HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Donsol River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Ateneo de Naga University

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and Ateneo de Naga University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E.C. Paringit and J.C. Plopenio (eds.) (2017), LiDAR Surveys and Flood Mapping of Donsol River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-204pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Ms. Joanaviva C. Plopenio Project Leader, Phil-LiDAR 1 Program Ateneo de Naga University Naga City, Philippines 4400 E-mail: inecar@gbox.adnu.edu.ph

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-971-9695-64-6

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES LIST OF FIGURES LIST OF ACRONYMS AND ABBREVIATIONS	v vii x
CHAPTER 1: OVERVIEW OF THE PROGRAM AND DONSOL RIVER	1
1.1 Background of the Phil-LiDAR 1 Program.	1
1.2 Overview of the Donsol River	1
	3
2.1 Flight Plain	3
2.2 Ground Base Stations	5
2.3 FIIght Missions	10
2.4 Sulvey Coverage	11
CHAPTER3:LIDARDATAPROCESSINGOFTHEDONSOLFLOODPLAIN	13
3.1 LiDAR Data Pre-Processing for Donsol Floodplain	13
3.2 Transmittal of Acquired LiDAR Data	14
3.3 Trajectory Computation	14
3.4 LiDAR Point Cloud Computation	16
3.5 LIDAR Data Quality Checking	1/
3.6 LiDAR Point Cloud Classification and Rasterization	21
3.7 LIDAR Image Processing and Orthophotograph Rectification	23
3.8 DEIVI Editing and Hydro-Correction	25
3.9 MOSAICKING OF BIOCKS	20
2.11 Integration of Pathymetric Data into the LiDAR Deivi	
2.12 Easture Extraction	29
3 12 1 Quality Checking of Digitized Features' Boundary	
3 12 2 Height Extraction	34
3.12.3 Feature Attribution	35
3.12.4 Final Quality Checking of Extracted Features	37
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE DONSOL RIVER BASIN	138
4.1 Summary of Activities	38
4.2 Control Survey	40
4.5 Dasellie Flocessing	45
A 5 Cross-section and Bridge As-Built survey and Water Level Marking	45
4.6 Validation Points Acquisition Survey	50
4.7 River Bathymetric Survey	50
	F 4
CHAPTER 5: FLOOD MODELING AND MAPPING	54
5.1 Data Used for Hydrologic Modelling	
5.1.1 Ayurometry dhu Kaling Curves	54 54
5.1.2 Flecipitation	54
5.2.5 Rating Curves and River Outflow	55
5.2 HDF Station	58
5.4 Cross-section Data	63
5.5 Flo 2D Model	64
5.6 Results of HMS Calibration	65
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	67
5.7.1 Hydrograph using the Rainfall Runoff Model	67
5.8 River Analysis (RAS) Model Simulation	68
5.9 Flow Depth and Flood Hazard	69
5.10 Inventory of Areas Exposed to Flooding	76
5.11 Flood Validation	98
REFERENCES	100
ANNEXES	101
Annex 1. Optech Technical Specification of the Gemini Sensor	101
Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey	102
Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	105
Annex 4. The LIDAR Survey Team Composition	106
Annex 5. Data Transfer Sheet for Donsol Floodplain	107
Annex 6. Flight logs for the flight missions	111

Annex 7. Flight status reports	122
Annex 8. Mission Summary Report	134
Annex 9. Donsol Model Basin Parameters	184
Annex 10. Donsol Model Reach Parameters	186
Annex 11. Donsol Field Validation Points	187
Annex 12. Educational Institutions Affected by flooding in Donsol Floodplain	192
Annex 13. Health Institutions affected by flooding in Donsol Floodplain	194

LIST OF TABLES

Table 1. Flight planning parameters for the Gemini LiDAR system	3
Table 2. Details of the recovered NAMRIA horizontal control point ABY-82 used as	
base station for the LiDAR acquisition	6
Table 3. Details of the recovered NAMRIA horizontal control point ABY-92 used as	
base station for the LiDAR Acquisition	7
Table 4. Details of the recovered NAMRIA horizontal control point ABY-9 used as	_
base station for the LiDAR acquisition	8
Table 5. Details of the established control point LPH-01 used as base station for the LiDAR acquisition	9
Table 6. Ground control points used during LIDAR data acquisition	9
Table 7. Flight missions for LiDAR data acquisition in Donsol Floodpiin	10
Table 8. Actual parameters used during LIDAR data acquisition	10
Table 9. List of municipalities and cities surveyed during Donsol Floodpian LiDAR survey	16
Table 10. Self-Calibration Results values for Donsol floodplain	17
Table 12. Donsol classification results in TerraScan	1/ 21
Table 13 LiDAR blocks with its corresponding areas	21
Table 14. Shift values of each LiDAR block of Donsol Floodulain	27
Table 15. Calibration Statistical Measures	31
Table 16. Validation Statistical Measures	32
Table 17. Quality Checking Ratings for Donsol Building Features	35
Table 18. Building features extracted for Donsol floodplain	36
Table 19. Total length of extracted roads for Donsol floodplain	36
Table 20. Number of extracted water bodies for Donsol floodplain	36
Table 21. References used and control points established in the Donsol River Survey	41
Table 22. The Baseline processing report for the Donsol River GNSS static observation survey	43
Table 23. Constraints applied to the adjustment of the control points	44
Table 24. Adjusted grid coordinates for the control points used	
in the Donsol River flood plain survey	44
Table 25. Adjusted geodetic coordinates for control points used	
in the Donsol River Flood Plain validation	45
Table 26. The reference and control points utilized in the Donsol River Static Survey,	
with their corresponding locations (Source: NAMRIA, UP-TCAGP)	45
Table 27. RIDF values for the Donsol Rain Gauge, as computed by PAGASA	56
Table 28. Range of calibrated values for the Donsol River Basin	65
Table 29. Efficiency Test of the Donsol HMS Model	66
Table 30. Peak values of the Donsol HEC-HMS Model outflow	
using the Tacloban RIDF 24-hour values	67
Table 31. Municipalities affected in Donsol floodplain	69
Table 32. Affected Areas in Daraga, Albay during the 5-Year Rainfall Return Period	77
Table 33. Affected areas in Jovellar, Albay during the 5-Year Rainfall Return Period	/8
Table 34. Affected areas in Donsol, Sorsogon during the 5-Year Rainfall Return Period	80
Table 35. Affected areas in Donsol, Sorsogon during the 5-year Rainfall Return Period	80
Table 36. Affected Areas in Pilar, Sorsogon during the 5-Year Rainfall Return Period	82
Table 37. Affected Areas in Pilar, Sorsogon during the 5-Year Rainfall Return Period	82
Table 38. Affected Areas in Daraga, Albay during the 25-Year Rainfall Return Period	84 05
Table 39. Affected areas in Jovellar, Albay during the 25-Year Rainfall Return Period	85
Table 40. Affected areas in Donsol, Sorsogon during the 25-fed Rainfall Return Period.	00
Table 41. Affected Areas in Dollsol, Solsogon during the 25-lear Kalillan Kelurin Period.	00
Table 42. Affected Areas in Fild, Sofsogon during the 25-fed Kalillan Kelurn Period.	00
Table 43. Affected Areas in Pilar, 50150g011 during the 20-16ar Naminan Neturn Period	
Table 45. Affected areas in Joyellar, Albay during the 100-lear Rainfall Return Period	Q1
Table 46 Affected areas in Donsol Sorsogon during the 100-Year Rainfall Return Period	95
Table 47. Affected areas in Donsol, Sorsogon during the 100-Year Rainfall Return Period	93
Table 48. Affected Areas in Pilar Sorsogon during the 100-Year Rainfall Return Period	95
Table 49. Affected Areas in Pilar. Sorsogon during the 100-Year Rainfall Return Period.	95
Table 50. Area covered by each warning level with respect to the rainfall scenario	97
Table 51. Actual flood vs simulated flood depth at differnent levels in the Donsol River Basin	99
Table 52. Summary of the Accuracy Assessment in the Donsol River Basin Survey	99

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LIST OF FIGURES

Figure 1. Map of the Donsol River Basin (in brown)	2
Figure 2. Flight Plan and base stations used for the Donsol Floodplain survey	4
Figure 3. GPS set-up over ABY-82 located at about 12 meters from the right corne	
of the Rizal monument in front of Jovellar Catholic Church (a) and NAMRIA	
reference point AB-82 (b) as recovered by the field team	5
Figure 4. GPS set-up over ABY-92 located beside the baseline of the basketball court,	
about 19 meters from barangay hall in Brgy. Allang, Ligao City (a) and NAMRIA	
reference point ABY-92 (b) as recovered by the field team	6
Figure 5. GPS set-up over ABY-9 at Legaspi Airport Compound	_
(a) and NAMRIA reference point ABY-9 (b) as recovered by the field team	/
Figure 6. GPS set-up over LPH-01 as established at the roomop a building	0
at La Plazza Hotel and Convention Center located at Tanao Road, Legazpi, Albay	ð 1 2
Figure 7. Actual LIDAR Survey coverage for Donson Floouplain	12 12
Figure 9. Smoothed Performance Metric Parameters of a Donsol Flight 3815G	13
Figure 10 Solution Status Parameters of Donsol Flight 3815G	14
Figure 11 Best Estimated Trajectory for Donsol Floodnlain	15
Figure 12. Boundary of the processed LiDAR data over Donsol Floodplain	
Figure 13. Image of data overlap for Donsol Floodplain	
Figure 14. Pulse Density map of merged LiDAR data for Donsol Floodplain	19
Figure 15. Elevation difference map between flight lines for Donsol Floodplain	20
Figure 16. Quality checking for a Donsol flight 3815G using the Profile Tool of QT Modeler	21
Figure 17. Tiles for Donsol Floodplain (a) and classification results (b) in TerraScan	22
Figure 18. Point cloud before (a) and after (b) classification	22
Figure 19. The production of last return DSM (a) and DTM (b), first return DSM	23
(c) and secondary DTM (d) in some portion of Donsol Floodplain	
Figure 20. Donsol Floodplain with available orthophotographs	24
Figure 21. Sample orthophotograph files for Donsol Floodplain	24
Figure 22. Portions in the DTM of Donsol Floodplain – a mountain ridge and road before (a)	26
Figure 22 Map of Processed LiDAP Data for Doncol Elondalain	20 مر
Figure 25. Map of Processed LIDAR Data for Donsol Produpidin	20 20
Figure 25. Correlation plot between calibration survey points and LiDAR data	
Figure 26. Correlation plot between validation survey points and LiDAR data	32
Figure 27. Map of Donsol Floodplain with bathymetric survey points shown in blue	
Figure 28. QC blocks for Donsol building features	34
Figure 29. Extracted features for Donsol Floodplain	37
Figure 30. Survey extent for Donsol River Basin	39
Figure 31. GNSS Network of Donsol River field survey	40
Figure 32. Trimble [®] SPS 852 at AL-298, located at Sagpon Bridge,	
in Brgy. Sagpon, Legazpi City, Albay	41
Figure 33. Trimble [®] SPS 882 at SRG-46 in Pangpang Elementary School, Donsol, Sorsogon	
Figure 34. Trimble [®] SPS 985 at UP-DON at the approach of Dancalan Bridge in Donsol, Sorsogon	43
Figure 35. Dancalan Bridge facing upstream	46
Figure 36. Dancalan bridge cross-section location map	40
Figure 37. Dalicalari biluge cross-section ulagram	/18
Figure 30. Water level marking on Dancalan Bridge	40 ۱۵
Figure 40 Validation Points Acquisition survey setun	
Figure 41. Validation Points Acquisition survey secuping in Donsol River Basin	
Figure 42. Bathymetric Survey of Donsol River	
Figure 43. Riverbed Profile of Donsol River	53
Figure 44. Location map of the Donsol HEC-HMS model used for calibration	54
Figure 45. The cross-section plot of Ilog Bridge	55
Figure 46. The rating curve of Ilog Bridge in Pilar, Sorsogon	55
Figure 47. Rainfall and outflow data of the Donsol River Basin, which was used for modeling	56
Figure 48. The location of the Legazpi City RIDF station relative to the Donsol River Basin	57
Figure 49. The synthetic storm generated for a 24-hour period rainfall for various return periods	57
Figure 50. Soil map of Donsol River Basin	
Figure 51. Land cover map of Donsol River Basin	59
Figure 52. Stope map of Donsol River Basin	60
rigure 55. Stream deimeation map of Donsol River Basin	

Figure 54 The Donsol River Basin model generated in HEC-HMS	62
Figure 55. River cross-section of Donsol River generated through Arcmap HEC GeoRAS tool	63
Figure 56. Screenshot of subcatchment with the computational area to be modeled	
in FIQ-2D Grid Developer System Pro (FIQ-2D GDS Pro)	64
Figure 57. Outflow hydrograph of Donsol River Basin produced by the HEC-HMS model	
compared with observed outflow	65
Figure 58. The Outflow hydrograph at the Donsol Station, generated using	.00
the simulated rain events for 24-hour period for Tacloban station	67
Figure 59 Sample output map of the Donsol RAS Model	68
Figure 60, 100-year flood hazard map for the Donsol flood plain overlaid on Google Farth imagery	
Figure 61, 100-year flow denth man for the Donsol flood plain overlaid on Google Earth imagery	71
Figure 62, 25-year flood hazard map for the Donsol flood plain overlaid on Google Earth imagery	72
Figure 63, 25-year flow depth map for the Donsol flood plain overlaid on Google Farth imagery	73
Figure 64, 25-year flood hazard map for the Donsol flood plain overlaid on Google Earth imagery	74
Figure 65, 25-year flood hazard map for the Donsol flood plain overlaid on Google Earth imagery	75
Figure 66. Affected areas in Daraga, Albay during the 5-Year Rainfall Return Period	76
Figure 67. Affected areas in Jovellar. Albay during the 5-Year Rainfall Return Period	78
Figure 68. Affected areas in Donsol, Sorsogon during the 5-Year Rainfall Return Period	79
Figure 69. Affected areas in Donsol, Sorsogon during the 5-Year Rainfall Return Period	79
Figure 70. Affected areas in Pilar, Sorsogon during the 5-Year Rainfall Return Period	81
Figure 71. Affected areas in Pilar, Sorsogon during the 5-Year Rainfall Return Period	81
Figure 72. Affected areas in Daraga, Albay during the 25-Year Rainfall Return Period	83
Figure 73. Affected areas in Jovellar, Albay during the 25-Year Rainfall Return Period	85
Figure 74. Affected areas in Donsol, Sorsogon during the 25-Year Rainfall Return Period	87
Figure 75. Affected areas in Donsol, Sorsogon during the 25-Year Rainfall Return Period	87
Figure 76. Affected areas in Pilar, Sorsogon during the 25-Year Rainfall Return Period	89
Figure 77. Affected areas in Pilar, Sorsogon during the 25-Year Rainfall Return Period	89
Figure 78. Affected areas in Daraga, Albay during the 100-Year Rainfall Return Period	91
Figure 79. Affected areas in Jovellar, Albay during the 100-Year Rainfall Return Period	92
Figure 80. Affected areas in Donsol, Sorsogon during the 100-Year Rainfall Return Period	94
Figure 81. Affected areas in Donsol, Sorsogon during the 100-Year Rainfall Return Period	94
Figure 82. Affected areas in Pilar, Sorsogon during the 100-Year Rainfall Return Period	96
Figure 83. Affected areas in Pilar, Sorsogon during the 100-Year Rainfall Return Period	96
Figure 84. The validation points for the 5-Year flood depth map of the Donsol Floodplain	98
Figure 85. Flood map depth vs. Actual flood depth	99

