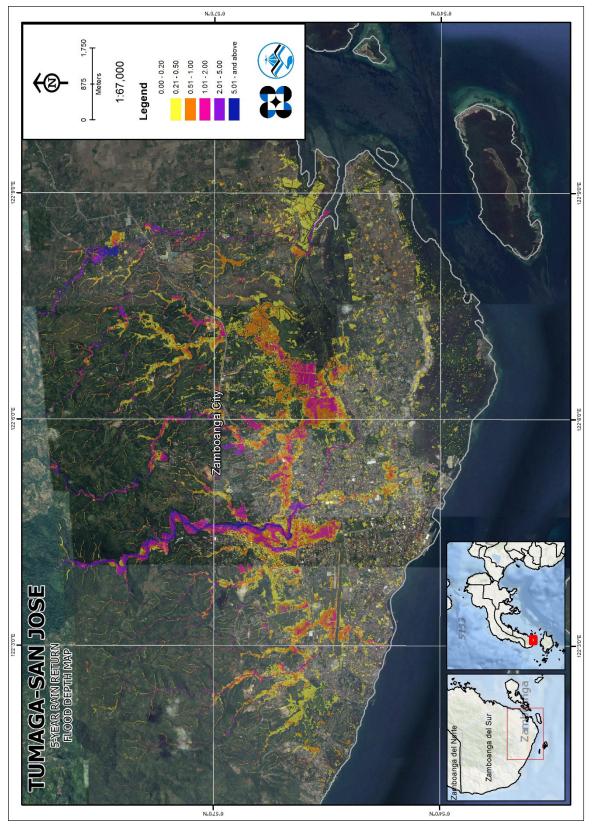


Figure 74. 5-year Flood Depth Map for Tumaga-San Jose Floodplain

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Tumaga-San Jose Rive r Basin, grouped by municipality, are listed below. For the said basin, 11 barangays in two municipalities are expected to experience flooding when subjected to the flood hazard scenarios.

For the 5-year return period, 6.82% of the municipality of Zamboanga City with an area of 1496.293 sq. km. will experience flood levels of less than 0.20 meters. 0.76% of the area will experience flood levels of 0.21 to 0.50 meters while 0.42%, 0.20%, 0.09%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay. Annex 12 and Annex 13 show the educational and health institutions exposed to flooding,

Table 36. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

						Affected Ba	Affected Barangays in Zamboanga City	hoanga City				
	TIMA CANIT					Allected Da	llaligays III zaill	Dodliga City				
JOSE	JOSE BASIN	Arena Blanco	Baliwasan	Barangay Zone I	Barangay Zone II	Barangay Zone III	Barangay Zone IV	Boalan	Cabatangan	Calarian	Camino Nuevo	Campo Islam
	1	1.025293	0.70861	0.520313	0.620465	0.625355	0.544432	7.206508	3.433914	0.986504	0.445678	3.12852
rea	2	0.493011	0.114796	0.040038	0.056534	0.093055	0.044288	1.389019	0.12652	0.052328	0.129612	0.530001
A b	3	0.017093	0.020657	0.002655	0.01396	0.0715	0.00159	1.122207	0.098665	0.044173	0.044173 0.188435	0.164384
ecte sq.	4	0.000852	0.009613	0.0002	0.00106	0.060406	0.0005	0.266264	0.093199	0.001037	0.099897	0.027598
	2	0.002467	0.00254	0	0	0	0	0.032181	0.040215	0	0.009994	0.010114
	9	0	0	0	0	0	0	9080000	0.001898	0	0.00079	0

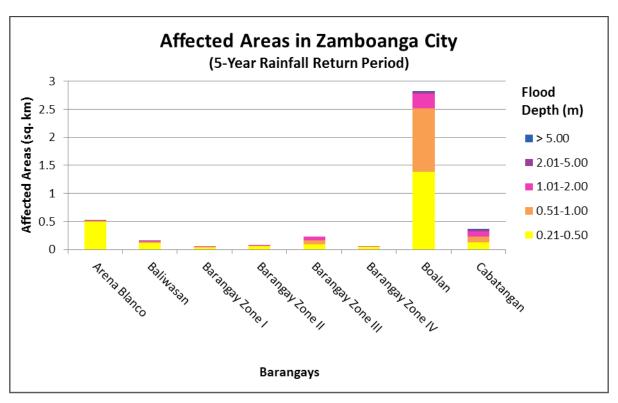


Figure 75. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

Table 37. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

TUMAGA	FUMAGA-SAN JOSE					Affecte	Affected Barangays in Zamboanga City	ıboanga City				
B/	BASIN	Canelar	Capisan	Divisoria	Dulian	Guiwan	Kasanyangan	Lumayang	Lumbangan	Lunzuran	Maasin	Malagutay
	1	1.968468	3.409108	1.206391	5.85675	2.137196	4.038134	0.811814	10.34449	3.641315	0.178466	0.150556
rea	2	0.315573	0.067812	0.057952	0.151995	0.61057	0.442212	0.015957	0.426386	0.171321	0.004166	0.000265
A b	3	0.197749	0.038521	0.060934	0.101397	0.697935	0.065204	0.009798	0.267604	0.122181	0.0026	0.0002
ecte sq.	4	0.056783	0.022546	0.054552	0.12303	0.590583	0.0016	0.00769	0.194679	0.147404	0.0016	0.0001
-	2	0.0025	0.01192	0.038129	0.198622	0.010111	0	0.003819	0.13981	0.095921	0.000265	0
	9	0	60000	0.00034	0.031566	9000'0	0	0.0003	0.0235	0.023643	0	0

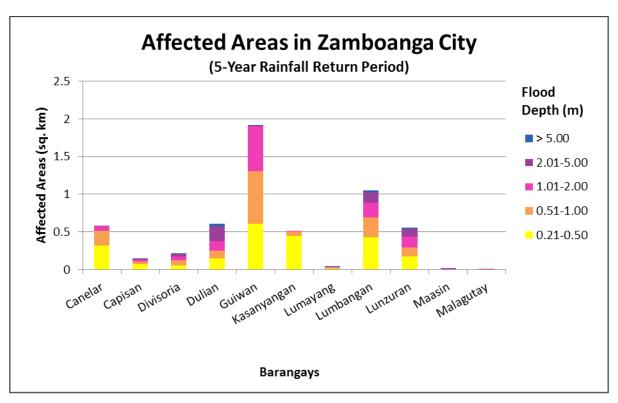


Figure 76. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

Table 38. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

TIMAGA	TIMAGA-SAN IOSE					Affected Ba	Affected Barangays in Zamboanga City	boanga City				
BA BA	BASIN	Mampang	Mariki	Mercedes	Pasobolong	Pasonanca	Putik	Rio Hondo	Salaan	San Jose Cawa- Cawa	San Jose Gusu	San Roque
	1	4.051447	1.265641	4.072397	0.012413	1.388451	2.027187	0.478533	3.204667	0.422482	2.538761	8.74361
	2	0.386695	0.121199	0.453707	0	0.134143	0.392965	0.074811	0.228496	0.056607	0.396566	0.629015
.d Ai	3	0.053421	0.0002	0.082053	0	0.117659	0.457668	0.002	0.13793	900:0	0.129486	0.493795
	4	0.0034	0	0.053071	0	0.120941	0.227064	0	0.073103	0	0.020731	0.178777
	2	0	0	0.057577	0	0.107536	0.032598	0	0.148341	0	0.0059	0.075823
	9	C	C	0.012923	0	0.015457	0	0	0 1355	0	0,000	0.0062

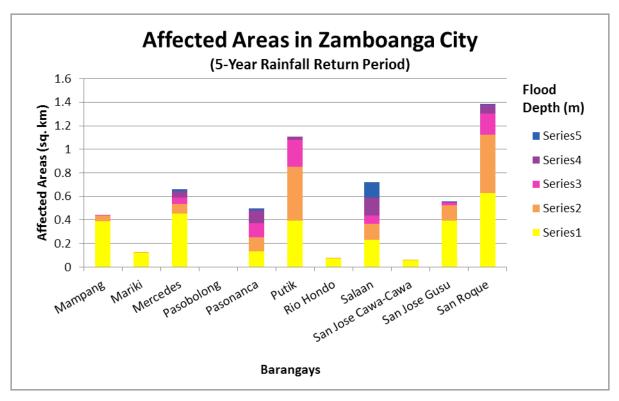


Figure 77. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

Table 39. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

					Affe	ected Barang	Affected Barangays in Zamboanga City	าทga City			
TOMA	UMAGA-SAN JOSE BASIN	Santa Barbara	Santa Catalina	Santa Maria	Santo Niño	Sinunoc	Talon- Talon	Tetuan	Tugbungan	Tumaga	Zambowood
	1	1.308469	1.67878	1.2771	0.197955	0.073385	5.071679	1.769732	4.674742	0.909947	3.903953
,) ,)	2	0.311894	0.240244	0.591457	0.030006	0.001154	0.510002	0.343891	0.648353	0.174099	0.330376
A b:	3	0.148482	0.027795	0.369783	0.0002	0.001197	0.001197 0.019374	0.178517	0.265248	0.18475	0.22755
	4	0.00691	0.0003	0.143492	0	0.000363 0.0007	0.0007	0.05832	0.065405	0.198905	0.05931
Ð∰A 2)	2	0.000071	0	0.04611	0	0	0	0.070234	0.035227	0.163853	0.025614
,	9	0	0	0	0	0	0	0.011978	0.0008	0.096067	0.005977

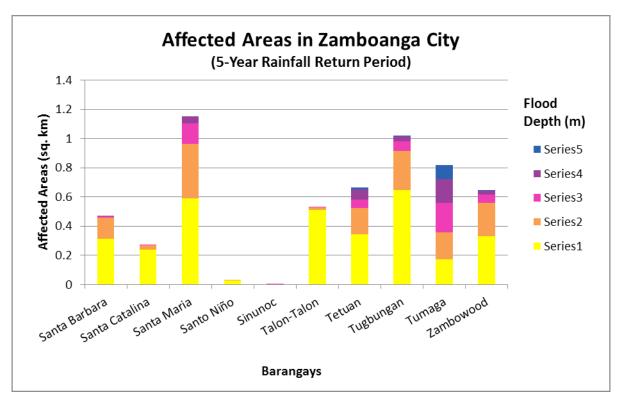


Figure 78. Affected Areas in Zamboanga City during 5-Year Rainfall Return Period

For the 25-year return period, 6.08% of the municipality of Zamboanga City with an area of 1496.293 sq. km. will experience flood levels of less than 0.20 meters. 0.99% of the area will experience flood levels of 0.21 to 0.50 meters while 0.70%, 0.36%, 0.13%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 40. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

				Ą	ffected Baranga	Affected Barangays in Zamboanga City	a City					
TUMAGA BA	TUMAGA-SAN JOSE BASIN	Arena Blanco	Baliwasan	Barangay Zone I	Barangay Zone II	Barangay Zone III	Barangay Zone IV	Boalan	Cabatangan	Calarian	Camino Nuevo	Campo
	н	0.729205	0.484226	0.486412	0.578867	0.543528	0.497467	6.076987	3.358161	0.954262	0.379797	2.667151
	2	0.662959	0.198871	0.069409	0.085779	0.129862	0.086828	1.231017	0.103027	0.062692	0.123466	0.599789
	3	0.142659	0.136057	0.006785	0.023658	0.083099	0.005816	1.70345	0.125544	0.037918	0.181006	0.454233
ecte sd. l	4	0.001325	0.03015	9000:0	0.003917	0.093727	0.0007	0.930136	0.120129	0.02917	0.178864	0.123602
	2	0.002567	0.006912	0	0	0	0	0.072289	0.084806	0	0.011682	0.015842
	9	0	0	0	0	0	0	0.00536	0.003044	0	6200000	0

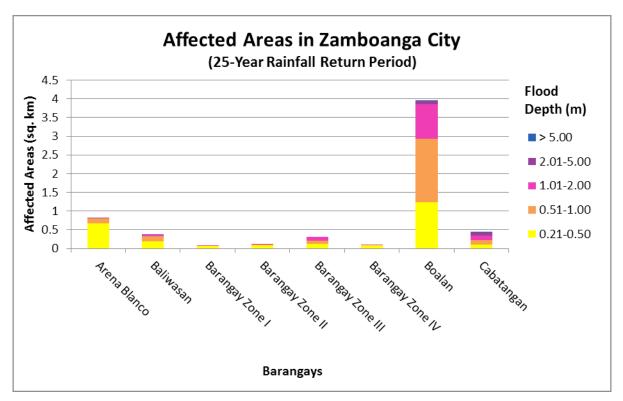


Figure 79. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Table 41. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

TUM	TUMAGA-SAN					Affecte	Affected Barangays in Zamboanga City	boanga City				
los	JOSE BASIN	Canelar	Capisan	Divisoria	Dulian	Guiwan	Kasanyangan	Lumayang	Lumbangan	Lunzuran	Maasin	Malagutay
	1	1.537594	3.379485	1.166717	5.764327	1.32283	3.677343	0.803513	10.09004	3.553325	0.177566	0.150356
') 'kG9	2	0.484663	0.074907	0.062265	0.149263	0.557454	0.691334	0.017886	0.435399	0.160179	0.004166	0.000365
A b km.	3	0.255622	0.047657	0.065676	0.090823	1.171269	0.164587	0.011649	0.357359	0.15508	0.0027	0.0002
	4	0.252994	0.029564	0.06338	0.116431	0.982351	0.013887	0.009994	0.261196	0.127456	0.0021	0.0002
əĦA e)	2	0.0102	0.017893	0.058121	0.230218	0.012492	0	0.00553	0.210371	0.16399	0.000565	0
	9	0	0.0015	0.00214	0.113999	9000'0	0	0.0008	0.042106	0.041755	0	0

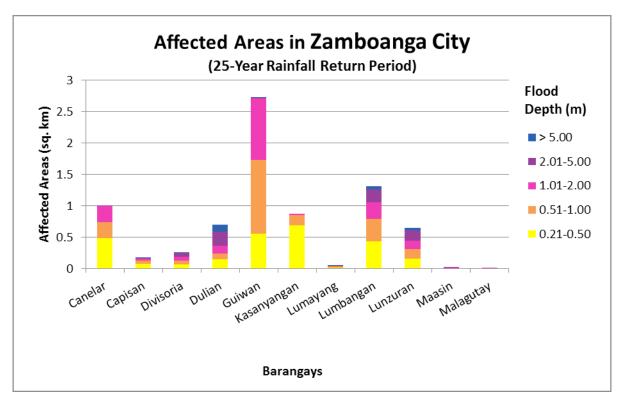


Figure 80. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Table 42. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

						Affected Bar	Affected Barangays in Zamboanga City	nboanga City				
JOSE	UMAGA-SAN JOSE BASIN	Mampang	Mariki	Mercedes	Pasobolong	Pasonanca	Putik	Rio Hondo	Salaan	San Jose Cawa- Cawa	San Jose Gusu	San Roque
	1	3.669075	1.08513	3.747959	0.012413	1.28493	1.812623 0.329449	0.329449	2.934301	0.374387	2.396627	8.361439
еэ.	2	0.678397	0.300111	0.650794	0	0.10581	0.290541	0.117851 0.301784	0.301784	0.093846	0.19777	0.565527
ıA bı km.)	3	0.13119	0.0018	0.185882	0	0.161455	0.569121	0.569121 0.106444 0.232838	0.232838	0.016856	0.428745	0.693312
ecte (sd·	4	0.0163	0	0.064381	0	0.132849	0.355911	0.0016	0.120093	0	0.058102	0.380295
	2	0	0	0.065594	0	0.1715	0.109286	0	0.154121	0	0.0102	0.114547
	9	0	0	0.017118	0	0.028043	0	0	0.1853	0	0.0002	0.0121

