HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Tambang River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Ateneo de Naga University

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and Ateneo de Naga University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and J.C. Plopenio (eds.) (2017), LiDAR Surveys and Flood Mapping of Tambang River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-168pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Ms. Joanaviva Plopenio

Project Leader, Phil-LiDAR 1 Program Ateneo de Naga University Naga City, Camarines Sur, Philippines 4400 E-mail: inecar@gbox.adnu.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-971-9695-80-6

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	х
CHAPTER 1: OVERVIEW OF THE PROGRAM AND TAMBANG RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Tambang River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE TAMBANG FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	9
2.4 Survey Coverage	10
CHAPTER 3: LIDAR DATA PROCESSING OF THE TAMBANG FLOODPLAIN	12
3.1 Overview of the LiDAR Data Pre-Processing	12
3.2 Transmittal of Acquired LiDAR Data	13
3.3 Trajectory Computation	13
3 4 LiDAR Point Cloud Computation	15
3.5 LiDAR Data Quality Checking	16
3.6 LiDAR Data Quality Electring	20
2.7 LiDAR Image Processing and Orthonhotograph Pactification	20 22
2.2 DEM Editing and Hydro Correction	22 סכ
2.0 Massishing of Diselys	25 25
3.9 MUSAICKING OF BIOLKS.	25
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	27
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	30
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	32
3.12.2 Height Extraction	33
3.12.3 Feature Attribution	33
3.12.4 Final Quality Checking of Extracted Features	35
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TAMBANG RIVER BA	SIN.36
	20
4.1 Summary of Activities	36
4.1 Summary of Activities 4.2 Control Survey	36 38
4.1 Summary of Activities4.2 Control Survey4.3 Baseline Processing	36 38 43
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 	36 38 43 44
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 	36 38 43 44 47
 4.1 Summary of Activities	36 38 43 44 47 50
 4.1 Summary of Activities	36 38 43 44 47 50 52
 4.1 Summary of Activities	36 38 43 44 47 50 52 52
 4.1 Summary of Activities	36 38 43 44 50 52 55
 4.1 Summary of Activities	36 38 43 44 50 50 55 55
 4.1 Summary of Activities	36 38 43 43 50 50 55 55 55
 4.1 Summary of Activities	36 38 43 43 43 43 50 52 55 55 55
 4.1 Summary of Activities	36 38 43 43 44 50 52 55 55 55 55
 4.1 Summary of Activities	36 38 43 43 44 50 52 55 55 55 55
 4.1 Summary of Activities	36 38 43 43 44 50 52 55
 4.1 Summary of Activities	
 4.1 Summary of Activities	
 4.1 Summary of Activities	36 38 43 43 47 50 52 55 55 55 55 55 55 55 55 56 60 66 66
 4.1 Summary of Activities	
 4.1 Summary of Activities	
 4.1 Summary of Activities	36 38 43 44 50 52 55 55 55 55 55 55 60 65 66 67 69 69 69 71
 4.1 Summary of Activities	36 38 43 43 44 50 50 55 55 55 55 55 55 55 55 60 66 66 67 69 69 69 69 69
 4.1 Summary of Activities	36 38 43 43 44 50 55 55 55 55 55 55 57 58 60 66 67 69 69 69 69 72 72 79
 4.1 Summary of Activities	36 38 43 44 50 52 55 55 55 55 55 57 58 60 65 66 67 69 69 69 69 72 79 79
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing	
 4.1 Summary of Activities 4.2 Control Survey. 4.3 Baseline Processing 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 	
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. 4.7 River Bathymetric Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. REFERENCES Annex 1. Optech Technical Specification of the Pegasus Sensor. Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey.	
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. REFERENCES. ANNEXES. Annex 1. Optech Technical Specification of the Pegasus Sensor. Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey. Annex 4. The UDAP Conservation of Control Points used in the LIDAR Survey. 	
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. REFERENCES. Annex 1. Optech Technical Specification of the Pegasus Sensor. Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey. Annex 4. The LIDAR Survey Team Composition.	
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. 4.7 River Bathymetric Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. REFERENCES. Annex 1. Optech Technical Specification of the Pegasus Sensor. Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey. Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey. Annex 4. The LIDAR Survey Team Composition.	

Annex 7. Flight Status Report	106
Annex 8. Mission Summary Reports	115
Annex 9. Tambang Model Basin Parameters	155
Annex 10. Tambang Model Reach Parameters	156
Annex 11. Educational Institutions affected by flooding in Tambang Floodplain	157
Annex 12. Health Institutions affected by flooding in Tambang Floodplain	157

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system	3
Table 2. Details of the recovered NAMRIA horizontal control point CMS-103 used as base station for the LiDAR data acquisition	6
Table 3. Details of the recovered NAMRIA vertical control point CS-461 used as base station for the LiDAR data acquisition with established coordinates	7
Table 4. Details of the recovered NAMRIA vertical reference point CS-464 used as base station for the LiDAR data acquisition with established coordinates	8
Table 5. Ground control points used during the LiDAR data acquisition	9
Table 6. Flight missions for the LiDAR data acquisition in Tambang Floodplain	9
Table 7. Actual parameters used during the LiDAR data acquisition of the Tambang Floodplain	10
Table 8. List of municipalities and cities surveyed of the Tambang Floodplain LiDAR acquisition	10
Table 9. Self-calibration Results values for Tambang flights	15
Table 10. List of LiDAR blocks for Tambang Floodplain	16
Table 11. Tambang classification results in TerraScan	20
Table 12. LiDAR blocks with its corresponding areas	23
Table 13. Shift values of each LiDAR block of Tambang Floodplain	25
Table 14. Calibration Statistical Measures	29
Table 15. Validation Statistical Measures	30
Table 16. Quality Checking Ratings for Tambang Building Features	32
Table 17. Building Features Extracted for Tambang Floodplain	34
Table 18. Total Length of Extracted Roads for Tambang Floodplain	35
Table 19. Number of Extracted Water Bodies for Tambang Floodplain	35
Table 20. List of Reference and Control Points occupied for Tambang River Survey	38
Table 21. Baseline Processing Summary Report for Tambang River Survey	43
Table 22. Constraints applied to the adjustment of the control points	44
Table 23. Adjusted grid coordinates for control points used in the Tambang River Floodplain survey	44
Table 24. Adjusted geodetic coordinates for control points used in the Tambang River Floodplain validation	45
Table 25. Reference and control points utilized in the Tambang River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	46
Table 26. RIDF values for Tambang Rain Gauge computed by PAGASA	58
Table 27. Range of calibrated values for the Tambang River Basin	67
Table 28. Summary of the Efficiency Test of the Tambang HMS Model	68
Table 29. Peak values of the Tambang HEC-HMS Model outflow using the Daet RIDF 24-hour values	70
Table 30. Municipalities affected in Tambang Floodplain	72
Table 31. Affected areas in Goa, Camarines Sur during a 5-Year Rainfall Return Period	79
Table 32. Affected areas in Lagonoy, Camarines Sur during a 5-Year Rainfall Return Period	80
Table 33. Affected areas in Tinambac, Camarines Sur during a 5-Year Rainfall Return Period	81
Table 34. Affected areas in Goa, Camarines Sur during a 25-Year Rainfall Return Period	82
Table 35. Affected areas in Lagonoy, Camarines Sur during a 25-Year Rainfall Return Period	83
Table 36. Affected areas in Tinambac, Camarines Sur during a 25-Year Rainfall Return Period	84
Table 37. Affected areas in Goa, Camarines Sur during a 100-Year Rainfall Return Period	85
Table 38. Affected areas in Lagonoy, Camarines Sur during a 100-Year Rainfall Return Period	86

Table 39. Affected areas in Tinambac, Camarines Sur during a 100-Year Rainfall Return Period87
Table 40. Areas covered by each warning level with respect to the rainfall scenarios

LIST OF FIGURES

Figure 1. Map of Tambang River Basin (in brown)	2
Figure 2. Flight Plan and base station used for the Tambai	ng Floodplain survey4
Figure 3. GPS set-up (a) over CMS-103 located at Tambar	port area on top of the seawall,
and NAMRIA reference point CMS-103 (b) as re-	covered by the field team6
Figure 4. GPS set-up (a) over CS-461 located along Tinam	oac to Calabanga road in Barangay
Bolaobalite, Municipality of Tinambac, Province	of Camarines Sur, and NAMRIA reference
point CS-461 (b) as recovered by the field team	7
Figure 5. GPS set-up (a) over CS-464 located in the Munic	ipality of Mananao, Province
of Camarines Sur, and NAMRIA benchmark CS-4	64 (b) as recovered by the field team8
Figure 6. Actual LiDAR survey coverage of the Tambang Fl	oodplain11
Figure 7. Schematic diagram for Data Pre-Processing Com	ponent
Figure 8. Smoothed Performance Metric Parameters of Ta	mbang Flight 23278P13
Figure 9. Solution Status Parameters of Tambang Flight 23	278P14
Figure 10. Best Estimated Trajectory of the LiDAR mission	s conducted over the Tambang Floodplain.15
Figure 11. Boundary of the processed LiDAR data over Tak	nbang Floodplain16
Figure 12. Image of data overlap for Tambang Floodplain.	
Figure 13. Pulse density map of merged LiDAR data for Ta	mbang Floodplain
Figure 14. Elevation Difference Map between flight lines	or Tambang Floodplain Survey19
Figure 15. Quality checking for Tambang Flight 23278P us	ing the Profile Tool of QT Modeler20
Figure 16. Tiles for Tambang Floodplain (a) and classificat	on results (b) in TerraScan21
Figure 17. Point cloud before (a) and after (b) classificatio	n21
Figure 18. The production of last return DSM (a) and DTM	l (b), first return DSM (c) and secondary
DTM (d) in some portion of Tambang Floodpla	n22
Figure 19. Portions in the DTM of Tambang Floodplain –a	mountain ridge before (a) and after (b)
data retrieval; a triangulated riverbank before	(c) and after (d) manual editing24
Figure 20. Map of Processed LiDAR Data for Tambang Flor	pdplain26
Figure 21. Map of Tambang Floodplain with validation su	vey points in green28
Figure 22. Correlation plot between calibration survey po	ints and LiDAR data29
Figure 23. Correlation plot between validation survey poi	nts and LiDAR data30
Figure 24. Map of Tambang Floodplain with bathymetric	survey points shown in blue31
Figure 25. Blocks (in blue) of Tambang building features s	ubjected to QC32
Figure 26. Extracted features for Tambang Floodplain	
Figure 27. Extent of the bathymetric survey (in blue line)	in Tambang River37
and the LiDAR data validation survey (in red)	
Figure 28. The GNSS Network established in the Tambang	River Survey
Figure 29. GNSS base set up, Trimble [®] SPS 882, at CMS-11	10, situated at the approach of Culasi
Bridge in Brgy. Taytay, Municipality of Goa, Car	narines Sur40
Figure 30. GNSS receiver setup, Trimble [®] SPS 882, at CS-4	61, located at the approach of a bridge
in Brgy. Balaobalite, Municipality of Tinambac,	Camarines Sur41
Figure 31. GNSS receiver setup, Trimble [®] SPS 852, at CMS	-3202, located at the approach of Lagonoy
Bridge in Brgy. Ginorangan, Municipality of Lag	onoy, Camarines Sur41
Figure 32. GNSS receiver setup, Trimble [®] SPS 822, at UP-T	AM, located at Tamban Port,
Brgy. Tamban, Municipality of Tinambac, Cama	rines Sur42
Figure 33. Deployment site of depth gauge and flow meter	r showing the obstructions (circled in red)
during cross-section survey	
Figure 34. Location map of Tambang (also known as Guin	atagan) River cross-section survey48
Figure 35. Tambang (also known as Guinatagan) Deploym	ent site cross-section diagram