LiDAR Surveys and Flood Mapping of Donsol River

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ADNU	Ateneo de Naga University		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DDEANA	Disease Disk and European Assessment from		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management		
DREAM DRRM DSM	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model		
DREAM DRRM DSM DTM	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model		
DREAM DRRM DSM DTM DVBC	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component		
DREAM DRRM DSM DTM DVBC FMC	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component		
DREAM DRRM DSM DTM DVBC FMC FOV	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Field of View		
DREAM DRRM DSM DTM DVBC FMC FOV GiA	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Field of View Grants-in-Aid		
DREAM DRRM DSM DTM DVBC FMC FOV GiA GCP	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Field of View Grants-in-Aid Ground Control Point		
DREAM DRRM DSM DTM DVBC FMC FOV GiA GCP GNSS	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Flood Modeling Component Field of View Grants-in-Aid Ground Control Point Global Navigation Satellite System		
DREAM DRRM DSM DTM DVBC FMC FOV GiA GCP GNSS GPS	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Flood Modeling Component Field of View Grants-in-Aid Ground Control Point Global Navigation Satellite System Global Positioning System		
DREAM DRRM DSM DTM DVBC FMC FOV GiA GCP GNSS GPS HEC-HMS	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Flood Modeling Component Field of View Grants-in-Aid Ground Control Point Global Navigation Satellite System Global Positioning System Hydrologic Engineering Center - Hydrologic Modeling System		
DREAM DRRM DSM DTM DVBC FMC FOV GiA GCP GNSS GPS HEC-HMS HEC-RAS	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Flood Modeling Component Field of View Grants-in-Aid Ground Control Point Global Navigation Satellite System Global Positioning System Hydrologic Engineering Center - Hydrologic Modeling System		
DREAM DRRM DSM DTM DVBC FMC FOV GiA GCP GNSS GPS HEC-HMS HEC-RAS HC	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Flood Modeling Component Field of View Grants-in-Aid Ground Control Point Global Navigation Satellite System Global Positioning System Hydrologic Engineering Center - Hydrologic Modeling System Hydrologic Engineering Center - River Analysis System		
DREAM DRRM DSM DTM DVBC FMC FOV GiA GCP GNSS GPS HEC-HMS HEC-RAS HEC-RAS	Disaster Risk and Exposure Assessment for Mitigation [Program] Disaster Risk Reduction and Management Digital Surface Model Digital Terrain Model Data Validation and Bathymetry Component Flood Modeling Component Flood Modeling Component Field of View Grants-in-Aid Ground Control Point Global Navigation Satellite System Global Positioning System Hydrologic Engineering Center - Hydrologic Modeling System Hydrologic Engineering Center - River Analysis System High Chord Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
TBC	Thermal Barrier Coatings			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND DONSOL RIVER

Enrico C. Paringit, Dr. Eng., Ms. Joanaviva C. Plopenio, and Engr. Ferdinand Bien

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The method described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Ateneo de Naga University (AdNU). AdNU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 24 river basins in the Bicol Region. The university is located in Naga City in the province of Camarines Sur.

1.2 Overview of the Donsol River Basin

The Donsol River Basin is emptied by the markedly smaller Ogod River. It also empties out to the northern part of Ticao Pass. The Department of Environment and Natural Resources-River Basin Control Office identified the basin to have an approximately 396 km2 drainage area with an estimated annual runoff of 536 million cubic meters (MCM). The same hilly and rolling topography is found in the area. The municipalities with jurisdiction over the river basin include three (3) first class municipalities; the Municipalities of Pilar with a population of 74,564 based on the last 2015 census, Daraga (126,595 population) and Camalig (66,904 population); one (1) third class municipality, Donsol (47,563 population) and one (1) fourth class municipality, Jovellar (17, 308 population).

This river basin also experiences Type III climate based on the modified Corona classification, which is the same with the Ogod River Basin climate. The land cover in the river basin is mostly brushland with a few areas cultivated by small scale farmers. Very sparse mangrove thrives near the mouth of the river where fishponds are also established. The economic sources of the area are mostly from agricultural products such as coconuts, rice, and rootcrops. The area is also benefiting from tourism anchored on whaleshark interaction. coastline and swamp areas of the said barangays.

The Donsol River Basin's main stem, Donsol River, is part of the 24 river systems in Bicol Region. This major stream has a length of 54.5 km. It is a northwest-southeast oriented body of marine water that is bounded on the northeast by the Bicol Peninsula and on the southwest by the islands of Burias, Ticao, and Masbate. Its head water extends northwards into the province of Albay while its coastal waters is considered to be part of the Burias Pass. There is a total of 12,332 people residing within the immediate vicinity of the river which are distributed among thirteen (13) barangays in Municipality of Donsol according to the 2015 National Census conducted by National Statistics Office. Donsol is considered to be one of the most important nature-based tourist spots in the Province of Sorsogon, which is famous for its firefly sanctuary and luminous plankton river cruise. Donsol River is listed as one of the flood susceptible areas during the Typhoon Ruby (December 2014). The area is not only prone to flooding but also to landslide as reported by the Mines and Geosciences Bureau.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 1. Map of the Donsol River Basin (in brown)

CHAPTER 2: LIDAR DATA ACQUISITION OF THE DONSOL FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, For. Ma. Verlina Tonga, Jasmine Alviar

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Donsol floodplain in Sorsogon. Each flight mission has an average of fourteen (14) lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR System is found in Table 1. Figure 1 shows the flight plan for Donsol Floodplain.

Block Name	Flying Height	Overlap	Field of View	Pulse Repetition Frequency (PRF)	Scan Frequency	Average Speed	Average Turn Time (Minutes)
	(m AGL)	(%)	(θ)	(kHz)	(Hz)	(kts)	
BLK19A	1000	30	40	100	50	130	5
BLK19E	1000	30	40	100	50	130	5
BLK19G	1000	30	40	100	50	130	5
	1000	30	40	100	50	130	5
BLK19F	650	30	40	125	50	130	5
	1000	30	40	100	50	130	5
BLK19I	650	30	40	125	50	130	5
BLK19J	650	30	40	125	50	130	5
	1000	30	40	100	50	130	5
BLKI9K	900	30	40	125	50	130	5
BLK19L	1000	30	40	100	50	130	5
BLK19M	1000	30	40	100	50	130	5
BLK19Q	1000	30	40	100	50	130	5

Table 1. Flight planning parameters for the Gemini LiDAR system.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 2. Flight Plan and base stations used for the Donsol Floodplain survey.

2.2 Ground Base Stations

The Project Team was able to recover two (2) NAMRIA reference points of second (2nd) order accuracy, ABY-92 and ABY-08, and one (1) of third (3rd) order accuracy, ABY-9. The Project Team established one (1) ground control point, LPH-1. The certification for the NAMRIA reference points are found in Annex 2 and the Baseline Processing Report for the established LPH-01 is in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (March 29 – April 28, 2014 and February 25 – March 31, 2016). Base stations were observed using Dual Frequency GPS receivers: TRIMBLE SPS 882, SPS 985 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Donsol Floodplain are shown in Figure 3.

Figures 4 to 6 show the recovered NAMRIA reference points within the area. In addition, Tables 2 to 5 show the details about the following NAMRIA control stations and established points, while table 6 shows the list of all ground control points occupied during the acquisition together with corresponding dates of utilization.

(a)

Figure 3. GPS set-up over ABY-82 located at about 12 meters from the right corner of the Rizal monument in front of Jovellar Catholic Church (a) and NAMRIA reference point SMR-53 (b) as recovered by the field team

Table 2. Details of the recovered NAMRIA horizontal control point ABY-82 used as base station for the LiDAR acquisition.

Station Name	ABY-82		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of	Latitude	13° 4' 16.27314" North	
1992 Datum (PRS 92)	Longitude	123° 35' 53.17428" East	
	Ellipsoidal Height	39.77600 meters	
Grid Coordinates, Philippine Transverse Mercator	Northing	1444995.02 meters	
Zone 5 (PTM Zone 5 PRS 92)	Easting	564842.57 meters	
Geographic Coordinates, World Geodetic System	Latitude	13° 4' 11.43271" North	
1984 Datum (WGS 84)	Longitude	123° 35' 58.18268" East	
	Ellipsoidal Height	93.89000 meters	
Grid Coordinates, Universal Transverse Mercator	Easting	564, 842.57 meters	
Zone 51 North (UTM 51N PRS 92)	Northing	1,444,995.02 meters	

Figure 4. GPS set-up over ABY-92 located beside the baseline of the basketball court, about 19 meters from barangay hall in Brgy. Allang, Ligao City (a) and NAMRIA reference point ABY-92 (b) as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point ABY-92 used as base station for the LiDAR Acquisition.

Station Name	ABY-92		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of	Latitude	13° 11' 56.27238" North	
1992 Datum (PRS 92)	Longitude	123° 27' 47.60156" East	
	Ellipsoidal Height	127.309000 meters	
Grid Coordinates, Philippine Transverse Mercator	Easting	550210.89 meters	
Zone 4 (PTM Zone 4 PRS 92)	Northing	1459605.458 meters	
Geographic Coordinates, World Geodetic System	Latitude	13° 11' 51.38974" North	
1984 Datum (WGS 84)	Longitude	123° 27' 52.59990" East	
	Ellipsoidal Height	180.74900 meters	
Grid Coordinates, Universal Transverse Mercator	Easting	550193.31 meters	
Zone 51 North (UTM 51N PRS 92)	Northing	1459094.57 meters	

Figure 5. GPS set-up over ABY-9 at Legaspi Airport Compound (a) and NAMRIA reference point ABY-9 (b) as recovered by the field team

Table 4. Details of the recovered NAMRIA horizontal control point ABY-9 used as base station for the LiDAR acquisition.

Station Name	ABY-9		
Order of Accuracy	33d		
Relative Error (horizontal positioning)	1:20,000		
Geographic Coordinates, Philippine Reference of	Latitude	13° 9' 11.38733" North	
1992 Datum (PRS 92)	Longitude	123° 43' 45.95874" East	
	Ellipsoidal Height	14.54010 meters	
Grid Coordinates, Philippine Transverse Mercator	Easting	579082.538 meters	
Zone 4 (PTM Zone 4 PRS 92)	Northing	1454607.115 meters	
Geographic Coordinates, World Geodetic System	Latitude	13° 9′ 6.53800″ North	
1984 Datum (WGS 84)	Longitude	123° 43' 50.95900" East	
	Ellipsoidal Height	68.754 meters	
Grid Coordinates, Universal Transverse Mercator	Easting	579054.86 meters	
Zone 51 North (UTM 51N PRS 92)	Northing	1454097.98 meters	

Figure 6. GPS set-up over LPH-01 as established at the rooftop a building at La Piazza Hotel and Convention Center located at Tahao Road, Legazpi, Albay

Station Name	LPH-01		
Order of Accuracy	3rd		
Relative Error (horizontal positioning)	1 : 20,000		
Geographic Coordinates, Philippine Reference of	Latitude	13° 09' 13.3540" North	
1992 Datum (PRS 92)	Longitude	123° 44' 27.8894" East	
	Ellipsoidal Height	11.01 meters	
Grid Coordinates, Philippine Transverse Mercator	Easting	580345.19416 meters	
Zone 4 (PTM Zone 4 PRS 92)	Northing	1454671.24009 meters	
Geographic Coordinates, World Geodetic System	Latitude	13° 09' 08.50554" North	
1984 Datum (WGS 84)	Longitude	123° 44' 32.88949" East	
	Ellipsoidal Height	65.236 meters	
Grid Coordinates, Universal Transverse Mercator	Easting	580467.016 meters	
Zone 51 North (UTM 51N PRS 92)	Northing	1454103.670 meters	

Table 5. Details of the established control point LPH-01 used as base station for the LiDAR acquisition

Table 6. Ground control points used during LiDAR data acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points
29-Mar-14	7156GC	2BLK19E088A	ABY-09, LPH-01
30-Mar-14	7158GC	2BLK19ES089A & 2BLK19G089A	ABY-09, LPH-01
31-Mar-14	7167GC	2BLK19K093A & 2BLK10IS093A	ABY-09, LPH-01
31-Mar-14	7168GC	2BLK19L094A	ABY-09, LPH-01
03-Apr-14	7171GC	2BLK19M095A	ABY-92, LPH-01
04-Apr-14	7216GC	2BLK19AS118A & VOIDS (BLK19Q)	ABY-09, LPH-01
05-Apr-14	3813G	2BLK19IS056B	ABY-82
28-Apr-14	3815G	2BLK19KLS057A	ABY-82
06-Feb-16	3757G	2BLK34K037A	SMR-58 and SM-309
25-Feb-16	3825G	2BLK19JFS059B	ABY-82
26-Feb-16	7160GC	2BLK19I90A	ABY-09, LPH-01
28-Feb-16	7161GC	2BLK19IS090B	ABY-09, LPH-01

2.3 Flight Missions

Eleven (11) missions were conducted to complete the LiDAR Data acquisition in Donsol Floodplain, for a total of thirty five hours and thirty two minutes (35+32) of flying time for RP-C9322, RP-C9022. All missions were acquired using the Gemini LiDAR System.

Table 7 shows the actual coverage and the corresponding flying hours per mission, while Table 8 presents the actual parameters used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Area Are Surveyed Surve within Outs Floodplain Floodu	Area Surveyed Outside Floodplain	Area Flying urveyed Outside oodplain	Hours
				(km2)	(km2)	Hr	Min
29-Mar-14	7156GC	106.73	40.41	-	40.41	2	11
30-Mar-14	7158GC	241.81	282.19	5.71	276.47	4	29
31-Mar-14	7160GC	171.14	19.42	2.64	16.78	1	35
31-Mar-14	7161GC	171.14	138.71	21.71	117	2	29
3-Apr-14	7167GC	179.98	247.35	50.89	196.46	3	53
4-Apr-14	7168GC	171.15	229.12	34.78	194.34	3	29
5-Apr-14	7171GC	75.7	119.2	13.56	105.64	2	59
28-Apr-14	7216GC	122.54	135.24	-	135.24	3	11
25-Feb-16	3813G	107.1	121.93	14.97	106.96	4	17
26-Feb-16	3815G	100.75	118.22	12.51	105.71	3	35
28-Feb-16	3825G	100.44	91.04	1.87	89.17	3	11
TO	TAL	1548.47	1542.83	158.65	1384.18	35	32

Table 7. Flight missions for LiDAR data acquisition in Donsol Floodplain

Table 8. Actual parameters used during LiDAR data acquisition

Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Area Surveyed within Eloodplain	Area Flying Surveyed Outside Floodplain	Hours	
				(km2)	(km2)	Hr	Min
7156GC	1100	35	40	100	50	130	5
7158GC	1100	35	40	100	50	130	5
7160GC	1000	45	40	100	50	130	5
7161GC	1000	45	40	100	50	130	5
7167GC	1000	40	40	100	50	130	5
7168GC	1100	40	40	100	50	130	5
7171GC	900	20	40	100	50	130	5
7216GC	1300	50	34 and 40	100	50	130	5
3813G	650	40	50	125	40	130	5
3815G	900	40	50	125	40	130	5
3825G	650	40	50	125	40	130	5
TO	TAL	1548.47	1542.83	158.65	1384.18	35	32

2.4 Survey Coverage

The Donsol Floodplain is located in the Provinces of Albay and Sorsogon, with majority of the floodplain situated in Albay. The Municipalities of Donsol and Pilar are completely covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 9. The actual coverage of the LiDAR acquisition for Donsol Floodplain is presented in Figure 7.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Albay	Jovellar	82.35	74.37	90%
	Camalig	136.54	94.69	69%
	Daraga	135.66	86.6	64%
	Legazpi City	153.18	88.6	58%
	Guinobatan	174.07	51.84	30%
	Malilipot	45.42	7.37	16%
	Malinao	106.78	15.33	14%
	Tiwi	124.4	16.4	13%
	Pio Duran	133.24	15.05	11%
	Tabaco City	112.24	8.59	8%
	Bacacay	115.2	5.27	5%
	Ligao City	258.51	9.74	4%
	Santo Domingo	60.83	2	3%
	Oas	239.58	2.8	1%
Sorsogon	Donsol	153	153	100%
	Pilar	196.62	196.28	100%
	Castilla	197.27	155.22	79%

Table 9. List of municipalities and cities surveyed during Donsol Floodplain LiDAR survey

Figure 7. Actual LiDAR survey coverage for Donsol Floodplain

CHAPTER 3: LIDAR DATA PROCESSING OF THE DONSOL FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Engr. Gladys Mae Apat, Engr. Ma. Ailyn L. Olanda, Aljon Rie V. Araneta, Engr. Christy T. Lubiano, Jerry P. Ballori, Jaylyn L. Paterno, Engr. Ferdinand E. Bien, Lowie Vincent S. Bisana, Carlota M. Davocol, Arnulfo G.Enciso, Jr., Frederick D. Olaño, Adrian T. Pajarillo, Kevin Kristian L. Peñaserada, Richmund P. Saldo, Jayrik T. San Buenaventura, and Jess Andre S. Soller

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 LiDAR Data Processing for Donsol Floodplain

Figure 8. Schematic diagram for Data Pre-processing Component.