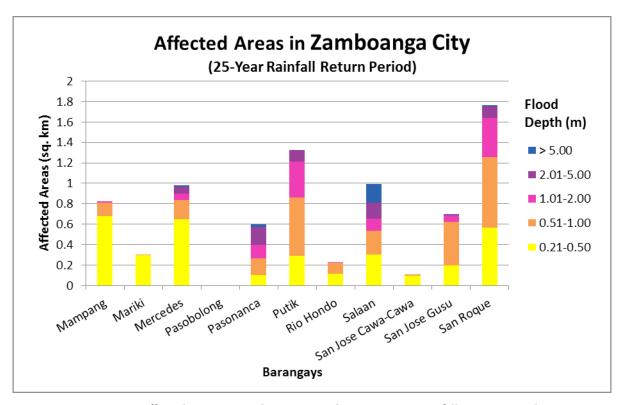


Figure 81. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Table 43. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Affected Barangays in Zamboanga City	Santa Santa Santo Sinunoc Talon- Tetuan Tugbungan Tumaga Zambowood Talon	72735 0.908451 0.174648 0.073085 4.253943 1.622686 2.581191 0.823404 3.650124 0	89025 0.514552 0.052213 0.001054 1.297814 0.430097 1.884029 0.101946 0.326565 0	84858 0.626528 0.0013 0.000997 0.044885 0.204178 1.051795 0.226829 0.347072 0	0005 0.305825 0 0.000963 0.005113 0.091701 0.126429 0.216046 0.179022 0	0.075787 0 0 0.071634 0.04553 0.245137 0.041514 0	
	е	154432 1.372735 0.908	0.409268 0.489025 0.514	0.198945 0.084858 0.626	0.01311 0.0005 0.305	0.000071 0 0.075	
No. of Contract Property of Co	JOSE BASIN Ba	1 1.15	2 0.40	km.	64.	2	,

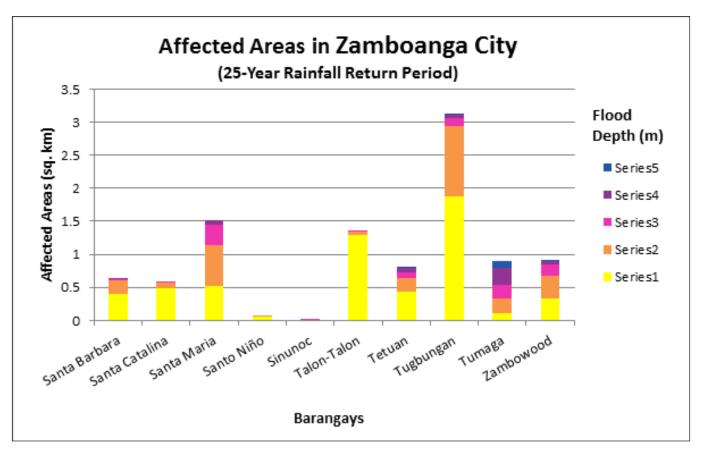


Figure 82. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Table 44. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

TUMA	TUMAGA-SAN					Affected	Affected Barangays in Zamboanga City	nboanga City				
JOSE	JOSE BASIN	Canelar	Capisan	Divisoria	Dulian	Guiwan	Kasanyangan	Lumayang	Lumbangan	Lunzuran	Maasin	Malagutay
	1	1.537594	3.379485	1.166717	5.764327	1.32283	3.677343	0.803513	10.09004	3.553325	0.177566	0.150356
gə.	2	0.484663	0.074907	0.062265	0.149263	0.557454	0.691334	0.017886	0.435399	0.160179	0.160179 0.004166 0.000365	0.000365
aA b	3	0.255622	0.047657	0.065676 0.090823		1.171269 0.164587	0.164587	0.011649	0.357359	0.15508	0.0027	0.0002
ecte (sd:	4	0.252994	0.029564	0.06338	0.116431	0.982351	0.013887	0.009994	0.261196	0.127456 0.0021	0.0021	0.0002
	2	0.0102	0.017893	0.058121	0.230218	0.012492	0	0.00553	0.210371	0.16399	0.000565	0
	9	0	0.0015	0.00214	0.113999	9000'0	0	0.0008	0.042106	0.041755	0	0

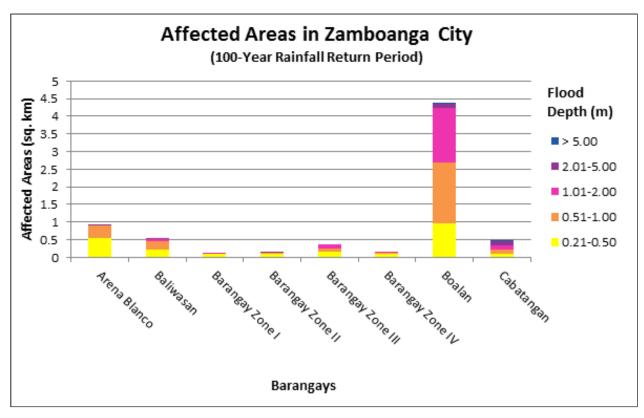


Figure 83. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Table 45. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

TUMA	TUMAGA-SAN					Affected Bar	Affected Barangays in Zamboanga City	nboanga City				
JOSE	JOSE BASIN	Mampang	Mariki	Mercedes	Pasobolong	Pasonanca	Putik	Rio Hondo	Salaan	San Jose Cawa- Cawa	San Jose Gusu	San Roque
	1	3.669075 1.08513	1.08513	3.747959	0.012413	1.28493	1.812623	1.812623 0.329449	2.934301 0.374387	0.374387	2.396627 8.361439	8.361439
ea.	2	0.678397	0.300111	0.650794	0	0.10581	0.290541	0.117851	0.301784	0.093846	0.19777	0.565527
ed Aı km.)	3	0.13119	0.0018	0.185882	0	0.161455	0.569121	0.569121 0.106444 0.232838 0.016856	0.232838	0.016856	0.428745 0.693312	0.693312
-	4	0.0163	0	0.064381	0	0.132849	0.355911	0.0016	0.120093	0	0.058102 0.380295	0.380295
	2	0	0	0.065594	0	0.1715	0.109286	0	0.154121 0	0	0.0102	0.114547
	9	0	0	0.017118	0	0.028043	0	0	0.1853	0	0.0002	0.0121

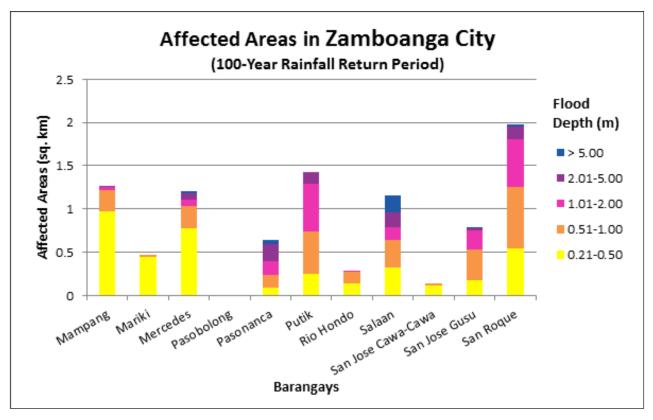


Figure 84. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

Table 46. Affected Areas in Zamboanga City during 25-Year Rainfall Return Period

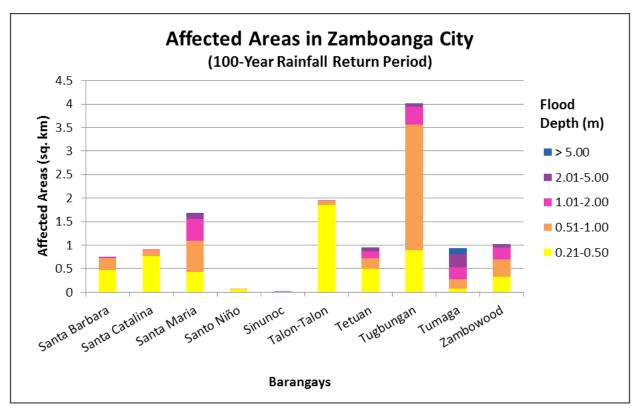


Figure 85. Affected Areas in Zamboanga City during 100-Year Rainfall Return Period

Moreover, the generated flood hazard maps for the Tumaga-San Jose Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

	Are	a Covered in sq. l	km.
Warning Level	5 year	25 year	100 year
Low	1.7086	1.9279	1.9625
Medium	1.3254	1.9483	2.2505
High	0.6145	0.9432	1.1749

Table 47. Area covered by each warning level with respect to the rainfall scenario

Of the 89 identified educational institutions in Tumaga-San Jose Floodplain, 42, 10, and 2 institutions were exposed to low, medium, and high flood levels for the 5 year scenario. 34, 24 and 6 institutions were exposed to the same flood levels for the 25 year scenario; 33, 28, and 6 institutions were exposed to the same flood levels for the 100 year scenario; and 22 institutions were assessed as not exposed to any flooding for all the scenarios.

Of the 22 identified medical institutions in Tumaga-San Jose Floodplain, 5 institutions were exposed to low flood levels for the 5 year scenario; 7 and 1 institutions were exposed to low and medium flood levels for the 25 year scenario, respectively; 9 and 1 institutions were exposed to low and medium flood levels for the 100 year scenario, respectively; and 12 institutions were assessed as not exposed to any flooding for all the scenarios.

5.11 Flood Validation

The flood validation consists of 190 points randomly selected all over the San Jose Floodplain. It has an RMSE value of 0.91. The validation points are found in Annex 11.

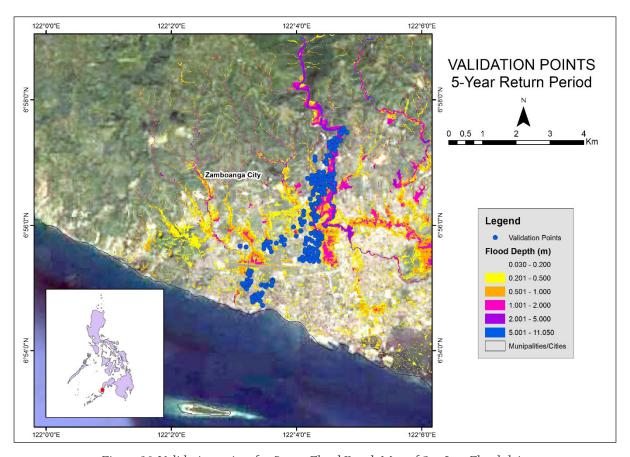


Figure 86. Validation points for 5-year Flood Depth Map of San Jose Floodplain

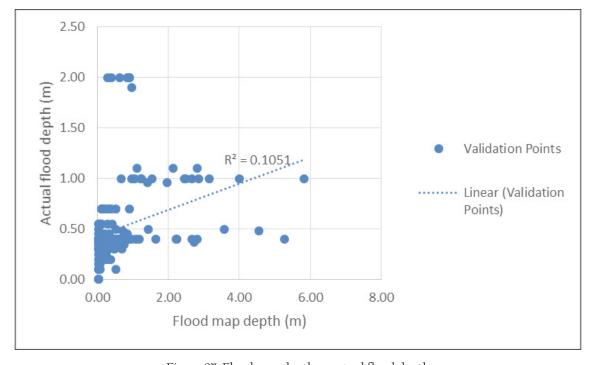


Figure 87. Flood map depth vs actual flood depth

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Environmental Management Bureau IX, DENR

Inquirer.net

National Disaster Risk Reduction and Management Council

Sunstar Zamboanga

Zamboanga Today Online

Zamboangacity.gov.ph

Brunner, 2010

Annexes

Annex 1. Technical Specifications of the LIDAR Sensors used in the San Jose Floodplain Survey

GEMINI SENSOR

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
	POS AV™ AP50 (OEM);
Position and orientation system	220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
Dimensions and weight	Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

D-8900 Aerial Digital Camera

Parameter	Specification			
Camera Head				
Sensor type	60 Mpix full frame CCD, RGB			
Sensor format (H x V)	8, 984 x 6, 732 pixels			
Pixel size	6μm x 6 μm			
Frame rate	1 frame/2 sec.			
FMC	Electro-mechanical, driven by piezo technology (patented)			
Shutter	Electro-mechanical iris mechanism 1/125 to 1/500++ sec. f-stops: 5.6, 8, 11, 16			
Lenses	50 mm/70 mm/120 mm/210 mm			
Filter	Color and near-infrared removable filters			
Dimensions (H x W x D)	200 x 150 x 120 mm (70 mm lens)			
Weight	~4.5 kg (70 mm lens)			
	Controller Unit			
	Mini-ITX RoHS-compliant small-form-factor embedded			
Computer	computers with AMD TurionTM 64 X2 CPU			
Computer	4 GB RAM, 4 GB flash disk local storage			
	IEEE 1394 Firewire interface			
Removable storage unit	~500 GB solid state drives, 8,000 images			
Power consumption	~8 A, 168 W			
Dimensions	2U full rack; 88 x 448 x 493 mm			
Weight	~15 kg			
Imag	e Pre-Processing Software			
Capture One	Radiometric control and format conversion, TIFF or JPEG			
Image output	8,984 x 6,732 pixels 8 or 16 bits per channel (180 MB or 360 MB per image)			

PEGASUS SENSOR

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
Dimensions and weight	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

ZGS-100

August 29, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ZAMBOANGA DEL SUR Station Name: ZGS-100

Order: 2nd

Island: MINDANAO

Barangay: MANICAHAN

Municipality: ZAMBOANGA CITY

MSL Elevation:

PRS92 Coordinates

Longitude: 122º 11' 12.74401"

Ellipsoidal Hgt:

11.27000 m.

WGS84 Coordinates

Latitude: 7º 1' 23.30149"

Latitude: 7º 1' 26.72368"

Longitude: 122° 11' 18.30044"

Ellipsoidal Hgt:

75.60300 m.

PTM / PRS92 Coordinates

Northing: 776712.542 m.

Northing: 776,440.68

410158.521 m. Easting:

Zone:

Zone:

Easting:

UTM / PRS92 Coordinates 410,189.97

51

Location Description

The station is marked by an 4" copper nail with its head flushed at the center of an cement putty on a concrete open canal with inscription " ZGS-100, 2009 NAMRIA".Located at Manicahan Barangay Hal 7 meters South from the flag pole 7 meters km post 1916-ZC22

Requesting Party: ENGR. CHRISTOPHER CRUZ

Purpose: OR Number: T.N.:

Reference 8799780 A 2014-1902

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98

www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

2. ZGS-99

August 29, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ZAMBOANGA DEL SUR Station Name: ZGS-99 Island: MINDANAO Barangay: CALARIAN Municipality: ZAMBOANGA CITY MSL Elevation: PRS92 Coordinates Latitude: 6º 55' 37.48971" Longitude: 122º 0' 52.66431" Ellipsoidal Hgt. 8.14900 m. WGS84 Coordinates Latitude: 6º 55' 34.07737" Longitude: 122° 0' 58.23072" Ellipsoidal Hgt: 72.23000 m. PTM / PRS92 Coordinates Easting: 391103.346 m. Northing: 766020.391 m. Zone: UTM / PRS92 Coordinates Northing: 765,752.27 Easting: 391,141,46 Zone: 51

Location Description

ZGS-99

The station is located beside a seawall, 10 m from the centerline and 50 m from the Airforce Beach, in Brgy, Upper Calarian. It is marked by a 4" copper nail flushed at the center of a cement putty on a concrete open canal with inscriptions " ZGS-99, 2009, NAMRIA".