Figure 36. Validation points acquisition survey set up along Tambang River Basin	.50
Figure 37. Validation point acquisition survey of Tambang River basin	.51
Figure 38. Bathymetric survey using Ohmex [™] single beam echo sounder in Tambang River	.52
Figure 39. Bathymetric survey of Tambang (also known as Guinatagan) River	.53
Figure 40. Tambang (also known as Guinatagan) riverbed profile	.54
Figure 41. Location map of the Tambang HEC-HMS model used for calibration	.56
Figure 42. Cross-section plot of Tambang Bridge	. 57
Figure 43. Rating curve of Brgy. Bocogan in Lagonoy, Camarines Sur	. 57
Figure 44. Rainfall and outflow data of the Tambang River Basin used for modeling	.58
Figure 45. Location of Daet RIDF Station relative to Tambang River Basin	. 59
Figure 46. Synthetic storm generated for a 24-hr period rainfall for various return periods	.59
Figure 47. Soil Map of Tambang River Basin used for the estimation of the CN parameter	.60
Figure 48. Land Cover Map of Tambang River Basin used for the estimation of the Curve	
Number (CN) and the watershed lag parameters of the rainfall-runoff model	.61
Figure 49. Slope Map of Tambang River Basin	. 62
Figure 50. Stream Delineation Map of Tambang River Basin	. 63
Figure 51. Tambang River Basin model generated in HEC-HMS	. 64
Figure 52. River cross-section of Tambang River generated through Arcmap HEC GeoRAS tool	.65
Figure 53. Screenshot of the river sub-catchment with the computational area to be modeled	
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	.66
Figure 54. Outflow hydrograph of Tambang produced by the HEC-HMS model compared	
with observed outflow	. 67
Figure 55. Outflow hydrograph at the Tambang Basin generated using the simulated rain events	
for 24-hour period for Daet station	. 69
Figure 56. Sample output map of Gahub RAS Model	.71
Figure 57. 100-year Flood Hazard Map for Tambang Floodplain overlaid on Google Earth imagery	.73
Figure 58. 100-year Flow Depth Map for Tambang Floodplain overlaid on Google Earth imagery	.74
Figure 59. 25-year Flood Hazard Map for Tambang Floodplain overlaid on Google Earth imagery	.75
Figure 60. 25-year Flow Depth Map for Tambang Floodplain overlaid on Google Earth imagery	.76
Figure 61. 5-year Flood Hazard Map for Tambang Floodplain overlaid on Google Earth imagery	.77
Figure 62. 5-year Flood Depth Map for Tambang Floodplain overlaid on Google Earth imagery	.78
Figure 63. Affected Areas in Goa, Camarines Sur during 5-Year Rainfall Return Period	.79
Figure 64. Affected Areas in Lagonoy, Camarines Sur during 5-Year Rainfall Return Period	.80
Figure 65. Affected Areas in Tinambac, Camarines Surl during 5-Year Rainfall Return Period	.81
Figure 66. Affected Areas in Goa, Camarines Sur during 25-Year Rainfall Return Period	.82
Figure 67. Affected Areas in Lagonoy, Camarines Sur during 25-Year Rainfall Return Period	.83
Figure 68. Affected Areas in Tinambac, Camarines Surl during 25-Year Rainfall Return Period	.84
Figure 69. Affected Areas in Goa, Camarines Sur during 100-Year Rainfall Return Period	.85
Figure 70. Affected Areas in Lagonoy, Camarines Sur during 100-Year Rainfall Return Period	.86
Figure 71. Affected Areas in Tinambac, Camarines Surl during 100-Year Rainfall Return Period	.87

LiDAR Surveys and Flood Mapping of Tambang River

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation			
Ab	abutment			
ADNU	Ateneo de Naga University			
ALTM	Airborne LiDAR Terrain Mapper			
ARG	automatic rain gauge			
AWLS	Automated Water Level Sensor			
BA	Bridge Approach			
BM	benchmark			
CAD	Computer-Aided Design			
CN	Curve Number			
CSRS	Chief Science Research Specialist			
DA-BSWM	Department of Agriculture - Bureau of Soil and Water Management			
DAC	Data Acquisition Component			
DEM	Digital Elevation Model			
DENR	Department of Environment and Natural Resources			
DOST	Department of Science and Technology			
DPPC	Data Pre-Processing Component			
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]			
DRRM	Disaster Risk Reduction and Management			
DSM	Digital Surface Model			
DTM	Digital Terrain Model			
DVBC	Data Validation and Bathymetry Component			
FMC	Flood Modeling Component			
FOV	Field of View			
GiA	Grants-in-Aid			
GCP	Ground Control Point			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System			
HEC-RAS	Hydrologic Engineering Center - River Analysis System			
HC	High Chord			
IDW	Inverse Distance Weighted [interpolation method]			

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND TAMBANG RIVER

Enrico C. Paringit, Dr. Eng. and Ms. Joanaviva Plopenio

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Ateneo de Naga University (ADNU). (ADNU) is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 24 river basins in the Bicol Region. The university is located in Naga City in the province of Camarines Sur.

1.2 Overview of the Tambang River Basin

Tambang River Basin is under the jurisdiction of Lagonoy, Goa and Tinambac towns in Camarines Sur. The first two (2) towns are second class municipalities while Tinambac is a first class municipality. The population of Lagonoy is 55,465, Goa, 63,308 and Tinambac, 67,572. The major stream of this river basin is actually known as Bocogan River and it empties out to the much larger Tambang River. The mouth of the Bocogan River is bordered to the north by a barangay with the same name and to the south with a stand of mangroves. The Tambang River Basin experiences maximum rainfall from November to January and has no dry season under the type II of the modified Corona classification of climate. The DENR River Basin Control Office identified the basin to have a drainage area of 164 km2 and an estimated 222 million cubic meter (MCM) annual run-off (RBCO, 2015).

The Tambang river, also known as Guinatagan river to the locals, is part of the 27 river systems in Bicol Region. According to the 2010 national census of NSO, a total of 6,147 people are residing within the immediate vicinity of the river which is distributed among Barangays Del Carmen and Olas in the Municipality of Lagonoy in Camarines Sur. Lagonoy is the primary municipality wherein the river is located and is the chief supplier of tiger grass to the prominent walis tambo makers of North Luzon and some parts of Central Luzon. (http://america.pink/lagonoy-camarines-sur_2524227.html, 2013) One of the flood events in the area was on November 2006 brought by Typhoon Reming. This caused destruction to a large percent of houses and buildings in the area (http://www.typhoon2000.ph/stormstats/12WorstPhilippineTyphoons. htm).

123°30'0"E Figure 1. Map of Tambang River Basin (in brown)

Tambang River Basin is bordered to the east and southeast by the low hills and mountains of the Caramoan Peninsula and further south by Mt. Isarog Natural Park. The name Tambang or Tamban is believed to have come from a fish of the same name and known in English as herring or sardine. Some of the folks along the river usually dump their wastes by the riverbanks. The majority of the people by the river are dependent on corn, sugarcane, abaca, coconut, root crops and other fishery and agricultural products. Piggeries and fishponds are also found in the area, although these are just in and near barangay Bocogan which is part of the town of Lagonoy. Tambang Port is also an alternative point of origin for the other coastal towns nearby like Siruma, Garchitorena and Caramoan.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE TAMBANG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Acuna, Engr. Gerome Hipolito, Ms. Jasmine T. Alviar, Engr. Brylle Adam G. De Castro.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Tambang floodplain in Camarines Sur. These missions were planned for 16 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system used in the LiDAR system are found in Table 1. Figure 2 shows the flight plan for Tambang floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK24A	1000	30	50	200	30	130	5
BLK2B	1000	30	50	200	30	130	5
BLK24C	1000	30	50	200	30	130	5
BLK24E	1000	30	50	200	30	130	5
BLK24F	1000	30	50	200	30	130	5
BLK24G	1000	30	50	200	30	130	5

Table 1. Flight planning parameters for the Pegasus LiDAR system.

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Figure 2. Flight Plan and base station used for the Tambang Floodplain survey.

2.2 Ground Base Stations

The project team was able to recover one (1) NAMRIA ground control point, CMS-103 which is of second (2nd) order accuracy, and two (2) NAMRIA benchmarks, CS-464 and CS-461, which are of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points. The certifications for the NAMRIA reference points are found in Annex B while the baseline processing reports for the established GCPs are found in Annex C. These ground control points were used as base stations during flight operations for the entire duration of the survey (April 22 to May 3, 2016). Base stations were observed using dual frequency GPS receivers, Trimble SPS 852 and SPS 882. Flight plans and location of base stations used during the aerial LiDAR data acquisition in Tambang floodplain are shown in Figure 2.

Figure 3 to Figure 5 show the recovered NAMRIA control station within the area. In addition Table 2 to Table 4 show the details about the following NAMRIA control stations and established points, Table 5 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization. The list of team members are found in Annex 4.

(a) Figure 3. GPS set-up (a) over CMS-103 located at Tamban port area on top of the seawall, and NAMRIA reference point CMS-103 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point CMS-	-103 used as base station for the LiDAR
data acquisition.	

Station Name	CMS-103			
Order of Accuracy	2rd			
Relative Error (Horizontal positioning)	1 : 50,000			
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	13° 53′ 44.46082″ North 123° 24′ 52.41074″ East 4.58100 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	544805.234 meters 1536671.409 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	13° 53′ 39.40601″ North 123° 24′ 557.34955″ East 55.99300 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	544,789.55 meters 1,536,133.55 meters		

(a)

Figure 4. GPS set-up (a) over CS-461 located along Tinambac to Calabanga road in Barangay Bolaobalite, Municipality of Tinambac, Province of Camarines Sur, and NAMRIA reference point CS-461 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA vertical control point CS-461 used as base station for the LiDAR data
acquisition with established coordinates.

Station Name	CS-	461
Order of Accuracy	2	rd
Relative Error (Horizontal positioning)	1:50	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	13° 48' 16.97629" North 123° 19' 59.46340" East 8.314 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	13° 48′ 11.93661″ North 123° 20′ 04.41063″ East 59.780 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	536011.654 meters 1526059.719 meters

(b)

(a)

Table 4. Details of the recovered NAMRIA vertical reference point CS-464 used as base station for the LiDAR data acquisition with established coordinates.

Station Name	CS-	464	
Order of Accuracy	2rd		
Relative Error (horizontal positioning)	1:50	0,000	
Elevation	7.478	meters	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	13° 47' 06.64679" North 123° 19' 53.49615" East 8.046 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	13° 47' 01.61166" North 123° 19' 58.44508" East 59.563 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	535835.478 meters 11523899.018 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
22 April 2016	23276P	1BLK24FG113A	CMS-103 & CS-464
23 April 2016	23278P	1BLK24CAF114A	CMS-103 & CS-464
24 April 2016	23282P	1BLK24ASFS115A	CMS-103 & CS-464
26 April 2016	23290P	1BLK24CSE117A	CMS-103 & CS-464
29 April 2016	23302P	1BLK24BES120A	CMS-103 & CS-464
29 April 2016	23304P	1BLK24ESGS120B	CMS-103 & CS-464
2 May 2016	23314P	1BLK24ABCVOIDS123A	CMS-103 & CS-464
3 May 2016	23318P	1BLK24ACF124A	CMS-103 & CS-461

Table 5. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

Eight (8) missions were conducted to complete LiDAR data acquisition in Tambang floodplain, for a total of 34 hours and 46 minutes (34+46) of flying time for RP-C9122. All missions were acquired using the Pegasus LiDAR system. Table 6 shows the total area of actual coverage per mission with the corresponding flight duration, while Table 7 presents the actual parameters used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Flight Plan Area	Surveyed Area	AreaArea SurveyedSurveyedOutside the	Fl ⁱ He	ying ours	
		(km2)	(km2)	within the Floodplain (km2)	Floodplain (km2)	Hr	Min
22-Apr-16	23276P	200.69	226.29	8.54	217.75	4	10
23-Apr-16	23278P	183.14	191.52	24.24	167.28	4	5
24-Apr-16	23282P	188.57	327.92	37.23	290.69	4	23
26-Apr-16	23290P	127.15	225.08	0	225.08	4	15
29-Apr-16	23302P	138.17	313.66	0.94	312.72	4	35
29-Apr-16	23304P	200.69	125.47	0	125.47	4	18
2-May-16	23314P	183.14	235.89	13.16	222.73	4	35
3-May-16	23318P	183.14	133.94	15.01	118.93	4	25
TOTA	AL.	937.19	1194.9	54.32	1140.58	3	46

Table 6. Flight missions for the LiDAR data acquisition in Tambang Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
23276P	700,1000	30	50	200	30	130	5
23278P	600, 1000	30	50	200	30	130	5
23282P	850, 1000	30	50	200	30	130	5
23290P	850, 1000	30	50	200	30	130	5
23302P	800, 1000	30	50	200	30	130	5
23304P	1000	30	50	200	30	130	5
23314P	600, 850	30	50	200	30	130	5
23318P	550, 600, 1000	30	50	200	30	130	5

Table 7. Actual parameters used during the LiDAR data acquisition of the Tambang Floodplain.

2.4 Survey Coverage

Tambang floodplain is located in the province of Camarines Sur, with majority of the floodplain situated within the municipality of Lagonoy. The municipalities Siruma, Tinambac, and San Jose are mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 8. The actual coverage of the LiDAR acquisition for Tambang floodplain is presented in Figure 6.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Siruma	137.36	136.27	99.20%
	Tinambac	288.53	280.98	97.38%
	San Jose	44.63	43.17	96.73%
	Goa	220.76	164.22	74.38%
Camarines Sur	Lagonoy	394.86	234.43	59.37%
	Calabanga	151.49	31.75	20.96%
	Bombon	40.64	3.63	8.94%
	Tigaon	79.34	2.61	3.29%
	Garchitorena	245.52	6.94	2.83%
	Presentacion	160.13	4.45	2.78%
Tota	1	1,763.26	908.45	51.52%

Table 8. List of municipalities and cities surveyed of the Tambang Floodplain LiDAR acquisition.

Figure 6. Actual LiDAR survey coverage of the Tambang Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE TAMBANG FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat, Engr. Harmond F. Santos, Engr. Ma. Ailyn L. Olanda, Engr. Jovelle Anjeanette S. Canlas, Engr. Wilbert Ian M. San Juan, Jerry P. Ballori, Jaylyn L. Paterno, Engr. Francis Patray P. Bolaños, Carlota M. Davocol, Arnulfo G. Enciso, Jr., Engr. Jan Karl T. Ilarde, Engr. Kevin Kristian L. Peñaserada, Engr. Jayrik T. San Buenaventura, Engr. Ferdinand E. Bien, and Richmund P. Saldo

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

Figure 7. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Tambang floodplain can be found in Annex 5. Missions flown during the survey conducted on June 2016 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Tinambac, Lagonoy, Goa, Camarines Sur.