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subjected to quality check to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 8.

3.2 Transmittal of Acquired LiDAR Data

The Data Transfer Sheets for all the LiDAR missions for Donsol Floodplain can be found in Annex 5. Data Transfer Sheets. Missions flown during the first survey conducted on March 2014 and second survey conducted on February 2016 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini System and Gemini-CASI System, respectively over Donsol and Pilar, Sorsogon. The Data Acquisition Component (DAC) transferred a total of 194.24 Gigabytes of Range data, 1.92 Gigabytes of POS data, 85.48 Megabytes of GPS base station data, and 426.27 Gigabytes of raw image data to the data server on May 5, 2014 for the first survey, and on March 21, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Donsol was fully transferred on March 21, 2016 as indicated on the Data Transfer Sheets for Donsol Floodplain

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 3815G one of the Donsol flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 23, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 9. Smoothed Performance Metrics of a Donsol Flight 3815G

The time of flight was from 437,000 seconds to 447,500 seconds, which corresponds to morning of February 23, 2014. The initial spike seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and when the POS system started computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft made a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 1.40 centimeters, the East position RMSE peaks at 1.71 centimeters, and the Down position RMSE peaks at 3.34 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 10. Solution Status Parameters of Donsol Flight 3815G

The Solution Status parameters of flight 3815G, one of the Donsol flights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did go down to 6. Most of the time, the number of satellites tracked was between 7 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Donsol flights is shown in Figure 11.

Figure 11. Best estimated trajectory for Donsol Floodplain

3.4 LiDAR Point Cloud Computation

The LAS data produced contain 135 flight lines, with each flight line containing one channel, since the Gemini and Gemini-CASI systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Donsol Floodplain are given in in Table 10.

	Value	
Boresight Correction stdev (<0.001degrees)		0.000626
IMU Attitude Correction Roll and	0.000906	
GPS Position Z-correction stdev	(<0.01meters)	0.0098

Table 10. Self-Calibration Results values for Donsol	flights.
--	----------

The optimum accuracy is obtained for all Donsol flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 12. Boundary of the processed LiDAR data on top of a SAR Elevation Data over Donsol Floodplain.

The total area covered by the Donsol missions is 1,586.35 sq.km that is comprised of eleven (11) flight acquisitions grouped and merged into ten (10) blocks as shown in Table 11.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Albay_Sorgoson_Blk19I	7160GC	407.11
	7161GC	
Albay_Sorgoson_Blk19EG	7156GC	301.83
	7158GC	
	7216GC	
Albay_Sorgoson_Blk19M	7171GC	114.68
Albay_Sorgoson_Blk19M_additional	7171GC	48.22
Albay_Sorgoson_Blk19L	7168GC	192.24
Albay_Sorgoson_Blk19K	7167GC	238.9
Albay_Sorsogon_reflights_Blk19Q	3825G	62.34
Albay_Sorsogon_reflights_Blk19L	3815G	71.19
Albay_Sorsogon_reflights_Blk19I	3813G	74.76
Albay_Sorsogon_reflights_Blk19I_ additional	3813G	75.08
TOTAL		1,586.35 sq. km

Table 11. List of LiDAR blocks for Donsol Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Gemini and Gemini-CASI systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 13. Image of data overlap for Donsol Floodplain

The overlap statistics per block for the Donsol floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 13.70% and 47.44% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 14. It was determined that all LiDAR data for Donsol floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.02 points per square meter.

Figure 14. Pulse Density map of merged LiDAR data for Donsol Floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas not be investigated further using Quick Terrain Modeler software.

Figure 15. Elevation difference map between flight lines for Donsol Floodplain

A screen capture of the processed LAS data from a Donsol Flight 3815G loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 16. Quality checking for a Donsol flight 3815G using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	667,007,734	
Low Vegetation	620,432,220	
Medium Vegetation	1,360,165,052	
High Vegetation	2,544,475,538	
Building	26,944,971	

 Table 12. Donsol classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Donsol floodplain is shown in Figure 17. A total of 2,157 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 12. The point cloud has a maximum and minimum height of 447.71 meters and 52.66 meters respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 17. Tiles for Donsol Floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 18. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Donsol Floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 412 1km by 1km tiles area covered by Donsol Floodplain is shown in Figure 20. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Donsol Floodplain has a total of 194.72 sq.km orthophotogaph coverage comprised of 2,167 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 21.

Figure 20. Donsol Floodplain with available orthophotographs

Figure 21. Sample orthophotograph tiles for Donsol Floodplain.
3.8 DEM Editing and Hydro-Correction

Ten (10) mission blocks were processed for Donsol Floodplain. These blocks are composed of Albay_ Sorsogon and Albay_Sorsogon_reflights blocks with a total area of 1,586.35 square kilometers. Table 13 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Albay_Sorgoson_Blk19I	407.11
Albay_Sorgoson_Blk19EG	301.83
Albay_Sorgoson_Blk19M	114.68
Albay_Sorgoson_Blk19M_additional	48.22
Albay_Sorgoson_Blk19L	192.24
Albay_Sorgoson_Blk19K	238.90
Albay_Sorsogon_reflights_Blk19Q	62.34
Albay_Sorsogon_reflights_Blk19L	71.19
Albay_Sorsogon_reflights_Blk19I	74.76
Albay_Sorsogon_reflights_Blk19I_additional	75.08
TOTAL	1,586.35 sq. km

Table 13. LiDAR blocks with its corresponding area

Portions of DTM before and after manual editing are shown in Figure 22. The mountain ridge and road (Figure 22a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 22b) to allow the correct flow of water. The bridge (Figure 22c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 22d) in order to hydrologically correct the river.

Figure 22. Portions in the DTM of Donsol Floodplain – a mountain ridge and road before (a) and after (b) data retrieval; a bridge before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

Albay_Sorsogon Blk19M was used as the reference block at the start of mosaicking because it is the located in the estuary of the river.

Mosaicked LiDAR DTM for Donsol Floodplain is shown in Figure 23. It can be seen that the entire Donsol Floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)		
	x	У	Z
Albay_Sorsogon_Blk19I	0.26	1	-1.36
Albay_Sorsogon_Blk19EG	1	1.25	-1.34
Albay_Sorsogon_Blk19M	-2	2	-2.22
Albay_Sorsogon_Blk19M_additional	-2	2	-2.22
Albay_Sorsogon_Blk19L	0	2	-2.16
Albay_Sorsogon_Blk19K	-1	1	1.17
Albay_Sorsogon_reflights_Blk19Q	-1	2	-1.90
Albay_Sorsogon_reflights_Blk19L	0	0	-2.18
Albay_Sorsogon_reflights_Blk19I	1	1	-1.67
Albay_Sorsogon_reflights_Blk19I_additional	1	2	-1.72

Table 14. Shift Values of each LiDAR Block of Donsol Floodplain.

Figure 23. Map of Processed LiDAR Data for Donsol Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Donsol to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 11,856 survey points from the Bicol floodplain were used for calibration Donsol LiDAR data. Random selection of 80% of the survey points, resulting to 10,864 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.41 meters with a standard deviation of 0.17 meters. Calibration of Donsol LiDAR data was done by adding the height difference value, 0.41 meters, to Donsol mosaicked LiDAR data. Table 15 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 24. Map of Donsol Floodplain with validation survey points in green

Figure 25. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.41
Standard Deviation	0.17
Average	0.38
Minimum	-0.08
Maximum	0.83

A total of 4,270 points were collected by DVBC for the Donsol river basin. Random selection of points within the floodplain boundary, resulting to 248 points, were used for the validation of calibrated Donsol DTM. The good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.12 meters, as shown in Table 16.

Figure 26. Correlation plot between validation survey points and LiDAR data

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.12
Average	0.16
Minimum	-0.06
Maximum	0.39

Table 16. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data were available for Donsol with 3488 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.55 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Donsol integrated with the processed LiDAR DEM is shown in Figure 26.

Figure 27. Map of Donsol Floodplain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, consists of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprised of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Donsol floodplain, including its 200 m buffer, has a total area of 208.01 sq km. For this area, a total of 6.0 sq. km., corresponding to a total of 1031 building features, are considered for QC. Figure 30 shows the QC blocks for Donsol floodplain.

Figure 28. QC blocks for Donsol building features

Quality checking of Donsol building features resulted in the ratings shown in Table 17.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Donsol	99.42	98.93	95.11	PASSED

Table 17. Quality Checking Ratings for Donsol Building Features.

3.12.2 Height Extraction

Height extraction was done for 6,321 building features in Donsol Floodplain. Of these building features, 97 were filtered out after height extraction, resulting to 6,224 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 19.36 m.

3.12.3 Feature Attribution

Feature Attribution was done for 6,224 building features in Donsol Floodplain with the use of participatory mapping and innovations. The approach used in participatory mapping undergoes the creation of feature extracted maps in the area and presenting spatial knowledge to the community with the premise that the local community in the area are considered experts in determining the correct attributes of the building features in the area.

The innovation used in this process is the creation of an android application called reGIS. The Resource Extraction for Geographic Information System (reGIS) [1] app was developed to supplement and increase the field gathering procedures being done by the AdNU Phil-LiDAR 1. The Android application allows the user to automate some procedures in data gathering and feature attribution to further improve and accelerate the geotagging process. The app lets the user record the current GPS location together with its corresponding exposure features, code, timestamp, accuracy and additional remarks. This is all done by a few swipes with the help of the device's pre-defined list of exposure features. This effectively allows unified and standardized sets of data.

Table 18 summarizes the number of building features per type. On the other hand, Table 19 shows the total length of each road type, while Table 20 shows the number of water features extracted per type.

Facility Type	No. of Features		
Residential	5957		
School	176		
Market	0		
Agricultural/Agro-Industrial Facilities	1		
Medical Institutions	13		
Barangay Hall	30		
Military Institution	0		
Sports Center/Gymnasium/Covered Court	0		
Telecommunication Facilities	1		
Transport Terminal	0		
Warehouse	2		
Power Plant/Substation	0		
NGO/CSO Offices	1		
Police Station	0		
Water Supply/Sewerage	1		
Religious Institutions	33		
Bank	0		
Factory	0		
Gas Station	1		
Fire Station	0		
Other Government Offices	5		
Other Commercial Establishments	3		
Total	6,224		

Table 18. Building Features Extracted for Donsol Floodplain.

Table 19. Total Length of Extracted Roads for Donsol Floodplain.

Floodplain	Road Network Length (km)					
	Barangay RoadCity/Municipal RoadProvincial RoadNational RoadOthers					
Donsol	95.76	0	0.89	13.21	0.00	109.86

Table 20. Number of extracted water bodies for Donsol floodplain.

Floodplain	Water Body Type						
	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen						
Donsol	1	33	1	0	0	35	

A total of twelve (12) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprised the flood hazard exposure database for the floodplain. This complete the feature extraction phase of the project.

Figure 28 shows the Digital Surface Model (DSM) of Donsol floodplain overlaid with its ground features.

Figure 29. Extracted features for Donsol Floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE DONSOL RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Donsol River on October 15 to 24, 2014 with the following scope of work: reconnaissance; control survey for the establishment of a control point; cross-section, bridge as-built of Dancalan Bridge in Brgy. Dancalan, Municipality of Donsol; ground validation data acquisition of about 58 km; and bathymetric survey with an estimated length of 8 km using Ohmex[™] Single Beam Echo Sounder and GNSS PPK survey technique.

Figure 30. Survey extent for Donsol River Basin

4.2 Control Survey

The GNSS network used for Donsol River Basin is composed of a single loop established on October 17 and a baseline on October 19, 2014 occupying the control points SRG-46, a second-order GCP, in Brgy. Pangpang, Municipality of Donsol, Sorsogon; and AL-298, a first-order BM, in Brgy. Sagpon, Legazpi City. Albay Province.

Two (2) control points were established along the approach of bridges namely: UP-DON, located at Dancalan Bridge in Brgy. Dancalan, Municipality of Donsol; and UP-ILG, at llog Bridge, in Brgy. Gura, also in Municipality of Donsol.

The summary of reference and control points and its location is summarized in Table C-1 while the GNSS network established is illustrated in Figure 31.

Figure 31. GNSS Network of Donsol River field survey

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)						
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
SRG-46	2nd order GCP	12°55'58.28467"N	123°34'12.66564"E	56.687	-	2009		
AL-298	1st order BM	-	-	65.015	11.6955	2007		
UP-DON	UP Estab- lished	-	-	-	-	10-17-2014		
UP-ILG 01	UP Estab- lished	-	-	-	-	10-17-2014		

Table 21. References used and control points established in the Donsol River Surv	'ey
(Source: NAMRIA, UP-TCAGP)	

The GNSS set-ups on recovered points and established control points in Donsol River are shown in Figure 32 to Figure 34.

Figure 32. Trimble® SPS 852 at AL-298, located at Sagpon Bridge, in Brgy. Sagpon, Legazpi City, Albay

Figure 33. Trimble® SPS 882 at SRG-46 in Pangpang Elementary School, Donsol, Sorsogon

Figure 34. Trimble® SPS 985 at UP-DON at the approach of Dancalan Bridge in Donsol, Sorsogon

4.3 Baseline Processing

The GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Donsol River Basin is summarized in Table 22 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
AL-298 SRG-46	10-17-2014	Fixed	0.004	0.024	216°40'29"	28826.526	-8.314
AL-298 UP-DON	10-17-2014	Fixed	0.004	0.019	210°20'38"	29503.778	-7.692
AL-298 UP-DON	10-17-2014	Fixed	0.003	0.023	210°20'37"	29502.776	-7.727
UP-ILG UP-DON	10-17-2014	Fixed	0.004	0.014	263°59'54"	5550.558	-5.457
UP-DON SRG-46	10-17-2014	Fixed	0.002	0.008	135°18'48"	3290.945	0.642
UP-ILG SRG-46	10-17-2014	Fixed	0.005	0.017	102°38'48"	8029.084	6.145

Table 22. The Baseli	ine processing repor	t for the Donsol Ri	iver GNSS static	observation survey
	1 0 1			

Four (4) control points were occupied in the fieldwork. SRG-46 was held fixed and used as control for the network. Formed baselines acquired fixed solutions and passed the required ± 20 cm and ± 10 cm for horizontal and vertical precision, respectively, as shown in Table 22.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

$$\sqrt{((x_e)^2 + (y_e)^2)} < 20 cm$$
 and $z_e < 10 cm$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. Table C-3 to Table C-5 show the results of GNSS network adjustment.

Table 23. Constraints	applied to	the adjustme	ent of the cor	ntrol points
		,		

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)				
SRG-46	Local	Fixed	Fixed						
AL-298	Grid				Fixed				
Fixed = 0.000001 (Meter)									

Coordinates of SRG-46, and elevation of AL-298 were fixed during the processing of the network for Donsol River survey, as shown in Table .