Requesting Party: ENGR. CHRISTOPHER CRUZ

Purpose:

Reference

OR Number: T.N.: 8799780 A 2014-1901

RUEL DM. BELEN, MNSA ... Director Mapping And Geodesy Branch

NAMEA OFFICES:
Main: Lawon Avenue For Bonkelo, 1634 Tagus Chy, Polippines Tel, No. (1932) 818-4535 to 41
Banchi: 421 Bance 51 San Nicoles, 1816 Martis, Philippines, Tel No. (1932) 241-3464 to 59
www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. ZS-131

Vector Components (Mark to Mark)

From:	ZGS-100	ZGS-100					
Grid		Local		Global			
Easting	410189.967 m	Latitude	N7°01'26.72367"	Latitude	N7°01'23.30149"		
Northing	776440.678 m	Longitude	E122°11'12.74401"	Longitude	E122°11'18.30044"		
Elevation	7.745 m	Height	11.271 m	Height	75.603 m		

To:	ZS-131	ZS-131					
Grid		Local		Global			
Easting	414826.524 m	Latitude	N7°12'31.41328"	Latitude	N7°12'27.94616"		
Northing	796844.403 m	Longitude	E122°13'42.74840"	Longitude	E122°13'48.28765"		
Elevation	7.052 m	Height	10.811 m	Height	74.904 m		

Vector						
ΔEasting	4636.557 m	NS Fwd Azimuth	12°42'06"	ΔΧ	-2545.750 m	
ΔNorthing	20403.725 m	Ellipsoid Dist.	20930.290 m	ΔΥ	-4593.707 m	
ΔElevation	-0.693 m	∆Height	-0.460 m	ΔZ	20260.657 m	

Standard Errors

Vector errors:					
σ <u>ΔEasting</u>	0.002 m	σ NS <u>fwd</u> Azimuth	0°00'00"	σΔΧ	0.005 m
σ <u>ΔNorthing</u>	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.008 m
σ <u>ΔElevation</u>	0.009 m	σ <u>ΔHeight</u>	0.009 m	σΔΖ	0.002 m

Aposteriori Covariance Matrix (Meter*)

	x	Υ	z
х	0.0000227893		
Υ	-0.0000323435	0.0000634026	
z	-0.0000043665	0.000093098	0.0000024763

2. BLLM-166

	ZGS-99					
	Grid	Loc	cal		GI	obal
Easting	391141.462 m	Latitude	N6°55'37.48971"	Latitude		N6°55'34.07737
Northing	765752.270 m	Longitude	E122°00'52.66432"	Longitude	•	E122°00'58.23072
Elevation	4.653 m	Height	8.149 m	Height		72.230 n
To:	ZC-1					
	Grid	Lo	cal		GI	obal
Easting	391123.456 m	Latitude	N6°55'37.81337"	Latitude		N6°55'34.40099
Northing	765762.247 m	Longitude	E122°00'52.07695"	Longitude	•	E122°00'57.64335
Elevation	4.170 m	Height	7.666 m	Height		71.746 n
Vector						
ΔEasting	-18.00	6 m NS Fwd Azimuth		298°52'	19" ΔX	16.179 n
ΔNorthing	9.97	7 m Ellipsoid Dist.		20.59	D m ΔY	8.136 n
ΔElevation	-0.48	3 m ΔHeight	ght -0.		3 m ΔZ	9.811 m

3. ZC-1

From:	ZGS-99							
	Grid		Loc	cal			G	Blobal
Easting	3911	41.462 m	Latitude N6°55'37.48971" La		Latitude		N6°55'34.0773	
Northing	7657	52.270 m	Longitude	E122°00'52	.66432"	Longitude		E122°00'58.2307
Elevation		4.653 m	Height	8	3.149 m	Height		72.230
To:	ZC-1							
	Grid		Loc	cal			G	Global
Easting	3911	23.456 m l	Latitude	N6°55'37	.81337"	Latitude		N6°55'34.4009
Northing	7657	62.247 m	Longitude	E122°00'52	.07695"	Longitude		E122°00'57.6433
Elevation		4.170 m	Height	7	7.666 m	Height		71.746
Vector								
ΔEasting		-18.006	6 m NS Fwd Azimuth			298°52'19" ΔΧ		16.179
ΔNorthing		9.977	7 m Ellipsoid Dist.			20.590	m ΔY	8.136
ΔElevation		-0.483	3 m ∆Height			-0.483	m ΔZ	9.811
Standard Error Vector errors:	S	0.000 m	σ NS fwd Azimuth			0°00'02" a	ΛX	0.000
σ ΔNorthing			σ Ellipsoid Dist.			0.000 m a		0.000
σ ΔElevation			σ ΔHeight			0.000 m σ ΔZ		0.000
	variance Matrix (o zareigii.			0.001		0.000
			X		Υ			Z
			0.0000001675					
X								
X Y			-0.0000000621		0.00	00002067		

4. ZGS-99A

From:	ZGS-99					
	Grid	Loc	al		Glob	ei
Easting	391141.462 m	Latitude N6°55'37.48971" La		Latitude		N6°55'34.07737'
Northing	765752.270 m	Longitude	E122°00'52.66432"	Longitude		E122°00'58.23072"
Elevation	4.653 m	Height	8.149 m	Height		72.230 m
To:	ZGS-99A					
	Grid	Local			Glob	el
Easting	391136.071 m	Latitude	N6°55'37.63895"	Latitude		N6°55'34.22659'
Northing	765756.864 m	Longitude	E122°00'52.48834"	Longitude		E122°00'58.05475'
Elevation	4.354 m	Height	7.850 m	Height		71.931 m
Vector						
ΔEasting	-5.39	1 m NS Fwd Azimuth		310°19'07	ΔX	5.031 m
ΔNorthing	4.59	94 m Ellipsold Dist.		7.085 m	ΔΥ	2.144 m
ΔElevation	-0.29	99 m AHeight	-0.29		ΔZ	4.515 m
Standard Errors Vector errors:						
σ ΔEasting	0.000 m	σ NS fwd Azimuth		0°00'11" σΔ	×	0.000 m
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.		0.000 m σ Δ	Y	0.001 m
σ ΔElevation	0.001 m	σ ΔHeight		0.001 m σ Δ	z	0.000 m
Aposteriori Cove	ariance Matrix (Meter*)	x	Y			z
x		0.0000002239	<u> </u>			
Y		-0.0000001250	0.0	000004533		
		-0.0000001250 0.00 -0.000000277 0.00		_		

5. BVA-1

From:	ZGS100						
Grid				Global			
Easting	410189.967 m	Latitude	N7°01'26.7236	" Latitude		N7°01'23.30149'	
Northing	776440.678 m	Longitude	E122°11'12.7440	" Longitude		E122°11'18.30044'	
Elevation	7.745 m	Height	11.271	n Height		75.603 m	
To:	BVA1						
	Grid	Local			Global		
Easting	418087.142 m	Latitude	N7°15'19.31910	" Latitude		N7°15'15.84241'	
Northing	801995.112 m	Longitude	E122°15'28.78738	" Longitude		E122°15'34.32212'	
Elevation	78.652 m	Height	82.446	n Height		146.526 m	
Vector							
ΔEasting	7897.17	5 m NS Fwd	Azimuth	17°04'19"	ΔΧ	-4988.546 m	
ΔNorthing	25554.43	3 m Ellipsoid	Dist.	26755.117 m	ΔΥ	-6818.290 m	
ΔElevation	70.90	6 m AHeigh		71.176 m	ΔZ	25386.506 m	

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	Research Specialist ENGR. CHRISTOPHER CRUZ	
Survey Supervisor	Supervising Science Research Specialist	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)		
	FIE	LD TEAM	
	Senior Science Research Specialist (SSRS)	JULIE PEARL MARS	UP-TCAGP
	SSRS	JASMINE ALVIAR	UP-TCAGP
	SSRS	ENGR. IRO NIEL ROXAS	UP-TCAGP
LiDAR Operation	Research Associate (RA)	ENGR. LARAH KRISTINA PARAGAS	UP-TCAGP
	RA	FOR. MA. VERLINA TONGA	UP-TCAGP
	RA	KRISTINE ANDAYA	UP-TCAGP
	RA	ENGR. RENAN PUNTO	UP-TCAGP
	RA	SANDRA POBLETE	UP-TCAGP
Ground Survey,	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
Data Download and	RA	FRANK NICOLAS ILEJAY	UP-TCAGP
Transfer	RA	JONATHAN ALMALVEZ	UP-TCAGP
		SSG. JULIUS RENDON	PHILIPPINE AIR FORCE (PAF)
	Airborne Security	SSG. ERWIN DELOS SANTOS	PAF
		SSG. JAYCO MANZANO	PAF
LiDAR Operation		CAPT. BRYAN DONGUINES	ASIAN AEROSPACE CORPORATION (AAC)
	Pilot	CAPT. NEIL ACHILLES AGAWIN	AAC
		CAPT. SHERWIN CESAR ALFONSO	AAC
		CAPT. ANTON DAYO	AAC

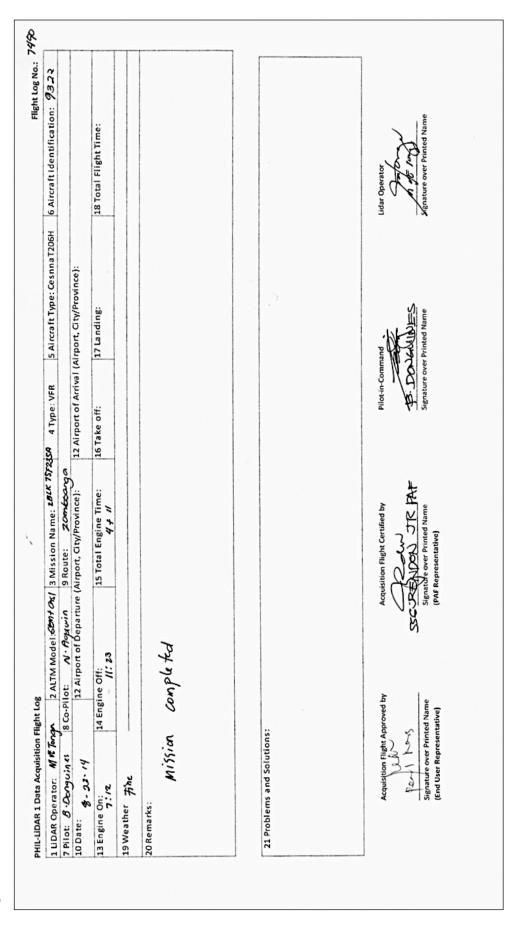
Annex 5. Data Transfer Sheet for San Jose Floodplain

	SERVER	LOCATION	Z:\DAC\RA WDATA	Z:\DAC\RA WDATA			
PLAN		KML	8	N			s
FLIGHT PLAN		Actual	4	4			
	OPERATOR	(OPLOG)	1KB	1KB			
ATIONISI	(chious)	Base Info (.txt)	1KB	1KB		9	
SACE STATION(S)	DASE SI	BASE STATION(S)	5.94	3.07		9	Je .
		DIGITIZER	Ā	Ā			OF:
		RANGE	20.9	£			JOIDA PRIETO SSRS 9/23/14
	MISSION LOG	FILE/CASI	Ā	¥)(op
		MAGESICASI	¥	Ą	1	Received by	Name Position Signature
		POS	252	138			
		LOGS(MB)	493	262			
	LAS	KML	(Swall)	131	i		
	RAWLAS	Output LAS	12.2	5.20	3		777
		SENSOR	Gemini	Comini			Name C. Jeffour P.
		FLIGHT NO. MISSION NAME	T	2BLK75F235A	2BLK75G236A	Received from	Name Position Signature
		FLIGHT NO.	7450G		/45ZG		
		DATE	8/23/2014	10707	8/24/2014		

							02/24/2	015(Zamboan	ga)		-	-	-			-	
			T	RAI	WLAS			RAW	MISSION LOG			BASE ST	ATION(S)	OPERATOR	FLIGH	T PLAN	APPUMP
DATE	FLIGHT NO.	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS(MB)	POS	IMAGES/CAS	FILE/CASI LOGS	RANGE	DIGITIZER	BASE STATION(S)	Base Info (.txt)	LOGS (OPLOG)	Actual	KML	SERVER
5-Feb-15	2535P	1BLK75E36A	PEGASUS	2.95	2608	12.7	232	43.6	360	30.7	NA	7.53	1KB	1KB	38	NA	Z:\DAC\RAW DATA
6-Feb-15	2537P	1BLK75C37A	PEGASUS	3.55	1872	13.9	263	52.4	410	35.8	NA	8.2	1KB	1KB	38	NA	Z-IDACIRAW DATA
6-Feb-15	2539P	1BLK75C37B	PEGASUS	1.37	332	7.95	175	25.2	222	17.6	NA	8.2	1KB	1KB	38	NA	Z:\DAC\RAW DATA
7-Feb-15	2545P	1BLK75C39A	PEGASUS	2.33	473	11.3	259	41.7	305	26.2	NA	7.77	1KB	1KB	70/76	NA	Z:\DAC\RAW DATA
9-Feb-15	2549P	1BLK75A40A	PEGASUS	3.95	2608	10.9	230	32.6	244	22.3	NA	4.37	1KB	1KB	NA	NA	Z:IDACIRAW DATA
10-Feb-15	2553P	₹ 1BLK75S41A	PEGASUS	2.03	566	11.3	256	31.9	247	22.4	NA	6.81	1KB	1KB	89	NA	Z:IDACIRAW DATA
11-Feb-15	2557P	18LK75S42A	PEGASUS	1.62	301	10.6	255	34.9	240	20.5	NA	8.47	1KB	1KB	31/88	NA	Z:IDACIRAW DATA
		Received from Name C José Position Signature	AQJIH					Received by Name Position Signature	Bonger SKS	5/1	3/15						
			Aasth					Name Action (Bong of	5/1	3/15						

DATA TRANSFER SHEET ZAMBOANGA 7/11/2016

0.475	Pi I Pill I I I I						aruaan	RAW	LAS			RAW	MISSION LOG			BASE ST	ATION(S)	OPERATOR	FLIGH	T PLAN	
DATE	FLIGHT NO.	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS	POS	IMAGESICASI	FILE/CASI LOGS	RANGE	DIGITIZER	BASE STATION(S)	Base Info (.txt)	LOGS (OPLOG)	Actual	KML	LOCATION				
May 25, 2016	23390P	1BLK75BS146A	PEGASUS	518	NA	4.08	91	NA	NA	5.63	NA	95.8	1KB	NA	53	NA	Z:\DAC\RA\ DATA				
May 26, 2016	23392P	1BLK75FG147A	PEGASUS	2.28	NA	11	253	NA	NA	24.7	NA	133	1KB	NA	89	NA	Z:\DAC\RA\ DATA				
May 26, 2016	23394P	1BLK75AS147B	PEGASUS	506	NA	3.37	101	NA	NA	5.13	NA	133	1KB	NA	NA	NA	Z:\DAC\RA\ DATA				
May 27, 2016	23398P	1BLK75CSDE148B	PEGASUS	2.09	NA	11.6	281	30	274	22.6	NA	153	1KB	NA	NA	NA	Z:\DAC\RA\ DATA				
May 30, 2016	23408P	1BLK75HI151A	PEGASUS	546	NA	6.09	173	8.73	69	7.88	NA	171	1KB	NA	NA	NA	Z:\DAC\RA\ DATA				
May 30, 2016	23410P	1BLK75CS151B	PEGASUS	1.1	NA	6.75	192	15.3	139	12.6	NA	171	1KB	NA	NA	NA	Z:\DAC\RA\ DATA				