The Data Acquisition Component (DAC) transferred a total of 175.98 Gigabytes of Range data, 2.02 Gigabytes of POS data, 812.9 Megabytes of GPS base station data, and no raw image data to the data server on June 10, 2016. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Tambang was fully transferred on June 10, 2016, as indicated on the Data Transfer Sheets for Tambang floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 23278P, one of the Tambang flights, which is the North, East, and Down position RMSE values are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on April 23, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 8. Smoothed Performance Metrics of Tambang Flight 23278P

The time of flight was from 516000 seconds to 527000 seconds, which corresponds to morning of April 23, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 1.50 centimeters, the East position RMSE peaks at 1.45 centimeters, and the Down position RMSE peaks at 4.47 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 9. Solution Status Parameters of Tambang Flight 23278P.

The Solution Status parameters of flight 23278P, one of the Tambang flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down to 8. Majority of the time, the number of satellites tracked was between 8 and 12. The PDOP value also did not go above the value of 2, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Tambang flights is shown in Figure 10.

Figure 10. Best Estimated Trajectory of the LiDAR missions conducted over the Tambang Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 176 flight lines, with each flight line containing two channels, since the Pegasus System contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Tambang floodplain are given in Table 9.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000181
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000521
GPS Position Z-correction stdev	<0.01meters	0.0053

Table 9 Self-calibration	Results values for	Tambang flights.
		0 0

The optimum accuracy is obtained for all Tambang flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Tambang Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 11. Boundary of the processed LiDAR data over Tambang Floodplain

The total area covered by the Tambang missions is 904.53 sq.km that is comprised of eight (8) flight acquisitions grouped and merged into seven (7) blocks as shown in Table 10.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Naga_Blk24F	23318P	184.40
	23278P	
Naga_Blk24E	23302P	133.54
Naga_Blk24E_additional	23290P	16.17
Naga_Blk24A_additional	23318P	26.95
Naga_Blk24A	23278P	263.59
	23282P	
	23302P	
	23314P	
	23318P	
Naga_Blk24G_additional	23304P	69.02
Naga_Blk24G	23276P	210.86
	23318P	
TOTAL		904.53 sq.km

Table 10. List of LiDAR blocks for Tambang Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 12. Image of data overlap for Tambang Floodplain.

The overlap statistics per block for the Tambang floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 4.07% and 92.48% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for Tambang floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.22 points per square meter.

Figure 13. Pulse density map of merged LiDAR data for Tambang Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 14. Elevation Difference Map between flight lines for Tambang Floodplain Survey.

A screen capture of the processed LAS data from a Tambang flight 23278P loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 15. Quality checking for Tambang Flight 23278P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	957,927,487
Low Vegetation	590,132,973
Medium Vegetation	1,347,270,652
High Vegetation	3,415,545,798
Building	49,575,213

Table 11. Tambang classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Tambang floodplain is shown in Figure 16. A total of 1,524 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 11. The point cloud has a maximum and minimum height of 489.43 meters and 42.35 meters respectively.

Figure 16. Tiles for Tambang Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 17. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Tambang Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Tambang floodplain.

3.8 DEM Editing and Hydro-Correction

Seven (7) mission blocks were processed for Tambang flood plain. These blocks are composed of Naga blocks with a total area of 904.53 square kilometers. Table 12 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Naga_Blk24F	184.40
Naga_Blk24E	133.54
Naga_Blk24E_additional	16.17
Naga_Blk24A_additional	26.95
Naga_Blk24A	263.59
Naga_Blk24G_additional	69.02
Naga_Blk24G	210.86
TOTAL	904.53 sq.km

Table 12. LiDAR blocks with its corresponding areas.

Portions of DTM before and after manual editing are shown in Figure 19. It shows that the mountain ridge (Figure 19a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 19b) to allow the correct flow of water. The triangulated riverbank (Figure 19c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 19d) in order to hydrologically correct the river.

Figure 19. Portions in the DTM of Tambang Floodplain –a mountain ridge before (a) and after (b) data retrieval; a triangulated riverbank before (c) and after (d) manual editing
3.9 Mosaicking of Blocks

Naga_Blk24A was used as the reference block at the start of mosaicking because it is located near the ocean. Table 13 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Tambang floodplain is shown in Figure 20. It can be seen that the entire Tambang floodplain is 99.80% covered by LiDAR data while portions with no LiDAR data were patched with the available IFSAR data.

0 I			
Mission Blocks	Shift Values (meters)		
	х	У	Z
Naga_Blk24F	0.00	0.00	0.08
Naga_Blk24E	1.00	0.00	0.09
Naga_Blk24E_additional	0.00	0.00	-0.09
Naga _Blk24A_additional	0.00	0.00	0.18
Naga_Blk24A	Reference Block		
Naga Blk24G_additional	0.00	0.00	0.25
Naga Blk24G	0.00	0.00	0.08

Table 13. Shift values of each LiDAR block of Tambang Floodplain.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 20. Map of Processed LiDAR Data for Tambang Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Tambang to collect points with which the LiDAR dataset is validated is shown in Figure 21. A total of 4789 survey points were used for calibration and validation of Tambang LiDAR data. Random selection of 80% of the survey points, resulting to 4310 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 22. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 2.67 meters with a standard deviation of 0.09 meters. Calibration of Tambang LiDAR data was done by subtracting the height difference value, 2.67 meters, to Tambang mosaicked LiDAR data. Table 14 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 21. Map of Tambang Floodplain with validation survey points in green.

Figure 22. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	2.67
Standard Deviation	0.09
Average	-2.66
Minimum	-2.84
Maximum	-2.49

Table 14. Calibration Statistical Measur	es
--	----

The remaining 20% of the total survey points, resulting to 22 points, were used for the validation of calibrated Tambang DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 23. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.10 meters with a standard deviation of 0.07 meters, as shown in Table 15.

Figure 23. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.10
Standard Deviation	0.07
Average	0.07
Minimum	-0.07
Maximum	0.22

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data was available for Tambang with 14,257 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.02 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Tambang integrated with the processed LiDAR DEM is shown in Figure 24.

Figure 24. Map of Tambang Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Tambang floodplain, including its 200 m buffer, has a total area of 63.96 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 481 building features, are considered for QC. Figure 25 shows the QC blocks for Tambang floodplain.

Figure 25. Blocks (in blue) of Tambang building features subjected to QC

Quality checking of Tambang building features resulted in the ratings shown in Table 16.

Table 16. Quality	Checking	Ratings for	Tambang Bui	ilding Features
-------------------	----------	-------------	-------------	-----------------

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Tambang	97.76	100	82.95	PASSED

3.12.2 Height Extraction

Height extraction was done for 2,014 building features in Tambang floodplain. Of these building features, 9 was filtered out after height extraction, resulting to 2,005 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 9.06 m.

3.12.3 Feature Attribution

Feature Attribution was done for 2,005 building features in Tambang Floodplain with the use of participatory mapping and innovations. The approach used in participatory mapping undergoes the creation of feature extracted maps in the area and presenting spatial knowledge to the community with the premise that the local community in the area are considered experts in determining the correct attributes of the building features in the area.

The innovation used in this process is the creation of an android application called reGIS. The Resource Extraction for Geographic Information System (reGIS)[1] app was developed to supplement and increase the field gathering procedures being done by the AdNU Phil-LiDAR 1. The Android application allows the user to automate some procedures in data gathering and feature attribution to further improve and accelerate the geotagging process. The app lets the user record the current GPS location together with its corresponding exposure features, code, timestamp, accuracy and additional remarks. This is all done by a few swipes with the help of the device's pre-defined list of exposure features. This effectively allows unified and standardized sets of data.

Table 17 summarizes the number of building features per type. On the other hand, Table 18 shows the total length of each road type, while Table 19 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	1917
School	12
Market	36
Agricultural/Agro-Industrial Facili-ties	0
Medical Institutions	4
Barangay Hall	3
Military Institution	0
Sports Cen-ter/Gymnasium/Covered Court	0
Telecommunication Facilities	0
Transport Terminal	4
Warehouse	5
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	10
Bank	0
Factory	0
Gas Station	0
Fire Station	0
Other Government Offices	1
Other Commercial Establishments	12
Demolished Building	0
New Building	1
Total	2005

Table 17. Building Features Extracted for Tambang Floodplain.

Floodplain	Road Network Length (km)						
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others		
Tambang	11.1	0	6.95	0	0	18.04579	

Table 18. Total Length of Extracted Roads for Tambang Floodplain.

Table 19. Number of Extracted Water Bodies for Tambang Floodplain.

Floodplain	Water Body Type					
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	
Tambang	1	5	0	0	0	6

A total of 2 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 26 shows the Digital Surface Model (DSM) of Tambang floodplain overlaid with its ground features.

Figure 26. Extracted features for Tambang Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TAMBANG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie Caballero, Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Tambang River on June 22 – July 6, 2016 with the following scope of work: reconnaissance; control survey; cross-section at the deployment site in Brgy. Del Carmen, Municipality of Lagonoy; validation points acquisition of about 77 km covering the Guinatagan River Basin area; and bathymetric survey from its upstream in Brgy. Olas to the mouth of the river located in Brgy. Del Carmen, both in the Municipality of Lagonoy, with an approximate length of 4.189 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (Figure 27).

Figure 27. Extent of the bathymetric survey (in blue line) in Tambang River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network used for Tambang River Basin is composed of four (4) loops established on June 27, 2016 occupying the following reference points: CMS-110, a second-order GCP in Brgy. Taytay, Municipality of Goa; and CS-461, a first order BM, in Brgy. Balaobalite, Municipality of Timambac.

A control point was established namely UP-TAM, located at Tamban Port in Brgy. Tamban, Municipality of Tinambac. A NAMRIA established control point, CMS-3202 in Brgy. Ginotangan, Municipality of Lagonoy, was also occupied to use as marker.

The summary of reference and control points and its location is summarized in Table 20 while the GNSS network established is illustrated in Figure 28.

Table 20. List of Reference and Control Points occupied for Tambang River Survey

Control	Order of	Geographic Coordinates (WGS 84)						
Point Accuracy		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
CMS- 110	2nd order, GCP	13°41'52.12609"N	123°29'44.20763"E	104.205	-	2007		
CS-461	1st order, BM	-	-	57.480	5.428	2009		
CMS- 3202	Used as Marker	-	-	-	-	2-26-16		
UP-TAM	UP Estab- lished	-	-	-	-	2-27-16		

(Source: NAMRIA; UP-TCAGP)

Figure 28. The GNSS Network established in the Tambang River Survey.

The GNSS set-ups on recovered reference points and established control points in Guinatagan River are shown in Figure 29 to Figure 32.

Figure 29. GNSS base set up, Trimble® SPS 882, at CMS-110, situated at the approach of Culasi Bridge in Brgy. Taytay, Municipality of Goa, Camarines Sur

Figure 30. GNSS receiver setup, Trimble® SPS 882, at CS-461, located at the approach of a bridge in Brgy. Balaobalite, Municipality of Tinambac, Camarines Sur

Figure 31. GNSS receiver setup, Trimble® SPS 852, at CMS-3202, located at the approach of Lagonoy Bridge in Brgy. Ginorangan, Municipality of Lagonoy, Camarines Sur

Figure 32. GNSS receiver setup, Trimble® SPS 822, at UP-TAM, located at Tamban Port, Brgy. Tamban, Municipality of Tinambac, Camarines Sur

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Tambang River Basin is summarized in Table 21 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CS-461 UP-TAM	06-27-16	Fixed	0.006	0.026	41°09'23"	13328.475	-3.608
CS-461 UP-TAM	06-27-16	Fixed	0.005	0.042	41°09'22"	13328.449	-3.540
CS-461 CMS-3202	06-27-16	Fixed	0.003	0.019	107°21'48"	22178.246	4.270
CS-461 CMS-110	06-27-16	Fixed	0.003	0.019	123°48'32"	20967.545	46.722
CMS-3202 UP-TAM	06-27-16	Fixed	0.004	0.017	323°23'08"	20760.844	-7.812
CMS-3202 UP-TAM	06-27-16	Fixed	0.004	0.023	323°23'07"	20760.831	-7.801
CMS-3202 CMS-110	06-27-16	Fixed	0.003	0.011	216°37'18"	6285.971	42.467
CMS-110 UP-TAM	06-27-16	Fixed	0.005	0.021	338°18'24"	23362.491	-50.291
CMS-110 UP-TAM	06-27-16	Fixed	0.004	0.023	338°18'24"	23362.483	-50.264

Table 21. Baseline Processing Summary Report for Tambang River Survey

As shown in Table 21, a total of nine (9) baselines were processed with reference points CMS-110 and CS-461 held fixed for coordinate and elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form: $\sqrt{(G_{x})^{2} + (G_{y})^{2}} = \sqrt{20}$

V((x)

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 \ cm$

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 22 to Table 25 for complete details.

The four (4) control points, CMS-110, CS-461, CMS-3202 and UP-TAM were occupied and observed simultaneously to form a GNSS loop. Coordinates of CMS-110; and elevation values of CS-461 were held fixed during the processing of the control points as presented in Table 22. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
CMS-110	Global	Fixed	Fixed		
CS-461	Grid				Fixed
Fixed = 0.00000	1 (Meter)				

Table 22. Constraints applied to the adjustment of the control points.

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 23. The fixed control CMS-110 has no values for grid errors while CS-461 has no value for elevation errors.