Table 24. Adjusted grid coordinates for the control points used in the Donsol River flood plain survey

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
SRG-46	776407.626	776407.626 0.007 1240340.446 0.005 3.779 0		0.050			
561849.132	49.132 ? 1429		?	2.948	0.080	LL	е
AL-298	741264.593 0.010		1230815.204	0.007	3.951	0.061	
578994.142	142 0.012 1452941.		0.009	11.696	?	е	
UP-DON	-DON 784907.431 ?		1257282.043	?	17.660	0.032	LL
564167.815	0.008	1427445.746	0.007	3.659	0.074		
UP-ILG	LG 766068.484 0.005 1282999.389		0.004	6.035	0.036		
569684.587	0.014	1428039.705	0.011	9.210	0.098		

Table 24 shows the adjusted grid coordinates of the network. The network is fixed at reference point SRG-46 with fixed coordinates and AL-298 with fixed elevation. With the mentioned equation, the computation for the horizontal and vertical accuracy requirements are as follows:

а.	SRG-46 horizontal accuracy vertical accuracy	= =	Fixed 8.0 cm < 10 cm
b.	AL-298 horizontal accuracy vertical accuracy	= = =	√((1.2) ² + (0.9) ² √(1.44 + 0.81) 1.5 cm < 20 cm Fixed
с.	UP-DON horizontal accuracy vertical accuracy	= = =	√((0.8) ² + (0.7) ² √(0.64 + 0.49) 1.06 cm < 20 cm 7.4 cm < 10 cm
d.	UP-ILG horizontal accuracy vertical accuracy	= = =	V((1.4) ² + (1.1) ² V(1.96 + 1.21) 1.78 cm < 20 cm 9.8 cm < 10 cm

	, 0	L			
Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
AL-298	N13°08'30.80115"	E123°43'43.85582"	65.015	?	е
SRG-46	N12°55'58.28467"	E123°34'12.66564"	56.687	0.080	LL
UP-DON	N12°54'42.14411"	E123°35'29.43706"	57.332	0.074	
UP-ILG	N12°55'01.04655"	E123°38'32.55519"	62.804	0.098	

Table 25. Adjusted geodetic coordinates for control points used in the Donsol River Flood Plain validation

The adjusted geodetic coordinates in Table illustrates that all points complied with the vertical accuracy requirement. The errors of the coordinates and elevation passed the required accuracy. Therefore, the result of the control survey for Donsol River Basin has met the required data accuracy for GNSS surveys.

The summary of references and control points used is indicated in

Table 26. The reference and control points utilized in the Donsol River Static Survey with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control Point	Order of Accuracy	Geographi	UTM ZONE 51 N				
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
SRG-46	2nd Order, GCP	12°55'58.28467"	123°34'12.66564"	56.687	1429779.512	561849.132	2.948
AL-298	1st Order, BM	13°08'30.80115"	123°43'43.85582"	65.015	1452941.041	578994.142	11.696
UP-DON	UP Estab- lished	12°54'42.14411"	123°35'29.43706"	57.332	1427445.746	564167.815	3.659
UP-ILG	UP Estab- lished	12°55'01.04655"	123°38'32.55519"	62.804	1428039.705	569684.587	9.210

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and bridge as-built survey were conducted on October 17, 2014 at the downstream part of Dancalan Bridge in Brgy. Dancalan, Municipality of Donsol, Sorsogon as shown in Figure 35. The survey was done using a Trimble[®] SPS 882 in PPK survey technique with UP-DON as a base station.

Figure 35. Dancalan Bridge facing upstream

The cross-sectional line of Dancalan Bridge is about 337 m with seventy-five (75) cross-sectional points using the control point UP-DON as the GNSS base station. The location map, cross-section diagram, and the bridge data form are shown in Figure 36 to Figure 38 respectively.

Figure 36. Dancalan bridge cross-section location map

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	4.948	BA3	294.160	5.4793
BA2	39.537	5.273	BA4	327.185	4.2043

Abutment: Is the abutment sloping? ✓Yes No; If yes, fill in

lo; If yes, fill in the following information:

	Station (Distance from BA1)	Elevation
Ab1	22.838	0.296
Ab2	184.323	0.070

Pier (Please start your measurement from the left side of the bank facing upstream) Shape:Rectangle Number of Piers: 10 Height of column footing: N/A

	Station (Distance from BA1)	Elevation	Pier Width
Pier 1	36.05844	3.8215	2.99
Pier 2	51.09472	3.8185	2.99
Pier 3	66.19595	3.8405	2.99
Pier 4	81.11564	3.7605	2.99
Pier 5	96.19823	3.8375	2.99
Pier 6	112.6446	3.8825	2.99
Pier 7	127.6676	3.8785	2.99
Pier 8	142.6422	3.8785	2.99
Pier 9	157.7065	3.8755	2.99
Pier 10	172.5533	3.8715	2.99

NOTE: Use the center of the pier as reference to its station

Figure 38. Dancalan Bridge Data Form

Water surface elevation of Donsol River was determined by a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on October 18, 2014 at 1:36 PM with a value of --0.266 m in MSL as shown in Figure C-7. This was translated into marking on the bridge's abutment using the same technique as shown in Figure C-10. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HE responsible for Donsol River, the Ateneo De Naga University.

Figure 39. Water level marking on Dancalan Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on October 17 to 19, 2014 using a survey grade GNSS rover receiver, Trimble[®] SPS 882, attached to a pole and installed on a van utilizing post process kinematic in topography mode as shown in Figure C-11. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.57 m measured from the ground to the bottom of the notch of the GNSS rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with AL-298 SRG-46 and UP-ILG occupied as the GNSS base stations in the conduct of the survey

Figure 40. Validation Points Acquisition survey setup

The first part of the survey started at Ilog Bridge in Pilar, Sorsogon and ended in Brgy. Sagpon, Legazpi City, Albay. The second part of the survey covered Brgy. Pio Duran going to Ligao City, Albay The survey gathered a total of 4,266 points with an approximate length of 58.12 km using AL-298 SRG-46 and UP-ILG as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure C-12.

Figure 41. Validation Points Acquisition survey extent in Donsol River Basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on October 16, 2014 using an Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode. The survey started in the upstream in Brgy. San Isidro with coordinates 12°57′33.25899″N, 123°35′49.25959″E, and ended at the mouth of the river in Brgy. Dancalan, with coordinates 12°53′55.17114″N, 123°35′28.48256″E, both in Municipality of Donsol, Sorsogon as shown in Figure C-13 The control point UP-DON was used as the GNSS base station all throughout the entire survey.

The bathymetric survey for Donsol River gathered a total of 3,519 points covering 8 km of the river traversing barangays Dancalan, Girawan, Juan Adre, San Isidro, San Ramon, Suguian, and Tupas in Municipality of Donsol A CAD drawing was also produced to illustrate the riverbed profile of Ogod River. As shown in Figure C-14.the highest and lowest elevation has a 2m difference. The highest elevation observed was -0.880 m above MSL located in Brgy. Suguian, while the lowest was -3.084 m below MSL located in Brgy. Tupas, both in Municipality of Donsol.

Figure 42. Bathymetric Survey of Donsol River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Gianni Sumajit, Maria Jemelita B. Adbalagao, Christian Javier B. Arroyo, Engr. Ferdinand E. Bien, Juvylin B. Bismonte, Engr. Francis Patray P. Bolaños, Glenn Glerica B. Brillo, Engr. Jan Karl T. Ilarde, Sheena Ria M. Lara, Jerico S. Lejano, John Paul B. Obina, Ace Antonio C. Pabileña, Engr. Lech Fidel C. Pante, Jan Carlo C. Plopenio, and Joanaviva C. Plopenio

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Donsol River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Donsol River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from one automatic rain gauge (ARGs) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The rain gauge was installed at Tagaytay Bridge ARG (Figure 1). The precipitation data collection started from December 06, 2014 at 12:00 AM to December 09, 2014 at 4:00 PM with a 10-minute recording interval.

The total precipitation for this event in Tagaytay Bridge ARG is 26.6mm. It has a peak rainfall of 5mm on December 08, 2014 at 11:30 AM. The lag time between the peak rainfall and discharge is 14 hours.

Figure 44. Location map of the Donsol HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Ilog Bridge, Brgy. Sta. Fe, Pilar, Sorsogon (12°55'1.31"N, 123°38'33.21"E). It gives the relationship between the observed water levels at Ilog Bridge and outflow of the watershed at this location.

For Ilog Bridge, the rating curve is expressed as Q = 17.933e0.6765h as shown in Figure 3.

Figure 45. The cross-section plot of Ilog Bridge

Figure 46. The rating curve of Ilog Bridge in Pilar, Sorsogon

This rating curve equation was used to compute the river outflow at Ilog Bridge for the calibration of the HEC-HMS model shown in Figure 47. The total rainfall for this event is 26.6mm and the peak discharge is 82.843m3/s at 1:30 AM, December 09, 2014.

Figure 47. Rainfall and outflow data of the Donsol River Basin, which was used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Legazpi RIDF. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station was chosen based on its proximity to the Donsol watershed. The extreme values for this watershed were computed based on a 26-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	21	31.9	39.6	53.4	74.5	89.3	119.2	145.5	176.4
5	29.1	43.8	54.5	76.7	113.4	138.5	189.8	228.7	260.5
10	34.5	51.6	64.3	92.2	139.1	171.1	236.6	283.8	316.1
15	37.5	56	69.8	100.9	153.6	189.4	263	314.8	347.5
20	39.6	59.1	73.7	107	163.7	202.3	281.5	336.6	369.5
25	41.3	61.5	76.7	111.7	171.6	212.2	295.7	353.4	386.4
50	46.3	68.9	85.9	126.2	195.7	242.7	339.6	405	438.6
100	51.3	76.2	95.1	140.5	219.6	273.1	383.1	456.2	490.3

Table 27. RIDF values for Donsol Rain Gauge computed by PAGASA

Figure 48. The location of the Legazpi City RIDF station relative to the Donsol River Basin

Figure 49. The synthetic storm generated for a 24-hour period rainfall for various return periods

5.3 HMS Model

The soil shapefile was taken on 2004 from the Bureau of Soils; this is under the Department of Environment and Natural Resources Management (DENR). The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Donsol River Basin are shown in Figures 50 and 51, respectively.

Figure 50. Soil map of Donsol River Basin

Figure 51. Land cover map of Donsol River Basin

For Donsol, six soil classes were identified. These are Sevilla clay, Annam clay loam, Panganiran clay, and Donsol sandy clay. Moreover, three land cover classes were identified. These are shrubland, mangrove, and barren areas.

Figure 52. Slope map of Donsol River Basin

Figure 53. Stream delineation map of Donsol River Basin

Using the SAR-based DEM, the Donsol basin was delineated and further divided into subbasins. The model consists of 19 sub basins, 9 reaches, and 9 junctions, as shown in Figure 54. The main outlet is llog Bridge.

Figure 54. The Donsol River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 55. River cross-section of Donsol River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northeast of the model to the south, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 56. Screenshot of subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 16.46484 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0m2/s. The generated hazard maps for Donsol are in Figures 17, 19, and 21.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 16,319,900.00m2. The generated flood depth maps for Donsol are in Figures 16, 18, and 20.

There is a total of 19,430,200.63m3 of water entering the model. Of this amount, 7,994,434.58m3 is due to rainfall while 11,435,766.05m3 is inflow from other areas outside the model. 1,658,242.75m3 of this water is lost to infiltration and interception, while 4,173,463.01m3 is stored by the flood plain. The rest, amounting up to 13,598,497.30m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Donsol HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 57 shows the comparison between the two discharge data.

Figure 57. Outflow hydrograph of Donsol River Basin produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 28 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	5 - 20
			Curve Number	65 - 90
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	4 - 12
			Storage Coefficient (hr)	2 - 7
	Baseflow	Recession	Recession Constant	0.9
			Ratio to Peak	0.2
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.04

Table 28. Range of calibrated values for the Donsol River Basin

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 1 mm to 6 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 64 to 99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Donsol, the basin mostly consists of grassland and the soil consists of Sevilla clay, Annam clay loam, and Panganiran clay.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.02 hours to 17 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. For Donsol, it will take at least 17 hours from the peak discharge to go back to the initial discharge.

Manning's roughness coefficient of 1 corresponds to the common roughness in Donsol watershed, which is determined to be a mangrove forest with trees with heavy stand that flow into branches (Brunner, 2010).

Accuracy measure	Value
RMSE	3.812
r2	0.8607
NSE	0.8593
PBIAS	0.0377
RSR	0.3752

Table 29. Summary of the Efficiency Test of the Donsol HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 3.812 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.8607.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.8593.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 0.0377.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.3752.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 58) shows the Donsol outflow using the synthetic storm events using the Legazpi Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods from 554m3/s in a 5-year return period to 1111.8m3/s in a 100-year return period.

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Donsol discharge using the Legazpi Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30.

Table 30. Outlines the peak values of the Donsol HEC-HMS Model outflow using the Legazpi RIDF 24-hour values.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	260.5	29.1	554	11 hours, 40 minutes
10-Year	316.1	34.5	686.8	12 hours
25-Year	386.4	41.3	858.4	11 hours, 50 minutes
50-Year	438.4	46.3	985.7	11 hours, 50 minutes
100-Year	490.3	51.3	1111.8	11 hours, 50 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the ADNU-DVC base flow was calibrated. Figure 59 shows a generated sample map of the Donsol River using the calibrated HMS base flow.

Figure 59. Sample output map of the Donsol RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figures 60 to 65 show the 5-, 25-, and 100-year rain return scenarios of the Donsol flood plain. The flood plain, with an area of 118,670km2, covers four (4) municipalities, namely Daraga, Jovellar, Donsol, and Pilar. Table 31 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Daraga	135.66	26.13	19.26
Jovellar	82.35	8.91	10.82
Donsol	153	35	22.88
Pilar	196.62	42.6	21.66

Table 31. Municipalities affected in Donsol Floodplain

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 60. 100-year flood hazard map for the Donsol flood plain overlaid on Google Earth imagery

Figure 61. 100-year flow depth map for the Donsol flood plain overlaid on Google Earth imagery

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 62. 25-year flood hazard map for the Donsol flood plain overlaid on Google Earth imagery

Figure 63. 25-year flow depth map for the Donsol flood plain overlaid on Google Earth imagery

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 64. 25-year flood hazard map for the Donsol flood plain overlaid on Google Earth imagery

Figure 65. 25-year flood hazard map for the Donsol flood plain overlaid on Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Donsol River Basin, grouped accordingly by municipality. For the said basin, four (4) municipalities consisting of 50 barangays are expected to experience flooding when subjected to the three rainfall return period scenarios.

For the 5-year rainfall return period, 16.45% of the municipality of Daraga with an area of 135.66 sq. km. will experience flood levels of less than 0.20 meters. 0.64% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.67%, 0.8%, 0.59%, and 0.1% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Table 32 depicts the areas affected in Daraga in square kilometers by flood depth per barangay.

Figure 66. Affected areas in Daraga, Albay during the 5-Year Rainfall Return Period

Table 32. Affected Areas in Daraga, Albay during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by			A	ea of affect	ted baranga	ıys in Daraga (in sq. km.)		
flood depth (in m.)	Bigao	Canaron	Ibaugan	Mayon	Nabasan	San Rafael	San Ramon	San Vicente Grande	Villahermosa
0.03-0.20	4.61	0.47	5.15	0.021	2.72	1.03	3.06	4.71	0.54
0.21-0.50	0.22	0.015	0.23	0.0012	0.064	0.029	0.12	0.16	0.037
0.51-1.00	0.25	0.0096	0.26	0.0005	0.067	0.034	0.12	0.15	0.022
1.01-2.00	0.31	0.0066	0.28	0.0004	0.1	0.044	0.15	0.18	0.0043
2.01-5.00	0.16	0.0017	0.15	0	0.19	0.093	0.062	0.14	0
> 5.00	0.002	0	0.048	0	0.078	0.0051	0	0.0017	0

For the Municipality of Jovellar with an area of 82.35 sq. km., 9.25% will experience flood levels of less than 0.20 meters. 0.36% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.42%, 0.5%, 0.28%, and 0.007% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Table 33 depicts the areas affected in Jovellar in square kilometers by flood depth per barangay.