Received from

Received by

Name R. PWNTU
Position RA
Signature

Annex 6. Flight Logs for the Flight Missions

Flight Log for 7450GC Mission

Flight Log No.: 2535 6 Aircraft Identification: PP-C9022 Signature over Printed Name 18 Total Flight Time: Lidar Operator 5 Aircraft Type: CesnnaT206H 8 CO-PILOT: 1. Venguints | 9 Route: Zambo - Zamba | 12 Airport of Arrival (Airport, City/Province): | 12 Airport of Departure (Airport, City/Province): | 2 Airport of Departure (Airport, City/Province): | 2 Airport of Arrival (Airport, City/Province): | 172817 17 Landing: Signature over Printed Name alpha III Pilot-in-Command 1345/4 4 Type: VFR 16 Take off: A Mission Name: 19Κ1π36Α 3 Mission Name: 19Κ1π36Α 15 Total Engine Time: 3 + 5.3 Acquisition Flight Certified by Signature over Printed Name (PAF Representative) BUR 756 at 1100 w A Sum HOELL 14 Engine Off: FOIL Acquisition Flight Approved by Signature over Printed Name (End/User Representative) M Data Acquisition Flight Log 21 Problems and Solutions: Feb . 5,2015 ot: r. Alfonso 1340 H ngine On: Remarks: Neather

Flight Log for 2535P Mission

Flight Log for 2545P Mission

Operator: J. Alvlov	SMS	4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: RP-C90 22
C - A PONCO 8 CO-PI	Dondwings 9 Route:			
2015	12 Airport of Départure (Airport, City/Province): 20M Voanda	12 Airport of Arrival (Airport, City/Province):	rport, City/Province):	
14 Engine Off:	15 Total Engine Time: $4 + 11$	16 Take off: OS3 &H	17 Landing: (239 #	18 Total Flight Time:
9 Weather Portug Choudly	AAAly			
20 Remarks:				
	successful pright			
~		7		
21 Problems and Solutions:				
	W.			
Acquisition Flight Approved by Signature over Printed Name (End Joser Representative)	Acquisition Flight Certified by RATOT Signature over Printed Name (PAF Representative)	Pilot-in-Command Colored Mane Signature over Printed Name		Lidar Operator Lidar Operator Lidar Court Frinted Name

Flight Log No.: 2557 5 Aircraft Type: Cesnna T206H 6 Aircraft Identification: RP - C902L 18 Total Flight Time: BLK TYC DE 65 FS 12 Airport of Arriva (Airport, City/Province): 17 Landing: Signature over Printed Name alpas Pilot-in-Command 16 Take off: 2 ALTM Model: 1814755443 Mission Name: 1814755474 4 Type: VFR A2000 in rable 9 Route: Zemps C. Alfans 8 Co-Pilot: B. Sorguines 9 Route: Zerulpo 15 Total Engine Time: Acquisition Flight Certified by Signature over Printed Name (PAF Representative) Ed from Kimann 14 Engine Off: Portly cloudy 1325/4 Acquisition Flight Approved by Signature over Printed Name (End User Representative) Operator: J. Alvipor Data Acquisition Flight Log Feb. 11,2015 Problems and Solutions: 2010 ne On: marks: ather

Flight Log for 2557P Mission

Flight Log for 23394P Mission

12 Alzonso III 12 Alzonso III 12 Alzonso III 13 Alzonso III 14 Engine Off: 12 Alzonso III 14 Engine Off: 15 Alzonso III 15 A	LIDAR Operator I. Roxas	1 LIDAR Operator: I. ROXAS & SPORETE 2 ALTM Model: PECASUS	3 Mission Name: 18LK 75ASI4 78 4 Type: VFR	1476 4Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: Rp- 29122
12 Airport of Departure (Airport, Gty/Province): 2AMBORNGA CITY 2AMBORNGA CITY 15 Total Engine Time: 15 Total Engine Time: 16 Total Fight CLOUTY 2.0.b Non Billable 2.0.c Others: 0 Aircraft Test Flight 0 LiDAR System Maintenance 0 Others: 0 Others: 12 Airport of Arrival (Airport, Gty/Province): 2AMBORNGA CITY 17 TH	Pilot: C. ALFONSO III	8 Co-Pilot: A. DAYD	9 Route: ZAMBOBNGA	HY - ZAMBOANGA C	rty	
14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing:	0 Date: MAY 26, 206	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival (/ ZAMBDANGA	Nirport, City/Province): CrtY	
iffication 20.b Non Billable 20.c Others AAC Admin Flight A Aircraft Maintenance AAC Admin Flight O Aircraft Maintenance O Aircraft Maintenance O Aircraft Maintenance O Aircraft Maintenance O Ahl-LiDAR Admin Activities and Solutions ther Problem em Problem em Problem errs: Problem errs:	3 Engine On: bo5 H	10	15 Total Engine Time: 1 + 47	16 Take off: (6/0 H	_	18 Total Flight Time:
20.b Non Billable 20.c Others 21. Real Problem 20.c Others 22.b Non Billable 20.c Others 23.b Non Billable 20.c Others 24. Phillap Problem 25. Phillap P	9 Weather	Janaro				
20.b Non Billable 20.c Others 20.b Non Billable 20.c Others y Flight O Arcraft Test Flight O Aircraft Maintenance on AAC Admin Flight O Ahl-LiDAR Admin Activities oration Flight O Others: O Phil-LiDAR Admin Activities oration Flight Others O Others: O Phil-LiDAR Admin Activities oration Flight O Others: O Phil-LiDAR Admin Activities oration Flight O Others: O Others: O Phil-LiDAR Admin Activities oration Flight O Others: O Others: O Phil-LiDAR Admin Activities oration Flight O Others: O Ot	0 Flight Classification			21 Remarks		
O Aircraft Test Flight O Aircraft Maintenance O AAC Admin Flight O Others: O Others: O Others: O Phil-LiDAR Admin Activities	O.a Billable	20.b Non Billable	20.c Others	Succe	ssful flight	
No Weather Problem System Problem Aircraft Problem Aircraft Problem Pilot Problem Others:		Aircraft Test Flight AAC Admin Flight Others:	LIDAR System Maint Aircraft Maintenanc Phil-LIDAR Admin Ac		pleted BLK 75AS	
O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others:	2 Problems and Solutions					
	Acquisition riight Approved by			11 mars 18	The second second	
Salar Ann)	The state of the s	The state of the s	March Consol	A RESERVED	1

Annex 7. Flight Status Reports

FLIGHT STATUS REPORT

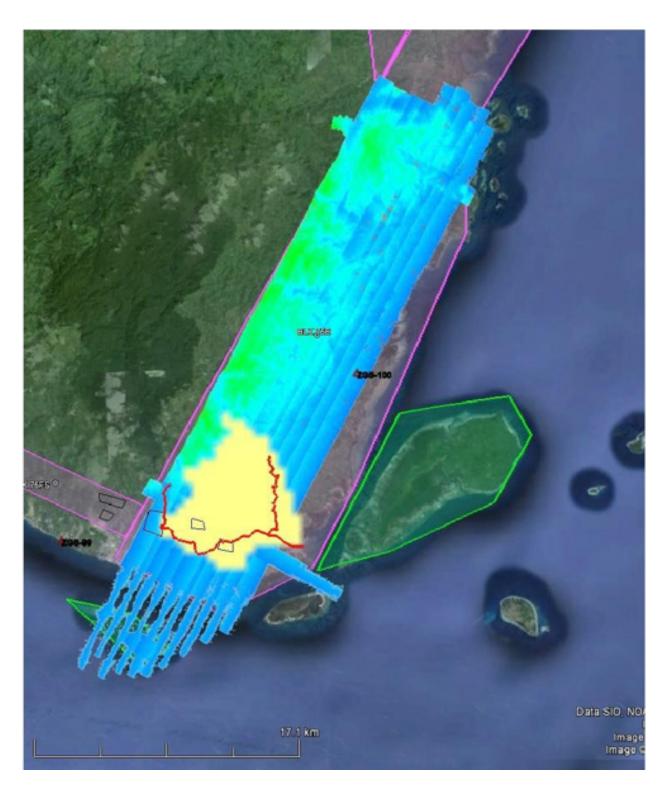
San Jose Floodplain

August 23, 2014; February 5,8 and 11 2015; May 26, 2016


FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7450GC	BLK75F	2BLK75F235A	M.V.E. TONGA	Aug. 23, 2014	COMPLETED BLK75F;FAST CLOUD BUILD UP
2535P	BLK75E	1BLK75E36A	J. ALVIAR	Feb. 5, 2015	FOR COMPLETION AND SOME GAP FILLING (TERRAIN)
2545P	BLK75C BLK75D BLK75E BLK75FS	1BLK75C39A	J. ALVIAR	Feb. 7, 2015	ABNORMAL PROGRAM TERMINATION (AVPOS)
2557P	BLK75C BLK75D BLK75GS BLK75FS SACOL IS.	1BLK75S42A	J. ALVIAR	Feb. 11, 2015	SURVEY 6 DESCENDED TO 1000 DUE TO CLOUDS;RETURNED TO 1100M FOR SURVEY OVER SACOL;GAPS DUE TO CLOUDS, DESCENDED TO 1000M TO FILL UP VOIDS IN SACOL AND BLK 75EFG;ADDED 1 SMALL LINE (CORRIDOR 18), DESCENDED TO 800M;CORRIDOR 16 WHICH SHOULD COVER GAP IN BLK75E, UP TO ALL
23394P	BLK75AS	1BLK75AS147B	I. ROXAS and S. POBLETE	May 26, 2016	COMPLETED BLK 75AS

LAS/SWATH BOUNDARIES PER MISSION FLIGHT

Flight No.: 7450GC Area: BLK75F


Mission Name: 2BLK75F235A

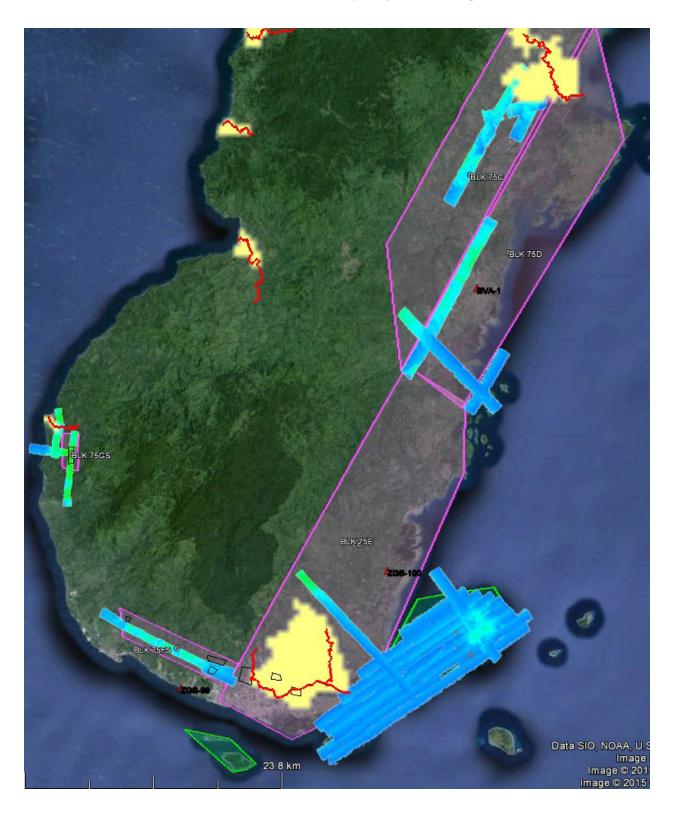
Parameters: Altitude: 1100m; Scan Frequency: 50; Scan Angle: 40

Flight No.: 2535P
Area: BLK75E
Mission Name: 1BLK75E36A

Parameters: Altitude: 1100m; Scan Frequency: 30; Scan Angle: 50

Flight No.: 2545P
Area: BLK 75C
Mission Name: 1BLK75C39A

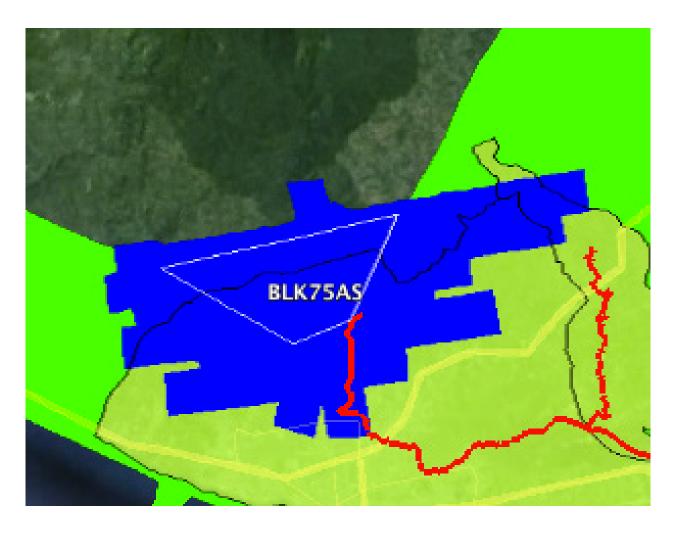
Parameters: Altitude: 1100m; Scan Frequency: 30; Scan Angle: 50



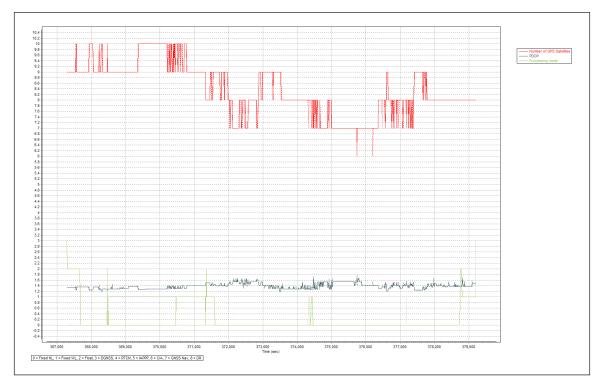
Flight No.: 2557P

Area: BLK 75C, D, E, GS, FS, Sacol island

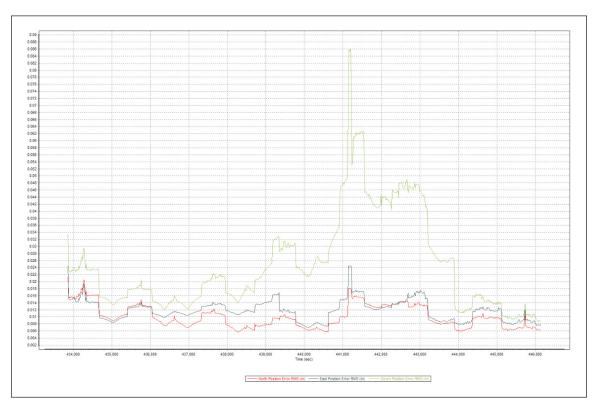
Mission Name: 1BLK75S42


Parameters: Altitude: 800-1200m; Scan Frequency: 30; Scan Angle: 50

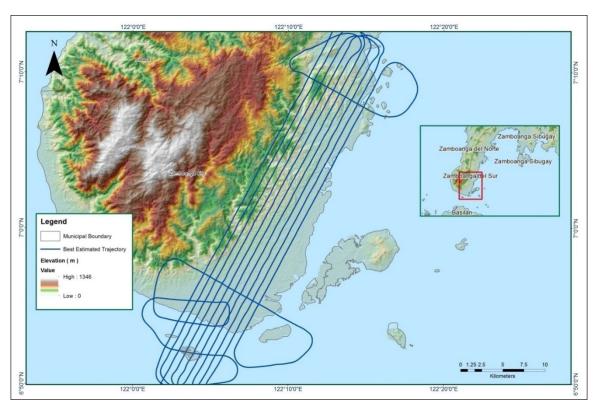
Flight No.: 23394P Area: BLK75AS

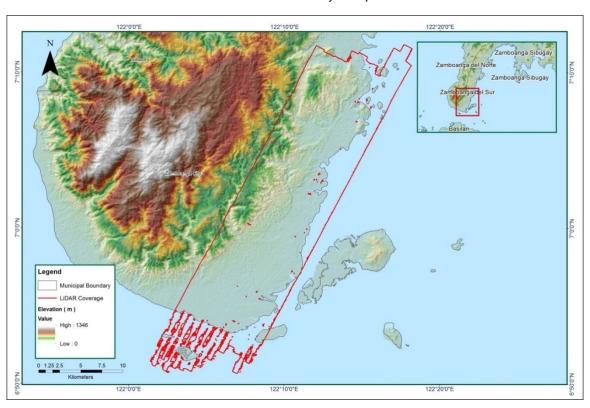

Mission Name: 1BLK75AS147B

Parameters: Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50



ANNEX 8. Mission Summary Reports


Flight Area	Zamboanga
Mission Name	BIk75E
Inclusive Flights	2535P, 2545P
Range data size	56.9 GB
POS data size	491 MB
Base data size	15.3 MB
Image	85.3 GB
Transfer date	February 27, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.08
RMSE for East Position (<4.0 cm)	1.42
RMSE for Down Position (<8.0 cm)	2.94
Boresight correction stdev (<0.001deg)	0.000223
IMU attitude correction stdev (<0.001deg)	0.000328
GPS position stdev (<0.01m)	0.0061
Minimum % overlap (>25)	96.73%
Ave point cloud density per sq.m. (>2.0)	5.11
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	522
Maximum Height	498.00 m
Minimum Height	65.50 m
Classification (# of points)	
Ground	369,443,876
Low vegetation	268,989,359
Medium vegetation	403,829,240
High vegetation	815,604,498
Building	37,951,116
Orthophoto	YES
Processed by	Engr. Analyn Naldo, Engr. Velina Angela Bemida, Alex John Escobido