Table 23. Adjusted grid coordinates for the control points used in the Tambang River Floodplain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
CMS-110	553591.452	?	1514361.204	?	51.938	0.056	LL
CS-461	536159.891	0.008	1525999.493	0.007	5.428	?	е
CMS-3202	557328.793	0.007	1519412.663	0.006	9.384	0.055	
UP-TAM	544914.191	0.007	1536043.176	0.006	1.819	0.059	

With the mentioned equation, $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm \text{ and } z_e < 10 cm$ for horizontal and $z_e < 10 cm$ for the vertical;

the computation for the accuracy are as follows:

a.	CMS-110 horizontal accuracy vertical accuracy	= =	Fixed 5.6 cm < 10 cm
b.	CS-461 horizontal accuracy	= =	$V((0.8)^2 + (0.7)^2)$ V(0.64 + 0.49) 1 06 < 20 cm
	vertical accuracy	=	Fixed
с.	CMS-3202		
	horizontal accuracy	=	√((0.7) ² + (0.6) ²
		=	√ (0.49 + 0.36)
		=	0.92 < 20 cm
	vertical accuracy	=	5.5 cm < 10 cm
d.	UP-TAM		
	horizontal accuracy	=	$\sqrt{(0.7)^2 + (0.6)^2}$
		=	√ (0.49 + 0.36)
		=	0.92 < 20 cm
	vertical accuracy	=	5.9 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
CMS-110	N13°41'52.12609"	E123°29'44.20763"	104.205	0.056	LL
CS-461	N13°48'11.94074"	E123°20'04.40925"	57.480	?	е
CMS-3202	N13°44'36.29589"	E123°31'48.99957"	61.737	0.055	
UP-TAM	N13°53'38.42492"	E123°24'56.57247"	53.908	0.059	

Table 24. Adjusted geodetic coordinates for control points used in the Tambang River Floodplain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 24. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 25.

Table 25. Reference and control points utilized in the Tambang River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control	Order of	Geograpi	hic Coordinates (WGS 84)		UT	M ZONE 51 N		
Point	Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	EGM Ortho (m)	BM Ortho (m)
CMS-110	2nd order, GCP	13°41'52.12609"N	123°29'44.20763"E	104.205	1514361.204	553591.452	51.938	287.844
CS-461	1st order, BM	13°48'11.94074"N	123°20'04.40925"E	57.480	1525999.493	536159.891	5.428	58.767
CMS-3202	Used as Marker	13°44'36.29589"N	123°31'48.99957"E	61.737	1519412.663	557328.793	9.384	3.317
UP-TAM	UP Estab- lished	13°53'38.42492"N	123°24'56.57247"E	53.908	1536043.176	544914.191	1.819	4.332
UP_QUI-1	Established	7°05'25.95862"N	126°27'58.08622"E	70.854	784522.58	220097.24	6.305	13.001

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section survey was conducted on June 29, 2016 in Brgy. Del Carmen, Municipality of Lagonoy, Camarines Sur. This is the site is where ADNU deploys depth gauge and gather flow measurements as shown in Figure 33. A survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique was utilized for this survey.

Figure 33. Deployment site of depth gauge and flow meter showing the obstructions (circled in red) during crosssection survey

The cross-sectional line of the deployment site is about 55.850 m with fifty-four (54) cross-sectional points using the control point UP-TAM as the GNSS base station. The banks of the river were not accessible due to the Bakawan species. The cross-section diagram and its location map are shown in Figure 34 and Figure 35.

Figure 34. Location map of Tambang (also known as Guinatagan) River cross-section survey

Figure 35. Tambang (also known as Guinatagan) Deployment site cross-section diagram

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on June 26 and 28, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted in front of a vehicle as shown in Figure 36. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.30 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with CMS-3202 occupied as the GNSS base stations in the conduct of the survey.

Figure 36. Validation points acquisition survey set up along Tambang River Basin

The survey was composed of two strips: one which started from Brgy. Magsaysay, in the Municipality of Tinambac, going south covering twety-four (24) barangays of Municipalities of Calabanga and Tinambac which ended in Brgy. Del Carmen, Municipality of Calabanga; and second which started from Tamban Port also going south covering thirteen (13) more barangays in Municipalities of Goa and Tinambac, and ended in Tagongtong, Municipality of Goa. The survey gathered a total of 7,540 points with approximate length of 77 km using CMS-3202 as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 37.

Figure 37. Validation point acquisition survey of Tambang River basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on June 29, 2016 using an Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 38. The survey started in Brgy. Olas, Municipality of Lagonoy, with coordinates 13°44′18.28661″N, 123°32′59.30757″E, and ended at the mouth of the river in Brgy. Del Caren, also in Municipality of Lagonoy with coordinates 13°43′24.89932″N, 123°35′48.11928″E. The control point UP-TAM was used as the GNSS base station all throughout the entire survey.

Figure 38. Bathymetric survey using Ohmex[™] single beam echo sounder in Tambang River

The bathymetric survey coverage for Tambang river is illustrated in Figure 39. The bathymetric survey for Guinatagan River gathered a total of 5,280 points covering 4.189 km of the river traversing two (2) barangays in Municipality of Lagonoy namely: Olas and Del Carmenn. A CAD drawing was also produced to illustrate the riverbed profile of Guinatagan River. As shown in Figure 40, the highest and lowest elevation has a 6-m difference. The highest elevation observed was -0.155 m below MSL located at the downstream portion of the river in Brgy. Del Carmen, Municipality of Lagonoy, while the lowest was -6.933 m below MSL located at the upstream portion of the river also in Brgy. Del Carmen

Figure 39. Bathymetric survey of Tambang (also known as Guinatagan) River

Guinatagan Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Alfredo Mahar Francisco A. Lagmay, Enrico C. Paringit, Dr. Eng., Christopher Noel L. Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil R. Tingin, Gianni Sumajit, Christian Javier B. Arroyo, Engr. Ferdinand E. Bien, Juvylin B. Bismonte, Mary Ruth A. Bongon, Mark D. Delloro, Sarah Mae F. Fulleros, Julius Hector S. Manchete, John Paul B. Obina, Lech Fidel C. Pante, Joanaviva C. Plopenio, Ernesto F. Razal, Jr., Rox Harvey DP. Rosales, and Aaron P. San Andres

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Tambang River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Silaga River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from one automatic rain gauge (ARGs) installed by the Department of Science and Technology – Adv–anced Science and Technology Institute (DOST-ASTI). The rain gauge was installed at PSHS Bicol ARG (Figure 1). The precipitation data collection started from December 25, 2016 at 4:30 PM to December 26, 2016 at 6:30 AM with a 15-minute recording interval. The location of the rain gages used in calibration in the watershed in presented in Figure 41.

The total precipitation for this event in PSHS Bicol ARG is 557.4mm. It has a peak rainfall of 48.4mm on December 25, 2016 at 10:00 PM. The lag time between the peak rainfall and discharge is 2 hours and 40 minutes.

Figure 41. Location map of the Tambang HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Brgy. Bocogan, Lagonoy, Camarines Sur (13°53'59.2"N, 123°25'32.13"E). It gives the relationship between the observed water levels at Brgy. Bocogan and outflow of the watershed at this location.

Figure 42. Cross-section plot of Tambang Bridge

For Brgy. Bocogan, the rating curve is expressed as Q = 195.97e0.483h as shown in Figure 43.

Figure 43. Rating curve of Brgy. Bocogan in Lagonoy, Camarines Sur

The rating curve equation was used to compute the river outflow at Brgy. Bocogan for the calibration of the HEC-HMS model shown in Figure 44. The total rainfall for this event is 557.4mm and the peak discharge is 331.286m3/s at 12:40 AM, December 26, 2016.

Figure 44. Rainfall and outflow data of the Tambang River Basin used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Daet RIDF. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station was chosen based on its proximity to the Tambang watershed. The extreme values for this watershed were computed based on a 26-year record, with the computed extreme values shown in Table 26.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs	
2	21.8	33.8	43.1	59.6	84	101	130.4	163.2	190.4	
5	31.8	47.2	59.1	81.9	120.3	146.8	194.7	236.8	278.7	
10	38.5	56.1	69.7	96.7	144.4	177.1	237.2	285.6	337.2	
15	42.3	61.1	75.7	105	158	194.1	261.2	313.1	370.2	
20	44.9	64.6	79.9	110.8	167.5	206.1	278	332.4	393.3	
25	46.9	67.3	83.1	115.3	174.8	215.3	291	347.2	411.1	
50	53.2	75.6	93	129.2	197.3	243.7	330.8	392.9	465.9	
100	59.4	83.9	102.9	143	219.7	271.9	370.4	438.3	520.3	

Table 26. RIDF values for Tambang Rain Gauge computed by PAGASA

Figure 45. Location of Daet RIDF Station relative to Tambang River Basin

Figure 46. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA - BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Tambang River Basin are shown in Figure 47 and Figure 48, respectively.

Figure 47. Soil Map of Tambang River Basin used for the estimation of the CN parameter.

Figure 48. Land Cover Map of Tambang River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model.

For Tambang, two soil classes were identified. These are Antipolo-Alimodian-Luisiana complex and undifferentiated mountain soil. Moreover, two land cover classes were identified. These are forest plantation and open forest.

Figure 49. Slope Map of Tambang River Basin

Figure 50. Stream Delineation Map of Tambang River Basin

Using the SAR-based DEM, the Tambang basin was delineated and further divided into subbasins. The model consists of 21 sub basins, 10 reaches, and 10 junctions, as shown in Figure 51. The main outlet is Brgy. Bocogan.

Figure 51. Tambang River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 52. River cross-section of Tambang River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 53. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 220.37793 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Tambang are in Figure 57, Figure 59, and Figure 61.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 82,537,440.00 m2. The generated flood depth maps for Tambang are in Figure 58, Figure 60, and Figure 62.

There is a total of 68,348,674.31 m3 of water entering the model. Of this amount, 37,011,348.95 m3 is due to rainfall while 31,337,325.36 m3 is inflow from other areas outside the model. 44,867,551.64 m3 of this water is lost to infiltration and interception, while 8,313,813.00 m3 is stored by the flood plain. The rest, amounting up to 44,867,551.64 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Tambang HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 14 shows the comparison between the two discharge data.

Figure 54. Outflow hydrograph of Tambang produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 27 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	0.001 – 25
			Curve Number	35 – 89
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.02 – 144
		Storage Coefficient (hr)		0.02 – 7
	Baseflow	Recession	Recession Constant	0.00001
			Ratio to Peak	0.0008 – 1
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.0004 – 0.05

T-1-1- 77	Dana	[];]	1	f +1	T l	Dimen	Dation
Table 77	Rangeo	і сапргагео	vames	lor i ne.	Tampang	KIVer	Basin.
10010 211	realize of	e entroreee		LOL VIII	1 min String	1.11.01	DROILI

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.001mm to 25mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 35 to 89 for curve number is wider than the advisable for Philippine watersheds (70-80), depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Tambang, the basin mostly consists of forest plantation and the soil consists of Antipolo-Alimodian-Luisiana complex and undifferentiated mountain soil.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.02 hours to 144 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. For Tambang, it will take at least 3 hours from the peak discharge to go back to the initial discharge.

Manning's roughness coefficient of 0.00001 corresponds to the common roughness in Tambang watershed, which is determined to have a smooth surface (Brunner, 2010).

Accuracy measure	Value
RMSE	15.614
r2	0.942
NSE	0.94
PBIAS	0.224
RSR	0.244

 Table 28. Summary of the Efficiency Test of the Tambang HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 15.614 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.942.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.94.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 0.224.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.244.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 55) shows the Tambang outflow using the synthetic storm events using the Daet Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods from 142.5m3/s in a 5-year return period to 260.9m3/s in a 100-year return period.

Figure 55. Outflow hydrograph at the Tambang Basin generated using the simulated rain events for 24-hour period for Daet station

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Tambang discharge using the Daet Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 29.

Table 29. Peak values of the Tambang HEC-HMS Model outflow using the Daet RIDF 24-hour values.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	278.70	31.80	142.5	1 hour, 40 minutes
10-Year	337.20	38.50	168.2	1 hour, 40 minutes
25-Year	411.10	46.90	203.76	1 hour, 40 minutes
50-Year	465.90	53.20	231.5	1 hour, 40 minutes
100-Year	520.30	59.40	260.9	1 hour, 40 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the ADNU-DVC base flow was calibrated. Figure 56 shows a generated sample map of the Tambang River using the calibrated HMS base flow.

Figure 56. Sample output map of Gahub RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. The generated flood hazard maps for the Tambang Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr). Figure 57 to Figure 62 shows the 5-, 25-, and 100-year rain return scenarios of the Tambang floodplain. The flood plain, with an area of 127.4km2, covers three (3) municipalities, namely Goa, Lagonoy, and Tinambac. Table 30 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Goa	220.76	9.85	4.46
Lagonoy	394.86	83.43	21.13
Tinambac	288.53	33.28	11.54

Table 30. Municipalities affected in Tambang Floodplain

N.Q.79.81

77

5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Tambang River Basin, grouped accordingly by municipality. For the said basin, three (3) municipalities consisting of 18 barangays are expected to experience flooding when subjected to the three rainfall return period scenarios.

