HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Kabasalan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Ateneo de Zamboanga University

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines and Ateneo de Zamboanga University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research projectis supported by the Department of Science and Technology (DOST) as part of its Grant-in-Aid Program and is to be cited as:

E.C. Paringit, M.S. Rodriguez, L.P. Balicanta, C. Cruz, L.G. Acuña, G. Hipolito, G.B. Sinadjan, S.C. Poblete, M.O. Ang, J.D. Fabila, S.D. Samalburo , G.M. Apat , Engr. M.L. Olanda , D.B. Banatin, J.S. Canlas, C. Lubiano, D.M. Bool, E.C. Tong, J.S. Caballero, P.P. dela Cruz, D. T. Lozano, D.C. Tajora, E.B. Salvador, R.C. Alberto, A.M. Lagmay, C. Uichanco, S. Sueno, M. Moises, H. Ines, M. del Rosario, K. Punay, N. Tingin (2017), LiDAR Surveys and Flood Mapping Report of Kabasalan River, in Enrico C. Paringit (Ed.) Flood Hazard Mapping of the Philippines using LIDAR. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-129 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Mr. Mario S. Rodriguez Project Leader, PHIL-LIDAR 1 Program Ateneo de Zamboanga University Zamboanga City, Philippines 7000 rodriguezmars@adzu.edu.ph

Enrico C. Paringit, Dr. Eng. Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ACRONYMS AND ABBREVIATIONS	viii
CHAPTER 1: OVERVIEW OF THE PROGRAM AND KABASALAN RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Kabasalan River Basin	1
CHAPTER 2: LIDAR ACQUISITION IN KABASALAN FLOODPLAIN	5
2.1 Flight Plans	5
2.2 Ground Base Station	7
2.3 Flight Missions	9
2.4 Survey Coverage	9
CHAPTER 3: LIDAR DATA PROCESSING FOR KABASALAN FLOODPLAIN	11
3.1 Overview of the LIDAR Data Pre-Processing	11
3.2 Transmittal of Acquired LiDAR Data	12
3.3 Trajectory Computation	12
3.4 LiDAR Point Cloud Computation	14
3.5 LiDAR Data Quality Checking	15
3.6 LiDAR Point Cloud Classification and Rasterization	19
3.7 LiDAR Image Processing and Orthophotograph Rectification	21
3.8 DEM Editing and Hydro-Correction	22
3.9 Mosaicking of Blocks	23
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	25
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	29
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE KABASALAN RIV	ER BASIN33
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-Built and Water Level Marking	
4.6 Validation Points Acquisition Survey	43
4.7 Bathymetric Survey	45
CHAPTER 5: FLOOD MODELLING AND MAPPING	47
5.1 Data Used for Hydrologic Modeling	47
5.1.1 Hydrometry and Rating Curves	47
5.1.2 Precipitation	47
5.1.3 Rating Curves and River Outflow	48
5.2 RIDF Station	49
5.3 HMS Model	51

5.4 Cross-section Data	55
5.5 Flo 2D Model	55
5.6 Results of HMS Calibration	57
5.7 Calculated outflow hydrographys and discharge values for different Rainfall Return Period.	59
5.7.1 Hydrograph using the Rainfall Runoff Model	59
5.8 River Analysis (RAS) Model Simulation	60
5.9 Flow Depth and Flood Hazard	60
5.10 Inventory of Areas Exposed to Flooding of Affected Areas	67
5.11 Flood Validation	78
REFERENCES	81
ANNEXES	82
Annex 1. OPTECH Technical Specification of the Pegasus Sensor	82
Annex 2. NAMRIA Certificates of Reference Points Used	83
Annex 3. Baseline Processing Reports	83
Annex 4. The LiDAR Survey Team	
Annex 5. Data Transfer Sheet for Kabasalan Floodplain Flights	86
Annex 6. Flight Logs	
Annex 7. Flight Status Report	
Annex 8. Mission Summary Report	92
Annex 9. Kabasalan Model Basin Parameters	107
Annex 10. Kabasalan Model Reach Parameters	111
Annex 11. Kabasalan Field Validation	113
Annex 12. Educational Institutions Affected in Kabasalan Floodplain	119
Annex 13. Medical Institutions Affected in Kabasalan Floodplain	121

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR system	5
Table 2. Details of the recovered NAMRIA horizontal control point ZGS-58 used as base	
station for the LiDAR acquisition	7
Table 3. Details of the recovered NAMRIA horizontal control point ZGS-68 used as base	
station for the LiDAR acquisition	8
Table 4. Ground control points used during LiDAR data acquisition	9
Table 5. Flight missions for LiDAR data acquisition in Kabasalan Floodplain	9
Table 6. Actual parameters used during LiDAR data acquisition	9
Table 7. List of municipalities and cities surveyed during Kabasalan Floodplain LiDAR survey	9
Table 8. Self-calibration results values for Kabasalan flights	14
Table 9. List of LiDAR blocks for Kabasalan Floodplain	15
Table 10. Kabasalan classification results in TerraScan	19
Table 11. LiDAR blocks with its corresponding area	22
Table 12. Shift values of each LiDAR Block of Kabasalan Floodplain	23
Table 13. Calibration statistical measures	27
Table 14. Validation statistical measures	28
Table 15. Quality Checking ratings for Kabasalan building features	30
Table 16. Building features extracted for Kabasalan Floodplain	31
Table 17. Total length of extracted roads for Kabasalan Floodplain	31
Table 18. Number of extracted water bodies for Kabasalan Floodplain	31
Table 19. Control points occupied during control survey in Kabasalan River, Zamboanga Sibugay	34
Table 20. Baseline processing report for Kabasalan River control survey	36
Table 21. Control Point Constraints	37
Table 22. Adjusted grid coordinates	37
Table 23. Adjusted geodetic coordinates	38
Table 24. Reference and control points used and its location	38
Table 25. RIDF values for Zamboanga City Rain Gauge computed by PAGASA	49
Table 26. Range of calibrated values for Kabasalan	58
Table 27. Summary of the Efficiency Test of Kabasalan HMS Model	58
Table 28. Peak values of the Kabasalan HEC-HMS Model outflow using the Zamboanga City RIDF	59
Table 29. Municipalities affected in Kabasalan Floodplain	60
Table 30. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period	6/
Table 31. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year raintali return period	6/
Table 32. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year raintali return period	68
Table 33. Affected areas in Naga, Zamboanga Sibugay during a 5-year rainfall return period	69
Table 34. Affected areas in Naga, Zamboanga Sibugay during a 5-year rainfall return period	69
Table 35. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall return period	/1
Table 36. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall return period	/1
Table 37. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year raintali return period	/ 2
Table 38. Affected areas in Naga, Zamboanga Sibugay during a 25-year rainfail return period	/3
Table 39. Affected areas in Naga, Zamboanga Sibugay during a 25-year raintail return period	/ 3
Table 40. Affected areas in Kabasalan, Zamboanga Sibugay during a 100-year rainfall return period	/5
Table 41. Affected areas in Kabasalan, Zamboanga Sibugay during a 100-year rainfall return period	/5
Table 42. Affected areas in Kabasaian, Zamboanga Sibugay during a 100-year raintali return period	/5
Table 44. Affected areas in Naga, Zamboanga Sibugay during a 100-year rainfall return period	/6
Table 44. Affected areas in Naga, Zamboanga Sibugay during a 100-year raintall return period	/b
Table 45. Actual 11000 depth vs simulated 11000 depth in Kabasalan	80
Table 46. Summary of accuracy assessment in Kabasalan River Basin Survey	80

LIST OF FIGURES

Figure 1. Map of the Kabasalan River Basin (in brown) Figure 2. Kabasalan River	2 2
Figure 3. Rescue activity by the LDRRM of Kabasalan in January 2017	ב ג
Figure 4. Rubber Plantation in Kabasalan	<u>د</u>
Figure 5. Flight plan and base stations used for Kabasalan Floodplain	6
Figure 6. GPS set-up over ZGS-58 at Brgy. Sicade, Municipality of Kumalarang, Zamboanga del Sur	
Figure 7. GPS set-up over ZGS-68 at CENRO, Brgy. Poblacion, Municipality of Guipos, Zamboanga	/
Eigure 8. Actual LiDAR survey coverage for Kabasalan Eleodolain	0
Figure 8. Actual LIDAR survey coverage for Rabasalari Flooupiani	10
Figure 10. Smoothed Performance Metric parameters of Kabasalan flight 23132P	11 12
Figure 11. Solution status parameters of Kabasalan flight 23132P	12
Figure 12 Best estimated trajectory of the LiDAR missions conducted over the Kabasalan Floodalain	1/
Figure 12. Boundary of the processed LiDAR data over Kabasalan Floodplain	14
Figure 14 Image of data overlap for Kabasalan Floodplain	16
Figure 15, Pulse density man of merged LiDAR data for Kabasalan Floodnlain	10
Figure 16. Elevation difference between flight lines for Kabasalan Floodplain.	17
Figure 17. Quality checking for a Kabasalan flight 23132P using the Profile Tool of OT Modeler	19
Figure 18. Tiles for Kabasalan Floodplain (a) and classification results (b) in TerraScan	20
Figure 19. Point cloud before (a) and after (b) classification	20
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Kabasalan Floodplain	21
Figure 21. Portions in the DTM of Kabasalan Floodplain—a paddy field before (a) and after (b) data	
retrieval: a bridge before (c) and after (d) manual editing	22
Figure 22. Map of Processed LiDAR data for Kabasalan Floodplain	24
Figure 23. Map of Kabasalan Floodplain with validation survey points in green	26
Figure 24. Correlation plot between calibration survey points and LiDAR data	27
Figure 25. Correlation plot between validation survey points and LiDAR data	28
Figure 26. Map of Kabasalan Floodplain with bathymetric survey points shown in blue	29
Figure 27. Blocks (in blue) of Kabasalan building features that were subjected to QC	30
Figure 28. Extracted features for Kabasalan Floodplain	32
Figure 29. Extent of the bathymetric survey (in blue line) in Kabasalan River and the LiDAR data	
validation survey (in red)	33
Figure 30. GNSS network covering Kabasalan River.	34
Figure 31. GNSS receiver, Trimble [®] SPS 882 set-up at reference point ZSI-36, in front of Iglesia Ni	
Cristo church along the National Highway, Brgy. Bacalan, Municipality of Ipil,	
Zamboaga Sibugay	35
Figure 32. GNSS receiver, Trimble [®] SPS 852 set-up at benchmark ZY-56, along the	
Pagadian-Zamboanga National Road at the end of Kabasalan Bridge, Brgy. Sininan,	
Municipality of Kabasalan, Zamboanga Sibugay	35
Figure 33. GNSS receiver, Trimble [®] SPS 852 set-up at control point BAT, at Batu Bridge in Brgy. Batu,	
Municipality of Siay, Zamboanga Sibugay along the PAN-Philippine National Highway	36
Figure 34. Cross-section and bridge as-built survey for Kabasalan Bridge, Brgy Sininan, Municipality	~ ~
of Kabasalan. The construction of the new bridge is ongoing	39
Figure 35. Kabasalan Bridge cross-sectional diagram	40
Figure 36. Kabasalan bridge cross-section location map	41
Figure 37. Kabasalan bridge data form	42
Figure 38. Water level markings on the post of Kabasalah bridge	43
LIGURA JU TRIMINIA NUNYY I CAT UN AN 2 VANICIA TAR VAURATIAN NAINTE ACQUICITIAN AIANG TNA MAIAR	
Figure 55. Thinble SF5002 set-up on a venicle for valuation points acquisition along the major	40
roads near Kabasalan River	43
roads near Kabasalan River	43 44
Figure 39. Trimble 3F3882 set-up on a venicle for validation points acquisition along the major roads near Kabasalan River Figure 40. Validation points acquisition survey coverage for Kabasalan River Basin Figure 41. Bathymetric survey instrument set-up on a borrowed boat from Kabasalan local	43 44
Figure 39. Finite 3F3882 set-up on a venicle for validation points acquisition along the major roads near Kabasalan River Figure 40. Validation points acquisition survey coverage for Kabasalan River Basin Figure 41. Bathymetric survey instrument set-up on a borrowed boat from Kabasalan local government accompanied by the Philippine Army personnel Figure 42. Bathymetric survey of Kabasalan Pivor	43 44 45
Figure 39. Finitible 3F3882 set-up on a venicle for validation points acquisition along the major roads near Kabasalan River Figure 40. Validation points acquisition survey coverage for Kabasalan River Basin Figure 41. Bathymetric survey instrument set-up on a borrowed boat from Kabasalan local government accompanied by the Philippine Army personnel Figure 42. Bathymetric survey of Kabasalan River Figure 43. Biverbad profile of Kabasalan River	43 44 45 45
 Figure 39. Trimble 3F3882 set-up on a venicle for validation points acquisition along the major roads near Kabasalan River Figure 40. Validation points acquisition survey coverage for Kabasalan River Basin Figure 41. Bathymetric survey instrument set-up on a borrowed boat from Kabasalan local government accompanied by the Philippine Army personnel Figure 42. Bathymetric survey of Kabasalan River Figure 43. Riverbed profile of Kabasalan River Figure 44. Location map of Kabasalan HEC-HMS model used for collibration 	43 44 45 45 46
 Figure 39. Finitible 3F3882 set-up on a venicle for validation points acquisition along the major roads near Kabasalan River Figure 40. Validation points acquisition survey coverage for Kabasalan River Basin Figure 41. Bathymetric survey instrument set-up on a borrowed boat from Kabasalan local government accompanied by the Philippine Army personnel Figure 42. Bathymetric survey of Kabasalan River Figure 43. Riverbed profile of Kabasalan River Figure 44. Location map of Kabasalan HEC-HMS model used for calibration Figure 45. Cross-section plot of Tulay ng Pangulo. 	43 44 45 45 46 47
 Figure 39. Finitible 3F3882 set-up on a venicle for validation points acquisition along the major roads near Kabasalan River Figure 40. Validation points acquisition survey coverage for Kabasalan River Basin Figure 41. Bathymetric survey instrument set-up on a borrowed boat from Kabasalan local government accompanied by the Philippine Army personnel Figure 42. Bathymetric survey of Kabasalan River Figure 43. Riverbed profile of Kabasalan River Figure 43. Riverbed profile of Kabasalan River Figure 44. Location map of Kabasalan HEC-HMS model used for calibration Figure 45. Cross-section plot of Tulay ng Pangulo Figure 46. Bating curve at Tulay ng Pangulo 	43 44 45 45 46 47 48 48