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

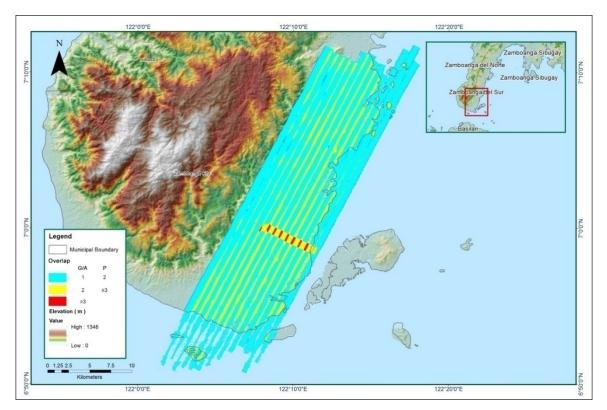
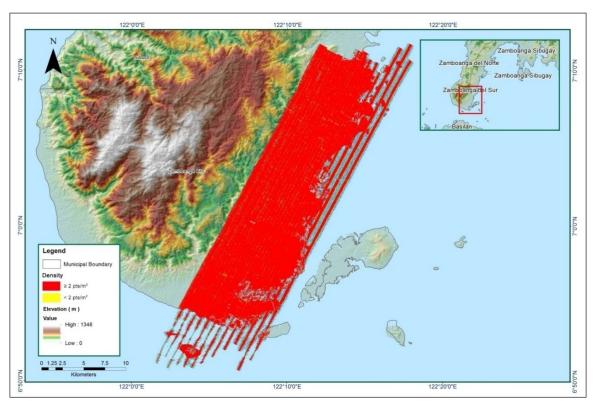
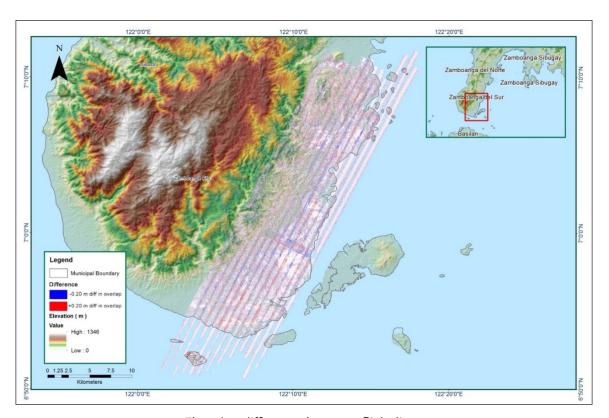
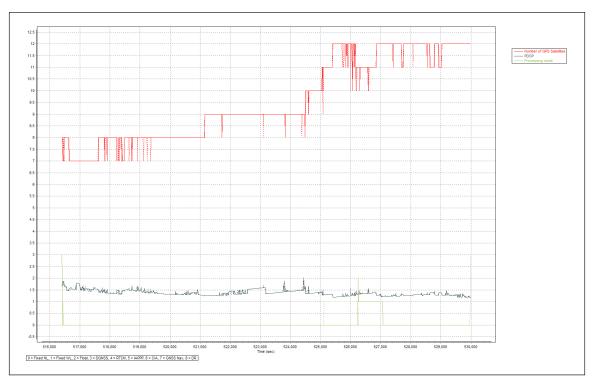
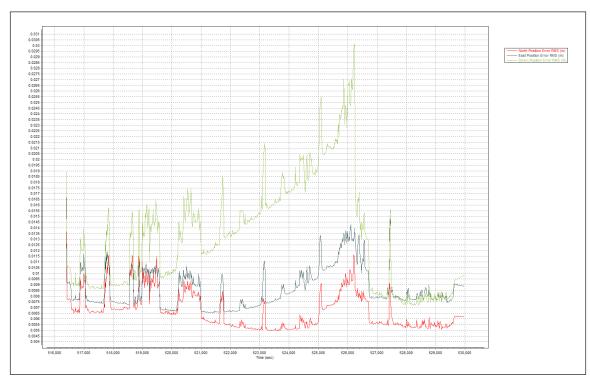




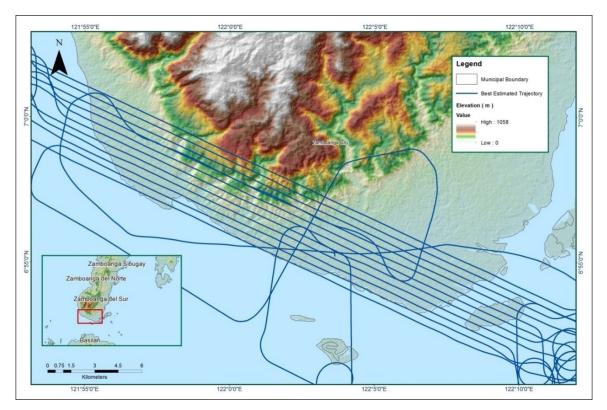
Image of data overlap

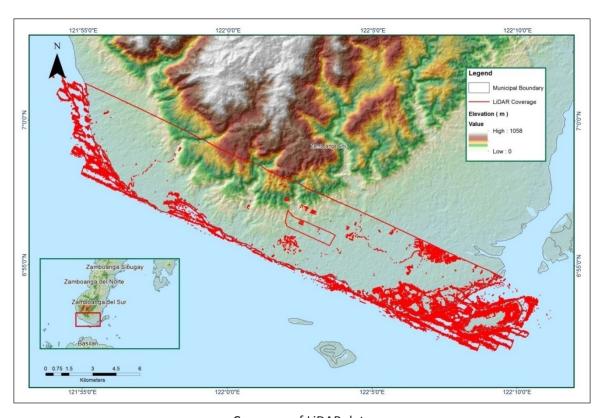


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Zamboanga
Mission Name	Blk75F
Inclusive Flights	7450GC, 2557P
Range data size	20.9 GB
POS data size	252 MB
Base data size	14.41 MB
Image	0 GB
Transfer date	September 23, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.16
RMSE for East Position (<4.0 cm)	1.43
RMSE for Down Position (<8.0 cm)	3.02
Boresight correction stdev (<0.001deg)	0.000318
IMU attitude correction stdev (<0.001deg)	0.000664
GPS position stdev (<0.01m)	0.0096
Minimum % overlap (>25)	45.16%
Ave point cloud density per sq.m. (>2.0)	3.30
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	208
Maximum Height	505.54 m
Minimum Height	64.94 m
Classification (# of points)	
Ground	46,501,319
Low vegetation	53,336,315
Medium vegetation	110,540,939
High vegetation	159,255,533
Building	24,154,268
Orthophoto	NO
Processed by	Engr. Jommer Medina, Engr. Harmond Santos, Engr. Ma. Ailyn Olanda


Solution Status

.Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

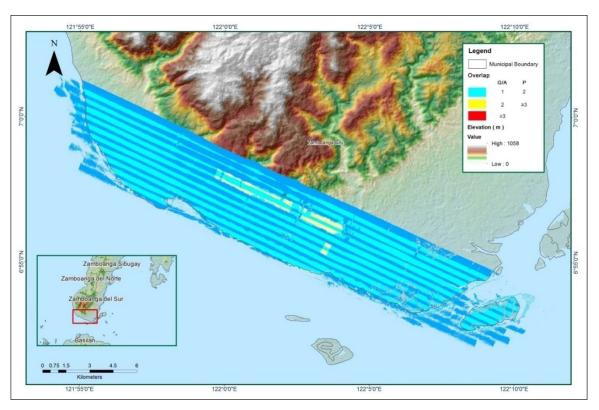
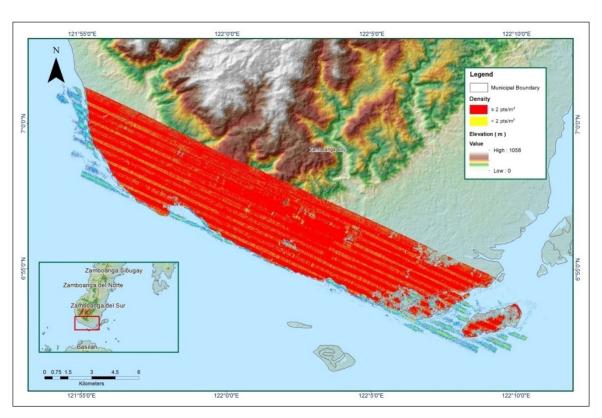
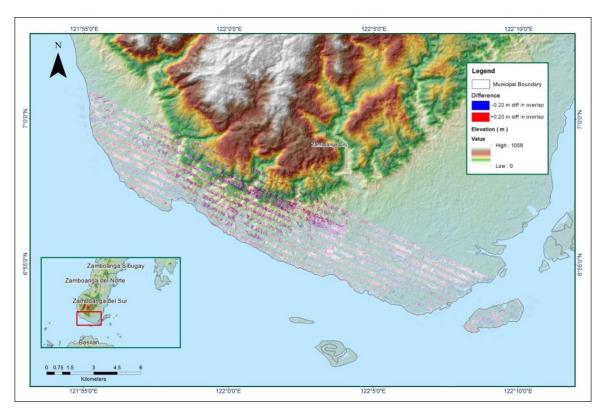
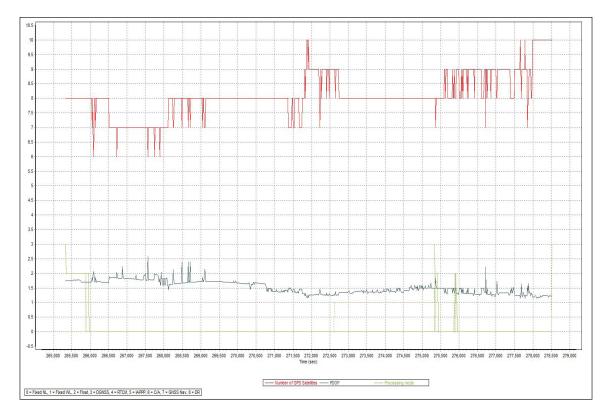
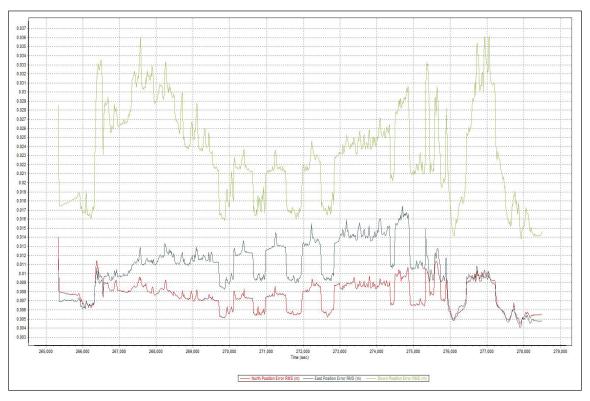




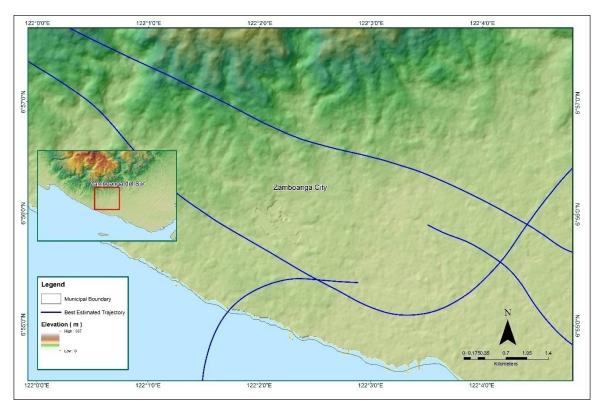
Image of data overlap

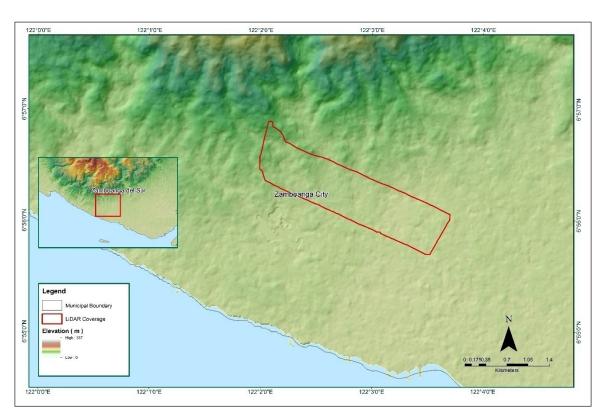


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Zamboanga
Mission Name	Blk 75F_additional
Inclusive Flights	2557P
Range data size	20.5 GB
POS data size	255 MB
Base data size	8.47 MB
Image	34.9 GB
Transfer date	February 27 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.14
RMSE for East Position (<4.0 cm)	1.74
RMSE for Down Position (<8.0 cm)	3.62
Boresight correction stdev (<0.001deg)	0.000683
IMU attitude correction stdev (<0.001deg)	0.001812
GPS position stdev (<0.01m)	0.0094
Minimum % overlap (>25)	90.58%
Ave point cloud density per sq.m. (>2.0)	6.24
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	10
Maximum Height	211.78 m
Minimum Height	71.72 m
Classification (# of points)	
Ground	4,965,841
Low vegetation	1,517,124
Medium vegetation	2,161,688
High vegetation	5,531,337
Building	767,278
Orthophoto	NO
Processed by	Engr. Jommer Medina, Engr. Melanie Hingpit, Kathryn Claudyn Zarate