For the 5-year rainfall return period, 0.03% of the municipality of Goa with an area of 220.76 sq. km. will experience flood levels of less than 0.20 meters. 0.24% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.42%, 1.16%, 0.79%, and 0.82% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 31 and shown in Figure 63 are the affected areas in Goa in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Affected area Area of affected barangays in Goa (in sq. (sq. km.) by						
flood depth (in m.)	Lamon	Maysalay	1aysalay Scout Fuentebella				
0.03-0.20	0.061	0.00088	0.0001	0.000086			
0.21-0.50	0.3	0.13	0.046	0.059			
0.51-1.00	0.097	0.17	0.27	2.6			
1.01-2.00	0.0086	0.043	2.44	0.068			
2.01-5.00	1.62	0	0.082	0.045			
> 5.00	1.69	0	0.071	0.056			

Table 31. Affected areas in Goa, Camarines Sur during a 5-Year Rainfall Return Period

Figure 63. Affected Areas in Goa, Camarines Sur during 5-Year Rainfall Return Period

For the municipality of Lagonoy with an area of 394.86 sq. km., 2.37% will experience flood levels of less than 0.20 meters. 11.18% of the area will experience flood levels of 0.21 to 0.50 meters, while 3.88%, 0.17%, 1.82%, and 1.71% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 32 and shown in Figure 64 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Lagonoy (in sq. km.)							
flood depth (in m.)	Bocogan	Del Carmen	Guibahoy	Mapid	Olas	Pinamihagan	Santa Cruz	
0.03-0.20	0.0002	0.0011	0.085	0.0076	0.0012	0.000077	9.26	
0.21-0.50	0.96	0.086	0.081	0.28	0.014	41.53	1.2	
0.51-1.00	0.083	0.081	0.19	0.32	13.7	0.49	0.45	
1.01-2.00	0.056	0.057	0.26	0.098	0.19	0.0057	0.0025	
2.01-5.00	0.0079	0.0004	6.26	0.33	0.29	0.22	0.084	
> 5.00	0	0.041	0.033	0	0.0005	6.44	0.24	

Table 32. Affected areas in Lagonoy, Camarines Sur during a 5-Year Rainfall Return Period

Figure 64. Affected Areas in Lagonoy, Camarines Sur during 5-Year Rainfall Return Period

For the municipality of Tinambac with an area of 288.53 sq. km., 2.43% will experience flood levels of less than 0.20 meters. 3.92% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.28%, 2.9%, 0.55%, and 0.45% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 33 and shown in Figure 65 are the areas affected in Tinambac in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Tinambac (in sq. km.)						
flood depth (in m.)	Antipolo	Banga	Bataan	Pag-Asa	San Ramon	San Roque	Tambang
0.03-0.20	0.51	0.35	0.18	0.13	0.27	5.2	0.38
0.21-0.50	0.75	0.76	1.41	1.54	6.62	0.14	0.09
0.51-1.00	0.89	1.4	0.31	1.05	0.032	0.011	0.0066
1.01-2.00	0.0004	6.98	0.67	0.42	0.18	0.086	0.022
2.01-5.00	0	0.0001	1.41	0.054	0.051	0.055	0.015
> 5.00	0	0.28	0	0.5	0	0.44	0.083

Table 33. Affected areas in Tinambac, Camarines Sur during a 5-Year Rainfall Return Period

Figure 65. Affected Areas in Tinambac, Camarines Surl during 5-Year Rainfall Return Period

For the 25-year rainfall return period, 6.42% of the municipality of Goa with an area of 220.76 sq. km. will experience flood levels of less than 0.20 meters. 0.44% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.35%, 0.19%, 0.1%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 34 and shown in Figure 66 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Goa (in sq. km.)							
flood depth (in m.)	Lamon	Maysalay	Maysalay Scout Fuentebella					
0.03-0.20	0.06	0.077	8.99	5.05				
0.21-0.50	0.0012	0.016	0.55	0.4				
0.51-1.00	0.0001	0.0016	0.42	0.35				
1.01-2.00	0	0.00014	0.23	0.18				
2.01-5.00	0.00042	0	0.17	0.058				
> 5.00	0.0014	0	0.35	0.074				

Table 34. Affected areas in Goa, Camarines Sur during a 25-Year Rainfall Return Period

Figure 66. Affected Areas in Goa, Camarines Sur during 25-Year Rainfall Return Period

For the municipality of Lagonoy with an area of 394.86 sq. km., 17.17% will experience flood levels of less than 0.20 meters. 0.58% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.41%, 0.57%, 0.99%, and 0.7% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 35 and shown in Figure 67 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by		Area of affected barangays in Lagonoy (in sq. km.)							
flood depth (in m.)	Bocogan	Del Carmen	Guibahoy	Mapid	Olas	Pinamihagan	Santa Cruz		
0.03-0.20	0.92	40.79	6.53	2.58	13.52	1.03	2.43		
0.21-0.50	0.098	1.32	0.15	0.086	0.52	0.034	0.073		
0.51-1.00	0.059	0.84	0.099	0.076	0.48	0.014	0.061		
1.01-2.00	0.14	0.77	0.1	0.21	0.96	0.0076	0.062		
2.01-5.00	0.21	1.46	0.19	0.32	1.41	0.0088	0.3		
> 5.00	0	2.02	0.3	0	0.36	0.056	0.048		

Table 35. Affected areas in Lagonoy, Camarines Sur during a 25-Year Rainfall Return Period

Figure 67. Affected Areas in Lagonoy, Camarines Sur during 25-Year Rainfall Return Period

For the municipality of Tinambac with an area of 288.53 sq. km., 8.32% will experience flood levels of less than 0.20 meters. 0.53% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.42%, 0.41%, 0.27%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 36 and shown in Figure 68 are the areas affected in Tinambac in square kilometers by flood depth per barangay.

Affected area (sq. km.) by		nbac					
flood depth (in m.)	Antipolo	Banga	Bataan	Pag-Asa	San Ramon	San Roque	Tambang
0.03-0.20	0.19	6.74	1.59	6.14	1.39	1.67	6.29
0.21-0.50	0.0065	0.74	0.085	0.32	0.055	0.072	0.25
0.51-1.00	0.003	0.5	0.057	0.33	0.053	0.063	0.2
1.01-2.00	0.0006	0.24	0.013	0.27	0.064	0.048	0.55
2.01-5.00	0	0.11	0.0005	0.12	0.021	0.04	0.47
> 5.00	0	0.033	0	0.0005	0	0.0014	0.21

Table 36. Affected areas in Tinambac, Camarines Sur during a 25-Year Rainfall Return Period

Figure 68. Affected Areas in Tinambac, Camarines Surl during 25-Year Rainfall Return Period

For the 100-year rainfall return period, 6.22% of the municipality of Goa with an area of 220.76 sq. km. will experience flood levels of less than 0.20 meters. 0.46% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.39%, 0.24%, 0.13%, and 0.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 37 and shown in Figure 69 are the affected areas in Goa in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Goa (in sq. km.)							
flood depth (in m.)	Lamon	Maysalay	Tamban					
0.03-0.20	0.06	0.069	8.69	4.91				
0.21-0.50	0.0012	0.023	0.57	0.42				
0.51-1.00	0	0.0015	0.47	0.39				
1.01-2.00	0.0004	0.00035	0.29	0.23				
2.01-5.00	0.00014	0	0.22	0.076				
> 5.00	0.0018	0	0.45	0.09				

Table 37. Affected areas in Goa, Camarines Sur during a 100-Year Rainfall Return Period

Figure 69. Affected Areas in Goa, Camarines Sur during 100-Year Rainfall Return Period

For the municipality of Lagonoy with an area of 394.86 sq. km., 16.86% will experience flood levels of less than 0.20 meters. 0.62% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.43%, 0.5%, 1.08%, and 0.94% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 38 and shown in Figure 70 are the affected areas in Lagonoy in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Lagonoy (in sq. km.)									
flood depth (in m.)	Bocogan	Del Carmen	Guibahoy	Mapid	Olas	Pinamihagan	Santa Cruz			
0.03-0.20	0.89	39.98	6.42	2.56	13.3	1.02	2.39			
0.21-0.50	0.11	1.44	0.17	0.086	0.54	0.038	0.076			
0.51-1.00	0.059	0.92	0.099	0.075	0.46	0.017	0.06			
1.01-2.00	0.079	0.86	0.1	0.12	0.75	0.0085	0.066			
2.01-5.00	0.29	1.35	0.19	0.43	1.73	0.01	0.27			
> 5.00	0	2.64	0.41	0	0.48	0.063	0.11			

Table 38. Affected areas in Lagonoy, Camarines Sur during a 100-Year Rainfall Return Period

Figure 70. Affected Areas in Lagonoy, Camarines Sur during 100-Year Rainfall Return Period

For the municipality of Tinambac with an area of 288.53 sq. km., 8.13% will experience flood levels of less than 0.20 meters. 0.55% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.46%, 0.39%, 0.38%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Listed in Table 39 and shown in Figure 71 are the areas affected in Tinambac in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Tinambac (in sq. km.)										
flood depth (in m.)	Antipolo	Banga	Bataan	Pag-Asa	San Ramon	San Roque	Tambang				
0.03-0.20	0.18	6.51	1.57	6.02	1.37	1.64	6.16				
0.21-0.50	0.0071	0.78 0.094 0.3		0.32	0.052	0.075	0.26				
0.51-1.00	0.0035	0.58	0.063	0.34	0.061	0.067	0.2				
1.01-2.00	0.0008	0.31	0.02	0.32	0.071	0.055	0.35				
2.01-5.00	0	0.14	0.0005	0.17	0.029	0.049	0.7				
> 5.00	0	0.043	0	0.0036	0.0001	0.0031	0.31				

Table 39. Affected areas in Tinambac, Camarines Sur during a 100-Year Rainfall Return Period

Figure 71. Affected Areas in Tinambac, Camarines Surl during 100-Year Rainfall Return Period

Among the barangays in the municipality of Goa, Lamon is projected to have the highest percentage of area that will experience flood levels at 1.71%. Meanwhile, Scout Fuentebella posted the second highest percentage of area that may be affected by flood depths at 1.32%.

Among the barangays in the municipality of Lagonoy, Pinamihagan is projected to have the highest percentage of area that will experience flood levels at 12.33%. Meanwhile, Olas posted the second highest percentage of area that may be affected by flood depths at 3.59%.

Among the barangays in the municipality of Tinambac, Banga is projected to have the highest percentage of area that will experience flood levels at 3.39%. Meanwhile, San Ramon posted the second highest percentage of area that may be affected by flood depths at 2.48%.

Moreover, the generated flood hazard maps for the Tambang Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning	Area Covered in sq. km.					
Level	5 year	25 year	100 year			
Low	4.46	4.77	5.04			
Medium	5.23	5.53	5.82			
High	9.81	11.32	13.01			
TOTAL	19.5	21.62	23.87			

Table 40. Areas covered by each warning level with respect to the rainfall scenarios

Of the 6 identified Educational Institutions in Tambang floodplain, none was assessed to be exposed to any level of flooding in all the rainfall scenarios. The educational institutions exposed to flooding are shown in Annex 12.

Of the 4 identified Medical or Health Institutions in Tambang floodplain, none was assessed to be exposed to any level of flooding in the 5-year scenario. In the 25-year scenario, none was assessed to be exposed to any level of flooding. In the 100-year scenario, none was assessed to be exposed to both low and high, while 1 was assessed to be exposed to medium level flooding. The medical institutions exposed to flooding are found in Annex 13.

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

ANNEXES

Annex 1. Optech Technical Specification of the Pegasus Sensor

Pilot Display Sensor with Built-in Camera Waveform Digitizer

Figure A-1.1. Parameters and Specification of the Pegasus Sensor

Control Rack Table A-1.1. Parameters and Specification of the Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation dis-tance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing
Relative humidity	0-95% no-condensing

1 Target reflectivity ≥20%

Laptop

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence $\leq 20^{\circ}$

4 Target size \geq laser footprint5 Dependent on system configuration

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

CMS-103 1.

May 02, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: C	AMARINES SUR			
	Station Na	ame: CMS-103			
	Order	: 2nd			
Island: LUZON Municipality: TAMBAN	Barangay: MSL Eleva PRS	POBLACION tion: 92 Coordinates			
Latitude: 13° 53' 44.46082"	Longitude:	123° 24' 52.41074"	Ellipsoid	al Hgt:	4.58100 m.
	WGS	84 Coordinates			
Latitude: 13° 53' 39.40601"	Longitude:	123° 24' 57.34955"	Ellipsoid	al Hgt:	55.99300 m.
	PTM / P	RS92 Coordinates			
Northing: 1536671.409 m.	Easting:	544805.234 m.	Zone:	4	
	UTM / P	RS92 Coordinates			
Northing: 1,536,133.55	Easting:	544,789.55	Zone:	51	

CMS-103

Location Description

Station is located at Tamban port area, it was established at the top edge of seawall. Mark is the head of a 4 in. copper nail centered on a drilled hole with cement putty, embedded at concrete pavement, with inscriptions, "CMS-103, 2007, NAMRIA".

Requesting Party: Merlin Fernando Purpose: OR Number: T.N .:

Reference 39430351 2016-1021

RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch

IA OFFICES Nomin or russo. Main : Lawin Avenue. Fort Bonifacio. 1634 Taguig City, Philippines. Tel. No. (632) 810-482 Branch : 421 Baeraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3454 to 98 ines Tel. No.: (632) 810-4831 to 41 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. CMS-103

2. CS-461

Location Description

CS-461 is in the Province of Camarines Sur, Municipality of Tinambac, Brgy. Balaobalite, along the Tinambac to Calabanga road. The station i sloctaec on a bridge.