Figure 47.	. Rainfall and outflow data at Tulay ng Pangulo used for modeling	.49
Figure 48.	. Dipolog City and Zamboanga City RIDF location relative to Kabasalan River Basin	. 50
Figure 49.	. Synthetic storm generated for a 24-hr period rainfall for various return periods	. 50
Figure 50.	. Soil map of Kabasalan River Basin	.51
Figure 51.	. Land cover map of Kabasalan River Basin (Source: NAMRIA)	. 52
Figure 52.	. Slope map of Kabasalan River Basin	. 53
Figure 53.	Stream delineation map of Kabasalan River Basin	. 53
Figure 54.	. The Kabasalan river basin model generated using HEC-HMS	. 54
Figure 55.	. River cross-section of Kabasalan River generated through Arcmap HEC GeoRAS tool	.55
Figure 56.	Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS	
-	Pro	. 56
Figure 57.	. Generated 100-year rain return hazard map from FLO-2D Mapper	.56
Figure 58.	. Generated 100-year rain return flow depth map from FLO-2D Mapper	.57
Figure 59.	Outflow hydrograph of Kabasalan produced by the HEC-HMS model compared with	
-	observed outflow	. 57
Figure 60.	. Outflow hydrograph at Tulay ng Pangulo Station generated using Zamboanga City RIDF	
-	simulated in HEC-HMS	. 59
Figure 61.	. Sample output of Kabasalan RAS Model	. 60
Figure 62.	. 100-year Flood Hazard Map for Kabasalan Floodplain	.61
Figure 63.	. 100-year Flow Depth Map for Kabasalan Floodplain	. 62
Figure 64.	. 25-year Flood Hazard Map for Kabasalan Floodplain	.63
Figure 65.	. 25-year Flow Depth Map for Kabasalan Floodplain	.64
Figure 66.	. 5-year Flood Hazard Map for Kabasalan Floodplain	.65
Figure 67.	. 5-year Flood Depth Map for Kabasalan Floodplain	.66
Figure 68	. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period	.67
Figure 69.	. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period	.68
Figure 70.	. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period	.69
Figure 71.	. Affected areas in Naga, Zamboanga Sibugay during a 5-year rainfall return period	.70
Figure 72.	. Affected areas in Naga, Zamboanga Sibugay during a 5-year rainfall return period	.70
Figure 73.	. Figure 26. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall	
	return period	. 71
Figure 74.	. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall return period	.72
Figure 75.	. Affected areas in Naga, Zamboanga Sibugay during a 25-year rainfall return period	.74
Figure 76	. Affected areas in Naga, Zamboanga Sibugay during a 25-year rainfall return period	.74
Figure 77.	. Affected areas in Kabasalan, Zamboanga Sibugay during a 100-year rainfall return period	.75
Figure 78	. Affected areas in Kabasalan, Zamboanga Sibugay during a 100-year rainfall return period	.76
Figure 79.	. Affected areas in Naga, Zamboanga Sibugay during a 100-year rainfall return period	.77
Figure 80	. Affected areas in Naga, Zamboanga Sibugay during a 100-year rainfall return period	.77
Figure 81	. Validation points for 5-year Flood Depth Map of Kabasalan Floodplain	. 79
Figure 82.	. Flood map depth vs actual flood depth	. 79

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ADZU	Ateneo de Zamboanga Univer- sity		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Spe- cialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Compo- nent		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Pro- gram]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		
IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		

LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NAMRIA	National Mapping and Re- source Information Authority		
NSTC	Northern Subtropical Conver- gence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geo- physical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Fre- quency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
TBC	Thermal Barrier Coatings		
UP- TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND KABASALAN RIVER

Enrico C. Paringit, Dr. Eng., Mr. Mario Rodriguez, and Mr. Emir Epino

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled *Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods* (Paringit et al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Ateneo de Zamboanga University (ADZU). ADZU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 18 river basins in the Zamboanga Peninsula. The university is located in Zamboanga City in the province of Zamboanga Sibugay.

1.2 Overview of the Kabasalan River Basin

Kabasalan River, located in the Northeastern part of Zamboanga Sibugay, traverses through the municipalities of Kabasalan, Naga, and Bayog. The river basin has a total land area of 141.68 sq.km and travels at 7.49 km/s, from the source to its mouth. The river is also considered as the political boundary of the municipalities of Kabasalan and Naga, both in Zamboanga Sibugay. The basin has a catchment area of 227 sq.km.

Its main stem, Kabasalan River, is part of the 18 river systems in the Zamboanga peninsula. It has an estimated length of 34.56 km which traverses the Barangays of Mamagon, Bangkaw-Bangkaw, Cainglet, and Bolo Batallion. It is bounded by barangays of Riverside and Santa Cruz in the North; Calapan in the East; Mahuboin the West; and Moro Gulf in the South. A total of 41,421 people are residing within the area based on the 2010 census of the National Statistics Office.

Figure 2. Kabasalan River

The original settlers of the area were the Subanen. According to narratives, "kabasalan" came from the word "babasal" which means red squash. In the earlier part of the 20th century, American explorers surveyed the area to look for a potential land area for the establishment of abaca and rubber plantation. When an American asked a native of the name of the place, he coincidentally pointed out to a red squash to which the native answered "babasal," thinking that the American was asking for the plant's name. As the plantation was established, the company recruited workers from Visayas and Luzon. The Cebuanos then called the place "Kabasalan," adding up the prefix "ka-" which means "a place of"; thus, the name of the place became "Kabasalan," which original means "a place of red squash."

The Mines and Geosciences Bureau released in early 2017 the geo-hazard maps of the Municipality of Kabasalan which was based on the agency's 2006 data. It was indicated in the geo-hazard maps that areas located near Kabasalan River has a high probability of flooding, which could reach up to 1 meter in height.

The Local Disaster Risk Reduction and Management Office (LDRRMO) of the municipality confirmed that the areas near the river are really prone to flooding. This was further confirmed when the LDRRM Office activated their rescue team last January 2017 to rescue residences of 3 barangays affected by the flooding caused by continuous raining in the area.

Figure 3. Rescue activity by the LDRRM of Kabasalan in January 2017

There were also two flooding events that occurred in 1972 and 1997. These events resulted from the overflowing of Kabasalan River due to heavy rains and huge tide that lasted for 3 to 4 days. Flooding affected 80 houses out of the 360 households residing in Barangays Calubihan and Poblacion according to the records of Kabasalan LGU. These events damaged the fish ponds and cages along the coastal barangays of. Sta. Cruz and Cainglet.

Figure 4. Rubber Plantation in Kabasalan

Fish ponds are prominent in the municipality, especially in the areas near the river. Mud crabs, lobsters, and other aquatic resources are being harvested in the area. Kabasalan is one of the popular suppliers of these products in the region.

The municipality is known for several rubber and abaca plantations. In early 20th century, American explorers surveyed the area to build up the plantations. In fact, one of the barangays in the municipality is named after the rubber company "Goodyear."

Sources: LDRRM Office of Kabalasan Mines and Geoscience Bureau- IX Province of Zamboanga Sibugay

CHAPTER 2: LIDAR ACQUISITION IN KABASALAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Grace B. Sinadjan, Ms. Sandra C. Poblete

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento et al., 2014) and further enhanced and updated in Paringit et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Kabasalan Floodplain in Zamboanga Sibugay. These missions were planned for 12 lines that run for at most four and a half (4.5) hours including take-off, landing, and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 5 shows the flight plan for Kabasalan Floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK70A	800,1100,1200	30	50	200	30	130	5
BLK72A	800,1100,1200	30	50	200	30	130	5
BLK73A	800,1200	30	50	200	30	130	5
BLK73B	800,1100,1200	30	50	200	30	130	5

Table 1. Flight planning parameters for Pegasus LiDAR system

Figure 5. Flight plan and base stations used for Kabasalan Floodplain

2.2 Ground Base Station

The project team was able to recover two (2) NAMRIA ground control points: ZGS-58 and ZGS-68 which are of second (2nd)-order accuracy. The certifications for the NAMRIA reference points are found in ANNEX 2. These points were used as base stations during flight operations for the entire duration of the survey (February 24–26, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 985 and TOPCON GR5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Kabasalan Floodplain are shown in Figure 5. ANNEX 4 lists the team members for the project.

Figure 6 and Figure 7 show the recovered NAMRIA reference points within the area. In addition, Table 2 and Table 3 show the details about the following NAMRIA control stations, while Table 4 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization. The data transfer sheets are found in ANNEX 6.

(a)

Figure 6. GPS set-up over ZGS-58 at Brgy. Sicade, Municipality of Kumalarang, Zamboanga del Sur (a) and NAMRIA reference point ZGS-58 (b) as recovered by the field team

Table 2. Details of the recovered NAMRIA horizontal control point ZGS-58 used as base station fo	or the
LiDAR acquisition	

Station Name	ZGS-58		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 45′ 44.20587″ North 123° 8′ 50.40994″ East 31.65 meters	
Grid Coordinates, Philippine Transverse Mer- cator Zone 4 (PTM Zone 4 PRS 92)	Easting Northing	516,245.79 meters 857,966.20 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 45′ 40.67639″North 123° 8′ 55.89231″East 96.974 meters	

Figure 7. GPS set-up over ZGS-68 at CENRO, Brgy. Poblacion, Municipality of Guipos, Zamboanga del Sur (a) and NAMRIA reference point ZGS-68 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point ZGS-68 used as base station for the LiDAR acquisition

Station Name	ZGS-68	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 43′ 33.12722″ North 123° 18′ 488.96041″ East 205.941 meters
Grid Coordinates, Philippine Transverse Mer- cator Zone 4 (PTM Zone 4 PRS 92)	Easting Northing	534,593.845 meters 854,250.138 meters
Geographic Coordinates, World Geodetic Sys- tem 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 43' 29.62251" North 123° 18' 54.44472" East 271.748 meters
Grid Coordinates, Universal Transverse Mer- cator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	534,581.74 meters 853,951.14 meters

		v	•
Date Surveyed	Flight Number	Mission Name	Ground Control Points
February 24, 2016	23132P	1BLK73A055A	ZGS-58 & ZGS-68
February 26, 2016	23140P	1BLK73BS057A	ZGS-58 & ZGS-68

able 4. Ground contro	l points	used	during	Lidar	data	acquisition
-----------------------	----------	------	--------	-------	------	-------------

2.3 Flight Missions

Two (2) missions were conducted to complete the LiDAR data acquisition in Kabasalan Floodplain, for a total of eight hours and forty six minutes (846) of flying time for RP-C9122. All missions were acquired using the Pegasus LiDAR system. Table 5 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 6 presents the actual parameters used during the LiDAR data acquisition.

Date Flight		Flight Plan	Surveyed	Area Surveyed	Area Surveyed	No. of	Flying Hours	
Surveyed	Number	Area (km²)	Area (km ²)	within the Floodplain (km²)	outside the Floodplain (km ²)	Images (Frames)	Ηr	Min
February 24, 2016	23132P	228	221.62	87.33	134.29	NA	4	11
February 26, 2016	23140P	369.6	288.69	13.62	275.07	NA	4	35
TOTAL		597.6	510.31	100.95	409.36	NA	8	46

Table 5. Flight missions for LiDAR data acquisition in Kabasalan Floodplain

Table 6. Actua	I parameters	used	during	Lidar	data	acquisition	l
----------------	--------------	------	--------	-------	------	-------------	---

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (kHz)	Scan Fre- quency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
23132P	800,1200	30	50	200	30	130	5
23140P	800,1100,1200	30	50	200	30	130	5

2.4 Survey Coverage

The LiDAR data acquisition covered the Kabasalan Floodplain (See ANNEX 7). Kabasalan Floodplain is located along the province of Zamboanga Sibugay with majority of the floodplain situated within the municipalities of Naga and Kabasalan. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 7. The actual coverage of the LiDAR acquisition for Kabasalan Floodplain is presented in Figure 8.

Table 7. List of municipalities and cities surveyed during Kabasalan Floodplain LiDAR survey

Province	Municipality/ City	Area of Municipal- ity/City (km ²)	Total Area Sur- veyed (km ²)	Percentage of Area Surveyed
	Naga	164.18	86.64	52.77%
	Kabasalan	317.28	95.02	29.95%
Zamboanga Sibugay	Siay	186.47	32.23	17.29%
Sibuguy	Ipil	130.9	21.04	16.07%
	Titay	176.5	8.68	4.92%
Total		975.33	243.61	24.98%

Figure 8. Actual LiDAR survey coverage for Kabasalan Floodplain

CHAPTER 3: LIDAR DATA PROCESSING FOR KABASALAN FLOODPLAIN

Ma. Rosario Concepcion O. Ang, John Louie D. Fabila, Sarah Jane D. Samalburo, Gladys Mae Apat , Ma. Ailyn L. Olanda, Don Matthew B. Banatin, Jovelle Anjeanette S. Canlas, Christy Lubiano, Deane Leonard M. Bool, Eriasha Loryn C. Tong

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

Figure 9. Schematic diagram for data pre-processing component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Kabasalan Floodplain can be found in ANNEX 5. Missions flown during the first survey conducted on February 2016 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Municipality of Naga and Kabasalan, Zamboanga Sibugay. The Data Acquisition Component (DAC) transferred a total of 50.90 Gigabytes of Range data, 571 Megabytes of POS data, and115.6 Megabytes of GPS base station data to the data server on March 07, 20156. There are no transferred raw image data for this floodplain. The Data Pre-Processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Kabasalan was fully transferred on March 10, 2016 as indicated on the Data Transfer Sheets for Kabasalan Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 23132P, one of the Kabasalan flights, which is the North, East, and Down position RMSE values, are shown in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 21, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 10. Smoothed Performance Metrics of Kabasalan flight 23132P

The time of flight was from 261,500 seconds to 272,000 seconds, which corresponds to morning of February 24, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimize the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 shows that the North position RMSE peaks at 3.30 centimeters, the East position RMSE peaks at 2.50 centimeters, and the Down position RMSE peaks at 3.92 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution status parameters of Kabasalan flight 23132P

The Solution Status parameters of flight 23132P, one of the Kabasala nflights, which are the number of GPS satellites, Positional Dilution of Precision, and the GPS processing mode used, are shown in Figure 11. The graphs indicate that the number of satellites during the acquisition did not go down below 5. Majority of the time, the number of satellites tracked was between 6 and 8. The PDOP value also did not go above the value of 3, which still indicates optimal GPS geometry. The processing mode stayed at the value of 0 for almost the entire survey time with some parts up to 1 attributed to the turn performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Kabasalan flights is shown in Figure 12.

Figure 12. Best estimated trajectory of the LiDAR missions conducted over the Kabasalan Floodplain

3.4 LiDAR Point Cloud Computation

GPS Position Z-correction stdev

The produced LAS data contain 33 flight lines, with each flight line containing two channels, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Kabasalan Floodplain is given in Table 8.

lable 8. Self-calibration results values for Kabasalan flights					
Parameter	Acceptable Value	Compu Valu			
Boresight Correction stdev	(<0.001degrees)	0.000238			
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000943			

ted е

0.0086

The optimum accuracy was obtained for all Kabasalan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in ANNEX 8.

(<0.01meters)

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Kabasalan Floodplain is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 13. Boundary of the processed LiDAR data over Kabasalan Floodplain

The total area covered by the Kabasalan missions is 329.56 sq km that is comprised of two (2) flight acquisitions grouped and merged into three (3) blocks as shown in Table 9.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Pagadian_Blk73A	23132P	182.03
Pagadian_Blk73A_supplement	23132P	61.77
Pagadian_Blk73B	23140P	85.76
TOTAL		329.56

|--|

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Pegasus system employs two channels, an average value of 2 (blue) is expected for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines. Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 14. Image of data overlap for Kabasalan Floodplain

The overlap statistics per block for the Kabasalan Floodplain can be found in ANNEX 8. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 39.42% and 45.26%, respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 15. It was determined that all LiDAR data for Kabasalan Floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.86 points per square meter.

Figure 15. Pulse density map of merged LiDAR data for Kabasalan Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 16. Elevation difference between flight lines for Kabasalan Floodplain

A screen capture of the processed LAS data from a Kabasalan flight 23132P loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for a Kabasalan flight 23132P using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	268,837,354
Low Vegetation	223,800,946
Medium Vegetation	334,948,854
High Vegetation	815,329,915
Building	9,556,051

Table 10. Kabasalan classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Kabasalan Floodplain is shown in Figure 18. A total of 449 1-km by 1-km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 10. The point cloud has a maximum and minimum height of 512.68 meters and 56.73 meters, respectively.

Figure 18. Tiles for Kabasalan Floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly due to the density of the LiDAR data.

Figure 19. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ ASCII) DTM, first (S_ ASCII) and last (D_ ASCII) return DSM of the area in top view display are shown in Figure 20. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Kabasalan Floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Kabasalan Floodplain.

3.8 DEM Editing and Hydro-Correction

Three (3) mission blocks were processed for Kabasalan Floodplain. These blocks are composed of Pagadian block with a total area of 329.56 sq.km. Table 11 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)				
Pagadian_Blk73A	182.03				
Pagadian_Blk7A_supplement	61.77				
Pagadian_Blk73B	85.77				
TOTAL	329.56sq.km				

Table 11. LiDAR blocks with its corresponding area

Portions of DTM before and after manual editing are shown in Figure 21. The rice field or fishpond embankment (Figure 21a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 21b) to allow the correct flow of water. The bridge (Figure 21c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 21d) in order to hydrologically correct the river.