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

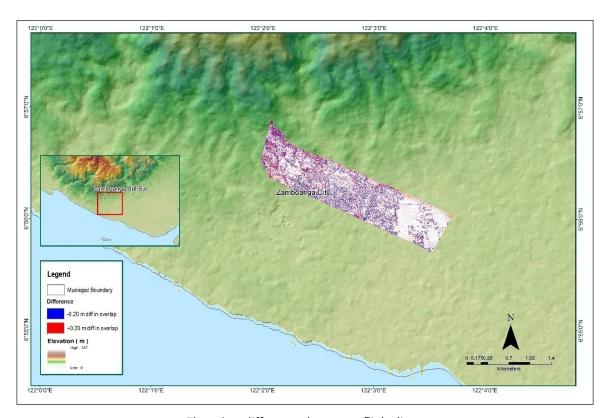
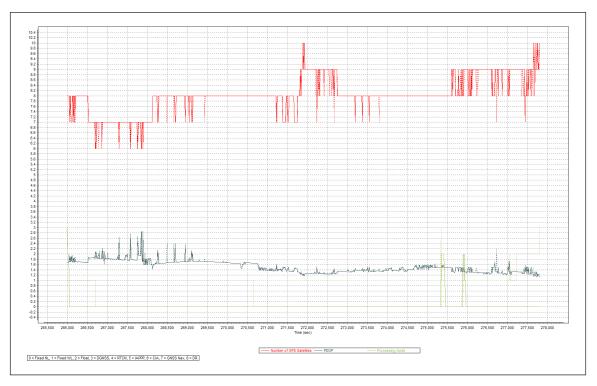
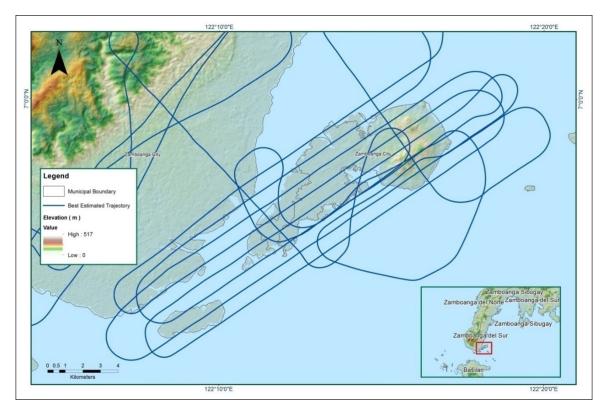

Coverage of LiDAR data

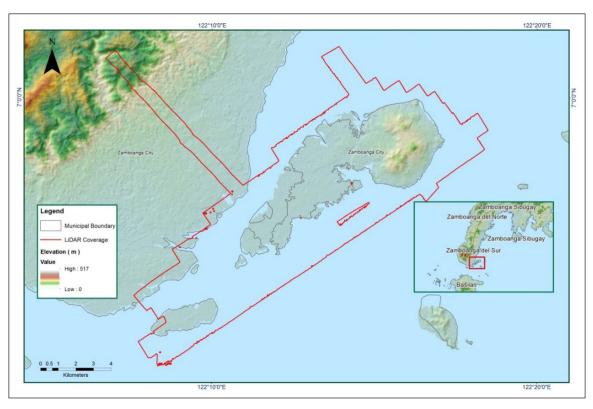
Image of data overlap

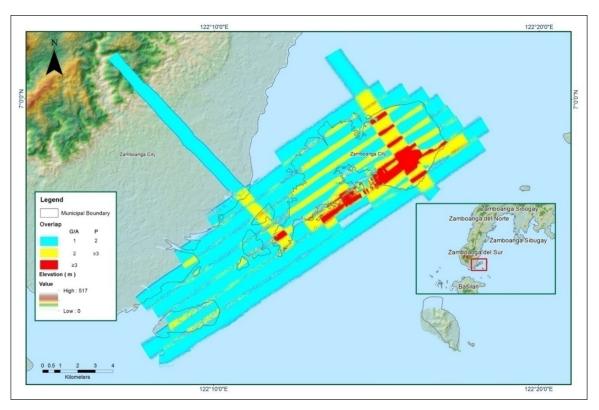


Density map of merged LiDAR data

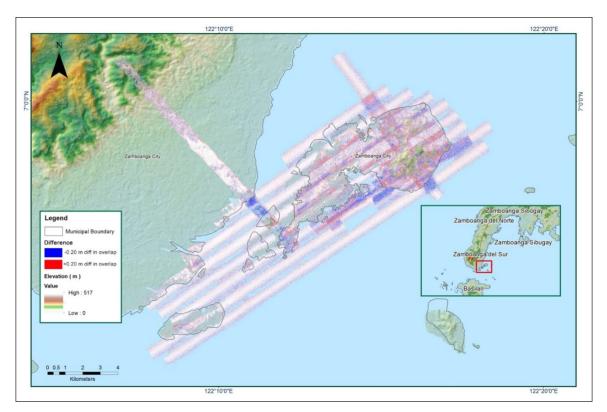
Elevation difference between flight lines


Flight Area	Zamboanga
Mission Name	Sacol
Inclusive Flights	2557P
Range data size	20.5 GB
POS data size	255 MB
Base data size	8.47 MB
Image	34.9 GB
Transfer date	February 27 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.07
RMSE for East Position (<4.0 cm)	1.72
RMSE for Down Position (<8.0 cm)	3.35
Boresight correction stdev (<0.001deg)	0.000189
IMU attitude correction stdev (<0.001deg)	0.001474
GPS position stdev (<0.01m)	0.0028
Minimum % overlap (>25)	93.75%
Ave point cloud density per sq.m. (>2.0)	4.29
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	183
Maximum Height	422.16 m
Minimum Height	67.62 m
Classification (# of points)	
Ground	102,448,806
Low vegetation	102,238,659
Medium vegetation	104,811,352
High vegetation	138,074,781
Building	1,942,211
Orthophoto	YES
Processed by	Engr. Irish Cortez, Engr. Melanie Hingpit, Alex John Escobido

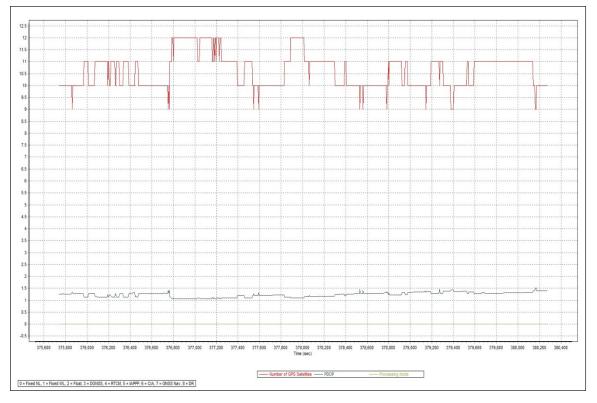

Solution Status


Smoothed Performance Metric Parameters

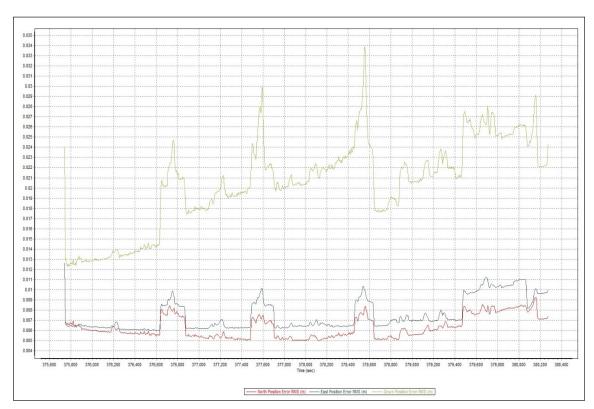
Best Estimated Trajectory


Coverage of LiDAR Data

Im Elevation difference between flight lines age of data overlap

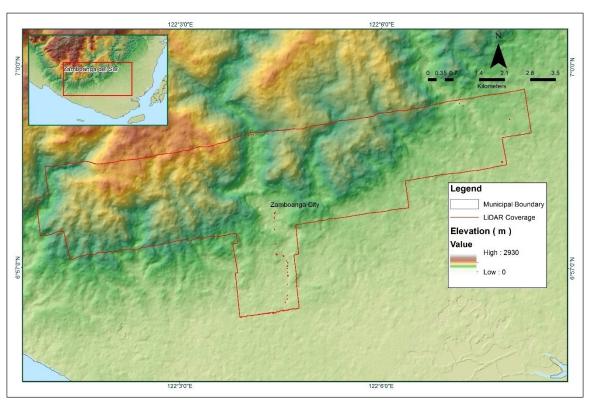


Density map of merged LiDAR data



Elevation difference between flight lines

Flight Area	Zamboanga Reflights
Mission Name	Blk75AS
Inclusive Flights	23394P
Range data size	5.13 GB
POS data size	101 MB
Base data size	133 MB
Image	n/a
Transfer date	July 14, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.9
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	3.4
Boresight correction stdev (<0.001deg)	n/a
IMU attitude correction stdev (<0.001deg)	n/a
GPS position stdev (<0.01m)	n/a
Minimum % overlap (>25)	27.08
Ave point cloud density per sq.m. (>2.0)	2.98
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	60
Maximum Height	588.90 m
Minimum Height	77.48 m
Classification (# of points)	
Ground	31,359,118
Low vegetation	14,011,685
Medium vegetation	34,188,233
High vegetation	107,683,623
Building	2,927,347
Orthophoto	No
Processed by	Ben Joseph Harder, Engr. Erica Erin Elazegui, Engr. Monalyne Rabino


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR Data

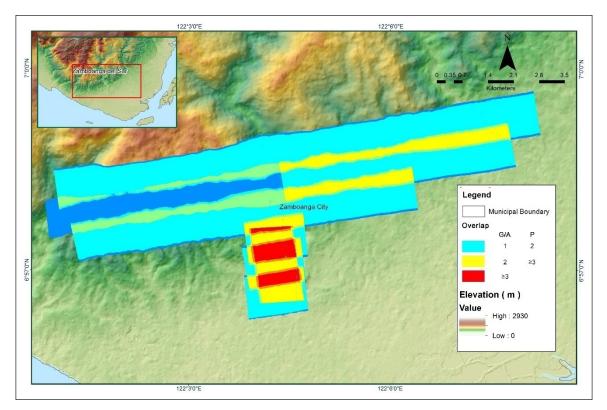
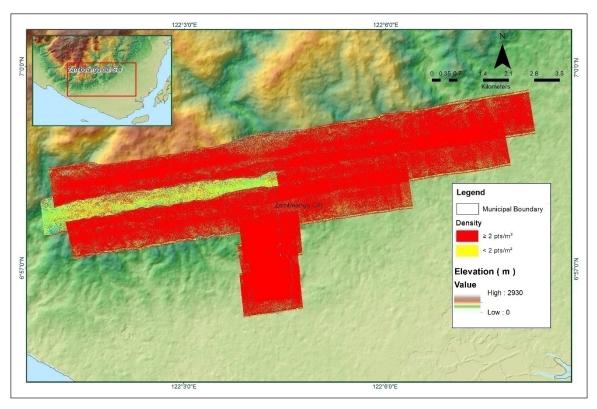
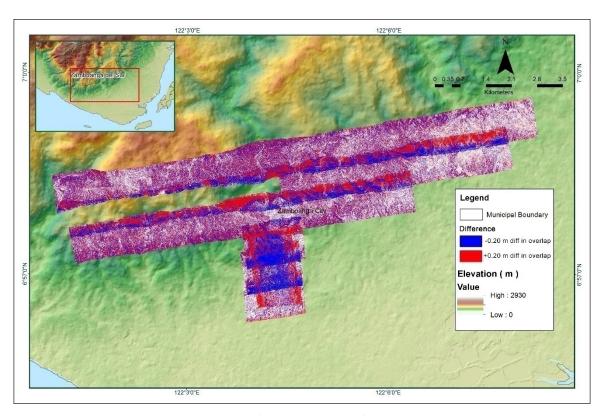
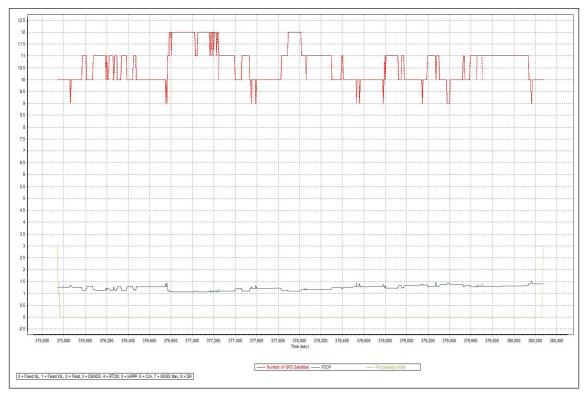
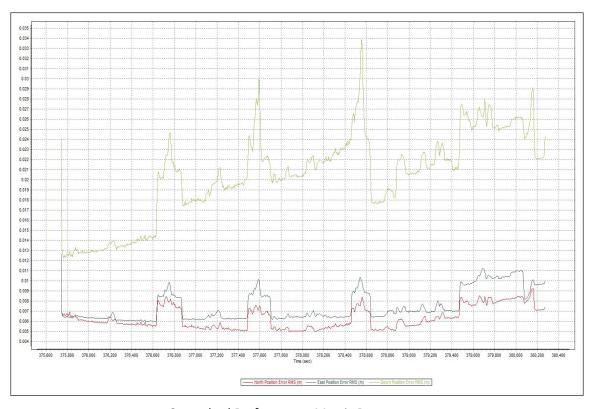




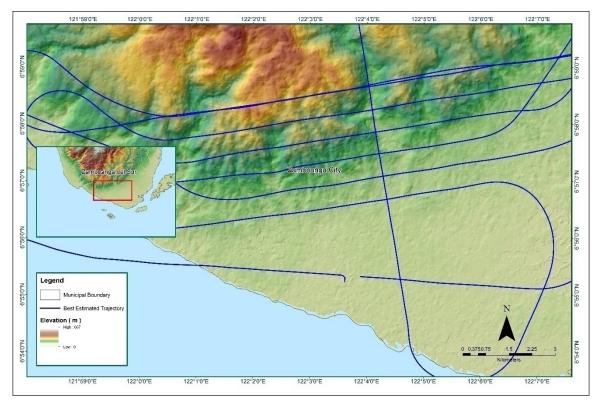
Image of data overlap

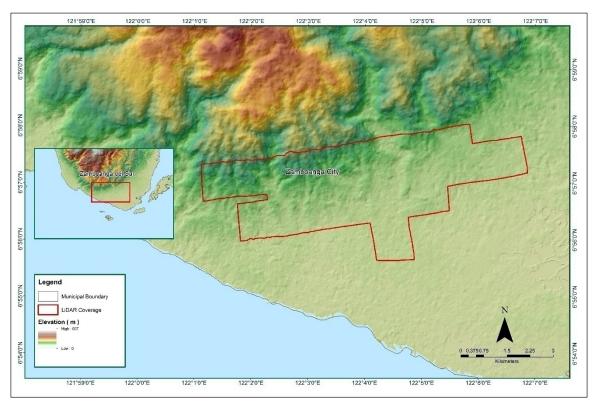


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Zamboanga
Mission Name	Blk 75F_supplement
Inclusive Flights	23394P
Range data size	5.13 GB
POS data size	101 MB
Base data size	133 MB
Image	n/a
Transfer date	July 14, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	0.93
RMSE for East Position (<4.0 cm)	1.13
RMSE for Down Position (<8.0 cm)	3.39
· · · ·	
Boresight correction stdev (<0.001deg)	NA
IMU attitude correction stdev (<0.001deg)	NA
GPS position stdev (<0.01m)	NA
Minimum % overlap (>25)	32.76
Ave point cloud density per sq.m. (>2.0)	2.57
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	43
Maximum Height	377.09 m
Minimum Height	73.58 m
Classification (# of points)	
Ground	19,418,142
Low vegetation	12,541,089
Medium vegetation	25,246,500
High vegetation	58,645,039
Building	5,803,796
Orthophoto	No
Processed by	Ben Joseph Harder, Engr. Harmond Santos, Maria Tamsyn Malabanan