Affected area	Area of aff	ected barangay	ys in Jovellar (in sq. km.)
(in m.)	Del Rosario	Florista	San Isidro	San Roque
0.03-0.20	5.77	0.33	0.77	0.75
0.21-0.50	0.23	0.0052	0.034	0.03
0.51-1.00	0.3	0.0055	0.016	0.023
1.01-2.00	0.37	0.011	0.0074	0.024
2.01-5.00	0.21	0.016	0	0.0048
> 5.00	0.0051	0.0004	0	0

Table 33. Affected areas in Jovellar, Albay during the 5-Year Rainfall Return Period

Figure 67. Affected areas in Jovellar, Albay during the 5-Year Rainfall Return Period

For the municipality of Donsol with an area of 153 sq. km., 18.77% will experience flood levels of less than 0.20 meters. 1.03% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.32%, 1.01%, 0.6%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Tables 34 and 35 depict the areas affected in Donsol in square kilometers by flood depth per barangay.

Figure 68. Affected areas in Donsol, Sorsogon during the 5-Year Rainfall Return Period

Figure 69. Affected areas in Donsol, Sorsogon during the 5-Year Rainfall Return Period

ŏ
Ľ.
e.
E
3
Š
Ľ.
Ę
Ϋ́
ίĻ
2
- -
g
К
ĺ.
U)
Ъ
1
e
Ξ·
E
р
Ц
ы
Q,
L.C
õ
<u> </u>
0
DS DS
õ
\Box
Ц
S1
ğ
re
, B
g
ŭ
, ĕ
Æ
4
4
Ś
le
പ്പ
É,
. · ·

Affected Area (sq. km.) by				Area of al	ffected bara	ngays in Dons	ol (in sq. km	(-		
flood depth (in m.)	Alin	Banban	Banuang Gurang	Baras	Bayawas	Cristo	De Vera	Gogon	Gura	Mabini
0.03-0.20	0.57	1.39	1.7	0.83	2.64	0.66	4.63	0.77	3.54	1.73
0.21-0.50	0.022	0.034	0.052	0.038	0.1	0.021	0.2	0.068	0.3	0.048
0.51-1.00	0.016	0.035	0.047	0.054	0.09	0.018	0.24	0.25	0.5	0.039
1.01-2.00	0.013	0.039	0.048	0.056	0.12	0.016	0.43	0.036	0.27	0.036
2.01-5.00	0.011	0.03	0.033	0.01	0.078	0.00011	0.3	0.004	0.15	0.06
> 5.00	0.0007	0.003	0	0	0.004	0	0.002	0	0.084	0.012

Table 35. Affected areas in Donsol, Sorsogon during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by		Area of a	affected ba	Irangays in	Donsol (in s	q. km.)	
flood depth (in m.)	Ogod	San Antonio	San Vicente	Sevilla	Tongdol	Tres Marias	Tupas
0.03-0.20	1.09	0.43	2.76	3.51	0.99	0.18	1.32
0.21-0.50	0.22	0.011	0.23	0.13	0.071	0.009	0.041
0.51-1.00	0.086	0.008	0.29	0.26	0.043	0.007	0.037
1.01-2.00	0.019	0.007	0.21	0.18	0.015	0.006	0.042
2.01-5.00	0.055	0.003	0.12	0.047	0.007	0.0008	0.027
> 5.00	0.11	0.0002	0.002	0.003	0.0003	0	0.001

For the municipality of Pilar with an area of 196.62 sq. km., 16.82% will experience flood levels of less than 0.20 meters. 1.1% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.37%, 1.85%, 0.46%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Tables 36 and 37 depict the areas affected in Pilar in square kilometers by flood depth per barangay.

Figure 70. Affected areas in Pilar, Sorsogon during the 5-Year Rainfall Return Period

Figure 71. Affected areas in Pilar, Sorsogon during the 5-Year Rainfall Return Period

Period
Return
Rainfall
5-Year
ring the
sogon du
r, Sors
ı Pilaı
Areas ir
Affected
36.7
Table

Affected Area (sq. km.) by				Are	a of affected	barangays ir	ו Pilar (in sq. km	(·		
flood depth (in m.)	Abas	Abucay	Bayasong	Cabiguan	Cagdongon	Calongay	Catamlangan	Comapo-Capo	Guiron	Leona
0.03-0.20	0.052	3.16	0.55	3.28	3.02	0.92	6.05	0.69	1.9	1.5
0.21-0.50	0.0009	0.3	0.013	0.25	0.16	0.08	0.29	0.023	0.35	0.056
0.51-1.00	0.00051	0.42	0.0095	0.43	0.21	0.084	0.37	0.018	0.16	0.086
1.01-2.00	0.0024	0.088	0.014	0.98	0.17	0.12	0.62	0.025	0.035	0.062
2.01-5.00	0.0024	0.013	0.014	0.25	0.009	0.0001	0.18	0.022	0.055	0.042
> 5.00	0	0.0022	0.0004	0.0015	0.0001	0	0.0093	0.0001	0.11	0.0035

Table 37. Affected Areas in Pilar, Sorsogon during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by				Area of aff	ected barang	gays in Pilar (ii	(.ms רפ ר			
flood depth (in m.)	Lipason	Lourdes	Lumbang	Mabanate	Marifosque	Migabod	Pinagsalog	San Antonio	San Jose	Santa Fe
0.03-0.20	2.67	0.032	0.95	0.83	0.18	1.5	2.72	5.47	1.08	1.56
0.21-0.50	0.23	0.00052	0.047	0.046	0.0097	0.083	0.079	0.24	0.024	0.11
0.51-1.00	0.34	0	0.044	0.081	0.0037	0.12	0.069	0.27	0.02	0.21
1.01-2.00	0.59	0	0.26	0.058	0	0.15	0.076	0.35	0.029	0.34
2.01-5.00	0.12	0	0.0064	0.0023	0	0.054	0.075	0.2	0.039	0.011
> 5.00	0	0	0	0	0	0.0001	0.00086	0.0013	0.0029	0.013

For the 25-year rainfall return period, 15.84% of the municipality of Daraga with an area of 135.66 sq. km. will experience flood levels of less than 0.20 meters. 0.62% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.67%, 0.92%, 0.97%, and 0.26% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, and greater than 5 meters, respectively. Table 38 depicts the areas affected in Daraga in square kilometers by flood depth per barangay.

Figure 72. Affected areas in Daraga, Albay during the 25-Year Rainfall Return Period

Table 38. Affected areas in Daraga, Albay during the 25-Year Rainfall Return Period

Affected Area (sq. km.) by				Area of affe	cted baranga	ys in Daraga	(in sq. km.)		
flood depth (in m.)	Bigao	Canaron	Ibaugan	Mayon	Nabasan	San Rafael	San Ramon	San Vicente Grande	Villahermosa
0.03-0.20	4.42	0.47	4.97	0.02	2.59	0.97	2.98	4.55	0.53
0.21-0.50	0.23	0.016	0.17	0.0013	0.067	0.033	0.13	0.16	0.039
0.51-1.00	0.25	0.011	0.2	0.00064	0.069	0.033	0.13	0.17	0.027
1.01-2.00	0.36	0.0085	0.36	0.0008	0.11	0.047	0.15	0.2	0.0085
2.01-5.00	0.29	0.0024	0.33	0	0.21	0.11	0.13	0.24	0
> 5.00	0.016	0	0.086	0	0.18	0.049	0.0006	0.017	0

For the Municipality of Jovellar with an area of 82.35 sq. km., 9% will experience flood levels of less than 0.20 meters. 0.33% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.32%, 0.59%, 0.56%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Table 39 depicts the areas affected in Jovellar in square kilometers by flood depth per barangay.

Affected area	Area o	of affected b (in sq.	arangays in km.)	Basey
depth (in m.)	Del Rosario	Florista	San Isidro	San Roque
0.03-0.20	5.58	0.32	0.76	0.74
0.21-0.50	0.2	0.004	0.037	0.028
0.51-1.00	0.21	0.0055	0.02	0.024
1.01-2.00	0.43	0.011	0.012	0.029
2.01-5.00	0.43	0.022	0.0001	0.01
> 5.00	0.024	0.0066	0	0

Table 39. Affected areas in Jovellar, Albay during the 25-Year Rainfall Return Period

Figure 73. Affected areas in Jovellar, Albay during the 25-Year Rainfall Return Period

For the Municipality of Donsol with an area of 153 sq. km., 17.95% will experience flood levels of less than 0.20 meters. 0.8% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.96%, 1.37%, 1.59%, and 0.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Tables 40 and 41 depict the areas affected in Donsol in square kilometers by flood depth per barangay.

_		
	×	
	\leq	
	C	
	5	
	~	
- 1		
	C	
	2	
	بہ	
	Q	
1	\sim	
	_	
- 5		
	7	
د	1	
	2	
	2	
	.,	
6	4	
	۰.	
	7	
	10	
	J.	
	\succ	
	\	
)	Ó	
- 2	2	
(. N	
	٥.	
	z	
- 5	÷	
	-	
	h	n
	2	4
	Ч	
•		
	ب	
	ರ	
	_	
	- 1	
	d	
	g	
	TOD	n
	nogo	C
	ogon	C
	uodos.	C
	rsogon	C
	orsogon	C
0	Sorsogon	C
c	Sorsogon	0
(L. Sorsogon	
0	ol. Sorsogon	
(-	sol. Sorsogon	
(nsol. Sorsogon	
(onsol. Sorsogon	
0	onsol. Sorsogon	
-	Jonsol , Sorsogon	0
() - -	Donsol, Sorsogon	
с - Г	n Donsol, Sorsogon	
- - -	in Donsol, Sorsogon	
0 - 4	s in Donsol, Sorsogon	
0 - 4	is in Donsol, Sorsogon	0
с Г Г	as in Donsol, Sorsogon	
с Г Г	eas in Donsol. Sorsogon	
с Г ч	reas in Donsol. Sorsogon	
с Г -	areas in Donsol. Sorsogon	
	t areas in Donsol. Sorsogon	
с Г Г	d areas in Donsol, Sorsogon	
- - -	ed areas in Donsol. Sorsogon	
с Г Г	ted areas in Donsol. Sorsogon	
	cted areas in Donsol. Sorsogon	
	ected areas in Donsol. Sorsogon	
	fected areas in Donsol. Sorsogon	
	Affected areas in Donsol. Sorsogon	
	Affected areas in Donsol, Sorsogon	
	Affected areas in Donsol, Sorsogon	
). Attected areas in Donsol. Sorsogon	0
	-0. Attected areas in Donsol. Sorsogon	
	40. Attected areas in Donsol. Sorsogon	
	2 40. Attected areas in Donsol. Sorsogon	
	le 40. Attected areas in Donsol. Sorsogon	
	ole 40. Affected areas in Donsol. Sorsogon	
	tble 40. Attected areas in Donsol. Sorsogon	
	able 40. Attected areas in Donsol, Sorsogon	

Affected Area (sq. km.) by			۷	rea of affec	ted barangay	s in Donsol (in sq. km.)		
flood depth (in m.)	Alin	Banban	Banuang Gurang	Baras	Bayawas	Cristo	De Vera	Gogon	Gura
0.03-0.20	0.55	1.36	1.67	0.8	2.56	0.65	4.49	0.74	3.2
0.21-0.50	0.023	0.035	0.051	0.027	0.092	0.022	0.16	0.046	0.12
0.51-1.00	0.018	0.028	0.049	0.037	0.083	0.018	0.2	0.062	0.2
1.01-2.00	0.017	0.044	0.056	0.075	0.094	0.021	0.25	0.26	0.45
2.01-5.00	0.016	0.051	0.054	0.044	0.19	0.0031	0.68	0.019	0.73
> 5.00	0.0014	0.0056	0.0008	0	0.019	0	0.0048	0	0.11

Table 41. Affected areas in Donsol, Sorsogon during the 25-Year Rainfall Return Period

Affected Area (sq. km.) by flood			Area of affe	ected baranga	ys in Donsol (in sq. km.)		
depth (in m.)	Mabini	Ogod	San Antonio	San Vicente	Sevilla	Tongdol	Tres Marias	Tupas
0.03-0.20	1.69	0.81	0.43	2.66	3.43	0.94	0.17	1.3
0.21-0.50	0.054	0.22	0.012	0.16	0.12	0.037	0.0066	0.039
0.51-1.00	0.041	0.28	0.0087	0.23	0.13	0.044	0.0096	0.041
1.01-2.00	0.042	0.079	0.0088	0.28	0.28	0.086	0.0061	0.046
2.01-5.00	0.067	0.049	0.0039	0.28	0.18	0.015	0.0026	0.04
> 5.00	0.027	0.13	0.0002	0.0018	0.012	0.0011	0	0.0034

Figure 74. Affected areas in Donsol, Sorsogon during the 25-Year Rainfall Return Period

Figure 75. Affected areas in Donsol, Sorsogon during the 25-Year Rainfall Return Period

For the Municipality of Pilar with an area of 196.62 sq. km., 18.35% will experience flood levels of less than 0.20 meters. 0.92% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.15%, 1.88%, 2.33%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Tables 42 and 43 depict the areas affected in Pilar in square kilometers by flood depth per barangay.

Affected area (so. km) hv flood				Area c	of affected b	arangays in Pi	lar (in sq. km.)			
depth (in m.)	Abas	Abucay	Bayasong	Cabiguan	Cagdongon	Calongay	Catamlangan	Comapo-Capo	Guiron	Leona
0.03-0.20	0.052	3.03	0.54	3.08	2.94	0.87	5.85	0.67	1.43	1.46
0.21-0.50	0.001	0.2	0.013	0.16	0.15	0.052	0.23	0.027	0.26	0.053
0.51-1.00	0.0008	0.29	0.011	0.2	0.2	0.077	0.26	0.021	0.36	0.066
1.01-2.00	0.0015	0.39	0.015	0.73	0.12	0.096	0.54	0.026	0.3	0.11
2.01-5.00	0.0039	0.07	0.019	1.01	0.15	0.1	0.62	0.029	0.12	0.055

Table 42 Affected areas in Pilar, Sorsogon during the 25-Year Rainfall Return Period

Table 43 . Affected areas in Pilar, Sorsogon during the 25-Year Rainfall Return Period

Affected area (so km) by flood				Area of a	iffected bara	ngays in Pila	r (in sq. km.)			
depth (in m.)	Lipason	Lourdes	Lumbang	Mabanate	Marifosque	Migabod	Pinagsalog	San Antonio	San Jose	Santa Fe
0.03-0.20	2.52	0.032	0.87	0.8	0.18	1.43	2.67	5.2	1.06	1.4
0.21-0.50	0.16	0.00062	0.03	0.032	0.0061	0.052	0.081	0.22	0.025	0.066
0.51-1.00	0.17	0	0.023	0.051	0.0063	0.086	0.074	0.27	0.021	0.067
1.01-2.00	0.39	0	0.036	0.11	0.0094	0.19	0.085	0.41	0.029	0.11
2.01-5.00	0.72	0	0.34	0.013	0	0.15	0.1	0.43	0.049	0.58
> 5.00	0.0056	0	0.0042	0	0	0.00047	0.011	0.0059	0.0071	0.02

0.0074

0.14

0.0015

0.02

0

0.0002

0.0015

0.0013

0.0023

0

> 5.00

Figure 76. Affected areas in Pilar, Sorsogon during the 25-Year Rainfall Return Period

Figure 77. Affected areas in Pilar, Sorsogon during the 25-Year Rainfall Return Period

For the 100-year rainfall return period, 15.45% of the Municipality of Daraga with an area of 135.66 sq. km. will experience flood levels of less than 0.20 meters. 0.61% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.63%, 0.89%, 1.31%, and 0.38% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, and greater than 5 meters, respectively. Table 44 depicts the areas affected in Daraga in square kilometers by flood depth per barangay.