Figure 21. Portions in the DTM of Kabasalan Floodplain—a paddy field before (a) and after (b) data retrieval; a bridge before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

Zamboanga_Blk75A was used as the reference block at the start of mosaicking. After which, Pagadian_Blk73A, Pagadian_Blk73A, Supplement and Pagadian_Blk73B were mosaicked to the reference block.

Mosaicked LiDAR DTM for Kabasalan Floodplain is shown in Figure 22. It can be seen that the entire Kabasalan Floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)				
	x	Υ	z		
Pagadian_Blk73A	0.44	1.00	0.00		
Pagadian_Blk73A_supplement	-2.00	1.00	0.00		
Pagadian_Blk73B	-3.00	1.00	0.20		

Table 12. Shift values of each LiDAR Block of Kabasalan Floodplain

Figure 22. Map of Processed LiDAR data for Kabasalan Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Kabasalan to collect points with which the LiDAR dataset is validated is shown in Figure 23.

Simultaneous mosaicking was done for the Zamboanga_Pagadian LiDAR blocks and the only available data that time was for Sanito. The Kabasalan Floodplain is included in the set of blocks previously mosaicked; therefore, the Sanito calibration data and methodology was used.

A total of 3,526 survey points from Sanito data were used for calibration and validation of all the blocks of Zamboanga_Pagadian LiDAR data. Random selection of 80% of the survey points, resulting in 2,820 points, was used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 9.10 meters with a standard deviation of 0.05 meters. Calibration for Zamboanga_Pagadian LiDAR data was done by adding the height difference value, 9.10 meters, to Zamboanga mosaicked LiDAR data. Table 13 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 23. Map of Kabasalan Floodplain with validation survey points in green

Figure 24. Correlation plot between calibration survey points and LiDAR data

· · · · · · · · · · · · · · · · · · ·					
Calibration Statistical Measures	Value (meters)				
Height Difference	9.10				
Standard Deviation	0.05				
Average	9.10				
Minimum	8.99				
Maximum	9.20				

Table 13. Calibration statistical measures

The Kabasalan Floodplain has a total of 1,293 survey points and only 20% of the total survey points, resulting in 259 points, were randomly selected and used for the validation of calibrated Kabasalan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.16 meters, as shown in Table 14.

Figure 25. Correlation plot between validation survey points and LiDAR data

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.16
Average	-0.13
Minimum	-0.45
Maximum	0.19

Table 14. Validation st	atistical measures
-------------------------	--------------------

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Kabasalan with 4,911 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.27 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Kabasalan integrated with the processed LiDAR DEM is shown in Figure 26.

Figure 26. Map of Kabasalan Floodplain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Kabasalan Floodplain, including its 200 m buffer, has a total area of 103.23 sq.km. For this area, a total of 5.0 sq.km, corresponding to a total of 976 building features, is considered for QC. Figure 27 shows the QC blocks for Kabasalan Floodplain.

Figure 27. Blocks (in blue) of Kabasalan building features that were subjected to QC

Quality checking of Kabasalan building features resulted in the ratings shown in Table 15.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Kabasalan	99.49	99.49	90.88	PASSED

Table 15. Quality Checking ratings for Kabasalan building features

3.12.2 Height Extraction

Height extraction was done for 9,996 building features in Kabasalan Floodplain. Of these building features, 401 were filtered out after height extraction, resulting in 9,595 buildings with height attributes. The lowest building height is at 2.0m, while the highest building is at 8.02m.

3.12.3 Feature Attribution

One of the Research Associate of ADZU Phil-LiDAR 1 was able to develop GEONYT, an offline web-based application for feature attribution extracted from a LiDAR-based Digital Surface Model and which attribution is conducted by combining automatic data consolidation, geotagging, and offline navigation. The app is conveniently integrated in a smart phone/ tablet. The data collected are automatically stored in database and can be viewed as CSV (or excel) and KML (can viewed via Google Earth). The GEONYT App was the

main tool used in all feature attribution activity of the team.

The team, through the endorsement of the local government units of the municipality/city, hired a number of enumerators who conducted the house-to-house survey of the features using the GEONYT application. The team provided the enumerators smart tablets where the GEONYT is integrated. The number of days by which the survey was conducted was dependent on the number of features of the floodplain of the river basin; likewise, a number of enumerators are also dependent on the availability of the tablet and the number of features of the floodplain.

Table 16 summarizes the number of building features per type. On the other hand, Table 17 shows the total length of each road type, while Table 18 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	8639
School	276
Market	98
Agricultural/Agro-Industrial Facilities	36
Medical Institutions	17
Barangay Hall	27
Military Institution	3
Sports Center/Gymnasium/Covered Court	22
Telecommunication Facilities	2
Transport Terminal	7
Warehouse	33
Power Plant/Substation	2
NGO/CSO Offices	4
Police Station	3
Water Supply/Sewerage	4
Religious Institutions	96
Bank	1
Factory	1
Gas Station	6
Fire Station	1
Other Government Offices	34
Other Commercial Establishments	80
N/A	204
Total	9595

Table 16. Building features extracted for Kabasalan Floodplain

Table 17. Total length of extracted roads for Kabasalan Floodplain

Road Network Length (km)						
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Kabasalan	28.79	34.94	0.00	22.53	0.00	86.26

Table 18. Number of extracted wate	r bodies for H	Kabasalan Floodplair
------------------------------------	----------------	----------------------

Floodplain	Water Body Type					
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	IUtal
Kabasalan	83	0	1	0	456	540

A total of 6 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This step completes the feature extraction phase of the project.

Figure 28 shows the Digital Surface Model (DSM) of Kabasalan Floodplain overlaid with its ground features.

Figure 28. Extracted features for Kabasalan Floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE KABASALAN RIVER BASIN

Louie P. Balicanta, Joemarie S. Caballero, Patrizcia Mae. P. dela Cruz, Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta et al., 2014) and further enhanced and updated in Paringit et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted field surveys in Kabasalan River on July 23, 2015 to August 7, 2015 with the following scope of work: reconnaissance survey to determine the viability of traversing the planned routes for bathymetric survey and recovery of control points to be occupied; courtesy call with Ateneo de Zamboanga University, Kabasalan LGUs, and PNP; control survey for the establishment of control point at Kabasalan Bridge approach; cross-section and bridge-as-built features determination and water level marking; validation points acquisition survey with an estimated distance of 18.2 km; and bathymetric survey of Kabasalan River starting from Brgy. Banker down to the barangays of Bolo Batalion, Caingle,t and Lumbayao with approximate length of 12.85 km (see Figure 29).

Figure 29. Extent of the bathymetric survey (in blue line) in Kabasalan River and the LiDAR data validation survey (in red)

4.2 Control Survey

Figure 30. GNSS network covering Kabasalan River.

The GNSS network used for Kabasalan River Survey was composed of a single loop established on July 25, 2015 occupying the following reference points: ZSI-36, a second-order GCP in Brgy. Bacalan, Municipality of Ipil; and ZY-56, a first-order BM located in the Pagadian-Zamboanga National Road, Brgy.Sininan, Municipality of Kabasalan.

A UP-established control point, BAT, established at the approach of Batu Bridge in Brgy. Batu, Siay, Zamboanga Sibugay was also occupied to use as marker during the survey.

The summary of reference and control points and its location is summarized in Table 19 while the GNSS network established is illustrated in Figure 30.

Control		Geographic Coordinates (WGS 84)					
p o i n t Name	Order of Ac- curacy	Latitude Longitude		Ellipsoid Height, (m)	BM Ortho (m)	Date Established	
ZSI-36	2 nd Order, GCP	7°48'50.43692"	122°38'25.03291"	94.318	-	2006	
ZY-56	1 st Order, BM	-	-	74.265	6.187	2007	
BAT	UP estab- lished	-	-	-	-	7-25-2015	

Table 19. Control points occupied during control survey in Kabasalan River, Zamboanga Sibugay(Source: NAMRIA, UP-TCAGP)

The GNSS set-up on the recovered reference points, ZSI-36 and ZY-56, are shown in Figure 31 and Figure 32, respectively; while the established control point BAT is shown in Figure 33.

Figure 31. GNSS receiver, Trimble[®] SPS 882 set-up at reference point ZSI-36, in front of Iglesia Ni Cristo church along the National Highway, Brgy. Bacalan, Municipality of Ipil, Zamboaga Sibugay

Figure 32. GNSS receiver, Trimble[®] SPS 852 set-up at benchmark ZY-56, along the Pagadian-Zamboanga National Road at the end of Kabasalan Bridge, Brgy. Sininan, Municipality of Kabasalan, Zamboanga Sibugay

Figure 33. GNSS receiver, Trimble[®] SPS 852 set-up at control point BAT, at Batu Bridge in Brgy. Batu, Municipality of Siay, Zamboanga Sibugay along the PAN-Philippine National Highway

4.3 Baseline Processing

The GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points used in Kabasalan River Basin survey is summarized in Table 20, generated by TBC software.

Observation	Date of Ob- servation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
ZSI-36 BAT	7-25-2015	Fixed	0.005	0.018	107°51′19″	21599.394	-16.664
ZY-56 BAT	7-25-2015	Fixed	0.006	0.036	121°17′34″	10564.198	3.299
ZY-56 ZSI-36	7-25-2015	Fixed	0.007	0.025	95°38'06"	11586.285	-20.046
ZSI-36 BAT	7-25-2015	Fixed	0.005	0.027	107°51′19″	21599.364	-16.684
ZY-56 BAT	7-25-2015	Fixed	0.007	0.027	121°17'34"	10564.225	3.373

Table 20. Baseline processing report for Kabasalan River control survey

Three control points, ZSI-36, ZY-56, and BAT were occupied and observed simultaneously to form a GNSS loop. All 3 baselines acquired fixed solutions and passed the required ±20 cm and ±10 cm for horizontal and vertical precisions, respectively, as shown in Table 20.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates (Table 22) of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

Where:

 $\sqrt{((x_c)^2 + (y_c)^2)} < 20 cm$ and $z_c < 10 cm$

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 21 to Table 24 for complete details.

The three control points, ZSI-36, ZY-56, and BAT, were occupied and observed simultaneously to form a GNSS loop. Coordinates of ZSI-36 and elevation value of ZY-56 were held fixed during the processing of the control points as presented in Table 21. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)			
ZSI-36	Local	Fixed	Fixed				
ZY-56	Grid						
Fixed = 0.000001(Meter)							

Table 21. Control Point Constraints

The list of adjusted grid coordinates, i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 22. The fixed control ZSi-36 has no values for grid errors while ZY-56 has no value for elevation errors.

Point ID	Easting (Me- ter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Me- ter)	Elevation (Meter)	Elevation Error (Me- ter)	Constraint
BAT	480887.313	0.011	857115.876	0.008	9.534	0.078	
ZSI-36	460341.900	?	863753.414	?	26.102	0.080	LL
ZY-56	471866.790	0.013	862606.340	0.009	6.187	?	e

Table 22. Adjusted grid coordinates

With the mentioned equation, for horizontal and for the vertical, the computation for the accuracy for the horizontal and vertical accuracy are as follows:

ZSI-36 horizontal accuracy vertical accuracy	= fixed = 8.0 cm < 10 cm
ZY-56	
horizontal accuracy	$= \sqrt{((1.3)^2 + (0.9)^2)}$
	= V(1.69 + 0.81) = 1.58 < 20 cm
vertical accuracy	= fixed
BAT	
horizontal accuracy	$= \sqrt{((1.1)^2 + (0.8)^2)}$
	$= \sqrt{(1.21 + 0.64)}$
	= 1.36 cm < 20 cm
vertical accuracy	= 1.8 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the three occupied control points are within the required accuracy of the program.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
AT	N7°45′14.71408″	E122°49'35.99365"	77.600	0.078	
ZSI-36	N7°48'50.43692"	E122°38'25.03291"	94.318	0.080	LL
ZY-56	N7°48'13.35741"	E122°44'41.37797"	74.265	?	e

Table 23. Adjusted geodetic coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 23. Based on the result of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 24.

		Geographic Coord	dinates (WGS 84)	UTM ZONE 51 N			
Con- trol Point Order Accurac		Latitude	Longitude	Ellip- soidal Height (m)	Northing (m)	Easting (m)	B M Ortho (m)
Z S I - 36	2nd or- der, GCP	7°48'50.43692"	122°38'25.03291"	94.318	863753.414	460341.900	26.102
Z Y - 56	1st order, BM	7°48′13.35741″	122°44'41.37797"	74.265	862606.340	471866.790	6.187
BAT	UP Estab- lished	7°45'14.71408"	122°49'35.99365"	77.600	857115.876	480887.313	9.534

Table 24. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge As-Built and Water Level Marking

Cross-section and as-built survey was done on July 29 and August 2, 2015 in the downstream side of Kabasalan Bridge in Brgy. Sininan, Municipality of Kabasalanusing a GNSS receiver Trimble[®] SPS 882 in PPK survey technique as shown in Figure 34.

Figure 34. Cross-section and bridge as-built survey for Kabasalan Bridge, Brgy.Sininan, Municipality of Kabasalan. The construction of the new bridge is ongoing.

The cross-sectional line length of Kabasalan Bridge is about 217.88 meters with 94 cross-sectional points using ZY-56 as the GNSS base station. The summary of the location map, gathered cross-section in a diagram, and as-built data form of Kabasalan Bridge are displayed in Figure 35 to Figure 37, respectively.

Figure 35. Kabasalan Bridge cross-sectional diagram

ridge Name: Kabasalan Bridge					(Date: August 2, 2	015
Iver Name: Kabasalan River					1	Time: 3:30 P.M.	
ocation	(Brgy, City,	Region):				~	
urvey Te	eam: <u>Team B</u>	Bernard					
low con	dition:	low normal	high		Weather C	ondition: fa	air (rainy
atitude:	7d48'13.42	2493"		Longitu	de: <u>122d44'41.3</u>	7798"	
BA:		D	\bigcirc	BA3	PA4 Leg	end:	
					Ab :	Abutment D :	Deck HC = High Ch
	Abi			Ab2			
	AUT	Y		H			
				- A			
untions 5	002	Deck (Please start your me	asurement from	the left si	de of the bank facing	downstream)	10
vation:		- Width:	0.032		Span (DAS-D	M2]: 00.00037	151
-		Station		High	Chord Elevation	Low Cho	ord Elevation
1					8.336		7.246
		Bridge Approach (Please)	start your measureme	ent from the	left side of the bank facing	downstream)	
	Station(D	istance from BA1)	Elevation		Station(Distan	nce from BA1)	Elevation
BA1		0	5.65	BA3	129.	259.	6.473
BA2		48.37033	5.093	BA4	169.	505	6.068
Unz		40.07000	5.055	Unit			
	: Is the ab	utment sloping?	Yes No;	If yes	, fill in the followi	ng information:	
utment			letance from	- PA11		Elevatio	
utment	Station (Distance from BA1)			Elevatio	'n		
outment	b1	Station (D	2 2047			12 55	
A	b1	Station (D	72.8047			13.55	
A	.b1 .b2	Station (D 7	2.8047			13.55 2.919	
A	b1 b2	Station (D 7 1 Pier (Please start your mea	2.8047 24.788	the left sid	de of the bank facing	13.55 2.919 downstream)	
A	b1 b2 Shape: Recta	Station (D 7 1 Pier (Please start your mea ingular Cylinder Nur	124.788: Isurement from the surement from the su	the left sid	de of the bank facing Height of colu	13.55 2.919 downstream) umn footing:	43
A	b1 b2 Shape: <u>Recta</u>	Station (D 7 9 Pier (Please start your mea angular Cylinder Nur ation (Distance from	22.8047 24.788 surement from ober of Piers: m BA1)	the left sid	de of the bank facing Height of colu Elevation	13.55 2.919 downstream) umn footing: Pier	43 Width
Pier 1	b1 b2 Shape: <u>Recta</u>	Station (D 7 1 Pier (Please start your mea angular Cylinder Nur ation (Distance from 60.151	22.8047 24.788 usurement from mber of Piers: m BA1)	the left sid	de of the bank facing _ Height of colu :levation 6.504	13.55 2.919 downstream) umn footing: Pier 1	43 Width
Pier 1 Pier 2	b1	Station (D 7 1 Pier (Please start your mea angular Cylinder Nur tation (Distance from 60.151 83.074	22.8047 224.788 isurement from t inber of Piers: m BA1)	the left sid	de of the bank facing Height of colu Elevation 6.504 6.667	13.55 2.919 downstream) umn footing: Pier 1	43 Width
Pier 1 Pier 3 Pier 3	b1 b2 Shape: Recta	Station (D 7 1 Pier (Please start your mea angular Cylinder Nur tation (Distance from 60.151 83.074' 106.044	22.8047 224.788: Issurement from t Inber of Piers: m BA1)	the left sid	e of the bank facing Height of colu levation 6.504 6.667 6.627	13.55 2.919 downstream) umn footing: Pier 1	43 Width
Pier 1 Pier 2 Pier 3 Pier 4	b1	Station (D 7 1 Pier (Please start your mea angular Cylinder Nur tation (Distance from 60.151 83.074' 106.044	22.8047 224.788 Index of Piers: m BA1)	the left sid	le of the bank facing Height of colu Elevation 6.504 6.667 6.627	13.55 2.919 downstream) umn footing: Pier 1	43 Width
Pier 1 Pier 2 Pier 3 Pier 4 Pier 5	shape: Recta	Station (D 7 1 Pier (Please start your mea angular Cylinder Nur tation (Distance from 60.151 83.074' 106.044	22.8047 224.788 isurement from t inber of Piers: m BA1)	the left sid	e of the bank facing Height of colu ilevation 6.504 6.667 6.627	13.55 2.919 downstream) umn footing: Pier 1	43 Width

Figure 37. Kabasalan bridge data form

Figure 38. Water level markings on the post of Kabasalan bridge

Water surface elevation in MSL of Kabasalan River was determined using Trimble[®] SPS 882 in PPK mode survey on August 2, 2015 at 1:58 P.M. This was translated onto marking the bridge's pier using a Digital Level. The marked pier shown in Figure 38 serves as reference for flow data gathering and depth gauge deployment by the accompanying SUC, ADZU, who is responsible for Kabasalan River.