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR Data

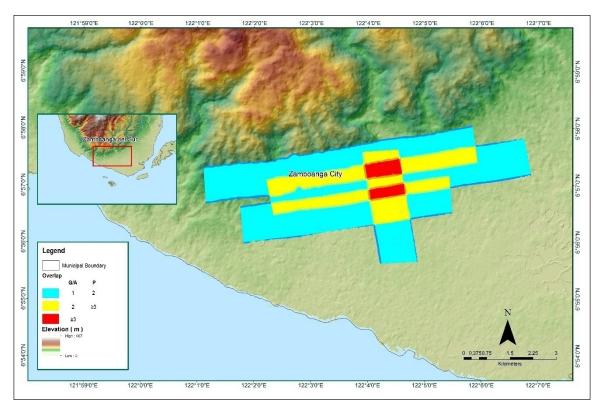
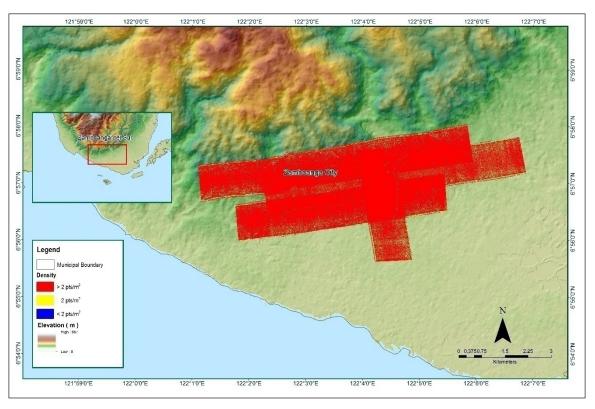
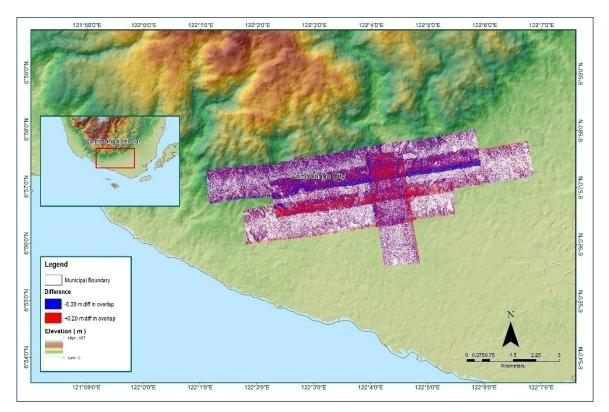




Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Annex 9. San Jose Model Basin Parameters

	SCS C	SCS Curve Number Loss	r Loss	Clark Unit Hydrograph Transform	aph Transform		Rec	Recession Baseflow	W	
Basin Number	Initial Abstraction (mm)	Curve	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W300	0.0055033	67.2	0.0	0.68764	1.1222	Discharge	0.0057820	0.55	Ratio to Peak	0.5
W290	0.0055033	67.2	0.0	0.50607	0.82591	Discharge	0.0050293	0.55	Ratio to Peak	0.5
W280	0.0055033	67.2	0.0	1.4054	2.2936	Discharge	0.0335228	0.55	Ratio to Peak	0.5
W270	0.0055033	67.2	0.0	1.2498	2.0396	Discharge	0.0676101	0.55	Ratio to Peak	0.5
W260	0.0055033	67.2	0.0	1.3372	2.1823	Discharge	0.0516099	0.55	Ratio to Peak	0.5
W250	0.0055033	67.2	0.0	0.39249	0.64054	Discharge	0.0042595	0.55	Ratio to Peak	0.5
W240	0.0055033	67.2	0.0	0.5689	0.92845	Discharge	0.0211036	0.55	Ratio to Peak	0.5
W230	0.0055033	67.2	0.0	0.77648	1.2672	Discharge	0.0318578	0.55	Ratio to Peak	0.5
W220	0.0055033	67.2	0.0	0.52932	0.86385	Discharge	0.0213316	0.55	Ratio to Peak	0.5
W210	0.0055033	67.2	0.0	1.3787	2.25	Discharge	0.0473219	0.55	Ratio to Peak	0.5
W200	0.0055033	67.2	0.0	1.0057	1.6412	Discharge	0.0293659	0.55	Ratio to Peak	0.5
W190	0.0055033	67.2	0.0	0.82207	1.3416	Discharge	0.0174485	0.55	Ratio to Peak	0.5
W180	0.0051569	69.4736	0.0	0.63004	1.0282	Discharge	0.0112047	0.55	Ratio to Peak	0.5
W170	0.0041564	77	0.0	0.82153	1.3407	Discharge	0.0165647	0.55	Ratio to Peak	0.5
W160	0.0047521	72.3338	0.0	0.97255	1.5872	Discharge	0.0270680	0.55	Ratio to Peak	0.5

Annex 10. San Jose Model Reach Parameters

		Muskin	Muskingum Cunge Channel Routing	el Routing			
Reach Number	Time Step Method	Length (m)	edolS	Manning's n	Shape	Width	Side Slope
R40	Automatic Fixed Interval	596.98	0.0435322	0.215	Trapezoid	30	0.01
R60	Automatic Fixed Interval	1215.7	0.0778750	0.215	Trapezoid	30	0.01
R80	Automatic Fixed Interval	755.27	0.26244	0.215	Trapezoid	30	0.01
R90	Automatic Fixed Interval	156.57	0.0027507	0.215	Trapezoid	30	0.01
R120	Automatic Fixed Interval	1806.4	0.0458446	0.215	Trapezoid	30	0.01
R130	Automatic Fixed Interval	295.56	0.0027507	0.215	Trapezoid	30	0.01
R150	Automatic Fixed Interval	410.56	0.0402350	0.215	Trapezoid	30	0.01
R40	Automatic Fixed Interval	296.98	0.0435322	0.215	Trapezoid	30	0.01

Annex 11. San Jose Field Validation Points

Point	Validation	Coordinates	Model	Validation	Error	Event/	Rain Return /
Number	Lat	Long	Var (m)	Points (m)		Date	Scenario
1	6.917288	122.06	0.21	0.45	-0.24	Habagat	5 -Year
2	6.917481	122.0573	0.03	0.30	-0.27	Habagat	5 -Year
3	6.91743	122.0589	0.03	0.45	-0.42	Habagat	5 -Year
4	6.918807	122.0603	0.03	0.25	-0.22	Habagat	5 -Year
5	6.918482	122.0601	0.23	0.25	-0.02	Habagat	5 -Year
6	6.918353	122.0604	0.18	0.25	-0.07	Habagat	5 -Year
7	6.911992	122.0576	0.05	0.15	-0.10	Habagat	5 -Year
8	6.916976	122.0585	0.03	0.15	-0.12	Habagat	5 -Year
9	6.917382	122.0579	0.07	0.15	-0.08	Habagat	5 -Year
10	6.914789	122.0555	0.11	0.55	-0.44	Habagat	5 -Year
11	6.913567	122.0559	0.41	0.55	-0.14	Habagat	5 -Year
12	6.914017	122.0552	0.11	0.70	-0.59	Habagat	5 -Year
13	6.918102	122.0544	0.30	0.55	-0.25	Habagat	5 -Year
14	6.917338	122.054	0.16	0.70	-0.54	Habagat	5 -Year
15	6.917448	122.0533	0.34	0.45	-0.11	Habagat	5 -Year
16	6.914413	122.0553	0.10	0.55	-0.45	Habagat	5 -Year
17	6.913778	122.0563	0.34	0.70	-0.36	Habagat	5 -Year
18	6.914406	122.0558	0.04	0.55	-0.51	Habagat	5 -Year
19	6.913408	122.055	0.39	0.70	-0.31	Habagat	5 -Year
20	6.918523	122.0545	0.03	0.55	-0.52	Habagat	5 -Year
21	6.913991	122.0555	0.20	0.70	-0.50	Habagat	5 -Year
22	6.913127	122.057	0.12	0.45	-0.33	Habagat	5 -Year
23	6.916888	122.0531	0.52	0.70	-0.18	Habagat	5 -Year
24	6.916361	122.0534	0.06	0.55	-0.49	Habagat	5 -Year
25	6.91418	122.0548	0.03	0.50	-0.47	Habagat	5 -Year
26	6.917392	122.0525	0.15	0.70	-0.55	Habagat	5 -Year
27	6.917812	122.0522	0.91	0.70	0.21	Habagat	5 -Year
28	6.912892	122.055	0.11	0.70	-0.59	Habagat	5 -Year
29	6.913244	122.0551	0.29	0.70	-0.41	Habagat	5 -Year
30	6.915334	122.0576	0.03	0.20	-0.17	Habagat	5 -Year
31	6.91477	122.0572	0.25	0.25	0.00	Habagat	5 -Year
32	6.914469	122.0569	0.06	0.20	-0.14	Habagat	5 -Year
33	6.915086	122.0564	0.15	0.25	-0.10	Habagat	5 -Year
34	6.91884	122.0536	0.90	2.00	-1.10		5 -Year
35	6.918187	122.054	0.30	2.00	-1.70		5 -Year
36	6.919982	122.0543	0.90	2.00	-1.10		5 -Year
37	6.920569	122.0542	0.85	2.00	-1.15		5 -Year
38	6.921024	122.0547	0.63	2.00	-1.37		5 -Year
39	6.921205	122.0541	0.40	2.00	-1.60		5 -Year
40	6.920355	122.0537	0.88	2.00	-1.12		5 -Year
41	6.918109	122.0533	0.67	1.00	-0.33		5 -Year
42	6.956439	122.077	5.83	1.00	4.83	Typhoon	5 -Year

Point	Validation	Coordinates	Model	Validation	Error	Event/	Rain Return /
Number	Lat	Long	Var (m)	Points (m)		Date	Scenario
43	6.955689	122.0777	4.00	1.00	3.00	Typhoon	5 -Year
44	6.955933	122.0784	1.06	1.00	0.06	Typhoon	5 -Year
45	6.953532	122.0761	2.50	1.00	1.50	Typhoon	5 -Year
46	6.953721	122.0765	1.22	1.00	0.22	Typhoon	5 -Year
47	6.954078	122.0766	1.25	1.00	0.25	Typhoon	5 -Year
48	6.955687	122.0761	1.12	1.10	0.02	Typhoon	5 -Year
49	6.947485	122.0739	0.03	0.38	-0.35	Typhoon	5 -Year
50	6.943979	122.0729	0.16	0.40	-0.24	Typhoon	5 -Year
51	6.942518	122.0726	0.36	0.40	-0.04	Typhoon	5 -Year
52	6.944527	122.0729	0.08	0.40	-0.32	Typhoon	5 -Year
53	6.946519	122.0736	0.06	0.40	-0.34	Typhoon	5 -Year
54	6.940312	122.0703	0.19	0.40	-0.21	Typhoon	5 -Year
55	6.945776	122.0729	0.11	0.40	-0.29	Typhoon	5 -Year
56	6.954497	122.0759	2.14	1.10	1.04	Typhoon	5 -Year
57	6.953992	122.0755	2.81	1.10	1.71	Typhoon	5 -Year
58	6.95545	122.0753	1.96	0.96	1.00	Typhoon	5 -Year
59	6.929621	122.0702	0.03	0.37	-0.34	Typhoon	5 -Year
60	6.931323	122.0727	0.47	0.37	0.10	Typhoon	5 -Year
61	6.92454	122.0712	0.03	0.37	-0.34	Typhoon	5 -Year
62	6.924856	122.0703	0.03	0.37	-0.34	Typhoon	5 -Year
63	6.92521	122.0715	0.03	0.37	-0.34	Typhoon	5 -Year
64	6.925126	122.0695	0.03	0.37	-0.34	Typhoon	5 -Year
65	6.929264	122.0693	0.03	0.37	-0.34	Typhoon	5 -Year
66	6.92994	122.0692	0.04	0.35	-0.31	Typhoon	5 -Year
67	6.923879	122.0701	0.40	0.37	0.03	Typhoon	5 -Year
68	6.923752	122.0712	0.03	0.37	-0.34	Typhoon	5 -Year
69	6.93115	122.0705	0.03	0.37	-0.34	Typhoon	5 -Year
70	6.927062	122.0719	0.08	0.37	-0.29	Typhoon	5 -Year
71	6.924664	122.072	0.03	0.37	-0.34	Typhoon	5 -Year
72	6.92435	122.0693	0.03	0.37	-0.34	Typhoon	5 -Year
73	6.925836	122.0699	0.03	0.37	-0.34	Typhoon	5 -Year
74	6.925386	122.0723	0.15	0.37	-0.22	Typhoon	5 -Year
75	6.926129	122.0724	0.15	0.37	-0.22	Typhoon	5 -Year
76	6.929143	122.0708	0.16	0.37	-0.21	Typhoon	5 -Year
77	6.928323	122.069	0.03	0.37	-0.34	Typhoon	5 -Year
78	6.943819	122.0738	0.28	0.40	-0.12	Typhoon	5 -Year
79	6.946431	122.0725	0.06	0.40	-0.34	Typhoon	5 -Year
80	6.945142	122.0739	0.59	0.40	0.19	Typhoon	5 -Year
81	6.945209	122.0722	0.18	0.40	-0.22	Typhoon	5 -Year
82	6.955011	122.0753	1.42	0.96	0.46	Typhoon	5 -Year
83	6.958047	122.0781	0.96	1.90	-0.94	Typhoon	5 -Year
84	6.957773	122.0787	1.55	1.00	0.55	Typhoon	5 -Year
85	6.958649	122.0793	2.67	1.00	1.67	Typhoon	5 -Year
86	6.958958	122.0789	2.85	1.00	1.85	Typhoon	5 -Year

Point	Validation	Coordinates	Model	Validation	Error	Event/	Rain Return /
Number	Lat	Long	Var (m)	Points (m)		Date	Scenario
87	6.959128	122.0792	3.16	1.00	2.16	Typhoon	5 -Year
88	6.930583	122.0734	0.72	0.37	0.35	Typhoon	5 -Year
89	6.929747	122.0734	0.62	0.37	0.25	Typhoon	5 -Year
90	6.957986	122.0801	2.46	1.00	1.46	Typhoon	5 -Year
91	6.946413	122.0748	0.41	0.40	0.01	Typhoon	5 -Year
92	6.945993	122.0743	0.22	0.40	-0.18	Typhoon	5 -Year
93	6.930561	122.0717	0.14	0.37	-0.23	Typhoon	5 -Year
94	6.929346	122.0723	2.73	0.37	2.36	Typhoon	5 -Year
95	6.923935	122.0683	0.15	0.37	-0.22	Typhoon	5 -Year
96	6.924267	122.0675	0.03	0.30	-0.27	Typhoon	5 -Year
97	6.924869	122.0682	0.12	0.30	-0.18	Typhoon	5 -Year
98	6.927188	122.0709	0.27	0.30	-0.03	Typhoon	5 -Year
99	6.926451	122.0698	0.04	0.37	-0.33	Typhoon	5 -Year
100	6.926121	122.0689	0.08	0.37	-0.29	Typhoon	5 -Year
101	6.941461	122.071	0.03	0.35	-0.32	Typhoon	5 -Year
102	6.94235	122.0711	0.03	0.37	-0.34	Typhoon	5 -Year
103	6.946624	122.0718	0.91	0.40	0.51	Typhoon	5 -Year
104	6.944142	122.072	0.03	0.40	-0.37	Typhoon	5 -Year
105	6.944527	122.0715	0.50	0.40	0.10	Typhoon	5 -Year
106	6.947529	122.0726	0.04	0.37	-0.33	Typhoon	5 -Year
107	6.950249	122.0742	2.66	0.40	2.26	Typhoon	5 -Year
108	6.95068	122.0746	0.03	0.40	-0.37	Typhoon	5 -Year
109	6.950545	122.0716	0.03	0.40	-0.37	Typhoon	5 -Year
110	6.951438	122.0716	0.03	0.40	-0.37	Typhoon	5 -Year
111	6.951657	122.0758	0.88	0.40	0.48	Typhoon	5 -Year
112	6.951966	122.0755	0.82	0.40	0.42	Typhoon	5 -Year
113	6.943168	122.0716	0.46	0.40	0.06	Typhoon	5 -Year
114	6.942699	122.0718	0.13	0.40	-0.27	Typhoon	5 -Year
115	6.94204	122.0738	0.64	0.40	0.24	Typhoon	5 -Year
116	6.941518	122.0734	0.43	0.40	0.03	Typhoon	5 -Year
117	6.941561	122.0742	0.54	0.40	0.14	Typhoon	5 -Year
118	6.942264	122.0733	0.33	0.40	-0.07	Typhoon	5 -Year
119	6.933674	122.0705	0.25	0.40	-0.15	Typhoon	5 -Year
120	6.930501	122.0666	0.34	0.30	0.04	Typhoon	5 -Year
121	6.927548	122.0533	0.03	0.37	-0.34	Typhoon	5 -Year
122	6.927769	122.0516	0.03	0.40	-0.37	Typhoon	5 -Year
123	6.940778	122.0724	0.36	0.40	-0.04	Typhoon	5 -Year
124	6.939573	122.0725	0.76	0.40	0.36	Typhoon	5 -Year
125	6.93982	122.0729	0.97	0.40	0.57	Typhoon	5 -Year
126	6.946938	122.0754	0.41	0.40	0.01	Typhoon	5 -Year
127	6.946958	122.0766	5.28	0.40	4.88	Typhoon	5 -Year
128	6.94607	122.0753	0.19	0.40	-0.21	Typhoon	5 -Year
129	6.946304	122.0759	1.64	0.40	1.24	Typhoon	5 -Year
130	6.945796	122.0759	2.25	0.40	1.85	Typhoon	5 -Year