ž
ц
G
l
Ę
Ę
Ř
\square
πţ
Ξŗ
R
ЯĽ
e,
5
3
Je
T-
Б0 Ц
Ľ.
Ъ.
Þ,
09
All
a, All
aga, All
araga, All
Daraga, All
in Daraga, All
ıs in Daraga, All
reas in Daraga, All
areas in Daraga, All
ed areas in Daraga, All
cted areas in Daraga, All
ffected areas in Daraga, All
Affected areas in Daraga, All
4. Affected areas in Daraga, All
e 44. Affected areas in Daraga, All
ole 44. Affected areas in Daraga, All
able 44. Affected areas in Daraga, All

Affected area				Area of affe	cted barang	ays in Daraga	(in sq. km.)		
depth (in m.)	Bigao	Canaron	Ibaugan	Mayon	Nabasan	San Rafael	San Ramon	San Vicente Grande	Villahermosa
0.03-0.20	4.29	0.46	4.85	0.02	2.52	0.93	2.92	4.44	0.52
0.21-0.50	0.22	0.018	0.16	0.0019	0.062	0.032	0.13	0.16	0.039
0.51-1.00	0.24	0.011	0.15	0.00044	0.071	0.033	0.13	0.18	0.031
1.01-2.00	0.39	0.0097	0.26	0.0012	0.11	0.05	0.16	0.22	0.013
2.01-5.00	0.38	0.0033	0.58	0	0.22	0.11	0.17	0.31	0
> 5.00	0.032	0	0.12	0	0.24	0.083	0.0032	0.039	0

Figure 78. Affected Areas in Daraga, Albay during the 100-Year Rainfall Return Period

For the Municipality of Jovellar with an area of 82.35 sq. km., 8.81% will experience flood levels of less than 0.20 meters. 0.32% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.3%, 0.47%, 0.85%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Table 45 depicts the areas affected in Jovellar in square kilometers by flood depth per barangay.

Affected area	Area o	of affected ba (in sq.	arangays in km.)	Basey
depth (in m.)	Del Rosario	Florista	San Isidro	San Roque
0.03-0.20	5.46	0.31	0.75	0.73
0.21-0.50	0.19	0.0042	0.039	0.029
0.51-1.00	0.19	0.0048	0.022	0.025
1.01-2.00	0.33	0.0092	0.015	0.032
2.01-5.00	0.66	0.026	0.001	0.015
> 5.00	0.042	0.013	0	0

Table 45. Affected areas in Jovellar, Albay during the 25-Year Rainfall Return Period

Figure 79. Affected areas in Jovellar, Albay during the 100-Year Rainfall Return Period

For the Municipality of Donsol with an area of 153 sq. km., 17.54% will experience flood levels of less than 0.20 meters. 0.77% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.9%, 1.16%, 2.13%, and 0.39% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Tables 46 and 47 depict the areas affected in Donsol in square kilometers by flood depth per barangay.

Affected area (so, km.) by flood			Area (of affected l	barangays in	Donsol (in sq.	km.)		
depth (in m.)	Alin	Banban	Banuang Gurang	Baras	Bayawas	Cristo	De Vera	Gogon	Gura
0.03-0.20	0.55	1.35	1.65	0.78	2.51	0.64	4.4	0.73	3.11
0.21-0.50	0.022	0.038	0.053	0.023	0.089	0.023	0.16	0.044	0.11
0.51-1.00	0.018	0.027	0.048	0.022	0.088	0.018	0.18	0.049	0.14
1.01-2.00	0.018	0.035	0.056	0.065	0.094	0.021	0.23	0.11	0.35
2.01-5.00	0.023	0.07	0.07	0.088	0.17	0.0083	0.76	0.2	0.98
> 5.00	0.0018	0.0065	0.0012	0	0.08	0	0.075	0	0.14

Table 46. Affected areas in Donsol, Sorsogon during the 100-Year Rainfall Return Period

Table 47. Affected areas in Donsol, Sorsogon during the 100-Year Rainfall Return Period

Affected area (so. km.) by flood			Area of affe	cted barangay	s in Donsol	(in sq. km.)		
depth (in m.)	Mabini	Ogod	San Antonio	San Vicente	Sevilla	Tongdol	Tres Marias	Tupas
0.03-0.20	1.67	0.66	0.43	2.6	3.38	0.93	0.17	1.29
0.21-0.50	0.055	0.21	0.012	0.13	0.12	0.034	0.0066	0.04
0.51-1.00	0.045	0.31	0.01	0.22	0.11	0.036	0.011	0.041
1.01-2.00	0.046	0.21	0.0098	0.18	0.23	0.069	0.0061	0.05
2.01-5.00	0.071	0.05	0.0045	0.47	0.19	0.056	0.0035	0.048
> 5.00	0.035	0.14	0.0003	0.0018	0.11	0.0021	0	0.005

Figure 80. Affected areas in Donsol, Sorsogon during the 100-Year Rainfall Return Period

Figure 81. Affected areas in Donsol, Sorsogon during the 100-Year Rainfall Return Period

For the Municipality of Pilar with an area of 196.62 sq. km., 17.85% will experience flood levels of less than 0.20 meters. 0.85% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.98%, 1.61%, 3.08%, and 0.38% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Tables 48 and 49 depict the areas affected in Pilar in square kilometers by flood depth per barangay.

Affected area (so km) hy flood				Area of aff	ected baran	gays in Pilar (i	in sq. km.)			
depth (in m.)	Abas	Abucay	Bayasong	Cabiguan	Cagdongon	Calongay	Catamlangan	Comapo- Capo	Guiron	Leona
0.03-0.20	0.051	2.98	0.53	2.96	2.89	0.84	5.71	0.66	1.29	1.44
0.21-0.50	0.00043	0.17	0.014	0.14	0.14	0.043	0.21	0.03	0.25	0.053
0.51-1.00	0.0014	0.24	0.012	0.16	0.19	0.073	0.23	0.021	0.27	0.056
1.01-2.00	0.0012	0.32	0.016	0.42	0.17	0.076	0.37	0.027	0.45	0.13
2.01-5.00	0.0045	0.28	0.021	1.49	0.19	0.16	0.97	0.034	0.2	0.066
> 5.00	0	0.003	0.0025	0.0027	0.0003	0	0.028	0.0032	0.15	0.013

Table 48. Affected areas in Pilar, Sorsogon during the 100-Year Rainfall Return Period

Table 49. Affected areas in Pilar, Sorsogon during the 100-Year Rainfall Return Period

r r

Affected area (so. km) hv flood				Area of affe	ected barang	ays in Pilar (in sq. km.)			
depth (in m.)	Lipason	Lourdes	Lumbang	Mabanate	Marifosque	Migabod	Pinagsalog	San Antonio	San Jose	Santa Fe
0.03-0.20	2.45	0.032	0.84	0.79	0.17	1.4	2.63	5.04	1.05	1.34
0.21-0.50	0.13	0.0006	0.027	0.025	0.0056	0.045	0.087	0.22	0.024	0.058
0.51-1.00	0.15	0.000015	0.022	0.044	0.0044	0.055	0.076	0.26	0.021	0.048
1.01-2.00	0.27	0	0.028	0.076	0.014	0.16	0.09	0.44	0.03	0.092
2.01-5.00	0.8	0	0.12	0.078	0.0018	0.25	0.11	0.57	0.051	0.66
> 5.00	0.17	0	0.28	0	0	0.0017	0.023	0.019	0.014	0.054

Figure 82. Affected areas in Pilar, Sorsogon during the 100-Year Rainfall Return Period

Figure 83. Affected areas in Pilar, Sorsogon during the 100-Year Rainfall Return Period

Among the barangays in the Municipality of Daraga, Ibaugan is projected to have the highest percentage of area that will experience flood levels at 4.5%. Meanwhile, Bigao posted the second highest percentage of area that may be affected by flood depths at 4.1%.

Among the barangays in the Municipality of Jovellar, Del Rosario is projected to have the highest percentage of area that will experience flood levels at 8.35%. Meanwhile, San Roque posted the second highest percentage of area that may be affected by flood depths at 1.01%.

Among the barangays in the Municipality of Donsol, De Vera is projected to have the highest percentage of area that will experience flood levels of at 3.79%. Meanwhile, Gura posted the second highest percentage of area that may be affected by flood depths of at 3.15%.

Among the barangays in the Municipality of Pilar, Catamlangan is projected to have the highest percentage of area that will experience flood levels of at 3.82%. Meanwhile, San Antonio posted the second highest percentage of area that may be affected by flood depths of at 3.33%.

Moreover, the generated flood hazard maps for the Donsol Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).
Warning Level	Area Covered in sq. km.						
	5-year	25-year	100-year				
Low	5.18	4.21	3.99				
Medium	10.37	8.6	7.74				
High	6.62	13.68	17.03				
TOTAL	22.17	26.49	28.76				

Table 50. Area covered by each warning level with respect to the rainfall scenario

Of the forty five (45) identified Educational Institutions in Donsol Floodplain, two (2) were assessed to be exposed to low, seven (7) to medium, and one (1) to high level flooding during the 5-year scenario. In the 25-year scenario, two (2) were assessed to be exposed to low, six (6) to medium, and three (3) to high level flooding. In the 100-year scenario, two (2) were assessed to be exposed to be exposed to low, six (6) to medium, and five (5) to high level flooding.

Of the twelve (12) identified Medical Institutions in Donsol Floodplain, none was assessed to be exposed to low and high, while three (3) were assessed to be exposed to medium level flooding in the 5-year scenario. In the 25-year scenario, none was assessed to be exposed to low, one (1) was assessed to be exposed to medium, and three (3) were assessed to be exposed to high level flooding. In the 100-year scenario, none was assessed to be exposed to be exposed to be exposed to medium, and three (3) were assessed to be exposed to be exposed to be exposed to medium, and three (3) were assessed to be exposed to be exposed to be exposed to medium, and three (3) were assessed to be exposed to be exposed to be exposed to medium, and three (3) were assessed to be exposed to medium, and three (3) were assessed to be exposed t

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there was a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation data were obtained on November 13-15, 2015. The flood validation consists of 196 points randomly selected all over the Donsol Floodplain. It has an RMSE value of 1.38464553.

Figure 84. The validation points for the 5-Year flood depth map of the Donsol Floodplain

Figure 85. Flood map depth vs. Actual flood depth

Actual	Modeled Flood Depth (m)								
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total		
0-0.20	8	0	0	1	0	0	9		
0.21-0.50	0	0	0	0	0	0	0		
0.51-1.00	33	0	17	1	1	0	52		
1.01-2.00	28	0	20	10	9	0	67		
2.01-5.00	15	0	6	13	23	0	57		
> 5.00	0	0	0	0	0	0	0		
Total	84	0	43	25	33	0	185		

Table 51. Actual flood vs simulated flood depth at differnent levels in the Donsol River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 31.35%, with 58 points correctly matching the actual flood depths. In addition, there were 43 points estimated one level above and below the correct flood depths, 40 points estimated two levels above and below, and 44 points estimated three or more levels above and below the correct flood depths. A total of 12 points were overestimated while a total of 115 points were underestimated in the modelled flood depths of Donsol. Table 52 depicts the summary of the accuracy assessment in the Donsol River Basin survey.

Table 52. Summary of the Accuracy Assessment in the Donsol River Basin Survey

DONSOL	No. of Points	%
Correct	58	31.35
Overestimated	12	6.49
Underestimated	115	62.16
Total	185	100

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Optech Technical Specification of the Gemini Sensor

Control Rack

Laptop

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. ABY-82

NATIONAL N	milippines nvironment and Natura IAPPING AND RE	Resources SOURCE INFORMATION	AUTHORITY	
				April 10, 2014
	CER	RTIFICATION		
whom it may concern:				
This is to certify that according t	o the records on	file in this office, the requ	uested survey informa	ation is as follows
	Brenin	AL DAY		
	Station	ICE: ALBAT		
	Station	vame. ABY-92		
	Orde	c 2nd		
Island: LUZON	Orde	r: 2nd	Barangay: ALLA	NG
Island: LUZON Municipality: CITY OF LIGAO	Orde	r: 2nd	Barangay: ALLA	NG
Island: LUZON Municipality: CITY OF LIGAO	Orde PRS	92 Coordinates	Barangay: ALLA	NG
Island: LUZON Municipality: CITY OF LIGAO Latitude: 13º 11' 56.27238"	Orde PRS Longitude:	r: 2nd 92 Coordinates 123° 27' 47.60156"	Barangay: ALLA Ellipsoidal Hgt:	NG 127.30900 m.
Island: LUZON Municipality: CITY OF LIGAO Latitude: 13º 11' 56.27238"	Orde PRS Longitude: WGS	r: 2nd 92 Coordinates 123° 27' 47.60156" 884 Coordinates	Barangay: ALLA	NG 127.30900 m.
Island: LUZON Municipality: CITY OF LIGAO Latitude: 13° 11' 56.27238" Latitude: 13° 11' 51.38974"	Orde PRS Longitude: WGS Longitude:	r: 2nd 92 Coordinates 123° 27' 47.60156" 584 Coordinates 123° 27' 52.59990"	Barangay: ALLA Ellipsoidal Hgt: Ellipsoidal Hgt:	127.30900 m. 180.74900 m.
Island: LUZON Municipality: CITY OF LIGAO Latitude: 13º 11' 56.27238" Latitude: 13º 11' 51.38974"	Orde PRS Longitude: WGS Longitude: PTI	r: 2nd 92 Coordinates 123° 27' 47.60156" 884 Coordinates 123° 27' 52.59990" M Coordinates	Barangay: ALLA Ellipsoidal Hgt: Ellipsoidal Hgt:	NG 127.30900 m. 180.74900 m.
Island: LUZON Municipality: CITY OF LIGAO Latitude: 13° 11' 56.27238" Latitude: 13° 11' 51.38974" Northing: 1459605.458 m.	Orde PRS Longitude: WGS Longitude: PT/ Easting:	r: 2nd 92 Coordinates 123° 27' 47.60156" 584 Coordinates 123° 27' 52.59990" M Coordinates 550210.89 m.	Barangay: ALLA Ellipsoidal Hgt: Ellipsoidal Hgt: Zone: 4	127.30900 m. 180.74900 m.
Island: LUZON Municipality: CITY OF LIGAO Latitude: 13° 11' 56.27238" Latitude: 13° 11' 51.38974" Northing: 1459605.458 m.	Orde PRS Longitude: WGS Longitude: PTI Easting: UTI	r: 2nd 92 Coordinates 123° 27' 47.60156" 584 Coordinates 123° 27' 52.59990" M Coordinates 550210.89 m. M Coordinates	Barangay: ALLA Ellipsoidal Hgt: Ellipsoidal Hgt: Zone: 4	NG 127.30900 m. 180.74900 m.