A copper nail is embedded and cemented in the middle of a 6 in. x 6 in cement putty with inscription "CS-461, 2008, NAMIRIA".

Requesting Party:	PHIL-LIDAR 1
Purpose.	Reference
OR Number.	8094859
T.N.:	2016-1311

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch

NAME A OFFICES.

Math: Lawlor Awaros, Fiel Boolistic, 1954 Taguig City, Philopinas – Tel. No., 1939(1610-003115-44) Dranch : 421 Baraca St. Scill Niscley, 1010 Nomis, Philopines, Tel. No. (552) 241-3404 (s/06) www...namria.gov..ph

ISO 9001: 2008 CERT FIED FOR WAPPING AND GEOSPATIAL INFORMATION MANAGEMENT.

Figure A-2.2. CS-461

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. CS-461

Table A-3.1. CS-461

From:	CI	CMS-103						
	Grid		l	Local		G	ilobal	
Easting		544789.551 m	Latitude	N13°53'44.46082"	Latitude		N13°53'39.40601	
Northing		1536133.547 m	Longitude	E123°24'52.41074"	Longitude		E123°24'57.34955	
Elevation		3.904 m	Height	4.581 m	Height		55.993 m	
To:	C	5-461						
	Grid		Local		Global			
Easting		536011.654 m	Latitude	N13°48'16.97629"	Latitude		N13°48'11.93661	
Northing		1526059.719 m	Longitude	E123°19'59.46340"	Longitude		E123°20'04.41063	
Elevation		7.728 m	Height	8.314 m	Height		59.780 m	
Vector								
∆Easting		-8777.89	7 m NS Fwd Azimut	th	221°10'00"	ΔX	6018.784 m	
ΔNorthing		-10073.82	8 m Ellipsoid Dist.		13366.718 m	ΔY	6854.008 m	
ΔElevation		3.82	24 m ΔHeight		3.732 m	ΔZ	-9770.665 m	

Sta	anda	rd E	rrors	

Vector errors:							
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.006 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.009 m		
σ ΔElevation	0.011 m	σ ΔHeight	0.011 m	σΔZ	0.003 m		

Aposteriori Covariance Matrix (Meter*)								
	X	Y	Z					
x	0.0000320941							
Y	-0.0000473036	0.0000756414						
Z	-0.0000144523	0.0000223329	0.0000079814					

Occupations

	From	То	
Point ID:	CMS-103	CS-461	
Data file:	C:\Users\Windows User\Documents \Business Center - HCE\Unnamed(3)\CMS- 103 (Modular) 1.552M [05-03-16].T02	C:\Users\Windows User\Documents \Business Center - HCE\Unnamed (3)\RINEX CS-461 1.490M [05-03-16].16D	
Receiver type:	SPS852	Unknown	
Receiver serial number:	5203K81512	U1K7M3544CO	
Antenna type:	Zephyr Geodetic	CR.G5	
Antenna serial number:		-Unknown-	
Antenna height (measured):	1.552 m	1.490 m	
Antenna method:	Bottom of notch	Bottom of antenna mount	

Tracking Summary

2. CS-464

Table A-3.2. DVE-3118

Vector Compor	nents (Ma	ark to Mark)							
From:	CM	NS-103							
	Grid			Loc	:al			Gk	obal
Easting		544789.551 m	Latit	tude	N13°53'4	4.46082"	Latitude		N13°53'39.40601"
Northing		1536133.547 m	Long	gitude	E123°24'5	2.41074"	Longitude		E123°24'57.34955"
Elevation		3.904 m	Heig	ght		4.581 m	Height		55.993 m
To:	CS-	464							
	Grid		Local		Global				
Easting		535835.478 m	Latit	tude	N13º47'0	6.64679"	Latitude		N13°47'01.61166"
Northing		1523899.018 m	Longitude E1		E123°19'53.49615"		Longitude		E123°19'58.44508"
Elevation		7.478 m	Height 8.046 r		8.046 m	6 m Height		59.563 m	
Vector									
∆Easting		-8954.07	73 m	NS Fwd Azimuth			216°17'54"	ΔX	5885.438 m
∆Northing		-12234.53	80 m	Ellipsoid Dist.			15166.867 m	ΔY	7382.824 m
∆Elevation		3.57	'4 m	∆Height			3.465 m	ΔZ	-11869.678 m

Standard Errors

Vector errors:						
σ ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m	
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.002 m	σΔY	0.006 m	
σ ΔElevation	0.007 m	σ ΔHeight	0.007 m	σΔZ	0.002 m	

Aposteriori Covariance Matrix (Meter*)

	X	Y	Z
x	0.0000186593		
Y	-0.0000199574	0.0000353943	
Z	-0.0000064437	0.0000096572	0.0000033881

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation	
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, DR.ENG	UP-TCAGP	
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. LOUIE BALICANTA	UP-TCAGP	
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP	
Survey Supervisor	Supervising Science		UP-TCAGP	
	(Supervising SRS)	LOVELY GRACIA ACUNA	UP-TCAGP	

Table A-4.1. The LiDAR Survey Team Composition

Supervising Science LOVELYN ASUNCION **UP-TCAGP Research Specialist** (SSRS) **LiDAR Operation** Research Associate (RA) MARY CATHERINE **UP-TCAGP** ELIZA-BETH BALIGUAS RA ENGR. GEF SORIANO **UP-TCAGP** Ground Survey, Data RA JASMIN DOMINGO **UP-TCAGP** Download and Transfer Airborne Security SSG. BENJIE CAR-PHILIPPINE AIR FORCE (PAF) BOLLEDO **LiDAR** Operation ASIAN AEROSPACE Pilot CAPT. KAHLIL CHI CORPORATION (AAC) AAC CAPT. DEXTER CABUDOL

FIELD TEAM

Annex 5. Data Transfer Sheet for Tambang Floodplain

Z'Mittome_Raw113 93P Z Wirborne_Raw13 Wittome_Raw/1 Z'Wittome_Rawt1 Z'Mirbome_Raw(1 Z Wittome_Raw/1 CVAlrborne_Rawl1 SERVER ņ, 9 3 dE. 87P 910 1.67KB 2.01KB 51.3kBk8.1kB 2.01KB 1.67KB 1.67KB 1.67748 1.67XB ğ FLIGHT PLAN 73, 6408402, 34084 1 57, 8408 51908468, 840877, 2 20548463, 8408473, 2 53.3x8448.8x87 39.9x8453.3x07 **BXB** 3.446/Bivt9.6KB Actual 28.3KB/37.8 41.0KB 20,9408 OPERATOR LOGS (OPLOS) 6278 6008 2308 2500 4578 8084 8 Base Info (.tot) BASE STATION(S) 1528 1038 1038 000 1088 1038 1528 BASE STATION(S) 14.8MB 54.8MB 12.3MB 13.6MB 13.6MB SM81 12.3MB SUZOTABACOTOS PONSOT REGUY DIGETUZER ž Ň ž ž ž ž ž RANGE 16.908 17.208 34.908 15.608 27.308 30.608 30.708 MISSION LOG FILE 4.10K0B/ 159HCBV 168KB 33060 221KB 80000 360%8 366KB 16460 RAW 44.208 \$2.008 45.008 46.008 17.508 43.708 23.208 165MB 140448 204MB 154MB 275MB 257MB 204MB ğ Logs 7.87MB 70MB 13.9MB 10MB 13.2MB 12 0MB 13.3MB KMIL (swath) 2.91MB BM2N 1.65MB 1.06MB 1.51MB 672XGB 00000 RAIN LAS Output 2.9208 BDOM. 8008 1.7308 2 5908 3.4008 3,7208 PEGASUS PEGASUS PEGASUS **SENSOR** PEGASUS PEGASUS PEGASUS PEGASUS MISSION NAME 180044481158 180045401144 15UK44C8115A 18UK45DE1104 1BUX458111A 180645C1118 18UX4581109 FLIGHT NO. d17121 13879 13619 13030 1371P 1375P 1373P Apr 26, 2014 Apr 27, 2014 Apr 22, 2014 Apr 25, 2014 Apr 21, 2014 Apr 22, 2014 Apr 21, 2014 DATE

DATA TRANSFER SHEET

Received from

Name "ALACE B. SIN ADJAN PORTON RA Separate JMY

Received by

Name perform maginer 5/26/2014

Figure A-5.1. Transfer Sheet for Tambang Floodplain - A

96
					1.44			-	I		12 121	CONTRA	ONCHATOR	FUGHT	PLAN	SURVER
			No.	LAS	T		-	INVESTIGATION CON		and the second	near .	Bass brie	1006	Amat	NRT	LOCATION
		SENSOR		Concerning of the	1005001	POR	WWACSCAR!	LOCK			STATIONED	(Jant)	Incident			2 CACIPAIN
PUGATINO. NISSION NAVA			Output LAS	Marri (Breening	1			12842301107	ana .	-	123	-	105	36/7//2/102	N/N	DATA
		MORTING	101	621073	9.21	202	3014.29.26		-				-	visio2/85	NN	ZICHCRUN
Det-15 10007F 1BUE440	UNSCAUBEZ73M			1		641	5.7		8	111	010	100	6140	- COLORI		7-CACORN
181.04	158LK46276A	PEONSUS	308	202	-			Name of		NN	12	tion .	100	1086010	NA.	DATA .
AN IN ADDRESS OF ADDRE	tentx462768	PEGAGUS	959	1,04	629	103	226270.3	10000101								
Received from Name Signation	CLOSE CLOSE	IL					Received by Name Denotes Byposhes	T Main	PRIETO	11/03)	5					

η Figure A-5.2. Transter Sheet for Tambang Floodplain -

1. Flight Log for Mission 23276P

2

7 Molt: 6. Acresion 8 Con-Pilot: K.A. Gitti 9 Reports 10 Dite: $\sqrt{12}/1/L_{c}$ 12 Altron of Departure (Altron). 12 Altron of Chrymol (Approvince): 20 Altron of Chrymol (Approvince): 21 Altron of Chrymol (I LIDAR Operator: Jonia	2 ALTM Model: PEGASus	3 Mission Name: IBUS 24F61	A Tune VER	C Almost Tune. Construction	this no in the
00 Date: ^(1,2,1) / ^(1,2)	7 Pilot: S. ALTONSD	8 Co-Pilot: K.K. CHI	9 Route:	with a type, with	2 Aliciali Type: Cesnna (206M	6 Aircraft Identification: 9422
13 Engine On: 045 14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing: 12.0 18 Total Flight Time: 14.0 19 Weather Coads 1 10 Take off: 15 Take off: 15 Take off: 17 Landing: 12.0 18 Total Flight Time: 14.0 10 Hight Classification 202 Mon Billable 2	10 Date: 4/22/14	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, Gty/Province):	
19 Weather Gould 20 High Classification 20 High Classification 20 Automatination 20 A	13 Engine On: 0%IS	14 Engine Off:	15 Total Engine Time: 4+1°	16 Take off: 0 82.0	17 Landing: 1220	18 Total Flight Time: 44.24
20 Flight classification 20 Mon Billable 20 A constituent light 0 Accuration light	9 Weather	Choudy				An11
d Acquisition Flight O UDAR System Maintenance 0 System Inst Flight O UDAR System Maintenance 0 System Problems O Next Annual Activities 12 Problems and Solutions O Weather Problem 0 Versity Flight O 0 Next Problems 0 Plot State 0<	0 Flight classification 0.a Billable	20.b Non Billable	20.c Others	21 Remarks		
2 Problems and Solutions 2 Problem • Weather Problem • System Problem • Accurate Problem • Accurate Problem • Others: • Othe	 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Alrcraft Test Flight AAC Admin Flight Others: 	 C LIDAR System Mainter O Aircraft Maintenance Phil-LIDAR Admin Acti 	ance /itles	surveyed BLK24F 2	BLAYG
	 Weather Problem System Problem Aircraft Problem Pilot Problem Others: 	Acquisition Eacht Carth	ted by Pilot-in-C	To such the second	Lidar Operator	Aircraft Mechanic/ Technician

DREAM Program's Data Acqui	ition flight Log				Flight Log No.: 23278 P
1 LIDAR Operator: Sorian	2 ALTM Model: Pagagus	3 Mission Name: 19.42404114	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: RP-4124
7 Pilot: 5. Alforgo	8 Co-Pilot: k. Chi	9 Route:			
10 Date: 04 / 23 / 16	12 Airport of Departure NAMA	(Airport, City/Province): 1	2 Airport of Arrival (A NASA	irport, City/Province):	
13 Engine On: 06 4구	14 Engine Off: 10 5 4	15 Total Engine Time: 1 4 + 05	6 Take off: 00.07	17 Landing: 1647	18 Total Flight Time: @ +cc
19 Weather			4		?
20 Flight Classification			21 Remarks		
20.a Billable	20.b Non Billable	20.c Others	Ser	veyed 2 lines in	ALLE C, 4 lines
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 LiDAR System Maintenai Aircraft Maintenance Phil-LiDAR Admin Activit 	nce in DLK ies	A god 6 lines in	DLK F.
22 Problems and Solutions					
O Weather Problem O System Problem					
O Pilot Problem O Others:					
Accussition Flight Anonoused by	Areachelister, Clicker C. 40	and by a second s			
WE WARD AND AND AND AND AND AND AND AND AND AN	A CAPACITY	Solder C.P	100 Mar	CAEF SORIANO	Aircraft Mechanic/ Technician
Signature ovet Printed Name (End User Representative)	Signature over Printed I (PAF Representative	Name Signature ov s)	er Printed Name	Signature over Printed Name	Signature over Printed Name
		Figure A-6.2. Flight Lo	e for Mission 2327	ßP	

5.