Point	Validation	Coordinates	Model	Validation	Error	Event/	Rain Return /
Number	Lat	Long	Var (m)	Points (m)		Date	Scenario
131	6.945464	122.0759	2.21	0.40	1.81	Typhoon	5 -Year
132	6.945088	122.0753	0.38	0.40	-0.02	Typhoon	5 -Year
133	6.945532	122.0746	0.03	0.40	-0.37	Typhoon	5 -Year
134	6.944058	122.0746	0.52	0.40	0.12	Typhoon	5 -Year
135	6.943169	122.0731	0.14	0.40	-0.26	Typhoon	5 -Year
136	6.943272	122.0738	0.03	0.40	-0.37	Typhoon	5 -Year
137	6.943911	122.0753	1.18	0.40	0.78	Typhoon	5 -Year
138	6.94277	122.0766	4.55	0.48	4.07	Typhoon	5 -Year
139	6.943418	122.0758	0.72	0.48	0.24	Typhoon	5 -Year
140	6.942735	122.0741	1.10	0.40	0.70	Typhoon	5 -Year
141	6.953137	122.077	0.97	1.00	-0.03	Typhoon	5 -Year
142	6.945848	122.0696	0.03	0.40	-0.37	Typhoon	5 -Year
143	6.945432	122.0704	0.03	0.40	-0.37	Typhoon	5 -Year
144	6.945783	122.071	0.03	0.40	-0.37	Typhoon	5 -Year
145	6.945447	122.0717	0.61	0.40	0.21	Typhoon	5 -Year
146	6.944403	122.0706	0.11	0.40	-0.29	Typhoon	5 -Year
147	6.946548	122.0707	0.03	0.40	-0.37	Typhoon	5 -Year
148	6.949614	122.0747	0.03	0.40	-0.37	Typhoon	5 -Year
149	6.951737	122.0747	0.03	0.40	-0.37	Typhoon	5 -Year
150	6.954494	122.0773	0.04	0.40	-0.36	Typhoon	5 -Year
151	6.927106	122.0579	0.03	0.30	-0.27	Typhoon	5 -Year
152	6.927306	122.0596	0.16	0.40	-0.24	Typhoon	5 -Year
153	6.92804	122.0589	0.17	0.30	-0.13	Typhoon	5 -Year
154	6.928199	122.058	0.10	0.35	-0.25	Typhoon	5 -Year
155	6.9263	122.06	0.03	0.00	0.03	Typhoon	5 -Year
156	6.929026	122.0586	0.52	0.50	0.02	Typhoon	5 -Year
157	6.928777	122.0597	0.03	0.00	0.03	Typhoon	5 -Year
158	6.928572	122.0613	0.09	0.20	-0.11	Typhoon	5 -Year
159	6.930278	122.0627	0.03	0.30	-0.27	Typhoon	5 -Year
160	6.929107	122.0626	0.05	0.30	-0.25	Typhoon	5 -Year
161	6.92947	122.0636	0.06	0.20	-0.14	Typhoon	5 -Year
162	6.928147	122.0634	0.05	0.40	-0.35	Typhoon	5 -Year
163	6.923772	122.0726	0.64	0.40	0.24	Typhoon	5 -Year
164	6.928079	122.0726	0.80	0.40	0.40	Typhoon	5 -Year
165	6.928529	122.0717	0.04	0.30	-0.26	Typhoon	5 -Year
166	6.928561	122.0728	0.23	0.20	0.03	Typhoon	5 -Year
167	6.930071	122.0727	0.59	0.40	0.19	Typhoon	5 -Year
168	6.926047	122.071	0.17	0.30	-0.13	Typhoon	5 -Year
169	6.927519	122.0701	0.26	0.35	-0.09	Typhoon	5 -Year
170	6.926854	122.069	0.04	0.10	-0.06	Typhoon	5 -Year
171	6.936239	122.0707	0.89	0.40	0.49	Typhoon	5 -Year
172	6.938901	122.0705	0.47	0.30	0.17	Typhoon	5 -Year
173	6.93909	122.0716	0.25	0.40	-0.15	Typhoon	5 -Year
174	6.938922	122.0721	0.76	0.35	0.41	Typhoon	5 -Year

Point	Validation (Coordinates	Model	Validation	Error	Event/	Rain Return /
Number	Lat	Long	Var (m)	Points (m)		Date	Scenario
175	6.937963	122.0709	0.60	0.40	0.20	Typhoon	5 -Year
176	6.937602	122.0712	0.69	0.30	0.39	Typhoon	5 -Year
177	6.936361	122.0713	2.81	0.40	2.41	Typhoon	5 -Year
178	6.935312	122.0715	3.58	0.50	3.08	Typhoon	5 -Year
179	6.934493	122.0718	0.03	0.00	0.03	Typhoon	5 -Year
180	6.936	122.0718	1.44	0.50	0.94	Typhoon	5 -Year
181	6.935565	122.0725	0.49	0.30	0.19	Typhoon	5 -Year
182	6.931611	122.0715	0.85	0.45	0.40	ITCZ	5 -Year
183	6.937051	122.0686	0.03	0.10	-0.07		5 -Year
184	6.931856	122.0678	0.03	0.10	-0.07		5 -Year
185	6.93605	122.0685	0.52	0.10	0.42		5 -Year
186	6.934328	122.0687	0.08	0.10	-0.02	Heavy rain	5 -Year
187	6.934962	122.0676	0.43	0.40	0.03	Heavy rain	5 -Year
188	6.93288	122.0659	0.03	0.40	-0.37	Heavy rain	5 -Year
189	6.934075	122.0678	0.32	0.20	0.12	Heavy rain	5 -Year
190	6.933504	122.0681	0.38	0.20	0.18	Heavy rain	5 -Year
				RMSE	0.91		

Annex 12. Educational Institutions affected by flooding in San Jose Floodplain

	Zamboanga City			
		F	Rainfall Scena	rio
Building Name	Barangay	5-year	25-year	100-year
Spinola Child Learning Center	Tetuan	Low	Low	Low
Putik elementary school	Putik	Low	Low	Low
LUNZURAN ELEM. SCHOOL	Lunzuran	Low	Low	Low
ATENEO DE ZAMBOANGA UNIVERSITY	Barangay Zone I	Low	Low	Low
ATENEO DE ZAMBOANGA UNIVERSITY	Barangay Zone III	Low	Low	Low
TUMAGA ELEM. SCHOOL	Tumaga	Low	Low	Low
ARENA BLANCO ELEM. SCHOOL -WEST	Mampang	Low	Low	Low
Talon talon national highschool	Kasanyangan	Low	Low	Low
CENTRAL ELEMENTARY SCHOOL	Barangay Zone I	Low	Low	Low
CENTRAL ELEMENTARY SCHOOL	Barangay Zone IV	Low	Low	Low
SAINT JOSEPH SCHOOL	Canelar	Low	Low	Low
RIO HONDO	Rio Hondo	Low	Low	Low
sti	Barangay Zone IV	Low	Low	Low
ZSCMST college	Rio Hondo	Low	Low	Low
STA. BARBARA	Barangay Zone IV	Low	Low	Low
STA. BARBARA	Rio Hondo	Low	Low	Low
STA. BARBARA	Santa Catalina	Low	Low	Low
Icas	Santa Barbara	Low	Low	Low
Icas	Tetuan	Low	Low	Low
Pastor bonus semenary	Santa Barbara	Low	Low	Low
SOUTHCOM NATIONAL HIGH SCHOOL	Campo Islam	None	Low	Low
Southcom elem. School	Campo Islam	None	Low	Low
uz Senior high	Barangay Zone III	None	Low	Low
uz Senior high	Santa Barbara	None	Low	Low
Early childhood prep learning center	Putik	None	Low	Low
STA. MARIA ELEMENTARY SCHOOL	Camino Nuevo	None	Low	Low
Tetuan central school	Santa Barbara	None	Low	Low
Tetuan central school	Tetuan	None	Low	Low
BALIWASAN	Baliwasan	None	Low	Low
BALIWASAN	San Jose Cawa- Cawa	None	Low	Low
ZAMBOWOOD ELEM. SCHOOL	Zambowood	None	None	Low
MAMPANG ELEM. SCHOOL	Mampang	None	None	Low
chongwa school	Barangay Zone IV	None	None	Low
POLYTECHNIC SCHOOL	Baliwasan	Low	Low	Medium
POLYTECHNIC SCHOOL	San Jose Cawa- Cawa	Low	Low	Medium
canelar elementary	Barangay Zone II	Low	Low	Medium
BRENT	Santo Niño	Low	Low	Medium
Ateneo de Zamboanga university	Lunzuran	Low	Medium	Medium
Ateneo de Zamboanga university	Tumaga	Low	Medium	Medium
Smart Ikids learning center	Putik	Low	Medium	Medium
PHILIPPINE ISLAMIC COLLEGE HMIJ	Baliwasan	Low	Medium	Medium
PHILIPPINE ISLAMIC COLLEGE HMIJ	Canelar	Low	Medium	Medium

Z	amboanga City			
	_	F	ainfall Scena	rio
Building Name	Barangay	5-year	25-year	100-year
COMPUTER TECHNOLOGIES INSTITUTE INC.	Baliwasan	Low	Medium	Medium
Southern city College	Canelar	Low	Medium	Medium
Southern city College	Santa Catalina	Low	Medium	Medium
DON PABLO LORENZO MEMORIAL HIGH SCHOOL	Canelar	Low	Medium	Medium
Sto nino village school	Putik	Low	Medium	Medium
Sto nino village school	Tetuan	Low	Medium	Medium
REGIONAL SCIENCE HIGH SCHOOL	San Roque	Low	Medium	Medium
Jong. Spirit senior memorial	Campo Islam	Low	Medium	Medium
TUGBUNGAN CENTRAL SCHOOL	Tugbungan	Low	Medium	Medium
PILAR COLLEGE	San Jose Cawa- Cawa	Low	Medium	Medium
WMSU	Baliwasan	Low	Medium	Medium
	San Jose Cawa-	1		1
WMSU	Cawa	Low	Medium	Medium
a.b simpson alliance school	Santa Barbara	Low	Medium	Medium
Chinese abalo	Camino Nuevo	Medium	Medium	Medium
Chinese abalo	Santa Barbara	Medium	Medium	Medium
SAN ROQUE ELEMENTARY SCHOOL	San Roque	Medium	Medium	Medium
Infancia	Santa Maria	Medium	Medium	Medium
STA. CATALINA	Santa Catalina	Medium	Medium	Medium
zchs main	Santa Barbara	Medium	Medium	Medium
maria clara lorenzo lobregat national high school	Putik	Medium	High	High
SAN JOSE GUSE ELEM. SCHOOL	Campo Islam	Medium	High	High
SAN JOSE GUSE ELEM. SCHOOL	Canelar	Medium	High	High
Bethany	Tumaga	Medium	High	High
UPPER PASONANCA ELEM. SCHOOL	Cabatangan	High	High	High
boalan elem.school	Boalan	High	High	High
imaculate elem school	Tetuan	None	None	None
LUYAHAN ELEM. SCHOOL	Lunzuran	None	None	None
DIVISORIA ELEM. SCHOOL	Boalan	None	None	None
day care center divisoria	Boalan	None	None	None
WES. MIN. COM	Campo Islam	None	None	None
SARANG BANGUN LEARNING CENTER AND HIGH SCHOOL	Baliwasan	None	None	None
avalokitesvara	Santa Barbara	None	None	None
Bahay bulilit	Barangay Zone II	None	None	None
yogi school	Tumaga	None	None	None
ARENA BLANCO NATIONAL HIGH SCHOOL	Mampang	None	None	None
ARENA BLANCO NATIONAL HIGH SCHOOL	Tugbungan	None	None	None
School of masjid	Talon-Talon	None	None	None
boalal cindee	Boalan	None	None	None
kinder garden school and extension	Kasanyangan	None	None	None
UPPER CALARIAN 2	Calarian	None	None	None
UPPER CALARIAN 2	Sinunoc	None	None	None
UPPER CALARIAN	Calarian	None	None	None
Malagutay elementary school	Malagutay	None	None	None

Zamboanga City						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
west high school	San Jose Cawa- Cawa	None	None	None		
INIVERSIDAD DE ZAMBOANGA	Barangay Zone IV	None	None	None		
daycare center	Rio Hondo	None	None	None		
Uz	Tetuan	None	None	None		

Annex 13. Health Institutions affected by flooding in San Jose Floodplain

Zamboanga City						
Building Name	Parangay		Rainfall Scenario			
	Barangay	5-year	25-year	100-year		
Memorial hospital	Tetuan	Low	Low	Low		
Zamboanga doctors hospital	Santa Barbara	Low	Low	Low		
BRENT HOSPITAL	Santo Niño	Low	Low	Low		
ZCMC HOSPITAL	Santa Catalina	Low	Low	Low		
West metro medical center	Tetuan	None	Low	Low		
Wes.min.com hospital	Campo Islam	None	Low	Low		
catalina health center	Santa Catalina	None	Low	Low		
Dampen hospital	Putik	None	None	Low		
Health Center	Baliwasan	None	None	Low		
CAMP NAVARRO	Campo Islam	Low	Medium	Medium		
CIUDAD MEDICAL	Barangay Zone III	None	None	None		
Generika	Tetuan	None	None	None		
Oro	Tetuan	None	None	None		
Generics pharmacy	Barangay Zone III	None	None	None		
Generics pharmacy	Tetuan	None	None	None		
Aleli tan dental clinic	Camino Nuevo	None	None	None		
Cabato dental clinic	Tetuan	None	None	None		
healt center mampang	Mampang	None	None	None		
BALIWASAN	Baliwasan	None	None	None		
RedCross	Barangay Zone IV	None	None	None		
RedCross	Santa Catalina	None	None	None		
health center	Santa Catalina	None	None	None		