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on August 2, 2015 using a survey-grade GNSS Rover receiver, Trimble[®]SPS 882, mounted on a range pole which was attached in front of the vehicle as shown in Figure 39. It was secured with a cable-tie to ensure that it was horizontally and vertically balanced. The antenna height was measured and recorded to be 2.293m from the ground up to the bottom of notch of the GNSS Rover receiver. The survey was conducted using PPK technique on a continuous topography mode using ZY-56 as the base station. The survey commenced from Brgy. Bacalan, Municipality of Ipil to Brgy. Buayan, Municipality of Kabasalan covering an approximate distance of 18.2 km with1,582 validation points. The gaps in the validation line as shown in Figure 40 were due to some difficulties in receiving satellite signals because of the presence of obstruction such as dense canopy cover of trees along the roads.

Figure 39. Trimble SPS882 set-up on a vehicle for validation points acquisition along the major roads near Kabasalan River

Figure 40. Validation points acquisition survey coverage for Kabasalan River Basin

4.7 Bathymetric Survey

Bathymetric survey of Kabasalan River was conducted on July 29, 2015 using Trimble[®] SPS 882 in GNSS PPK survey technique and an Ohmex[™] single-beam echo sounder attached on a boat as shown in Figure 41. The entire survey coverage started in Brgy. Calubihan, Municipality of Kabasalan with coordinates 7°48′36.30333″122°45′41.34141″ and ended at the mouth of the river in Brgy. Mamagon, Kabasalan, Zamboanga Sibugay with coordinates 7°45′41.48006″122°45′35.71393″.

Figure 41. Bathymetric survey instrument set-up on a borrowed boat from Kabasalan local government accompanied by the Philippine Army personnel

The bathymetric line length is about 12.85 km, with a total of seven thousand fifty (7,050) bathymetric points using the reference point ZY-56, a first-order BM, was occupied as GNSS base station for the survey. The processed data were generated into map using a GIS software as shown in Figure 42.

Figure 42. Bathymetric survey of Kabasalan River

A CAD drawing was also produced to illustrate the Kabasalan riverbed profile. The surveyed portion of the river passed along the municipality of Kabasalan. The barangays covered are shown in Figure 43, namely Banker, Bolo Batallion, Cainglet, and Lumbayao. Additionally, an elevation drop of 5.1 meters was observed within the 12.85 km bathymetry line.

CHAPTER 5: FLOOD MODELLING AND MAPPING

Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this chapter were based on the DREAM methods manual (Lagmay et al., 2014) and further enhanced and updated in Paringit et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Kabasalan River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Kabasalan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from a manually read rain gauge set up at Brgy. Sanghanan, Kabasalan, Zamboanga Sibugay (7° 44' 47.7" N, 122° 31' 6.88" E) (Figure 44). The precipitation data collection started from November 5, 2016 at 12:00 midnigh tto November 5, 2016 at 6:00 PM with 10 minutes recording interval.

The total precipitation for this event in Brgy. Sanghanan was 58.4 mm. It has a peak rainfall of 5.8 mm on November 5, 2016 at 1:40 PM. The lag time between the peak rainfall and discharge is 1 hour and 30 minutes.

Figure 44. Location map of Kabasalan HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Tulay ng Pangulo, Brgy. Banker, Kabasalan, Zamboanga Sibugay (7° 49' 47.59" N, 122° 47' 32.56" E). It establishes the relationship between the observed water levels at Tulay ng Panguloand outflow of the watershed at this location.

For Tulay ng Pangulo, the rating curve is expressed as Q = 7E-114e3.3037h as shown in Figure 46.

Kabasalan Bridge Cross-Section

Figure 45. Cross-section plot of Tulay ng Pangulo

Figure 46. Rating curve at Tulay ng Pangulo, Brgy. Banker, Kabasalan, Zamboanga Sibugay

This rating curve equation was used to compute the river outflow at Tulay ng Pangulo for the calibration of the HEC-HMS model shown in Figure 46. Peak discharge is 140.8 cubic meters per second at 3:10 PM, November 5, 2016.

Figure 47. Rainfall and outflow data at Tulay ng Pangulo used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Zamboanga City Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and rearranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to the Kabasalan watershed. The extreme values for this watershed were computed based on a 59-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	15.5	23.3	28.4	36.9	45.6	50.7	60	66.1	77.3
5	21.4	31.6	38.3	50.4	61.2	38.2	82.5	91.5	107.8
10	25.3	37.1	44.8	59.4	71.6	79.8	97.5	108.3	127.9
15	27.5	40.2	48.5	64.4	77.4	86.4	105.9	117.8	139.3
20	29	42.3	51.1	68	81.5	91	111.8	124.4	147.3
25	30.2	44	53.1	70.7	84.7	94.5	116.3	129.5	153.4
50	33.9	49.1	59.2	79.1	94.4	105.4	130.4	145.3	172.3
100	37.5	54.2	65.3	87.4	104	116.2	144.3	161	191.1

Table 25. RIDF values for Zamboanga City Rain Gauge computed by PAGASA

Figure 48. Dipolog City and Zamboanga City RIDF location relative to Kabasalan River Basin

Figure 49. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil dataset was generated by the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture (DAR). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Kabasalan River Basin are shown in Figures 50 and 51, respectively.

Figure 50. Soil map of Kabasalan River Basin

Figure 51. Land cover map of Kabasalan River Basin (Source: NAMRIA)

For Kabasalan, the soil classes identified were clay, silt, and mountain soil. The land cover types identified were shrubland, open canopy forest, closed canopy forest, grassland, and cultivated areas.

Figure 52. Slope map of Kabasalan River Basin

Figure 53. Stream delineation map of Kabasalan River Basin

Using the SAR-based DEM, the Kabasalan basin was delineated and further subdivided into subbasins. The model consists of 83 subbasins, 41 reaches, and 41 junctions as shown in Figure 54 (see ANNEX 10). The main outlet is at Tulay ng Pangulo.

Figure 54. The Kabasalan river basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 55. River cross-section of Kabasalan River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northeast and the northwest of the model to the south, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements, respectively.

Figure 56. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 89.44629 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (maximum depth) is set at 0.2 m while the minimum vh (product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s. The generated hazard maps for Kabasalan are in Figure 62, Figure 64 and Figure 6.

Figure 57. Generated 100-year rain return hazard map from FLO-2D Mapper

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 84 648 288.00 m². The generated flood depth maps for Kabasalan are in Figures 63, 65, and 67.

Figure 58. Generated 100-year rain return flow depth map from FLO-2D Mapper

There is a total of 44 637 125.46 m³ of water entering the model. Of this amount, 17 642 227.88 m³ is due to rainfall while 26 994 897.57 m³ is inflow from other areas outside the model. 10 602 902.00 m³ of this water is lost to infiltration and interception, while 23 804 571.08 m³ is stored by the flood plain. The rest, amounting up to 10 229 602.94 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Kabasalan HEC-HMS river basin model (see ANNEX 9), its accuracy was measured against the observed values. Figure 59 shows the comparison between the two discharge data.

Figure 59. Outflow hydrograph of Kabasalan produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 26 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method Parameter		Range of Cali- brated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	0.0010 - 0.0083
Basin		SCS Curve number	Curve Number	32 – 54
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.017 – 0.308
			Storage Coefficient (hr)	0.017 – 0.567
	Baseflow	Recession	Recession Constant	0.09 - 0.14
			Ratio to Peak	0.15
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.005 – 0.012

Table 26. Range of calibrated values for Kabasalan

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.0010 mm to 0.0083 mm means that there is a minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. For Kabasalan, the basin mostly consists of tree plantations and cultivated areas and the soil consists of clay and mountain soil.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.017 hours to 0.567 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.09 to 0.14 indicates that the basin is likely to quickly go back to its original discharge. Ratio to peak of 0.15 indicates a steep receding limb of the outflow hydrograph.

Accuracy Measure	Value
RMSE	194.4134
r ²	0.9732
NSE	0.557867
PBIAS	18.87612
RSR	0.664931

Table 27. Summary of the Efficiency Test of Kabasalan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 194.4134 (m³/s).

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9732.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.557867.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 18.87612.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.664931.

5.7 Calculated outflow hydrographys and discharge values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 60) shows the Kabasalan outflow using the Zamboanga City Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on PAG-ASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 60. Outflow hydrograph at Tulay ng Pangulo Station generated using Zamboanga City RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Kabasalan discharge using the Zamboanga City RIDF in five different return periods is shown in Table 61.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³ /s)	Time to Peak
5-Year	107.8	21.4	461.55	12 hours 30 minutes
10-Year	127.9	25.3	632.14	12 hours 30 minutes
25-Year	153.4	30.2	874.97	12 hours 30 minutes
50-Year	172.3	33.9	1065.46	12 hours 30 minutes
100-Year	191.1	37.5	1268.06	12 hours 20 minutes

Table 28. Peak values of the Kabasalan HEC-HMS Model outflow using the Zamboanga City RIDF

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model are used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Kabasalan River using the calibrated HMS base flow is shown in Figure 61.

Figure 61. Sample output of Kabasalan RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 62 to Figure 68 show the 5-, 25-, and 100-year rain return scenarios of the Kabasalan Floodplain. The floodplain covers two municipalities namely Kabasalan and Naga. Table 29 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded				
Kabasalan	320.54	40.59	13%				
Naga	151.72	22.88	15%				

Table 29. Municipalities affected in Kabasalan Floodplain

5.10 Inventory of Areas Exposed to Flooding of Affected Areas

Affected barangays in Kabasalan river basin, grouped by municipality, are listed below. For the said basin, four municipalities consisting of 35 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 57.96011% of the municipality of Kabasalan with an area of 320.5441 sq. km. will experience flood levels of less than 0.20 meters; 3.37726% of the area will experience flood levels of 0.21 to 0.50 meters; while 2.58531%, 1.20833%, 0.93113%, and 0.32944% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected		Area of affected barangays in Kabasalan (in sq. km.)											
(sq. km.) by flood depth (in m.)	Bank- er	Bolo Batal- lion	Buay- an	Cainglet	Cala- pan	Calu- bihan	Con- cep- cion	Dipala	Gac- busan	Good- year	Lacna- pan		
0.03-0.20	17.16	1.14	3.46	1.18	0.5	0.31	1.7	2.65	3.02	8.91	9.8		
0.21-0.50	0.39	1.04	0.33	0.75	0.012	0.42	0.17	0.5	0.11	0.72	0.25		
0.51-1.00	0.28	1.24	0.2	0.17	0.0048	0.72	0.12	0.17	0.079	0.73	0.13		
1.01-2.00	0.32	0.029	0.14	0.046	0.0027	0.25	0.069	0.06	0.067	0.84	0.076		
2.01-5.00	0.22	0.22	0.092	0.026	0	0.11	0.11	0.022	0.047	0.27	0.099		
> 5.00	0.029	0.026	0.011	0	0	0.028	0.042	0	0	0.02	0.042		

Table 30. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period

Figure 68. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period

Table 31	Affected	areas in	Kabasalan	7amhoanga	Sibugay	during a -	5-vear	rainfall	return r	period
Table 51.	Alletteu	areasin	Rabasalali,	Zannooanga	Jibugay	uuning a .	J-year	rannan i	etuinp	Jenou

Affected	Area of affected barangays in Kabasalan (in sq. km.)										
Area (sq. km.) by flood depth (in m.)	Little Baguio	Lum- bayao	Nazareth	Palinta	Pe- naran- da	Pobla- cion	River- side	Sang- hanan	Santa Cruz	Sayao	Shio- Ian
0.03-0.20	9.42	0.74	0.071	8.32	9.34	1.61	0.33	17.04	0.47	14.25	21.86
0.21-0.50	0.24	0.32	0.000021	0.18	0.18	0.93	0.34	0.35	0.14	0.33	0.47
0.51-1.00	0.11	0.17	0	0.11	0.11	0.88	0.48	0.27	0.058	0.25	0.21
1.01-2.00	0.057	0.066	0	0.065	0.11	0.1	0.12	0.29	0.0004	0.2	0.13
2.01-5.00	0.053	0.014	0	0.1	0.14	0.044	0.012	0.36	0	0.096	0.18
> 5.00	0.0026	0	0	0.024	0.045	0.0002	0	0.34	0	0.0025	0.13

Figure 69. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period

Affected	Area of affected barangays in Kabasalan (in sq. km.)									
Area (sq. km.) by flood depth (in m.)	Simbol	Sininan	Tamin	Tampil- isan	Tigban- gagan	Timuay Danda				
0.03-0.20	1.57	3.58	3.42	37.74	2.17	4.05				
0.21-0.50	0.43	0.65	0.079	0.72	0.1	0.7				
0.51-1.00	0.51	0.59	0.047	0.34	0.14	0.18				
1.01-2.00	0.052	0.35	0.042	0.23	0.12	0.032				
2.01-5.00	0.034	0.33	0.014	0.26	0.11	0.015				
> 5.00	0.0036	0.17	0.0001	0.14	0.002	0				

Table 32. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period

Figure 70. Affected areas in Kabasalan, Zamboanga Sibugay during a 5-year rainfall return period