ABY-92

Location Description

From Ligao City Hall, travel towards Brgy. Allang for about 13 km. Upon reaching Allang Brgy. Hall, walk for about 20 m. to reach the station. Station is located beside the baseline of the basketball court, about 19 m. from the said brgy. hall. Mark is the head of a 4 in. copper nail centered on a triangle on a 0.3 m. x 0.3 m. concrete block protruding 0.05 m. above the ground surface, with inscriptions "ABY-92 2007 NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795949 A T.N .: 2014-833

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonilacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nooles, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

2. ABY-92

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 24, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ALBAY		
	Station Name: ABY-82		
	Order: 2nd		
Island: LUZON Municipality: JOVELLAR	Barangay: MSL Elevation: PRS92 Coordinates		
Latitude: 13º 4' 16.27314"	Longitude: 123º 35' 53.17428"	Ellipsoidal Hgt:	39.77600 m.
	WGS84 Coordinates		
Latitude: 13º 4' 11.43271"	Longitude: 123º 35' 58.18268"	Ellipsoidal Hgt:	93.89000 m.
	PTM / PRS92 Coordinates		
Northing: 1445500.97 m.	Easting: 564865.27 m.	Zone: 4	
Northing: 1,444,995.02	UTM / PRS92 Coordinates Easting: 564,842.57	Zone: 51	

Location Description

ABY-82 From Guinobatan Town Proper, travel S for about 16 km. to reach Jovellar Town Proper. Station is located at the right corner (about 12 m.) of the Rizal monument in front of Jovellar Catholic Church and 12 m. from the road centerline. Mark is the head of a 4 in. copper nail centered on a triangle on a 0.3 m. x 0.3 m. concrete block protruding 0.05 m. above the ground surface, with inscriptions "ABY-82 2007 NAMRIA".

Requesting Party: UP DREAM Purpose: Reference OR Number: 8089868 I T.N.: 2016-0415

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAVIRIA OFFICES: Main : Lawfor Merue, Fort Bonifacio, 1634 Tagaig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1910 Manila, Philippines, Tel. No. (632) 241-3494 to 98

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

STRESOURCE ARD					
	Republic of the Philippines Department of Environment and Nat	tural Resources			
	NATIONAL MAPPING AND	RESOURCE INFORMATION A	UTHORITY		
A. M. P.					April 10, 201
					April 10, 201
	c	ERTIFICATION			
To whom it may conce	ern:				
This is to certify th	at according to the records	on file in this office, the requ	ested survey	informa	ation is as follows
	Pro	wince: ALBAY			
	Stati	on Name: ABY-9			
	Or	der: 3rd			
Island: LUZON	CITY INT		Baranga	y:	
Municipality. LEGA	P	RS92 Coordinates			
Latitude: 13º 9' 1'	1.38733" Longitu	de: 123º 43' 45.95874"	Ellipsoid	al Hgt:	14.54010 m.
	w	GS84 Coordinates			
Latitude: 13º 9' 6	5.53800" Longitu	de: 123º 43' 50.95900"	Ellipsoid	al Hgt:	68.75400 m.
		PTM Coordinates			
Northing: 1454607	.115 m. Easting	579082.538 m.	Zone:	4	
		UTM Coordinates			
Northing: 1,454,09	97.98 Easting	579,054.86	Zone:	51	
	Lo	cation Description			

 Requesting Party:
 UP-DREAM

 Pupose:
 Reference

 OR Number:
 8795949 A

 T.N.:
 2014-832

RUELOM. BELEN, MNSA Director, Mapping And Geodesy Branch 0

NAMBIA OFFICES: Main : Lawton Avenue, Fort Bonllacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barnoa St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 96 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Baseline Processing Reports of Control Points used in the LIDAR Annex 3. Survey

LPH – 01 1.

Baseline observation	x	I	LPH-01 ABY-09 (B1)				
Processed:			4/14/2014 8:54:10 AM				
Solution type:		1	Fixed				
Frequency used:		1	Dual Frequency (L1, L2)				
Horizontal precision:		(0.002 m				
Vertical precision:		(0.003 m				
RMS:		(0.001 m				
Maximum PDOP:		:	2.071				
Ephomoris used:		1	Broadcast				
Antenna model:			Trimble Relative				
Processing start time	D:	;	3/29/2014 9:37:04 AM (Lo	cal: UTC+8hr))		
Processing stop time	r:	;	3/29/2014 12:39:19 PM (L	.ocal: UTC+8h	r)		
rocessing duration: 03:02:15							
and a second							
Processing interval: Vector Component	ts (Mark to Mark)		5 seconds		_		
Processing interval: Vector Componen From:	ts (Mark to Mark) ABY-09		5 seconds		~	lahal	
Processing interval: Vector Componen From:	ts (Mark to Mark) ABY-09 Grid		5 seconds		G	lobal	
Processing interval: Vector Component From: Easting	ts (Mark to Mark) ABY-09 Grid 579204.817 m	Latitude	5 seconds	Latitude	G	lobal N13°09'06.53800	
Processing interval: Vector Componen From: Easting Northing	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m	Latitude Longitude	5 seconds Local N13*09'08.53800 E 123*43'50.95900	Latitude Longitude	G	Iobal N13*09'06.53800 E123*43'50.95900	
Processing interval: Vector Component From: Easting Northing Elevation	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m	Latitude Longitude Height	5 seconds Local N13*09*06.53800 E 123*43*50.95900 68.754 m	Latitude Longitude Height	G	lobal N13°09'06.53800 E123°43'50.95900 68.754 n	
Processing interval: Vector Componen From: Easting Northing Elevation To:	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m LPH-01	Latitude Longitude Height	5 seconds Local N13*09'06.53800 E 123*43'50.95900 68.754 m	Latitude Longitude Height	G	lobal N13*09'06.53800 E123*43'50.95900 68.754 n	
Processing interval: Vector Component From: Easting Northing Elevation To:	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m LPH-01 Grid	Latitude Longitude Height	5 seconds Local N13*09*06.53800 E123*43*50.95900 68.754 m Local	Latitude Longitude Height	G	lobal N13°09'06.53800 E123°43'50.95900 68.754 n	
Processing interval: Vector Component From: Easting Northing Elevation To: Easting	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m LPH-01 Grid 580467.016 m	Latitude Longitude Height	5 seconds Local N 13*09'06.53800 E 123*43'50.95900 68.754 m Local N 13*09'08.50554	Latitude Longitude Height	G	lobal N13*09*06.53800 E123*43*50.95900 68.754 n lobal N13*09*08.50554	
Processing interval: Vector Component From: Easting Northing Elevation To: Easting Northing Northing	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m LPH-01 Grid 580467.016 m 1454103.670 m	Latitude Longitude Height Latitude Longitude	5 seconds Local N13*09*06.53800 E 123*43*50.95900 68.754 m Local N13*09*08.50554 E 123*44*32.88949	Latitude Longitude Height	G	lobal N13*09'06.53800 E123*43'50.95900 68.754 n lobal N13*09'08.50554 E123*44'32.88949	
Processing interval: Vector Component From: Easting Northing Elevation To: Easting Northing Elevation	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m LPH-01 Grid 580467.016 m 1454103.670 m 11.957 m	Latitude Longitude Height Latitude Longitude Height	5 seconds Local N13*09'06.53800 E 123*43'50.95900 68.754 m Local Local N13*09'08.50554 E 123*44'32.88949 65.236 m	Latitude Longitude Height Latitude Longitude Height	G	lobal N13°09'06.53800 E123°43'50.95900 68.754 r kbal N13°09'08.50554 E123°44'32.88949 65.236 r	
Processing interval: Vector Component From: Easting Northing Elevation To: Easting Northing Elevation Vector	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m LPH-01 Grid 580467.016 m 1454103.670 m 11.957 m	Latitude Longitude Height Latitude Longitude Height	5 seconds Local N13*09'06.53800 E123*43'50.95900 68.754 m Local N13*09'08.50554 E123*44'32.88949 65.236 m	Latitude Longitude Height Latitude Longitude Longitude	G	lobal N13*09'06.53800 E123*43'50.95900 68.754 n lobal N13*09'08.50554 E123*44'32.88949 65.236 n	
Processing interval: Vector Component From: Easting Northing Elevation To: Easting Northing Elevation Vector ΔEasting	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m LPH-01 Grid 580467.016 m 1454103.670 m 11.957 m	Latitude Longitude Height Latitude Longitude Height	5 seconds Local N 13*09'06.53800' E 123*43'50.95900' 68.754 m Local Local N 13*09'08.50554' E 123*44'32.88949' 65.236 m uth	Latitude Longitude Height Latitude Latitude Longitude Height	G	lobal N13*09'06.53800 E123*43'50.95900 68.754 r lobal N13*09'08.50554 E123*44'32.88949 65.236 r	
Processing interval: Vector Component From: Easting Northing Elevation To: Easting Northing Elevation Vector ΔEasting ΔNorthing	ts (Mark to Mark) ABY-09 Grid 579204.817 m 1454039.532 m 15.448 m LPH-01 Grid 580467.016 m 1454103.670 m 11.957 m 1262.19 64.13	Latitude Longitude Height Latitude Longitude Height 9 m NS Fwd Azim 8 m Ellipsoid Dist.	5 seconds Local N13*09'06.53800 E123*43'50.95900 68.754 m Local N13*09'08.50554 E123*44'32.88949 65.236 m uth	Latitude Longitude Height Latitude Longitude Longitude Height 87°15'26° 1264.234 m	G G	lobal N13*09'06.53800 E123*43'50.95900 68.754 n lobal N13*09'08.50554 E123*44'32.88949 65.236 n -1040.600 n -715.619 n	

ndard Errors

Vector errors:					
σ ΔEasting	0.001 m	o NS fwd Azimuth	0.00.00.	σΔX	0.001 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.001 m
σ ΔBevation	0.001 m	σ∆Height	0.001 m	σΔZ	0.001 m

2

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Research Specialist (Supervising SRS)	LOVELY GRACIA ACUNA	UP TCAGP
	Supervising Science Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP TCAGP

	FIELD	TEAM		
	Senior Science Research	AUBREY MATIRA-PAGADOR	UP-TCAGP	
	Specialist (SSRS)	CHRISTOPHER JOAQUIN	UP-TCAGP	
		LARAH KRISELLE PARAGAS		
		MA. VERLINA E. TONGA		
LIDAR Operation		MILLIE SHANE REYES		
	Research Associate (RA)	IRO NIEL ROXAS	UP-TCAGP	
		KRISTINE ANDAYA		
		JERIEL PAUL ALAMBAN		
Ground Survey, Data	Desserve Associate (DA)	KENNETH QUISADO		
Download and Transfer	Research Associate (RA)	JASMIN DOMINGO	UP-ICAGP	
		SSG. LEE JAY PUNZALAN	PHILIPPINE AIR	
	Airborne Security	SSG. BENJIE CARBOLLEDO	FORCE (PAF)	
LiDAR Operation		CAPT. JEFFREY JEREMY ALAJAR	ACIAN	
	Pilot	CAPT. CESAR ALFONSO III	ASIAN AEROSPACE	
		CAPT. RAUL CZ SAMAR II	CORPORATION	

_												-		
	SERVER LOCATION		Z.Wittome_Rew0150GC	Z.Wrborne_Rew7158GC	Z Webome_RawJ 160GC	Z.Wittorne_Rew/71610C	Z'Wrborne_Raw01640C	Z Mittoma_Raw71050C	Z.Wattorne_RawV108GC	Z'Wrborne_Raw7169GC	ZWittoire_Rew0171GC	Z Withome_Raw717200		
Π	3	KML		-	5			2	*	0	*	2		
	FLIGHT PLA	Actual (KB)	41	275	m	129	102	233	204	137	257	384		
	OFERATOR LOOS	(torwo)	1KB	849	¥	tixB	1KB	140	148	848	1HGB	1KB		
	(theory	Base Info (Lot)	1KB	tkB	148	143	1KB	1KB	1KB	1KB	148	tkB		
	BASE STA	BASE STATIONS (ME)	7.33	10.1	7.45	4.18	5.89	7.6	10.9	1.11	11.6	12.2		14MU
ſ	DOUTZER	(00)	Ň	NA	NA	NA	NA	NA	NA	MA	NA	NA		SAGU
100	BOWD	6	4.65	30.1	2.69	14.2	11.3	25.5	22.4	17.9	14.5	30.9		K B
RAVEFER SHE	NISSION LOG	the public	25/46KB	49.7	NA	71.63/28.7	70.4	106	142	104	88.5	NA		FA
4/2/1/2014	MM	(ac) my	12.2	20.2	NA	51.2	40.1	93.5	54.6	73.4	30.3	NA	Received b	7
ľ			96.4	266	71.4	136	120	222	193	172	166	263		
ł	1008	(ixil)	107	999	58.5	312	260	550	485	398	340	674		
ŀ	1 IVB	KML (swath In KB)	99	400	9.18	187	149	677	90.5	59.2	62.1	560		t
	RAN	Output	12	MA	MA	¥2	W	VIV	W	MA	ž	¥		ADA
		SENSOR	GEMINE	GEMIN	GEMM	OEMIN	GEMINA	CREMIN	GEMIN	GEMINE	OEMIN	GENER		4 D
		MISSION NAME	2BLK19E088A	20LK1965089A & 20LK19G089A	28LK19690A	281K19150908	28LK19C5092A	28LK19K093A & 28LK1065093A	281K19L094A	2BLK19B094B	2BLK19M095A	2BLK19C5 & 2BLKD096A	aceived from	CHAN
		FUGHT NO.	715660	715860	716060	716160	HIGH	716717	7168GC	716960	717160	7172GC	ď	z
		DATE	No. 29, 2014	May 20, 2014	tar 31, 2014	Au 31, 2014	gr 2, 2014	Ar 3. 2014	Qu 4, 2014	Apr 4, 2014	Apr 5, 2014	Apr 6, 2014		

Data Transfer Sheet for Donsol Floodplain

Annex 5.

Signature

								LI ANNO									
								Γ					and a state of the		PLICHT	PLAN	
				RA	WLAS			RAW	MISSION			BASE 97.	(TRON(B))	OFERATOR LOGS			SERVER
	FLIGHT	THOMAN NAME	SENSOR			LOG3(KB)	POS	IMAGENCA	FILEVOASI	PLANDE	DIGITIZERA	BASE		(OPLOO)	Artical	KML	FOOT
DATE	100	MISSION RAME		Output	when issued his			æ	L005			STATION(5)	Base Info (101)		-		
				LAS	in the second second									873	101	24	Z'Mirborne_RawN
		28UC19IS110A &	Contraction of the local division of the loc	-	994KB	402KB	237MB	60.3	133	17.3	12	7.61	INB	2			20006
4/20/2013	7200GC	28UK19N110A	GEWINI	42	261122								-0.0	1KB	384	7	Z'Mitbome_Raw/7
					BANNAR	950	206	M	NA	16.1	MIN	1.14	I'VII	-			20400
4/22/2014	7204GC	28LK19A112A	GEMINI	¥2	1 OVERWARD	-								0.77			Z'Akbome_RawU
		3RI K190116A &				104	126	NUA	NIA	17.7	NIA	1.68	1KB	11/13			21200
4/26/2014	721200	2BLK190116A	GEMINI	ž	140	100								-	944		Z.Varboma_Ruw7
		2BUX19051168 &	Contrast.	N.N.	10.6	203	141	NIA	MA	8.77	NN	1,68	TKB	2			21300
4/26/2014	7213GC	VOIDS	GEMINI	5									-	971	101	Skorzko	Z'Verborne_Rew/7
		28LK19AS118A &	INIMA	N.A.	46.2	311	184	41.5	MA	12.1	M/N	7,36	1KB	av.			210P
4/28/2014	121000	VOIDS															
								Dautand D	-								