1 LIDAR Operator: 194-UIG	VAS 2 ALTM M	lodel:PEGASus	3 Mission Name 28424454	54 4 Type: VFR	5 Aircra	ft Type: Cesnna T206H	6 Aircraft Identification: RP-
7 Pilot: S. Alfonso	8 Co-Pilot: K.	chi -	9 Route:				
10 Date: 04 /14 / 16	12 Airpor	t of Departure (Airport, City/Province):	12 Airport of Arrive	al (Airport, C	ity/Province):	
13 Engine On: 0C28	14 Engine Off:	1051	15 Total Engine Time:	16 Take off: 0C53	17 Land	ing: 164C	18 Total Flight Time:
19 Weather							
20 Hight Classification 20.a Billable	20.b Non Billable		20.c Others	21 Rema	rts Conplete	d BLK 249	and BLK 245
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	O Aircraft O AAC Ad O Others	t Test Flight Imin Flight :	 LiDAR System Mainter Aircraft Maintenance Phil-LiDAR Admin Acti 	ance vities			
22 Problems and Solutions							
O Weather Problem O System Problem							
O Aircraft Problem O Pilot Problem							
o Others:							
Acquisition Fight Approved to CONEL ACTIVICE Signature over Printed Name	ty Signal	uisition Flight Contra Dife Carrisol	ted by Priocin C	Officer of the Name	- 5K	dar Operator North M Kt East Lit was pasture over Printed Name	Aircraft Mechanic/ Techni Signature over Printed Na
(End User Representative)	6	PAF Representative	-				1
			Eight A-6 2 Elight I	or for Miccion 2	3787D		

Flight Log for 23282P Mission

AR Operator: Seriano	2 ALTM Model: Parties	3 Mission Name: 18 Loadeh34	4 TVDR: VFR	S Aircraft Tune Cesnna	TORH & Aircraft Idantifi	ration. 0100
t: K. Alforise	8 Co-Pilot: 4, Chi	9 Route:	ure codie e	our on the owner of		ranon. 1
te: 09 /26 /16	12 Airport of Departure (ルイグA	(Airport, City/Province): 1	2 Airport of Arriva	l (Airport, City/Province):		
gine On: 0620	14 Engine Off: 1635	15 Total Engine Time: 1 4.4 US	6 Take off:	17 Landing:	18 Total Flight Ti	ne:
ather		-				
ht Classification Sillable	20.b Non Billable	20.c Others	21 Remai	ts completed BLIC 21	te and surveye	ø
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 LIDAR System Maintena Aircraft Maintenance Phil-LiDAR Admin Activit 	ice 2	lines at Bl	< 24 E	2
blems and Solutions	N					
Weather Problem System Problem Aircraft Problem Pilot Problem Others:						
uisition Flight Approved by	Acquisition Flight Cart	fied by Pilot-In-Cor	The preduction	Lidar Operator	Aircraft Me	chanic/ Technician
ature over Printed Name	Signature over Printed N	Vame Signature ov	er Printed Name	Signature over Print	Muto Signature o	ver Printed Name

101

Flight Log for 23290P Mission

Figure A-6.4. Flight Log for Mission 23290P

Figure A-6.5. Flight Log for Mission 23302P

ы.

		2			1 40662
ator: G. SORIA	NO 2 ALTM Model: Pageres	3 Mission Name Jauri 45 108	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 912-2
1 frons o	8 Co-Pilot: K. Chi	9 Route:			
11/10	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	Airport, Gty/Province):	•
5	14 Engine Off: 14 00	15 Total Engine Time: 24 18	16 Take off:	17 Landing:	18 Total Flight Time:
cation			21 Remarks		
	20.b Non Billable	20.c Others		completed BLK 24 (S.
ition Flight light Test Flight ntion Flight	 Aircraft Test Flight AAC Admin Flight Others: 	 UDAR System Mainter Aircraft Maintenance Phil-LiDAR Admin Activ 	ance vities		
d Solutions					
er Problem 1 Problem t Problem roblem					
ight Approved by	Acquisition Flight Cert	filed by	premuo	Lidar Operator	Aircraft Mechanic/ Technician
- C	Correction of the	FOLLEDO C.	allower Altonson	M Carp SORLAND	
Printed Name	Signature over Printed	Name Signature	over Pfinted Name	Signature over Printed Name	Signature over Printed Name

Figure A-6.6. Flight Log for Mission 23304P

Flight Log for 23304P Mission

ю.

1 LIDAR Operator: MGE 84	ALIGUAS 2A	ALTM Model: PEGASUS	3 Mission Name: 164K2 4 ABCI	254 4 Type: VFR	5 Aircraft Type:	CesnnaT206H	6 Aircraft Identification: 712-2
7 Pilot: C. ALFONS PT	8 Co-Pilot	: P. CHI	9 Route:				
10 Date: Mat 2, 2010	12	Airport of Departure (Airport, City/Province):	12 Airport of Arrival (Airport, City/Prov	ince):	
13 Engine On: ስሴ ዛና	14 Engine	: Off: 1120	15 Total Engine Time: リナス 5	16 Take off:	17 Landing:		18 Total Flight Time:
19 Weather			>				
20 Flight Classification				21 Remarks			
 80.a Billable Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	20.b Nor	n Billable Aircraft Test Flight AAC Admin Flight Others:	20.c Others O LIDAR System Mainten O Aircraft Maintenance O Phil-LiDAR Admin Activ	ance	pered yords	over Burly	A.B.C
2 Problems and Solutions	-						
 Weather Problem System Problem Aircraft Problem Pilot Problem 							
O Others:							
Acquisition Flight Approved t Looke Acquisition Associated Signature over Frinted Name Fend User Rederecentation	à da	Acquisition Flight Cert	hed by Pilot-In-C LLDD C.	Mutares III	Lidar Oper	ator Ad 60/45 over Printed Name	Aircraft Mechanic/ Technicia Signature over Printed Name
			Figure A-6.7. Flight Lo	og for Mission 233.	14P		

7.

Flight Log for 23314P Mission

DREAM Program's Data Acqui	sition Flight Log		AND		Flight Log No.: 293(8 P	
1 LIDAR Operator: G. Jop.	IAND 2 ALTM Model: PE6ASUS	3 Mission Name: Lyurage	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9122	-
7 Pilot: 5. Alfonse	8 Co-Pilot: 14. Chi	9 Route:				-
10 Date: May 3, 2ull	12 Airport of Departure	: (Airport, City/Province):	12 Airport of Arrival (Nac	Airport, City/Province):		-
13 Engine On: 06 2.2	14 Engine Off:	15 Total Engine Time: 4 ピ 2ら	16 Take off:	17 Landing:	18 Total Flight Time:	-
19 Weather	cloudy					
20 Flight Classification			21 Remarks			1
20.a Billable	20.b Non Billable	20.c Others		Surveyed wids	DIK 24 A B. C	
 A Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 LIDAR System Mainter Alrcraft Maintenance Phil-LiDAR Admin Acti 	nance vities			
22 Problems and Solutions						
 Weather Problem System Problem Aircraft Problem Pilot Problem Others: 						
Acquisition Flight Approved by	Acquisition Elight Car	tified by Pilot-in-C	Command D	Lidar Operator	Aircraft Mechanic/Fechnician	
Signature over Printed Name (End User Representative)	Signature over Printed (PAF Representation	SULEDS C.	A (Frived Name	Signature over Printed Name	Signaldre over Printed Name	
		Figure A-6.8. Fligh	t Log for Mission 23	3318P		

∞.

Annex 7. Flight Status Report

NAGA A (PEGASUS SENSOR WITHOUT CAMERA & DIGITIZER) April 20 - May 4, 2016

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
23276	202.44	1BLK24FG113A	MCE BALIGUAS & G SO-RIANO	22 APRIL 16	Surveyed 14 lines over BLK24FG. Varying alti-tude due to clouds. Laser shut off at cloudy part. Camera not triggering while laser is on.
23278	169.14	1BLK24CAF114A	G SO-RIANO	23 APRIL 16	Surveyed 2 lines over BLK24C, 4 lines over BLK24A and 6 lines over BLK24F. Laser shut off due to clouds.
23282	291.79	1BLK24ASFS115A	MCE BALIGUAS	24 APRIL 16	Completed BLK24 & F with voids due to clouds. Surveyed 11 lines at BLK24A and 8 lines at BLK24 F.
23290	202.07	1BLK24CSE117A	G SO-RIANO	26 APRIL 16	Surveyed 11 lines over BLK24C and 2 lines at BLK24E.
23302	283.94	1BLK24BES120A	MCE BALIGUAS	29 APRIL 16	Surveyed 7 lines over BLK24B, 2 lines at A and 12 lines at E. Surveyed at different altitudes due to clouds.
23304	108.44	1BLK24ESGS120B	G SO-RIANO	29 APRIL 16	Surveyed 4 lines each for BLKs24 G and E
23314	208.44	1BLK24ABCVOIDS123A	MCE BALIGUAS	02 MAY 16	Covered voids over BLKs 24 A, B and C at different altitudes because of high terrain and heavy buildup of clouds.
23318	120.98	1BLK24ACFVOIDS124A	G SO-RIANO	03 MAY 16	Covered voids over BLKs24 A, C,F. Cloudy most of the area.

Table A-7.1. Flight Status Report

SWATH BOUNDARIES PER MISSION FLIGHT

Flight No. : 23276P Area: BLK24 F & G Mission Name: 1BLK24FG113A Parameters: Altitude: 700 and 1000m PRF: 200 Total Area Surveyed: 202.44 sq km

Figure A-7.1. Swath for Flight No. 23276P

Flight No. : 23278 Area: BLK24 C, A & F Mission Name: 1BLK24CAF114A Parameters: Altitude: 600 and 1000m PRF: 150 & 200 Total Area Surveyed: 169.14 sq km

Figure A-7.2. Swath for Flight No. 23278

Flight No. : 23282P Area: BLk24 A and F Mission Name: 1BLK24ASFS115A Parameters: Altitude: 850 and 1000m PRF: 200 Total Area Surveyed: 291.79 sq km

Figure A-7.3. Swath for Flight No. 23282P

Flight No. : 23290P Area: BLK24 C and E Mission Name: 1BLK24CSE117A Parameters: Altitude: 850 and 1000m PRF: 200 Total Area Surveyed: 202.07 sq km

Figure A-7.4. Swath for Flight No. 23290P

Flight No. : 23302P Area: BLK24B, A and E Mission Name: 1BLK24BES120A Parameters: Altitude: 800 and 1000m PRF: 200 Total Area Surveyed: 283.94 sq km

Figure A-7.5. Swath for Flight No. 23302P

Flight No. : 23304P Area: BLK24 G and E Mission Name: 1BLK24ESGS120B Parameters: Altitude: 1000m PRF: 200 Total Area Surveyed: 108.44 sq km

Figure A-7.6. Swath for Flight No. 23304P

Flight No. : 23306P Area: BLK24 G and E Mission Name: 1BLK24ABCVOIDS123A Parameters: Altitude: 600-850m PRF: 150 Total Area Surveyed: 208.44 sq km

Figure A-7.7. Swath for Flight No. 23306P

Flight No: 23308P Area: BLK24 A, C and F Mission Name: 1BLK24ACFVOIDS124A Parameters: Altitude: 550 to 600 and 1000m PRF: 150 and 200 Total Area Surveyed: 120.98 sq km

Figure A-7.8. Swath for Flight No. 23308P

Flight Area Naga Blk 24F **Mission Name Inclusive Flights** 23278P, 23282P, 23304P, 23318P Range data size 89.24 GB POS data size 937 MB Base data size 378.4 MB Image NA Transfer date June 10, 2016 Solution Status Number of Satellites (>6) Yes PDOP (<3) Yes Baseline Length (<30km) No No Processing Mode (<=1) Smoothed Performance Metrics (in cm) RMSE for North Position (<4.0 cm) 1.537 RMSE for East Position (<4.0 cm) 1.445 RMSE for Down Position (<8.0 cm) 4.470 Boresight correction stdev (<0.001deg) 0.000181 IMU attitude correction stdev (<0.001deg) 0.000521 GPS position stdev (<0.01m) 0.0053 Minimum % overlap (>25) 68.26% Ave point cloud density per sq.m. (>2.0) 4.22 Elevation difference between strips (<0.20 m) Yes Number of 1km x 1km blocks 241 232.13 Maximum Height **Minimum Height** 42.35 Classification (# of points) Ground 213,197,454 Low vegetation 127,100,752 Medium vegetation 402,295,919 High vegetation 930,677,714 Building 13,353,068 Orthophoto No Engr. Jennifer B. Saguran, Engr. Irish Cortez, Engr. Processed by Kenneth Soli-dum, Engr. Regis Guhiting, Engr. Edgardo Gubatanga Jr., Engr. Elainne Lopez