For the 5-year return period, 39.15077% of the municipality of Naga with an area of 151.7202 sq. km will experience flood levels of less than 0.20 meters; 2.57392% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.57233%, 0.67827%, 0.25887%, and 0.02693% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	Area of affected barangays in Naga (in sq. km.)										
(sq. km.) by flood depth (in m.)	Agui- naldo	Baga	Baluno	Bang- kaw-Bangkaw	Cabong	Crossing Sta. Clara	Gu- bawang	Lower Sulitan			
0.03-0.20	1.75	14.95	0.97	3.18	0	1.45	2.92	6.16			
0.21-0.50	0.083	0.59	0.035	0.9	0	0.05	0.41	0.3			
0.51-1.00	0.044	0.52	0.015	0.77	0	0.025	0.14	0.21			
1.01-2.00	0.015	0.39	0.0061	0.2	0	0.026	0.077	0.13			
2.01-5.00	0.0053	0.17	0.0022	0.00043	0	0.052	0.0016	0.082			
> 5.00	0	0.016	0	0	0	0.025	0	0			

Table 33. Affected areas in Naga, Zamboanga Sibugay during a 5-year rainfall return period

Table 34. Affected areas in Naga, Zamboanga Sibugay during a 5-year rainfall return period

Affected		Area of	affected ba	irangays in	Naga (in sc	ι. km.)	
Area (sq. km.) by flood depth (in m.)	Mamagon	Pobla- cion	San Isidro	Sulo	Tamba- nan	Taytay Manubo	Upper Sulitan
0.03-0.20	10.67	2.92	3.58	0.054	1.08	0.82	0.61
0.21-0.50	0.77	0.14	0.1	0.0022	0.067	0.037	0.026
0.51-1.00	0.17	0.083	0.068	0.0003	0.049	0.009	0.02
1.01-2.00	0.044	0.024	0.03	0	0.0016	0.0016	0.0029
2.01-5.00	0.045	0.0045	0.0024	0	0	0	0
> 5.00	0.000058	0	0	0	0	0	0

Figure 72. Affected areas in Naga, Zamboanga Sibugay during a 5-year rainfall return period

For the 25-year return period, 3.09611% of the municipality of Kabasalan with an area of 320.54 sq. km will experience flood levels of less than 0.20 meters; 2.38056% of the area will experience flood levels of 0.21 to 0.50 meters; while 3.20336%, 2.24606%, 0.96272%, and 0.32252% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area			Are	a of affecte	ed baran	gays in K	abasalar	n (in sq. k	(m.)		
(sq. km.) by flood depth (in m.)	Banker	Bolo Batal- lion	Buay- an	Cainglet	Cala- pan	Calubi- han	Con- cep- cion	Dipala	Gac- busan	Good- year	Lacna- pan
0.03-0.20	1.08	0.2	0.62	0.082	0	0.059	0.39	0.54	0.35	1.54	0
0.21-0.50	0.21	0.4	0.39	0.37	0	0.18	0.18	0.83	0.12	0.8	0
0.51-1.00	0.19	1.14	0.23	1.46	0	0.75	0.079	0.53	0.097	0.74	0
1.01-2.00	0.27	1.52	0.16	0.09	0	0.65	0.13	0.13	0.089	1.09	0
2.01-5.00	0.36	0.19	0.15	0.071	0	0.13	0.12	0.041	0.073	0.62	0.099
> 5.00	0.083	0.058	0.026	0	0	0.055	0.06	0	0.0058	0.037	0.042

Table 35. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall return period

Figure 73. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall return period

Affected Area	Area of affected barangays in Kabasalan (in sq. km.)										
(sq. km.) by flood depth (in m.)	Little Baguio	Lum- bayao	Naza- reth	Palinta	Pe- naran- da	Pobla- cion	River- side	Sang- hanan	Santa Cruz	Sayao	Shio- lan
0.03-0.20	0.18	0.12	0	0	0	0.38	0.032	1.37	0.16	0	0
0.21-0.50	0.015	0.4	0	0	0	0.8	0.17	0.22	0.23	0	0
0.51-1.00	0.007	0.44	0	0	0	1.22	0.5	0.15	0.15	0	0
1.01-2.00	0.0013	0.12	0	0	0	0.74	0.54	0.18	0.04	0	0
2.01-5.00	0.053	0.03	0	0.1	0.14	0.056	0.022	0.49	0	0.096	0.18
> 5.00	0.0026	0	0	0.024	0.045	0.0067	0	0.45	0	0.0025	0.13

Table 36. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall return period

Affected Area	Area of affected barangays in Kabasalan (in sq. km.)									
(sq. km.) by flood depth (in m.)	Simbol	Sininan	Tamin	Tampil- isan	Tigbanga- gan	Timuay Danda				
0.03-0.20	0.2	0.55	0.52	0	0.0013	0.95				
0.21-0.50	0.2	0.41	0.081	0	0	1.26				
0.51-1.00	0.54	0.77	0.053	0	0	0.99				
1.01-2.00	0.47	0.66	0.044	0	0.000009	0.13				
2.01-5.00	0.048	0.49	0.022	0.26	0.11	0.021				
> 5.00	0.02	0.2	0.0004	0.14	0.002	0				

Table 37. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall return period

Figure 74. Affected areas in Kabasalan, Zamboanga Sibugay during a 25-year rainfall return period

For the 25-year return period, 7.13710% of the municipality of Naga with an area of 151.72 sq.km will experience flood levels of less than 0.20 meters; 2.26951% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.68095%, 1.70085%, 0.47381%, and 0.11924% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area			Area of af	fected baranga	ays in Naga	ı (in sq. km	.)	
(sq. km.) by flood depth (in m.)	Aguinal- do	Baga	Baluno	Bang- kaw-Bang- kaw	Cabong	Cross- ing Sta. Clara	Gu- bawang	Lower Sulitan
0.03-0.20	0.32	2.24	0.18	0.58	0	0.22	0.66	0.88
0.21-0.50	0.089	0.57	0.049	0.26	0	0.059	0.41	0.3
0.51-1.00	0.055	0.55	0.02	0.52	0	0.033	0.33	0.23
1.01-2.00	0.033	0.55	0.0077	1.36	0	0.025	0.11	0.17
2.01-5.00	0.0043	0.32	0.0035	0.045	0	0.051	0.03	0.15
> 5.00	0.006	0.087	0	0	0	0.069	0	0.015

Table 38. Affected areas in	Naga, Zamboanga	Sibugay during a	25-year rainfal	l return period

	Table 39. Affected areas in Na	ga, Zamboanga Sibugay	y during a 25-year rainfa	all return period
--	--------------------------------	-----------------------	---------------------------	-------------------

Affected Area	Area of affected barangays in Naga (in sq. km.)						
(sq. km.) by flood depth (in m.)	Mama- gon	Pobla- cion	San Isidro	Sulo	Tamba- nan	Taytay Manubo	Upper Sulitan
0.03-0.20	4.24	0.64	0.34	0	0.052	0.19	0
0.21-0.50	1.31	0.12	0.066	0	0.033	0.054	0
0.51-1.00	0.53	0.13	0.053	0	0.022	0.013	0
1.01-2.00	0.2	0.047	0.023	0	0.0059	0.0028	0.0029
2.01-5.00	0.07	0.0083	0.0042	0	0	0	0
> 5.00	0.0034	0	0.00066	0	0	0	0

Figure 75. Affected areas in Naga, Zamboanga Sibugay during a 25-year rainfall return period

Figure 76. Affected areas in Naga, Zamboanga Sibugay during a 25-year rainfall return period

For the 100-year return period, 2.97245% of the municipality of Kabasalan with an area of 320.54 sq. km will experience flood levels of less than 0.20 meters; 1.68983% of the area will experience flood levels of 0.21 to 0.50 meters while 3.01735%, 3.48163%, 1.05987%, and 0.44293% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	rea Area of affected barangays in Kabasalan (in sq. km.)										
(sq. km.) by flood depth (in m.)	Bank- er	Bolo Batal- lion	Buay- an	Cainglet	Cala- pan	Calu- bihan	Con- cep- cion	Dipala	Gac- busan	Good- year	Lacna- pan
0.03-0.20	1.36	0.073	0.68	0.024	0	0.023	0.4	0.37	0.42	1.78	0
0.21-0.50	0.22	0.18	0.4	0.091	0	0.11	0.19	0.65	0.12	0.68	0
0.51-1.00	0.19	0.57	0.27	0.91	0	0.57	0.093	0.89	0.1	0.84	0
1.01-2.00	0.26	2.51	0.16	1.03	0	0.93	0.074	0.23	0.1	1.15	0
2.01-5.00	0.43	0.18	0.2	0.071	0	0.14	0.19	0.062	0.085	0.86	0.099
> 5.00	0.12	0.071	0.044	0	0	0.061	0.076	0	0.017	0.041	0.042

Table 40. Affected areas in Kabasalan, Zamboanga Sibugay during a 100-year rainfall return period

Table 41. Affected areas in Kabasalan, Zamboanga Sibugay during a 100-year rainfall return period

Affected		Area of affected barangays in Kabasalan (in sq. km.)									
Area (sq. km.) by flood depth (in m.)	Little Baguio	Lum- bayao	Naza- reth	Palinta	Pe- naran- da	Pobla- cion	River- side	Sang- hanan	Santa Cruz	Sayao	Shio- lan
0.03-0.20	0.2007	0.050	0	0	0	0.217	0.0097	1.82	0.087	0	0
0.21-0.50	0.014	0.2003	0	0	0	0.61	0.076	0.23	0.253	0	0
0.51-1.00	0.0095	0.608	0	0	0	1.26	0.403	0.14	0.181	0	0
1.01-2.00	0.0022	0.237	0	0	0	1.21	0.75	0.16	0.105	0	0
2.01-5.00	0.053	0.042	0	0.10	0	0.067	0.034	0.35	0	0.096	0.18
> 5.00	0.0026	0	0	0.024	0	0.013	0	0.74	0	0.0025	0.13

Table 42. Affected areas in Kabasalan, Zamboanga Sibugay during a 100-year rainfall return period

Affected Area	A	rea of affec	ted baranga	iys in Kabasala	an (in sq. km.)	in sq. km.)					
(sq. km.) by flood depth (in m.)	Simbol	Sininan	Tamin	Tampilisan	Tigbanga- gan	Timuay Danda					
0.03-0.20	0.18	0.57	0.62	0	0.0013	0.66					
0.21-0.50	0.11	0.36	0.086	0	0	0.84					
0.51-1.00	0.26	0.66	0.060	0	0.00006	1.65					
1.01-2.00	0.90	0.90	0.051	0	0	0.402					
2.01-5.00	0.057	0.56	0.029	0.26	0.000009	0.036					
> 5.00	0.023	0.21	0.0006	0.14	0.002	0					

Figure 78. Affected areas in Kabasalan, Zamboanga Sibugay during a 100-year rainfall return period

For the 100-year return period, 7.40371% of the municipality of Naga with an area of 151.72 sq.km will experience flood levels of less than 0.20 meters; 2.68250% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.94076%, 2.16934%, 0.67126%, and 0.21505% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	Area of affected barangays in Naga (in sq. km.)									
(sq. km.) by flood depth (in m.)	Aguinal- do	Baga	Baluno	Bang- kaw-Bang- kaw	Cabong	Cross- ing Sta. Clara	Gu- bawang	Lower Sulitan		
0.03-0.20	0.39	2.63	0.21	0.65	0	0.26	0.68	0.99		
0.21-0.50	0.09	0.59	0.059	0.24	0	0.062	0.4	0.31		
0.51-1.00	0.066	0.56	0.022	0.23	0	0.043	0.4	0.24		
1.01-2.00	0.039	0.59	0.0099	1.7	0	0.028	0.14	0.21		
2.01-5.00	0.0064	0.45	0.0046	0.14	0	0.047	0.08	0.16		
> 5.00	0.0087	0.14	0	0	0	0.095	0	0.066		

Table 43. Affected areas in Naga, Zamboanga Sibugay during a 25-year rainfall return period

Table 44. Affected areas in Naga, Zamboanga Sibugay during a 25-year rainfall return period

Affected Area	Area of affected barangays in Naga (in sq. km.)								
(sq. km.) by flood depth (in m.)	Mama- gon	Pobla- cion	San Isidro	Sulo	Tamba- nan	Taytay Manubo	Upper Sulitan		
0.03-0.20	3.68	0.78	0.37	0	0.054	0.22	0		
0.21-0.50	1.91	0.13	0.064	0	0.032	0.062	0		
0.51-1.00	1.06	0.13	0.064	0	0.027	0.016	0		
1.01-2.00	0.41	0.075	0.026	0	0.013	0.004	0.0029		
2.01-5.00	0.068	0.012	0.0068	0	0	0	0		
> 5.00	0.0073	0	0.0021	0	0	0	0		

Figure 79. Affected areas in Naga, Zamboanga Sibugay during a 100-year rainfall return period

Figure 80. Affected areas in Naga, Zamboanga Sibugay during a 100-year rainfall return period

Of the 43 identified educational institutions in Kabasalan Floodplain, 9 schools were assessed to be exposed to the low-level flooding during a 5-year scenario while 8 and 1 schools were assessed to be exposed to medium- and high-level flooding, respectively, in the same scenario. In the 25-year scenario, 12 schools were assessed to be exposed to low-level flooding while 9 and 4 schools were assessed to be exposed to medium- and high-level flooding, respectively, in the same scenario. For the 100-year scenario, 8 schools were assessed to be exposed to the low-level flooding while 14 and 5 schools were assessed to be exposed to be exposed to medium- and high-level flooding, respectively, in the same scenario.

Seventeen (17) medical institutions were identified in Kabasalan Floodplain. All were assessed to be exposed to medium-level flooding in the three different scenarios.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel then went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 218 points randomly selected all over the Kabasalan Floodplain. It has an RMSE value of 0.78. The validation points are listed in Annex 11.

Figure 81. Validation points for 5-year Flood Depth Map of Kabasalan Floodplain

Figure 82. Flood map depth vs actual flood depth

Actual Flood	Modeled Flood Depth (m)									
Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total			
0-0.20	92	18	7	2	0	0	119			
0.21-0.50	20	10	7	8	3	0	48			
0.51-1.00	15	6	8	2	5	0	36			
1.01-2.00	4	5	3	1	0	0	13			
2.01-5.00	0	0	0	1	0	1	2			
> 5.00	0	0	0	0	0	0	0			
Total	131	39	25	14	8	1	218			

Table 45. Actual flood depth vs simulated flood depth in Kabasalan

The overall accuracy generated by the flood model is estimated at 50.92%, with 111 points correctly matching the actual flood depths. In addition, there were 52 points estimated one level above and below the correct flood depths while there were 40 points and 9 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 53 points were overestimated while a total of 54 points were underestimated in the modelled flood depths of Kabasalan.

	No. of Points	%
Correct	111	50.92
Overestimated	53	24.31
Underestimated	54	24.77
Total	218	100.00

Table 46. Summary of accuracy assessment in Kabasalan River Basin Survey

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Annex 1. OPTECH Technical Specification of the Pegasus Sensor

Laptop

Control Rack

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV [™] AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galile- o/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (option- al)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitiz- er (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certificates of Reference Points Used

1. ZGS-58

ZGS-58

Location Description

Is located about 200 m. NNE of the intersection of the national highway and the road going to Poblacion, Kumalarang. It is about 190 m. NE of the PNP Checkpoint and Collection post, 190 m. NNE of a waiting shed and 400 m. NNE of ZGS-59. Mark is the head of a 3 in. copper nail embedded and centered on a 30 cm. x 30 cm. cement putty, with inscriptions "ZGS-58 2005 NAMRIA/LEP-IX".

Requesting Party:	UP DRE
Purpose:	Referen
OR Number:	8089868
T.N.:	2016-04

AM ce 1 11

RUEL DM. BELEN, MNSA Director Vapping And Geodesy Branch G

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

2. ZGS-68

					February 10, 2016
		CERT	IFICATION		
o whom it may	concern:				
This is to cer	tify that according to	the records on fil	e in this office, the requ	ested survey inform	nation is as follows -
		Province: ZAMB	OANGA DEL SUR		
		Station Na	me: ZGS-68		
		Order:	2nd		
Island: MIND/ Municipality: G	ANAO	Barangay: MSL Elevati	POBLACION on: 2 Coordinates		
Latitude: 7º	43' 33.12722"	Longitude:	123º 18' 48.96041"	Ellipsoidal Hgt	205.94100 m.
		WGS8	4 Coordinates		
Latitude: 7º	43' 29.62251"	Longitude:	123° 18' 54.44472"	Ellipsoidal Hgt	271.74800 m.
		PTM / PR	S92 Coordinates		
Northing: 854	4250.138 m.	Easting:	534593.845 m.	Zone: 4	
Northing: 85	3,951.14	UTM / PR Easting:	S92 Coordinates 534,581.74	Zone: 51	
		Locatio	on Description		
ENRO from the ENRO from the he head of a 3 in ZGS-68 2005 N	iot of the CENRO of e national road, 15 m a copper nail embed AMRIA/LEP-IX". y: UP DREAM Reference 8089774 I 2016-0335	Guipos. It is on t E of the said off ded and centered	he E end of the S sidew ice and 2.5 m. from the t on a 30 cm. x 30 cm. (R Director	valk along the entra centerline of the dr cement putty, with i uel pm. Belent Mapping And Geo	nce way of iveway. Mark is nscriptions MNSA desy Branch
Vequesting Party Purpose: DR Number: T.N.:			11		· · ·

Annex 3. Baseline Processing Reports

For the Kabasalan River Basin, there are no baseline processing reports for NAMRIA ground control points.

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation				
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP				
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP				
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP				
LiDAD Operation	Supervising Science Research	LOVELY GRACIA ACUÑA	UP-TCAGP				
LIDAR Operation	Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP				
FIELD TEAM							
	Senior Science Research Specialist (SSRS)	PAULINE JOANNE ARCEO	UP-TCAGP				
LiDAR Operation	Descereb Associate (DA)	ENGR. KENNETH QUISADO	UP-TCAGP				
	Research Associate (RA)	ENGR. GRACE SINADJAN	UP-TCAGP				
Ground Survey, Data Download and Transfer	RA	JASMIN DOMINGO	UP-TCAGP				
	Airborne Security	SSG. LEE JAY PUNZALAN	PHILIPPINE AIR FORCE (PAF)				
LiDAR Operation	Pilot	CAPT. CESAR ALFONSO III	ASIAN AEROSPACE CORPORATION (AAC)				
		CAPT. JERICHO JECIEL	AAC				

Annex 4. The Survey Team

Flights
oodplain
lan Fl
Kabasal
t for
Sheet
Transfer
Data
Annex 5.

	LOCATION	Z:IDACIRAW	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW
PLAN	KML	NA	NA	NA	NA	NA	NA
FLIGHT	Actual	148/252/232	580/100/91/8 2	125/108/98/8 7/78/76	92/90/80/73	84/84/72/76/5 7	85/83
OPERATOR LOGS (OPLOG)		2KB	1KB	NA	NA	1KB	1KB
ATION(S)	Base Info (.txt)	2KB	2KB	1KB	1KB	2KB	2KB
BASE STA	BASE STATION(S)	63.8 MB	59.6 MB	3.12 MB	44.4 MB	49.7 MB	65.9 MB
	DIGITIZER	0.8	0.8	0.8	0.8	0.B	0.B
	RANGE	24.4 GB	25.9 GB	21.1 GB	23.3	24.4 GB	26.5 GB
DON LOG	FILE/CASI LOGS	NA	NA	NA	NA	NA	NA
MVD	IMAGES/CASI	NA	22.5 GB	NA	311 MB	NA	NA
	POS	294 MB	298 MB	270 MB	273 MB	266 MB	305 MB
	LOGS(MB)	11.9 MB	12 MB	11.4 MB	12.8 MB	12.5 MB	13.5 MB
LAS	KML (swath)	NA	NA	NA	NA	NA	NA
RAW	Output LAS	2.29 GB	2.6 GB	1.89 GB	2.22 GB	10.3 MB	2.47 GB
	SENSOR	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus
	MISSION NAME	1BLK76NO051A	1BLK69D052A	1BLK69AB053A	1BLK70B054A	1BLK73A055A	1BLK73BS057A
	LLIGHT NO.	23116P	23120P	23124P	23128P	23132P	23140P
DATE	חאוב	32/20/2016	12/21/2016	12/22/2016	12/23/2016	12/24/2016	12/26/2016

DATA TRANSFER SHEET

Received from

Signature Name Posit

Annex 6. Flight Logs

Flight Log for 1BLK73A055A Mission

Flight Log for 1BLK73BS057A Mission

Annex 7. Flight Status Report

PAGADIAN and DIPOLOG REFLIGHTS (February 24 to February 26, 2016)					
FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
23132P	BLK 73A, 73B	1BLK73A055A	PJ Arceo	February 24, 2016	Restarted the system several times due to sensor temperature increase. Encountered lost Channel A error. No LAS output. Sur- veyed floodplains over Zamboanga Sibugay.
23140P	BLK 73B, 72A, 70A	1BLK73BS057A	K. Quisado	February 26, 2016	Encountered lost Channel A. completed BLK 73B and voids over BLK72A and 70A.

LAS BOUNDARIES PER FLIGHT

Flight No.:	23132P		
Area:	BLK 73A, 73	В	
Mission Name:	1BLK73A055	5A	
Parameters:	Altitude:	800/1200 m;	Scan Frequency: 30 Hz;
Scan Angle:	25 deg;	Overlap: 30%	

LAS

Flight No.:23140PArea:BLK 73B, 72A, 70AMission Name:1BLK73BS057AParameters:Altitude:800/1100/1200 m;Scan Angle:25deg;Overlap: 30%

Scan Frequency: 30Hz;

LAS

Annex 8	. Mission	Summary	Report
---------	-----------	---------	--------

Flight Area	Pagadian	
Mission Name	73A	
Inclusive Flights	23132P	
Range data size	24.4	
POS data size	266	
Base data size	49.7	
Image	n/a	
Transfer date	March 10, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	No	
Baseline Length (<30km)	No	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	3.3	
RMSE for East Position (<4.0 cm)	2.6	
RMSE for Down Position (<8.0 cm)	5.1	
Boresight correction stdev (<0.001deg)	0.000238	
IMU attitude correction stdev (<0.001deg)	0.002381	
GPS position stdev (<0.01m)	0.0086	
Minimum % overlap (>25)	45.26	
Ave point cloud density per sq.m. (>2.0)	3.04	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	235	
Maximum Height	356.21 m	
Minimum Height	58.38 m	
Classification (# of points)		
Ground	151,535,157	
Low vegetation	140,778,106	
Medium vegetation	205,446,183	
High vegetation	523,304,913	
Building	5,697,858	
Orthophoto	No	
Processed by	Engr. Kenneth Solidum, Engr. Mark Joshua Salvacion, Engr. Ma. AilynO- landa	

Figure 1.1.2. Smoothed Performance Metric Parameters

Figure 1.1.4. Coverage of LiDAR Data

Figure 1.1.5. Image of data overlap

Figure 1.1.6. Density map of merged LiDAR data

Figure 1.1.7. Elevation difference between flight lines

Flight Area	Pagadian
Mission Name	73A_Supplement
Inclusive Flights	23132P
Range data size	24.4
POS data size	266
Base data size	49.7
Image	n/a
Transfer date	March 10, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.3
RMSE for East Position (<4.0 cm)	2.6
RMSE for Down Position (<8.0 cm)	5.1
Boresight correction stdev (<0.001deg)	0.000406
IMU attitude correction stdev (<0.001deg)	0.005082
GPS position stdev (<0.01m)	0.0096
Minimum % overlap (>25)	40.13
Ave point cloud density per sq.m. (>2.0)	2.70
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	98
Maximum Height	287.13 m
Minimum Height	56.73 m
Classification (# of points)	
Ground	51,081,330
Low vegetation	43,565,906
Medium vegetation	50,678,603
High vegetation	38,220,733
Building	1,396,988
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Justine Francisco, Engr. Elainne Lopez

Figure 1.2.2. Smoothed Performance Metric Parameters

Figure 1.2.3. Best Estimated Trajectory

Figure 1.2.4. Coverage of LiDAR Data

Figure 1.2.5. Image of data overlap

Figure 1.2.6. Density map of merged LiDAR data

Figure 1.2.7. Elevation difference between flight lines

Flight Area	Pagadian
Mission Name	73B
Inclusive Flights	23140P
Range data size	26.5
POS data size	305
Base data size	65.9
Image	n/a
Transfer date	March 10, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	8.4
RMSE for East Position (<4.0 cm)	6.9
RMSE for Down Position (<8.0 cm)	1.6
Boresight correction stdev (<0.001deg)	0.000236
IMU attitude correction stdev (<0.001deg)	0.000494
GPS position stdev (<0.01m)	0.0013
Minimum % overlap (>25)	39.42
Ave point cloud density per sq.m. (>2.0)	2.83
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	116
Maximum Height	512.68 m
Minimum Height	66.73 m
Classification (# of points)	
Ground	66,220,867
Low vegetation	39,456,934
Medium vegetation	78,824,068
High vegetation	253,804,269
Building	2,461,205
Orthophoto	No

Figure 1.3.2. Smoothed Performance Metric Parameters

Figure 1.3.3. Best Estimated Trajectory

Figure 1.3.4. Coverage of LiDAR Data

Figure 1.3.5. Image of data overlap

Figure 1.3.6. Density map of merged LiDAR data

Figure 1.3.7. Elevation difference between flight lines

Annex 9. Kabasalan Model Basin Parameters

Basin	SCS Curve Nur	nber Loss		Clark Unit Hydrograph	Transform	Recession Ba	iseflow			
Number	Initial Ab- straction (mm)	C u r v e Number	Impervious (%)	Time of Concentra- tion (HR)	Storage Coeffi- cient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W1660	0.0018628	52.527	0.0	0.13073	0.32002	Discharge	0.47254	0.0904325	Ratio to Peak	0.15074
W1650	0.0039966	54.082	0.0	0.30752	0.50217	Discharge	1.1559	0.0904483	Ratio to Peak	0.15074
W1640	0.0010457	49.137	0.0	0.085523	0.20936	Discharge	0.24391	0.0904447	Ratio to Peak	0.15075
W1630	0.0015608	35.966	0.0	0.064544	0.15801	Discharge	0.20937	0.090444	Ratio to Peak	0.15075
W1620	0.001351	50.371	0.0	0.10046	0.16068	Discharge	0.59214	0.0904441	Ratio to Peak	0.15075
W1610	0.0025405	36.397	0.0	0.082976	0.0902782	Discharge	0.0252867	0.0904439	Ratio to Peak	0.15075
W1600	0.0017447	38.61	0.0	0.017	0.017	Discharge	9.58433E-5	0.090444	Ratio to Peak	0.15075
W1590	0.0020806	45.952	0.0	0.1182	0.19385	Discharge	0.17683	0.0904439	Ratio to Peak	0.15075
W1580	0.0015608	35.967	0.0	0.14857	0.24366	Discharge	0.0669306	0.0904439	Ratio to Peak	0.15075
W1570	0.0049977	49.27	0.0	0.23275	0.56698	Discharge	0.60939	0.0901334	Ratio to Peak	0.15074
W1560	0.0013306	46.162	0.0	0.070623	0.07684	Discharge	0.16669	0.090444	Ratio to Peak	0.15075
W1550	0.0020476	45.136	0.0	0.093885	0.10215	Discharge	0.19370	0.0904439	Ratio to Peak	0.15075
W1540	0.0024381	48.259	0.0	0.10072	0.16519	Discharge	0.19916	0.135	Ratio to Peak	0.15075
W1530	0.0015608	52.871	0.0	0.017	0.025313	Discharge	0.0020606	0.0904439	Ratio to Peak	0.15075
W1520	0.0012047	35.06	0.0	0.10963	0.17981	Discharge	0.53495	0.135	Ratio to Peak	0.15075
W1510	0.0053793	37.34	0.0	0.10323	0.2527	Discharge	0.16103	0.135	Ratio to Peak	0.15075
W1500	0.0012213	47.423	0.0	0.065382	0.0711333	Discharge	0.24218	0.090444	Ratio to Peak	0.15075
W1490	0.002565	42.04	0.0	0.15967	0.25538	Discharge	0.30745	0.0904442	Ratio to Peak	0.15075
W1480	0.0018529	46.423	0.0	0.10656	0.11593	Discharge	0.2253	0.090444	Ratio to Peak	0.15075
W1470	0.0026301	42.042	0.0	0.20109	0.33263	Discharge	0.25178	0.0904443	Ratio to Peak	0.15075
W1460	0.0011017	52.158	0.0	0.035325	0.05765	Discharge	0.0316602	0.090444	Ratio to Peak	0.15075
W1450	0.0010197	35.967	0.0	0.03182	0.05193	Discharge	0.0117887	0.090444	Ratio to Peak	0.15075
W1440	0.0024501	43.682	0.0	0.12018	0.13076	Discharge	0.19105	0.09	Ratio to Peak	0.15075

Basin	SCS Curve Nu	mber Loss		Clark Unit Hydrograph	ı Transform	Recession Ba	iseflow			
Number	Initial Ab- straction (mm)	C u r v e Number	Impervious (%)	Time of Concentra- tion (HR)	Storage Coeffi- cient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W1430	0.0010823	53.408	0.0	0.057187	0.0937868	Discharge	0.16613	0.0904439	Ratio to Peak	0.15075
W1420	0.0015608	52.871	0.0	0.03976	0.064888	Discharge	0.0104469	0.0904439	Ratio to Peak	0.15075
W1410	0.0040029	38.353	0.0	0.13578	0.14773	Discharge	0.38567	0.09	Ratio to Peak	0.15075
W1400	0.0016165	43.999	0.0	0.077018	0.12318	Discharge	0.12313	0.0904441	Ratio to Peak	0.15075
W1390	0.0016011	53.385	0.0	0.055584	0.0888987	Discharge	0.0425225	0.0904439	Ratio to Peak	0.15075
W1380	0.004419	41.141	0.0	0.11583	0.18998	Discharge	0.26874	0.0904439	Ratio to Peak	0.15
W1370	0.0031002	40.442	0.0	0.13143	0.143	Discharge	0.34898	0.0904441	Ratio to Peak	0.15
W1360	0.0045075	36.757	0.0	0.1326	0.2146	Discharge	0.22074	0.09	Ratio to Peak	0.15
W1350	0.0027054	47.969	0.0	0.051802	0.0860701	Discharge	0.12953	0.0904439	Ratio to Peak	0.15
W1340	0.001431	50.77	0.0	0.05553	0.0888135	Discharge	0.16699	0.0904439	Ratio to Peak	0.15
W1330	0.0045945	51.318	0.0	0.2825	0.46104	Discharge	0.55572	0.0903556	Ratio to Peak	0.15
W1320	0.0039255	38.61	0.0	0.12746	0.19784	Discharge	0.25378	0.09	Ratio to Peak	0.15
W1310	0.0052677	37.663	0.0	0.12551	0.20584	Discharge	0.25341	0.0902513	Ratio to Peak	0.15
W1300	0.0058336	36.079	0.0	0.13165	0.21485	Discharge	0.20255	0.135	Ratio to Peak	0.15
W1290	0.0039303	38.594	0.0	0.09655	0.23635	Discharge	0.19351	0.090444	Ratio to Peak	0.15
W1280	0.0048645	38.88	0.0	0.10051	0.16471	Discharge	0.24732	0.0904439	Ratio to Peak	0.15
W1270	0.007077	50.552	0.0	0.101	0.16565	Discharge	0.23566	0.135	Ratio to Peak	0.15
W1260	0.0045686	39.823	0.0	0.11925	0.29193	Discharge	0.27162	0.090444	Ratio to Peak	0.15
W1250	0.0024989	42.766	0.0	0.0166667	0.41086	Discharge	0.43824	0.0904442	Ratio to Peak	0.15
W1240	0.008255	46.8	0.0	0.051007	0.083243	Discharge	0.0547744	0.0904439	Ratio to Peak	0.15
W1230	0.0031836	36.031	0.0	0.1418	0.34712	Discharge	0.39178	0.0904441	Ratio to Peak	0.15
W1220	0.0073953	49.479	0.0	0.12026	0.19722	Discharge	0.32128	0.0904437	Ratio to Peak	0.15
W1210	0.0052426	37.737	0.0	0.10581	0.25902	Discharge	0.24732	0.0904439	Ratio to Peak	0.15
W1200	0.0034036	38.22	0.0	0.097436	0.10601	Discharge	0.30863	0.090444	Ratio to Peak	0.15
W1190	0.0045926	51.327	0.0	0.11819	0.18902	Discharge	0.15059	0.0904441	Ratio to Peak	0.15