Annex 8. Mission Summary Reports

Table A-8.1. Mission Summary Report for Mission Blk 24F

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metrics Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.5. Image of Data Overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Naga
Mission Name	Blk 24E
Inclusive Flights	23302P
Range data size	29.5 GB
POS data size	293 MB
Base data size	113 MB
Image	NA
Transfer date	June 10, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.534
RMSE for East Position (<4.0 cm)	1.666
RMSE for Down Position (<8.0 cm)	3.158
Boresight correction stdev (<0.001deg)	0.000175
IMU attitude correction stdev (<0.001deg)	0.000409
GPS position stdev (<0.01m)	0.0010
Minimum % overlap (>25)	43.09%
Ave point cloud density per sq.m. (>2.0)	3.47
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	198
Maximum Height	244.82 m
Minimum Height	52.62 m
Classification (# of points)	
Ground	104,143,487
Low vegetation	71,414,844
Medium vegetation	178,708,674
High vegetation	528,446,260
Building	7,464,973
0.44 a.a.b. a.b.	
Urtnophoto	
Processed by	Engr. Don Matthew Banatin, Aljon Rei Araneta, Maria Tamsyn Mala-banan

Table A-8.2. Mission Summary Report for Mission Blk 24E

Figure A-8.8. Solution Status Parameters

Figure A-8.9. Smoothed Performance Metrics Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of Data Overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Naga
Mission Name	Naga_Blk24E_Additional
Inclusive Flights	23290P
Range data size	19.8 GB
POS data size	244 MB
Base data size	84.5 MB
Image	n/a
Transfer date	June 6, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	2.3
Boresight correction stdev (<0.001deg)	0.000846
IMU attitude correction stdev (<0.001deg)	0.000405
GPS position stdev (<0.01m)	0.0014
Minimum % overlap (>25)	92.48%
Ave point cloud density per sq.m. (>2.0)	3.64
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	41
Maximum Height	138.57 m
Minimum Height	54.00 m
Classification (# of points)	
Ground	18,353,237
Low vegetation	32,167,927
Medium vegetation	22,113,692
High vegetation	27,290,109
Building	4,258,729
Orthophoto	No
Processed by	Engr. Don Matthew Banatin, Aljon Rei Araneta, Engr. Monalyne Rabino

Table A-8.3. Mission Summary Report for Mission Naga_Blk24E_Additional

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of Data Overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Naga
Mission Name	Blk 24A_additional
Inclusive Flights	23318P
Range data size	19.5 GB
POS data size	261 MB
Base data size	101 MB
Image	NA
Transfer date	June 10, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.453
RMSE for East Position (<4.0 cm)	2.882
RMSE for Down Position (<8.0 cm)	7.629
Boresight correction stdev (<0.001deg)	0.001288
IMU attitude correction stdev (<0.001deg)	0.005345
GPS position stdev (<0.01m)	0.0018
Minimum % overlap (>25)	25.74%
Ave point cloud density per sq.m. (>2.0)	3.78
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	68
Maximum Height	338.13 m
Minimum Height	51.81 m
Classification (# of points)	
Ground	17,406,728
Low vegetation	10,904,027
Medium vegetation	53,319,574
High vegetation	113,771,943
Building	953,655
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Jovelle Anjeanette Canlas, Engr. Melissa Fernandez

Table A-8.4. Mission Summary Report for Mission Blk 24A_additional

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of Data Overlap

Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

Flight Area	Naga			
Mission Name	Blk 24A			
Inclusive Flights	23278P, 23282P, 23302P, 23314P, 23318P			
Range data size	139.1 GB			
POS data size	1422 MB			
Base data size	488.4 MB			
Image	NA			
Transfer date	June 10, 2016			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	No			
Processing Mode (<=1)	No			
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	1.537			
RMSE for East Position (<4.0 cm)	1.445			
RMSE for Down Position (<8.0 cm)	4.470			
Boresight correction stdev (<0.001deg)	0.000270			
IMU attitude correction stdev (<0.001deg)	0.001293			
GPS position stdev (<0.01m)	0.0011			
Minimum % overlap (>25)	48.58%			
Ave point cloud density per sq.m. (>2.0)	3.87			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	313			
Maximum Height	489.43 m			
Minimum Height	53.46 m			
Classification (# of points)				
Ground	173,715,934			
Low vegetation	109,850,164			
Medium vegetation	353,108,413			
High vegetation	1,228,570,622			
Building	16,008,099			
Orthophoto	No			
Processed by	Engr. Jennifer Saguran, Engr. Kenneth Solidum, Engr. Don Matthew Banatin, Engr. Sheila Maye Santillan, Engr. Regis Guhiting, Engr. Jovelle Anjeannette Can-las, Engr. Vincent Louise Azucena			

Table A-8.5. Mission Summary Report for Mission Blk 24A

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metric Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of Data Overlap

Figure A-8.34. Density map of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

Flight Area	Naga		
Mission Name	Blk 24G		
Inclusive Flights	23276P, 23304P		
Range data size	31.74 GB		
POS data size	358 MB		
Base data size	240 MB		
Image	NA		
Transfer date	June 19, 2016		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	No		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)	1.027		
RMSE for North Position (<4.0 cm)	1.748		
RMSE for East Position (<4.0 cm)	3.339		
RMSE for Down Position (<8.0 cm)			
Boresight correction stdev (<0.001deg)	0.000124		
IMU attitude correction stdev (<0.001deg)	0.000333		
GPS position stdev (<0.01m)	0.0009		
Minimum % overlap (>25)	41.51%		
Ave point cloud density per sq.m. (>2.0)	2.27		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	322		
Maximum Height	265.70 m		
Minimum Height	44.14 m		
Classification (# of points)			
Ground	245,799,624		
Low vegetation	112,184,158		
Medium vegetation	166,355,964		
High vegetation	374,734,176		
Building	4,248,566		
Orthophoto	No		
Processed by	Engr. Don Matthew Banatin, Engr. Edgardo Gubatanga Jr., Engr. Monalyne Rabino		

Table A-8.6.	Mission	Summary	Report for	Mission	Blk 24G

Figure A-8.36. Solution Status

Figure A-8.37. Smoothed Performance Metric Parameters

Figure A-8.38. Best Estimated Trajectory

Figure A-8.39. Coverage of LiDAR data

Figure A-8.40. Image of Data Overlap

Figure A-8.41. Density map of merged LiDAR data

Figure A-8.42. Elevation difference between flight lines

Flight Area	Naga
Mission Name	Naga_Blk24G_Supplement
Inclusive Flights	23276P
Range data size	23.2 GB
POS data size	233 MB
Base data size	127 MB
Image	n/a
Transfer date	June 6, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	0.8
RMSE for Down Position (<8.0 cm)	1.7
Boresight correction stdev (<0.001deg)	0.000527
IMU attitude correction stdev (<0.001deg)	0.000260
GPS position stdev (<0.01m)	0.0016
Minimum % overlap (>25)	4.07%
Ave point cloud density per sq.m. (>2.0)	2.17
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	96
Maximum Height	307.74 m
Minimum Height	51.90 m
Classification (# of points)	
Ground	25,508,895
Low vegetation	16,732,584
Medium vegetation	34,992,302
High vegetation	84,104,668
Building	543,426
Orthophoto	No
Processed by	Engr. Don Matthew Banatin, Engr. Mark Joshua Salvacion, Jovy Narisma

Table A-8.7. Mission Summary Report for Mission Naga_Blk24G_Supplement

Figure A-8.43. Solution Status

Figure A-8.44. Smoothed Performance Metric Parameters

Figure A-8.45. Best Estimated Trajectory

Figure A-8.46. Coverage of LiDAR data

Figure A-8.47. Image of Data Overlap

Figure A-8.48. Density map of merged LiDAR data

Figure A-8.49. Elevation difference between flight lines

Flight Area	Naga
Mission Name	Naga_Blk24D
Inclusive Flights	23318P
Range data size	19.5 GB
POS data size	261 MB
Base data size	101 MB
Image	n/a
Transfer date	June 6, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.9
RMSE for Down Position (<8.0 cm)	7.6
Boresight correction stdev (<0.001deg)	0.000191
IMU attitude correction stdev (<0.001deg)	0.000411
GPS position stdev (<0.01m)	0.0008
Minimum % overlap (>25)	46.51%
Ave point cloud density per sq.m. (>2.0)	4.68
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	112
Maximum Height	253.36 m
Minimum Height	45.39 m
Classification (# of points)	
Ground	113,254,148
Low vegetation	75,223,098
Medium vegetation	112,610,876
High vegetation	83,013,207
Building	2,234,116
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Erica Erin Elazegui, Engr. Monalyne Rabino

Table A-8.8. Mission Summary Report for Mission Naga_Blk24D

Figure A-8.50. Solution Status

Figure A-8.51. Smoothed Performance Metric Parameters

Figure A-8.52. Best Estimated Trajectory

Figure A-8.53. Coverage of LiDAR data

Figure A-8.54. Image of Data Overlap

Figure A-8.55. Density map of merged LiDAR data

Figure A-8.56. Elevation difference between flight lines

Annex 9. Tambang Model Basin Parameters

0.43045 Ratio to 0.61468 1.00000 1.00000 0.32014 1.000000.96504 1.000001.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.46488 0.96600 1.00000 1.00000 0.66667 Peak Ratio to Peak Threshold Type **Recession Baseflow** Recession 1.00000 1.00000 1.00000 Constant 0.66643 0.67898 0.95976 1.00000 0.83080 1.00000 1.00000 1.00000 1.00000 1.00000 0.66051 0.65398 1.00000 0.64027 0.65863 0.68042 Discharge 2.6756 11.2800 1.9126 (M3/S) 7.2599 1.8025 0.9872 1.67860.0018 0.4412 1.7442 0.1502 2.5278 0.2029 5.6395 2.0475 1.6715 0.4529 2.0103 1.9141Initial Discharge Initial Type **Clark Unit Hydrograph Transforn** Coefficient 10.18100 9.57070 3.97860 7.40240 5.71030 4.78960 4.49550 5.70840 7.80920 7.07470 3.40960 3.19730 3.40000 8.52310 6.51440 5.70260 Storage 0.22431 2.32820 0.06637 (HR) Concentration Time of 14.391 16.993 0.143 0.126 0.165 0.146 0.146 0.149 0.166 0.888 6.011 0.167 0.017 0.147 0.017 0.017 0.155 0.017 0.165 (HR) Impervious (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SCS Curve Number Loss Curve Number 96.634 000.66 99.000 93.625 98.887 98.940 99.000 92.808 86.762 000.66 72.742 71.903 75.111 76.628 92.138 69.169 76.424 94.064 64.251 Abstraction 35.312 Initial 2.035 3.830 4.424 4.143 4.458 3.949 4.048 2.756 4.324 1.322 4.108 5.988 4.784 4.397 4.411 3.951 4.022 3.622 (mm) Number W310 W320 W330 W340 W200 W210 W220 W230 W240 W250 W260 W270 W280 W290 W300 W350 W360 W370 W380 Basin

Annex 10. Tambang Model Reach Parameters

Reach			Muskingum Cunge Chanı	nel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R30	Automatic Fixed Inter-val	2335.6	0.43297	1.00000	Trapezoid	35.961	1
R60	Automatic Fixed Inter-val	1910.5	0.21088	0.48358	Trapezoid	35.961	1
R70	Automatic Fixed Inter-val	38.3	0.05785	0.04033	Trapezoid	35.961	1
R100	Automatic Fixed Inter-val	2067.2	0.10355	0.25088	Trapezoid	35.961	1
R120	Automatic Fixed Inter-val	747.7	0.30433	0.47604	Trapezoid	35.961	1
R130	Automatic Fixed Inter-val	1044.0	0.00010	0.00010	Trapezoid	35.961	1
R150	Automatic Fixed Inter-val	3946.9	0.050017	0.0793342	Trapezoid	35.961	1
R180	Automatic Fixed Inter-val	6420.7	0.0015498	0.0023624	Trapezoid	35.961	1
R190	Automatic Fixed Inter-val	560.62	0.10352	0.24468	Trapezoid	35.961	1

Table A-10.1. Tambang Model Reach Parameters

Annex 11. Educational Institutions affected by flooding in Tambang Floodplain

Table A-11.1. Educational Institutions in Lagonoy, Camarines Sur affected by flooding in Tambang
Floodplain

Camarines Sur				
Lagonoy				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Brgy. Tamban goa day care center	Del Carmen			
Del carmen elementary school	Del Carmen			
Tamban goa elem. school	Del Carmen			

Table A-11.2. Educational Institutions in Tinambac, Camarines Sur affected by flooding in Tambang Floodplain

Camarines Sur				
Tinambac				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
CC and tamban daycare	Tambang			
Tamban central school	Tambang			
CC and tamban daycare	Tambang			

Annex 12. Health Institutions affected by flooding in Tambang Floodplain

	Camarines Sur			
Lagonoy				
Building Name	Barangay	F	Rainfall Scenar	io
		5-year	25-year	100-year
Brgy. tamban goa health center	Del Carmen			

Camarines Sur				
Tinambac				
Building Name	Barangay	F	ainfall Scena	rio
		5-year	25-year	100-year
Mother Teresa x-ray and ultrasound clinic	Tambang			
Rhu tamban birthing clinic	Tambang			
Socorro sevilla Cabral foundation lying in clinic	Tambang			Medium

Table A-12.2. Health Institutions in T	Finambac, Camarines Sur aff	fected by flooding in T	ambang Floodplain
--	-----------------------------	-------------------------	-------------------