Basin	SCS Curve Nu	mber Loss		Clark Unit Hydrograph	1 Transform	Recession Ba	seflow			
Number	Initial Ab- straction (mm)	C u r v e Number	Impervious (%)	Time of Concentra- tion (HR)	Storage Coeffi- cient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W1180	0.00508	38.22	0.0	0.039172	0.063929	Discharge	0.0237052	0.090444	Ratio to Peak	0.15
W1170	0.0053546	37.412	0.0	0.095853	0.15397	Discharge	0.21095	0.0904441	Ratio to Peak	0.15
W1160	0.003362	35.272	0.0	0.13015	0.47792	Discharge	0.75189	0.0904442	Ratio to Peak	0.15
W1150	0.0034036	38.22	0.0	0.031482	0.051379	Discharge	0.0236413	0.090444	Ratio to Peak	0.15
W1140	0.0034471	38.025	0.0	0.10088	0.10976	Discharge	0.16841	0.0904441	Ratio to Peak	0.15
W1130	0.0065594	52.396	0.0	0.1627	0.39829	Discharge	0.45474	0.0904438	Ratio to Peak	0.15
W1120	0.005632	37.106	0.0	0.11934	0.29216	Discharge	0.29616	0.0904441	Ratio to Peak	0.15
W1110	0.0070674	50.584	0.0	0.21677	0.54148	Discharge	0.52017	0.0904442	Ratio to Peak	0.15
W1100	0.0055875	36.752	0.0	0.27246	0.29687	Discharge	0.44220	0.0904441	Ratio to Peak	0.15
W1090	0.0081666	47.062	0.0	0.13511	0.22144	Discharge	0.25440	0.0904438	Ratio to Peak	0.15
W1080	0.0040601	35.482	0.0	0.16009	0.26239	Discharge	0.43698	0.0904437	Ratio to Peak	0.15
W1070	0.008255	46.8	0.0	0.25306	0.41301	Discharge	0.29913	0.0904441	Ratio to Peak	0.15
W1060	0.0058622	36.002	0.0	0.14852	0.24359	Discharge	0.30309	0.0904439	Ratio to Peak	0.15
W1050	0.00508	35.1	0.0	0.082383	0.20168	Discharge	0.17261	0.0904439	Ratio to Peak	0.15
W1040	0.0056037	36.706	0.0	0.088354	0.1449	Discharge	0.27295	0.0904438	Ratio to Peak	0.15
W1030	0.0077328	32.422	0.0	0.15311	0.25111	Discharge	0.42377	0.0904439	Ratio to Peak	0.15
W1020	0.0040998	35.261	0.0	0.13821	0.33834	Discharge	0.46046	0.0904437	Ratio to Peak	0.15
W1010	0.0057434	36.323	0.0	0.13515	0.33086	Discharge	0.42460	0.0904438	Ratio to Peak	0.15
W1000	0.0052224	37.796	0.0	0.081696	0.2	Discharge	0.23943	0.0904438	Ratio to Peak	0.15
066M	0.0081868	47.002	0.0	0.25485	0.41592	Discharge	0.28889	0.0904442	Ratio to Peak	0.15074
W980	0.005281	37.624	0.0	0.2191	0.36561	Discharge	0.72037	0.0904442	Ratio to Peak	0.15074
W970	0.00508	35.1	0.0	0.072228	0.11847	Discharge	0.13119	0.0904439	Ratio to Peak	0.15075
W960	0.0055595	36.829	0.0	0.093621	0.15354	Discharge	0.26796	0.0904438	Ratio to Peak	0.15075
W950	0.0079852	47.608	0.0	0.12218	0.20039	Discharge	0.10789	0.0904439	Ratio to Peak	0.15075
W940	0.0065915	52.278	0.0	0.27057	0.44158	Discharge	0.45679	0.0904439	Ratio to Peak	0.15074

Basin	SCS Curve Nur	nber Loss		Clark Unit Hydrograph	l Transform	Recession Ba	seflow			
Number	Initial Ab- straction (mm)	C u r v e Number	Impervious (%)	Time of Concentra- tion (HR)	Storage Coeffi- cient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W930	0.0050358	38.353	0.0	0.065694	0.16081	Discharge	0.0841344	0.090444	Ratio to Peak	0.15075
W920	0.0045418	41.082	0.0	0.071067	0.11366	Discharge	0.14201	0.0904441	Ratio to Peak	0.15075
W910	0.0069548	50.974	0.0	0.094986	0.23253	Discharge	0.21779	0.0904439	Ratio to Peak	0.15075
006M	0.0047919	35.915	0.0	0.30843	0.33724	Discharge	0.72069	0.0904441	Ratio to Peak	0.15074
W890	0.0054554	37.88	0.0	0.099787	0.16366	Discharge	0.32777	0.0904438	Ratio to Peak	0.15074
W880	0.0039255	42.042	0.0	0.037086	0.060525	Discharge	0.0268042	0.1035	Ratio to Peak	0.15075
W870	0.0045498	40.699	0.0	0.10178	0.24915	Discharge	0.20990	0.090444	Ratio to Peak	0.15075
W860	0.0076553	48.637	0.0	0.13536	0.33135	Discharge	0.22522	0.135	Ratio to Peak	0.15075
W850	0.0063156	35.364	0.0	0.096185	0.23546	Discharge	0.19391	0.135	Ratio to Peak	0.15075
W840	0.006193	35.14	0.0	0.10905	0.26696	Discharge	0.27389	0.0904441	Ratio to Peak	0.15064

Parameters
Reach
Model
Kabasalan
Annex 10.

Reach	Muskingum Cunge Channel R	outing					
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	S i d e Slope
R30	Automatic Fixed Interval	267.28	0.0199238	0.012	Trapezoid	20	0.01
R60	Automatic Fixed Interval	464.26	0.00059	0.012	Trapezoid	20	0.01
R80	Automatic Fixed Interval	597.99	0.0401345	0.008	Trapezoid	20	0.01
R100	Automatic Fixed Interval	1116.7	0.0276431	0.012	Trapezoid	20	0.01
R110	Automatic Fixed Interval	1315.7	0.0463368	0.0080398	Trapezoid	20	0.01
R120	Automatic Fixed Interval	1664.7	0.0186788	0.0080362	Trapezoid	20	0.01
R130	Automatic Fixed Interval	1064.7	0.0239603	0.012	Trapezoid	20	0.01
R150	Automatic Fixed Interval	1357.1	0.0462105	0.012	Trapezoid	20	0.01
R170	Automatic Fixed Interval	1118.4	0.0710821	0.0080181	Trapezoid	20	0.01
R180	Automatic Fixed Interval	3562.9	0.0227604	0.012	Trapezoid	20	0.01
R230	Automatic Fixed Interval	1826.1	0.0273304	0.0079415	Trapezoid	20	0.01
R260	Automatic Fixed Interval	1775.4	0.0095652	0.0080243	Trapezoid	20	0.01
R300	Automatic Fixed Interval	3998.9	0.0367418	0.0082803	Trapezoid	20	0.01
R310	Automatic Fixed Interval	356.27	0.0779984	0.008	Trapezoid	20	0.01
R320	Automatic Fixed Interval	1714.3	0.0608810	0.012	Trapezoid	20	0.01
R330	Automatic Fixed Interval	2725.2	0.0223105	0.012	Trapezoid	20	0.01
R340	Automatic Fixed Interval	405.56	0.0666391	0.0080349	Trapezoid	20	0.01
R360	Automatic Fixed Interval	1192.3	.0005867491483375926	0.012	Trapezoid	20	0.01
R390	Automatic Fixed Interval	539.71	0.0867470	0.008038	Trapezoid	20	0.01
R410	Automatic Fixed Interval	1329.5	0.0084942	0.0080343	Trapezoid	20	0.01
R440	Automatic Fixed Interval	959.41	0.0017788	0.012	Trapezoid	20	0.01
R460	Automatic Fixed Interval	3217.2	0.0088739	0.0080309	Trapezoid	20	0.01
R480	Automatic Fixed Interval	576.98	0.00059	0.012	Trapezoid	20	0.01

R520	Automatic Fixed Interval	556.27	0.0086962	0.0080321	Trapezoid	20	0.01
R530	Automatic Fixed Interval	891.84	0.0093209	0.012	Trapezoid	20	0.01
R560	Automatic Fixed Interval	765.69	0.0064446	0.0080328	Trapezoid	20	0.01
R580	Automatic Fixed Interval	240.42	0.00059	0.00784	Trapezoid	20	0.01
R590	Automatic Fixed Interval	784.97	0.0082540	0.00784	Trapezoid	20	0.01
R610	Automatic Fixed Interval	783.55	0.0437879	0.0072	Trapezoid	20	0.01
R630	Automatic Fixed Interval	2225.8	0.0376264	0.0080391	Trapezoid	20	0.01
R650	Automatic Fixed Interval	214.85	0.0296386	0.0080348	Trapezoid	20	0.01
R660	Automatic Fixed Interval	755.27	0.0430165	0.012	Trapezoid	20	0.01
R670	Automatic Fixed Interval	1181.0	0.00059	0.008	Trapezoid	20	0.01
R690	Automatic Fixed Interval	2937.5	0.0080160	0.0080243	Trapezoid	20	0.01
R710	Automatic Fixed Interval	685.27	0.0217009	0.012	Trapezoid	20	0.01
R720	Automatic Fixed Interval	1676.1	0.0113071	0.0053333	Trapezoid	20	0.01
R740	Automatic Fixed Interval	30	0.00059	0.008	Trapezoid	20	0.01
R750	Automatic Fixed Interval	1395.8	0.0089365	0.0080333	Trapezoid	20	0.01
R760	Automatic Fixed Interval	442.34	0.0067381	0.0080202	Trapezoid	20	0.01
R780	Automatic Fixed Interval	984.85	0.00059	0.0080094	Trapezoid	20	0.01
R800	Automatic Fixed Interval	2286.7	0.0086388	0.012	Trapezoid	20	0.01

Validation Coordinates Rain Point Model Validation Event/Date **Return / Error** Number Var (m) Points (m) Lat Long Scenario 7.79845 0.85 0.15 1 122.760545 Flooding 0.70 5 -Year 2 7.797127 122.761944 0.16 0.3 Flooding -0.14 5 -Year 3 122.761254 0.49 5 -Year 7.796343 0.5 Flooding -0.01 4 7.790034 122.760463 0.36 0.175 Flooding 0.19 5 -Year 5 7.790194 122.782717 0.18 0.15 0.03 5 -Year Flooding 6 7.789428 122.783729 0 0.00 5 -Year 0 7 7.809139 122.730207 0 0.75 flooding -0.75 5 -Year 7.808876 8 122.731779 0 0.75 flooding -0.75 5 -Year 9 7.80796 122.731581 0 0.75 flooding -0.75 5 -Year 10 7.809932 122.735651 0.71 0.75 flooding -0.04 5 -Year 11 7.791142 0.08 0.5 flooding -0.42 5 -Year 122.779101 12 7.789415 122.783714 0.75 flooding -0.75 5 -Year 0 13 7.83874 122.787314 1.55 1.78 Flood -0.23 5 -Year 14 7.79772 122.763879 0.68 0.25 Flooding 0.43 5 -Year 15 5 -Year 7.796682 122.764983 0.36 0.25 Flooding 0.11 16 7.795011 122.759856 0.4 0.4 Typhoon 0.00 5 -Year 17 7.810089 122.733405 0.94 Flooding -0.06 5 -Year 1 18 7.8094 0 0.75 -0.75 122.733211 Flooding 5 -Year 19 7.809933 122.73565 0.71 0 0.71 5 -Year None 20 0.1 7.792239 122.7701 0 -0.10 5 -Year Lawin 21 7.792956 122.768632 0.11 0.1 0.01 5 -Year 22 7.794516 122.761754 0.09 0.15 Flooding -0.06 5 -Year 23 7.811 122.732435 0.5 Karen -0.50 5 -Year 0 0 24 7.789206 122.779443 0 0.00 5 -Year 25 7.786686 122.781543 0.44 0 0.44 5 -Year 0.25 26 7.797337 122.760018 1.4 Typhoon 1.15 5 -Year 27 7.793986 122.758411 0.05 0.1 Typhoon -0.05 5 -Year 5 -Year 28 7.792208 122.761075 0.11 0.2 Typhoon -0.09 29 7.793157 122.77311 0.12 0.25 -0.13 5 -Year Typhoon 30 7.794494 122.771648 0.2 0.65 5 -Year 0.85 Typhoon 31 7.796868 122.769012 0.11 0.1 Typhoon 0.01 5 -Year 32 7.79607 122.769129 0.1 0.23 5 -Year 0.33 Typhoon 5 -Year 33 7.791641 122.768619 0 0.2 Typhoon -0.20 34 7.79372 122.768604 0.2 Typhoon -0.20 5 -Year 0 35 7.770501 122.791276 0 0.3 Flood -0.30 5 -Year 36 7.782971 122.789197 0 0.00 0 5 -Year 0 37 7.772738 122.789893 0.07 0.07 5 -Year 38 7.77949 122.800957 0.2 0.3 Flood -0.10 5 -Year 39 7.778589 122.800385 0.32 0.3 Flood 0.02 5 -Year 40 7.774912 122.796683 0.11 0.2 Flood -0.09 5 -Year 7.775245 41 122.794307 0.28 0.2 Flood 0.08 5 -Year 42 7.769768 122.788069 0.7 0.5 Flood 0.20 5 -Year

Annex 11. Kabasalan Field Validation

Point	Validation C	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
43	7.770143	122.788319	1.8	0.4	Flood	1.40	5 -Year
44	7.770793	122.788938	0.22	0.3	Flood	-0.08	5 -Year
45	7.770559	122.78906	0	0.3	Flood	-0.30	5 -Year
46	7.770063	122.789433	0	0.3	Flood	-0.30	5 -Year
47	7.76989	122.790191	0.42	0.2	Flood	0.22	5 -Year
48	7.771836	122.792288	0	0.2	Flood	-0.20	5 -Year
49	7.779552	122.796544	0	0		0.00	5 -Year
50	7.780074	122.800023	0	0.4	Flood	-0.40	5 -Year
51	7.774632	122.793554	0	0.4	Flood	-0.40	5 -Year
52	7.775342	122.795268	0.14	0.2	Flod	-0.06	5 -Year
53	7.773238	122.791588	0.09	0.2	Flood	-0.11	5 -Year
54	7.782147	122.787728	0.21	0.3	Flood	-0.09	5 -Year
55	7.77671	122.797766	0.68	0.3	Fkood	0.38	5 -Year
56	7.778331	122.79926	0.22	0.1	Flood	0.12	5 -Year
57	7.776621	122.800058	0.61	0.3	Flood	0.31	5 -Year
58	7.770838	122.793603	0.19	0.3	Flood	-0.11	5 -Year
59	7.774544	122.79455	3.14	0.4	Flood	2.74	5 -Year
60	7.773965	122.793889	2.15	0.4	Flood	1.75	5 -Year
61	7.773321	122.79321	0.18	0.2	Flood	-0.02	5 -Year
62	7.771292	122.79137	0.28	0.2	Flood	0.08	5 -Year
63	7.770597	122.790382	1.18	0.3	Flood	0.88	5 -Year
64	7.76832	122.787511	0.57	0		0.57	5 -Year
65	7.769668	122.788727	1.8	0.4	Flood	1.40	5 -Year
66	7.783187	122.805506	0.04	0		0.04	5 -Year
67	7.782105	122.803582	3.13	0.4		2.73	5 -Year
68	7.781388	122.804326	0.21	0.4	Flood	-0.19	5 -Year
69	7.766419	122.786739	0	0.5	Flood	-0.50	5 -Year
70	7.790005	122.79368	0	0		0.00	5 -Year
71	7.789458	122.79464	0	0		0.00	5 -Year
72	7.790266	122.79125	0	0		0.00	5 -Year
73	7.806792	122.757529	0.44	0.9		-0.46	5 -Year
74	7.808325	122.757996	0.42	0.65		-0.23	5 -Year
75	7.804638	122.757366	0.57	0.8		-0.23	5 -Year
76	7.805206	122.754669	0.04	0		0.04	5 -Year
77	7.832166	122.778206	0.17	0.3		-0.13	5 -Year
78	7.832084	122.776911	0	0.35		-0.35	5 -Year
79	7.832355	122.77605	0.35	0.5		-0.15	5 -Year
80	7.808543	122,757099	0.39	0.35		0.04	5 -Year
81	7.808218	122,755612	0	0.6	Flood	-0.60	5 -Year
82	7.801064	122,756814	0.75	1.2		-0.45	5 -Year
83	7.800439	122.754943	1.1	0.5		0.60	5 -Year
84	7 820474	122 7724/15	0	0.1		-0.10	5 -Vear
85	7 8225	122.776275	0.34	1.2		-0.86	5 -Vear
85	7.8325	122.776375	0.34	1.2		-0.86	5 -Year

Point	Validation 0	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
86	7.809596	122.757843	9.42	3		6.42	5 -Year
87	7.809867	122.75388	0.31	0		0.31	5 -Year
88	7.830727	122.776869	1.45	0		1.45	5 -Year
89	7.831591	122.77817	1.39	4		-2.61	5 -Year
90	7.8316	122.777039	1.37	0.3		1.07	5 -Year
91	7.831765	122.775095	0	0.5	Ondoy	-0.50	5 -Year
92	7.806927	122.758821	0.7	0.93	Flood	-0.23	5 -Year
93	7.831804	122.773663	0.06	0.7	Flooding	-0.64	5 -Year
94	7.806742	122.756502	0	0.73	Flooding	-0.73	5 -Year
95	7.807321	122.755765	0.43	0.7	Flooding	-0.27	5 -Year
96	7.803017	122.753446	0.07	0		0.07	5 -Year
97	7.809605	122.756566	2.21	0.9		1.31	5 -Year
98	7.806037	122.743563	0	0.6		-0.60	5 -Year
99	7.798642	122.742401	0.15	0.5		-0.35	5 -Year
100	7.798275	122.740062	0.08	1.2		-1.12	5 -Year
101	7.802655	122.743107	0.22	0		0.22	5 -Year
102	7.804444	122.740823	0	0.2		-0.20	5 -Year
103	7.8076	122.741731	0.85	0.5		0.35	5 -Year
104	7.788894	122.737847	0.41	0.9		-0.49	5 -Year
105	7.832767	122.785031	0.15	0.8		-0.65	5 -Year
106	7.830905	122.789664	0	0		0.00	5 -Year
107	7.830317	122.782849	0	0.8		-0.80	5 -Year
108	7.830886	122.783782	0	0.9		-0.90	5 -Year
109	7.830823	122.784963	0	0.5		-0.50	5 -Year
110	7.846396	122.797942	2.78	0.6		2.18	5 -Year
111	7.84926	122.799055	3.07	0.9		2.17	5 -Year
112	7.847277	122.798352	4.42	0.9		3.52	5 -Year
113	7.842149	122.793879	0	0		0.00	5 -Year
114	7.837672	122.792207	0	0		0.00	5 -Year
115	7.846005	122.801222	0	0		0.00	5 -Year
116	7.816096	122.761901	0.87	0		0.87	5 -Year
117	7.814544	122.760695	0.66	0.8		-0.14	5 -Year
118	7.81707	122.762908	0.09	0.85		-0.76	5 -Year
119	7.817998	122.757097	0	0.8		-0.80	5 -Year
120	7.815506	122.75413	0	0.8		-0.80	5 -Year
121	7.803567	122.773416	0	0		0.00	5 -Year
122	7.791455	122.731008	0.15	0		0.15	5 -Year
123	7.815257	122.755948	0.06	0		0.06	5 -Year
124	7.789037	122.786294	0.87	0		0.87	5 -Year
125	7.792454	122.786325	0	0	Nome	0.00	5 -Year
126	7.792288	122.783976	0	0	None	0.00	5 -Year
127	7.787959	122.778655	0	0	None	0.00	5 -Year

Point	Validation C	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
128	7.785462	122.777188	0.09	0	Coastal area	0.09	5 -Year
129	7.802527	122.747103	0.15	1.2	Flood	-1.05	5 -Year
130	7.802212	122.748711	0	1.2	Flood	-1.20	5 -Year
131	7.801382	122.750614	0.19	1.2	Flood	-1.01	5 -Year
132	7.799791	122.753314	0.4	1.2	Flood	-0.80	5 -Year
133	7.797704	122.753447	0.34	1.3	Flood	-0.96	5 -Year
134	7.796941	122.750129	0.46	1.4	Flood	-0.94	5 -Year
135	7.798051	122.757286	0.65	1.35	Flood	-0.70	5 -Year
136	7.798905	122.755862	0.51	1.35	Flood	-0.84	5 -Year
137	7.794818	122.754279	0.23	1.35	Flood	-1.12	5 -Year
138	7.778753	122.762861	0.07	0	Typhoon	0.07	5 -Year
139	7.791701	122.762947	0.14	0.1	Typhoon	0.04	5 -Year
140	7.791196	122.771691	0	0		0.00	5 -Year
141	7.797393	122.766088	0.27	0.4	Flood any time	-0.13	5 -Year
142	7.79422	122.766214	0.08	0		0.08	5 -Year
143	7.794725	122.765002	0.28	0		0.28	5 -Year
144	7.79705	122.768234	0.29	0.1		0.19	5 -Year
145	7.79284	122.763638	0.33	0.2		0.13	5 -Year
146	7.780403	122.802557	0.2	0.14		0.06	5 -Year
147	7.779316	122.802283	0.25	0.1		0.15	5 -Year
148	7.791506	122.794721	0.08	0		0.08	5 -Year
149	7.811065	122.763773	2.12	0.56		1.56	5 -Year
150	7.791438	122.730978	0.15	0.38		-0.23	5 -Year
151	7.808732	122.7686	0.49	0.8		-0.31	5 -Year
152	7.808114	122.768942	1.51	0.8		0.71	5 -Year
153	7.800939	122.764893	0.68	0.3		0.38	5 -Year
154	7.807335	122.758028	0.6	0.54		0.06	5 -Year
155	7.798843	122.762515	1.25	0.2		1.05	5 -Year
156	7.806269	122.769236	1.2	0.34		0.86	5 -Year
157	7.800442	122.767273	0.23	0.2		0.03	5 -Year
158	7.800861	122.768639	0.28	0.2		0.08	5 -Year
159	7.803566	122.77341	0	0		0.00	5 -Year
160	7.803097	122.768934	0	0.05		-0.05	5 -Year
161	7.800441	122.75935	1.13	0.75		0.38	5 -Year
162	7.782523	122.7976	0	0.25		-0.25	5 -Year
163	7.782058	122.798162	0	0.04		-0.04	5 -Year
164	7.787255	122.787186	1.13	0.5	ondov	0.63	5 -Year
165	7.78907	122.79013	0	0		0.00	5 -Year
166	7.807569	122.699658	0.67	0.5		0.17	5 -Year
167	7.808073	122,715192	0	0		0.00	5 -Year
168	7.807494	122,710199	0.13	0		0.13	5 -Year
169	7 808479	122 719031	0.07	0		0.07	5 -Year
170	7.808469	122.716845	0	0		0.00	5 -Year

Point	Validation 0	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
171	7.807256	122.720486	0	0		0.00	5 -Year
172	7.806035	122.718889	0	0		0.00	5 -Year
173	7.806334	122.720993	0	0		0.00	5 -Year
174	7.808784	122.714263	0	0		0.00	5 -Year
175	7.811745	122.719574	0	0		0.00	5 -Year
176	7.811421	122.719073	0.06	0		0.06	5 -Year
177	7.763188	122.752057	0.36	0		0.36	5 -Year
178	7.767661	122.747432	0	0		0.00	5 -Year
179	7.791869	122.693263	0	0.1		-0.10	5 -Year
180	7.804629	122.705986	0.1	0.3		-0.20	5 -Year
181	7.803287	122.705711	0	0		0.00	5 -Year
182	7.776821	122.746403	0	0		0.00	5 -Year
183	7.768465	122.738649	0	0		0.00	5 -Year
184	7.786116	122.69518	0	0	During high tide	0.00	5 -Year
185	7.78199	122.696576	0.06	0		0.06	5 -Year
186	7.790701	122.695002	0	0		0.00	5 -Year
187	7.789068	122.696391	0	0		0.00	5 -Year
188	7.792764	122.696517	0.09	0		0.09	5 -Year
189	7.793272	122.695575	0.09	0		0.09	5 -Year
190	7.788819	122.6954	0.32	0		0.32	
191	7.788164	122.69638	0	0		0.00	
192	7.787689	122.69536	0	0		0.00	
193	7.794026	122.6974	0.06	0		0.06	
194	7.795288	122.69541	0.06	0		0.06	
195	7.79662	122.69785	0	0		0.00	
196	7.80268	122.698	0.29	0		0.29	
197	7.802144	122.69619	0	0		0.00	
198	7.799808	122.69733	0	0		0.00	
199	7.797381	122.69605	0	0		0.00	
200	7.789561	122.69491	0.92	1	During heavy rain	-0.08	
201	7.78777	122.70335	0	0		0.00	
202	7.786835	122.70277	0	0		0.00	
203	7.785581	122.70378	0.04	0		0.04	
204	7.785769	122.70751	0	0		0.00	
205	7.783936	122.70267	0	0		0.00	
206	7.784185	122.69905	0	0		0.00	
207	7.786683	122.70546	0	0		0.00	
208	7.786516	122.6999	0.1	0		0.10	
209	7.787899	122.69782	0.04	0		0.04	
210	7.786161	122.69761	0	0		0.00	
211	7.781192	122.72536	0.05	0		0.05	
212	7.783635	122.73108	0.52	0		0.52	

Point Number	Validation Coordinates		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return /
	Lat	LONG	····,				Scenario
213	7.787291	122.72952	0	0		0.00	
214	7.78005	122.740556	0	0		0.00	
215	7.785551	122.735481	0.51	0.6	During high tide,heavy rain	-0.09	
216	7.78932	122.72766	0.49	0.6	During high tide,heavy rain	-0.11	
217	7.791466	122.725381	0	0		0.00	
218	7.787772	122.724236	0.11	0		0.11	
				RMSE	0.78		

			Rainfall Scenario			
Municipality	Barangay	Name of Institution	5-year	25-year	100-year	
Kabasalan	Simbol	SIMBOL ELEMENTARY SCHOOL	None	None	None	
Kabasalan	Sininan	Brgy.Daycare	None	None	None	
Kabasalan	Sininan	MADRASA	None	None	None	
Kabasalan	Sininan	SININAN ELEM. SCHOOL	None	None	None	
Kabasalan	Timuay Danda	Timuay Danda Elementary School	None	None	None	
Kabasalan	Simbol	SIMBOL NATIONAL HIGH SCHOOL	None	None	Low	
Kabasalan	Sininan	ARABIC SCHOOL	None	None	Low	
Kabasalan	Poblacion	Goodyear Elementary School	None	Low	Low	
Kabasalan	Poblacion	KAC agape school	None	Low	Low	
Kabasalan	Santa Cruz	Stack Cruz elementary School	None	Low	Low	
Kabasalan	Sininan	CANACAN ELEM. SCHOOL	None	Low	Low	
Kabasalan	Concepcion	CONCEPTION ELEM. SCHOOL	Low	Low	Low	
Kabasalan	Banker	Day Care	None	Low	Medium	
Kabasalan	Calubihan	Daycare Center	None	Low	Medium	
Kabasalan	Riverside	Day Care Center	None	Low	Medium	
Kabasalan	Poblacion	Goodyear School	Low	Low	Medium	
Kabasalan	Poblacion	Goodyear School Daycare	Low	Low	Medium	
Kabasalan	Buayan	DIPALA ELEM. SCHOOL	Low	Medium	Medium	
Kabasalan	Poblacion	Start Cruz elementary school	Low	Medium	Medium	
Kabasalan	Santa Cruz	Start Cruz elementary school	Low	Medium	Medium	
Kabasalan	Sininan	Primary school	Low	Medium	Medium	
Kabasalan	Calubihan	KABASALAN SCIENCE AND TECHNOLOGY HIGH SCHOOL	Medium	Medium	Medium	
Kabasalan	Calubihan	KNHS	Medium	Medium	Medium	
Kabasalan	Santa Cruz	Lumbayao Elem School	Medium	Medium	Medium	
Kabasalan	Calubihan	KABASALAN NATIONAL HIGH SCHOOL	Medium	Medium	High	
Kabasalan	Calubihan	KABASALAN INSTITUTE OF TECHNOLOGY	Medium	High	High	
Kabasalan	Calubihan	KABASANALAN CENTRAL ELEMENTARY SCHOOL	Medium	High	High	
Kabasalan	Poblacion	Cainglet primary school	Medium	High	High	
Kabasalan	Sanghanan	SALUPAN PRIMARY SCHOOL	High	High	High	
Naga	Taytay Manubo	Day Care Center	None	None	None	
Naga	Taytay Manubo	NAGA CENTRAL ELEMENTARY SCHOOL	None	None	None	
Naga	Baga	BAGS NATIONAL HIGH SCHOOL	None	None	None	
Naga	Baga	LOWER SULITAN ELEMENTART SCHOOL	None	None	None	
Naga	Bangkaw- Bangkaw	BANGKAW-BANGKAW ELEMENTARY SCHOOL	None	None	None	
Naga	Bangkaw- Bangkaw	Madrasa	None	None	None	
Naga	Bangkaw- Bangkaw	Pre school	None	None	None	

Annex 12. Educational Institutions Affected in Kabasalan Floodplain

Naga	Mamagon	Madrasa	None	None	None
Naga	Mamagon	MES	None	None	None
Naga	Mamagon	MES Kindergarten	None	None	None
Naga	Poblacion	Aguinaldo elementary sch.	None	None	None
Naga	Taytay Manubo	NAGA NATIONAL HIGH SCHOOL	Low	Low	Low
Naga	Baga	BAGS ELEMENTARY SCHOOL	Low	Low	Medium
Naga	Poblacion	School	Medium	Medium	Medium

				Rainfall Scenario		
Municipality	Barangay	Name of Institution	5-year	25-year	100-year	
Kabasalan	Concepcion	Daycare center	Medium	Medium	Medium	
Kabasalan	Poblacion	Path finder hostpital	Medium	Medium	Medium	
Kabasalan	Poblacion	Wooton	Medium	Medium	Medium	
Kabasalan	Poblacion	Goodyear health center	Medium	Medium	Medium	
Kabasalan	Poblacion	LGU	Medium	Medium	Medium	
Kabasalan	Poblacion	Goodyear hospital	Medium	Medium	Medium	
Kabasalan	Poblacion	Kabasalan General Hospital	Medium	Medium	Medium	
Kabasalan	Riverside	Health Station	Medium	Medium	Medium	
Kabasalan	Riverside	Health Station	Medium	Medium	Medium	
Naga	Taytay Manubo	Health center	Medium	Medium	Medium	
Naga	Taytay Manubo	Brgy.health center	Medium	Medium	Medium	
Naga	Bangkaw-Bangkaw	BANGKAW-BANGKAW Bns center	Medium	Medium	Medium	

Annex 13. Medical Institutions Affected in Kabasalan Floodplain