\$102/5/2 Vamo Rev

Received from

Name Offeld A Postion Signature

SHEET	3/2/2016
ANSFER	RSOGON
DATA TR	ALBAY/SO

															TUCUT	N NN	
												BASE ST/	ATION(S)	CPERATOR		- munit	SERVER
				RAW	LAS			RAW	MISSION LOG	DANCE	DIGITIZER	0 400		LOGS		10101	LOCATION
DATE	FUGHT NO.	MISSION	SENSOR	Se la	White found the	LOGS	POS	INVGESICASI	LOGS			STATION(5)	Base Info (.txt)	(ODLOG)	Actual	Link	
		-		output mann	from the second										24173/40/36/		ZIDACIRAW
		28LK1985	VENIMI	NA	865	1.12	202	66.8	538	26.8	MA	5.81	1KB	ZKB	12/11/12/12	NA.	DATA
図5-Feb-1	6 38136	568	CEMIN	-													ZADACIRAW
		2BLK19KS	CEMINI	NA	507	11.3	200	51.6	323	22.1	NA	7.02	1KB	1KB	12/9/9/9	MA	DATA
126-Feb-1	6 38156	1 SS7A	CEMIN	5													

Received from

R. Pusto Name Position Signature

Received by

5 4 / HALLO ł Name Position Signature

LiDAR Surveys and Flood Mapping of Donsol River

ng of the Phi	lipp	oines	Using	LIDAI	R (Phi	I-LIDA	R 1)
	GEOVED	LOCATION	Z'IDACIRAW DATA	Z'IDACIRAIV DATA	Z:IDACIRAW DATA	Z:UDACIPAW DATA	Z:\DACIRAW DATA
	PLAN	KML	233	376	NA	NA	331

DATA TRANSFER SHEET ALBAY/SORSOGON 3/18/2016

ŀ	8	5 9	3	9,Z	8	22	8	1	A	ž	ð	1	ă	
	FLAN		KML		233		376		NA		ž		331	
201001 m	FLIGHT		Actual		11/31		38/29/30	Contraction of the second	0		32/29		30/28/27	
	OPERATOR	LOGS	(DDTGG)		2KB		34(3		1KB		1KB		1KB	
	(TION(S)	-	(tot)		1KB		1KB		1KB		1KB		1KB	
	BASE ST/		STATION(S)		8.33		11.7		11.7		929		4.19	
		COLUMBER OF			NA		Ň		¥		ž		¥	
		BUNNE	1 PMP		10.1		33.0		14		39.2		16	
	00110000	MESSION LOG	LOGS		37		-		202		735		722	
		RAW	MAGES/CASI		4.37		22		26.9		\$8.1		28.7	
			POS		176		265		130		274		183	
			LOGS		13.3		203		1.98		6.18		687	
		NS I	KMIL (swath)		233		M		586		042		331	
		RAW	Output LAS		NA		NA		Ň		MA	-	NA	
			SENSOR		GEMINI		GENINI		GENINI		CEMINI	CCMIN	NINI	
			MISSION		2BLK19JFS	0598	2BLK19AB	S060A	2BLK19FS	060B	2BLK19D5	064A	2BLK19aA	B066A
			FLIGHT NO.		20766	00700	01100	207/0	20101	06792	00000	28430	10110	91095
			DATE		20 P. 1. 20	Z8-LED-T0		23-FeD-10		73-Feb-Tb		4-Mar-1b		6-Mar-10

Racelved from

PUNNTO Ω 2 Name Position Signature

3,2114 Postion Signature

Received by

1. Flight Log for 7156GC Mission

Image: Co-Pilot: CS ALPENSO III 9 Route: 9 Route: 12 Airport 14 Engine Off: 55 15 Total Eggine Time: 16 Take of		6 Aircraft Identification: PP-C9322
12 Airport of Departure (Airport, City/Province): 12 Airport 14 Engine Off: 15 Total Eggine Time: 16 Take of the off:		
14 Engine Off: 15 Total Engine Time: 16 Take of 18 Take of	tt of Arrival (Airport, Gty/Province):	
	off: 17 Landing:	18 Total Flight Time:
Surveyed 3 lines (with CASI)		
Approved by Acquisition Fight Certified by by Control Certified by by Control Certified by by the certified b	Placin command I	Lider Operator

rinted Name

Signature over

Sighature over Printed Nams (PAF Representative)

(End User Representative)

· Matu

Flight Log No.: 7/57 5 Aircraft Type: Cesnna T206H 6 Aircraft Identification: 99-34 ed Name 18 Total Flight Time: Lidar Opera 12 Airport of Arrival (Airport, City/Province): 17 Landing: wed Name Pilot-in-Cor RPLP - RPLP 4 Type: VFR 16 Take off: 700 Mission completed Conini & 2.15/2/1965089A & Const 3 Mission Name: 0089A 12 Airport of Departure (Airport, City/Province): 15 Total Engine Time: 4 + 29 Signature over Printed Name Holl 200 (PAF Representative) 9 Route: 1 LIDAR Operator: MUE TONGA 2 ALTM Model: 075/ 8 Co-Pilot: Ct ALTONSO 13+28 14 Engine Off: Acquisition Flight Approved by Signature over Printed Name (End User Representative) AUBREY MANRA **DREAM Data Acquisition Flight Log** Carlonal 21 Problems and Solutions: 3-30-14 7 Pilot: R.Shn BR 0745d 13 Engine On: 20 Remarks: 19 Weather 10 Date:

112

and Anna Anna	iv uso					-
LIDAR Operator: MUS 10M	2 ALTM Model: 051	3 Mission Name: 28LK/9	LOGO4 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification:	9382
Pilot: R. SAMBK 8	Co-Pilot: CS ALPONSO	9 Route:	KPLP - RFLF			
0 Date: 3 - 31-14	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):		
13 Engine On: 14	A Engine Off: G 4 32	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather	daudy			-		
0 Remarks:	,					
Surveyed	1 line Cwithour	CASI				
,	-					
21 Problems and Solutions:						
Acquisition Flight Appr	wed by Acq	Waition Flight Certified by	Pilot-in-Co	dem.	Inder Openador	
A. MATIRA	Name	BC On Field do	5. CA	WARD I	AND & TOPAN	
Signature over Printed (End User Representat	Name Sign twel (PA	F Representative)	Signature d	ver Printed Name	Agnature over r	amen pavin

÷

316	9322	Т	-	П	T			Г	 	
Flight Log No	6 Aircraft Identification: P-C		18 Total Flight Time:							`
	S Aircraft Type: CesnnaT206H	(Airport, City/Province):	17 Landing:							U.
	9004 Type: VFR	2 Airport of Arrival	5 Take off:			(ISI)				
	3 Mission Name: 28LK19L50 8 Route:	irport, City/Province): 1	15 Total Engine Time: 11			a lines (wigh				7
	ALTM Model: Gen TCAS	12 Airport of Departure (A	re off: + 37			ight; Surreyed				
on Flight Log	NUE TONOG 2	14	14 Engin	cloud		(Lessful \$1		olutions:		
EAM Data Acquisitic	Pilot: 0 Constor: A	Date: 3-31-	3 Engine On:	Weather	Remarks:	SWI		21 Problems and So		

ed Name

ited Name

Signature over Printed Name

A Mitthy A Signature over Primed Name (End User Representative)

(PAF Representative)

D N

114

	it log	2. KLK 19K075A			Flight Log No.:
UDAR Operator: MUE	TONOS 2 ALTM Model: Genr CAS	3 Mission Name: 2 RIX 191	S 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: R-C9322
Pilot: R. Samar L	8 Co-Pilot: CS alfonco Il	9 Route: 09	34		
0 Date: 4-3-14	12 Airport of Departure (Airport, City/Province):	12 Airport of Arrival	(Airport, Gty/Province):	
3 Engine On: (3 + 3.1	14 Engine Off: 124	15 Total Engine Time: 3 F 5 3	16 Take off:	17 Landing:	18 Total Flight Time:
9 Weather					
0 Remarks:					
	IW	csion Completed			
21 Problems and Solution	18:				
Acquisition Flight Anados A. MATIA Signature over Pri (End User Represe	Approved by Acquired by Acquir	isition Fight Certified by	Pliot-in-Con	Amful T	Lidar Operator MDE Ton And Suppliare over Printed Name

LiDAR Surveys and Flood Mapping of Donsol River

ъ.

Flight Log for 7167GC Mission

Flight Log No.: 7/68 5 Aircraft Type: CesnnaT206H 6 Aircraft Identification: AP -C9322 18 Total Flight Time: Signature over Printed Nan 6 95 Lidar Operal 12 Airport of Arrival (Airport, City/Province): 17 Landing: Inted Name Pilot-in-Con Signature on 1 LIDAR Operator: LK Paragues 2 ALTM Model: Em FCAS/3 Mission Name: 28LK/9L0994 4 Type: VFR 7 Pilot: R- Cannar II 8 Co-Pilot: C-Alganes III 9 Route: 10 Date: イッチ・ノイ 16 Take off: 15 Total Engine Time: 3429 MISSION Completed Signature over Printed Name 2000 (PAF Representative) 1123 14 Engine Off: Acquisition Flight Approved by Signature over Printed Name (End User Representative) **DREAM Data Acquisition Flight Log** A . MATIRA Conders-21 Problems and Solutions: 7+58 10 Date: 4 4 14 13 Engine On: 20 Remarks: 19 Weather

k

б.

Flight Log for 7171GC Mission	
Flight Log for 7171GC M	ission
Flight Log for 717	1GC M
Flight Log f	or 717
Fligh	t Log f
	Fligh

7.

÷

Flight Log No.: XX	Mission Name: 2.8.1.K.19.Mb9574 Type: VFR 5 Aircraft Type: Cesnna T206H 6 Aircraft Identification: 93.8.2 Boure:	port, Gty/Province): 12 Algort of Arrival (Alrport, Gty/Province):	5 Total Engine Time: 16 Take off: 17 Landing: 18 Total Flight Time:	n completed		Ion Flight Certified by Pilot in Commission Pilot in Commission Pilot in Commission Pilot in Contraction Pilot Pil
ai Q	5) 3 Mission Name: 2.80/K/G	ture (Airport, Gty/Province):	15 Total Engine Time: $2+59$	Icsibn complete		Acquisition Flight Confilled by
flight Log	Paragons 2 ALTM Model: (A) 8 Co-Pilot: (C ALTWISO	12 Airport of Depa	14 Engine Off:	NA INC.	rtions :	light Approved by 66470-
REAM Data Acquisition F	1 LIDAR Operator: LK	10 Date:	13 Engine On: 0 17 14 トロー	20 Remarks:	21 Problems and Solu	Acquisition F

∞.

7216		-		Т					
Flight Log No	antification: 9324		ht Time: -D3					1	For Prisoled Name
	6 Aircraft Id		18 Total Flig			(15			Lidar Operator
	5 Aircraft Type: Cesnna T206H	(Airport, City/Province):	17 Landing: 09 49 H			the CWITH CA.			CAMP IT
	A SIIS A TYPE: VFR	12 Airport of Arrival	16 Take off: 0 (1 2 8 H			Inding Voi			Pilot-in-Co
٩	3 Mission Name: 26447	(Airport, City/Province):	15 Total Engine Time:			ompleted inc	BLK19A		usylion Fight Certified by
Genini	2 ALTM Model: 055/	12 Airport of Departure	ine Off: 0944H			MISSION V			by Acc
AM Data Acquisition Flight Log	IDAR Operator: NAV TONAG	Date: 4-28-14	Engine On: MagH ar- 14 Eng	Weather	Remarks:			1 Problems and Solutions:	Acquisition Flight Approved Reaction Reaction Signature over Printed Name (End User Representative)

1

б.

		ş	b	4
				5
				•
	1	ŧ		ø
			t	2
		i		2
		1		ē
		1	2	
		i		
				P
		1		
				ŀ
		ł		
1	ė		Ľ	
			2	
	i			
			í	
1	5		i	
1	•	í	ş	
1	ę		ç	
1	i	ŝ	đ	
1			1	
1				
		1		
		1		
1			ł	

ht Log No .: 38/5	tation: 9022		:241				treic/ LEDAR Trechastician
Flig	6 Aircraft I dentif		18 Total Flight Ti				Arcraft Mech
	Aircraft Type: Cesnna 1206H	port, Gty/Prownce):	7tanding: 1233		Bik 19 k and 19L		unit the you
	4 Type: VFR 5	rport of Arrival (Al	Ne off:		21 Romaries Suneyed		2
	3 Mission Name: 2577	# Route: #rport, City/Province): 12 Au	5 Total Engine Time: 16Ta		0.c Others O LIDAR System Maintenance O Aircraft Maintenance O DREAM Admin Activities		d by Plot-th-Comman
st Log	N 2 ALTM Model: Semini	12 Airport of Departure (A	1 Engine Off:	Cloudy	20.b Non Billable O Aircraft Test Flight O AAC Admin Flight O Others:		Aquisition Fight Confile
D R E A M Data Acquisition Fligh	1 LiDAR Operator: J ALAMEA	10 Date: From Rey 8	13 Engine On: 14	19 Weather	20 Fight Classification 20.a Billable of Acquisition Fight o Ferry Flight o Calibration Fight	22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pliot Problem O Others:	Acquisition [Jught Approved by

Signiture over Printed Name MUC

ed Name

Suptimine over Printed Name

CARBOLLED6

NONOF

Vato

Signature over Printed Name [End User Representative]

Agnature over Printed Name (PME Representative)

		-		
			e	
	1	٠	e	
			e,	
	÷	÷	÷	
			2	
		9	9	۰
1	2	-	۰	
			٠	
			e.	
	ŝ		6	
			r	
			1	
	1	e)	ø	
			ę,	
			٩.	
			2	
			,	
	i	ń	÷	
	1			
	i		ŧ.	
	1		C	
1			٢	
	7	٦	e	
			ú	
	1		s	
	à		÷	
	1		E	
	1	e	1	
			ŝ	
1	ţ	5	5	
1	ć	5	í	
		5	5	
			5	
			5	
		5	5	
		2	i	
	1		5	

D R E A M Data Acquisition	r Flight Log				FEENLUE NO.: 3825
1 LIDAR Operator: MC R	EYES 2 ALTM Model: GemINI	3 Mission Name: 24 598	4 Type: VFR	5 Aircraft Type: Cesnna 7206H	6 Aircraft Identification: 902 2
7 Pilot: J MODIRY	a co-Pilet: D CORUPOL	9 Route:			
10 Date: Feb 28 2016	12 Airport of Departure	(Airport, Dity/Province): 1	2 Airport of Arrivat	(Airpon, City/Province):	
13 Engine Off: 14 30	14 Engine Off. 0	15 Total Engine Time: 1 $3 \neq I$	6Take of	1756	18 Total Flight Time: 3+0/
39 Weather	cloudy on some oweds				
20 Flight Classification			21 Remark		
20.a Billable	20.b Non Billable	20.c Others	SUMEYE	N BIK J9JS & EDM	e pauls of BILMPS
 Acquisition Fight Ferry Fight System Test Flight Calibration Flight 	 Aincraft Test Flight AAC Admin Flight Others: 	 UDAR System Maintena Aircraft Maintenance DREAM Admin Activitiei 	and the second s		
22 Problems and Solutions					
 Weather Problem System Problem 					
 Arcraft Problem Pilot Problem Others: 					
Acquisition Flight Approved I	Acquisition Flight Certi	Minth Minthe	puman	UDAN OPERATOR	Aircrait Mechanic/ LOAD Technisian
Signature core Printed Hame [End User Fepresentative]	Superior Control	billipo (Jeron/ Name Signature o	Messing or Printed Varie	ALL DAS	MA Separate over Printed Name

Annex 7. Flight status reports

FLIGHT STATUS REPORT ALBAY AND SORSOGON (March 26 – April 30, 2014 and February 24 – March 20, 2016)

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7156GC	BLK19E	2BLK19E088A	MVE TONGA	03-29-14	Surveyed 3 lines (with CASI)
7158GC	BLK19	2BLK19ES089A & 2BLK19G089A	MVE TONGA	03-30-14	Mission completed (with CASI)
7160GC	BLK19	2BLK19I90A	MVE TONGA	03-31-14	Surveyed 1 line (without CASI)
7161GC	BLK19	2BLK19IS090B	MVE TONGA	03-31-14	Surveyed 6 lines (with CASI)
7167GC	BLK19	2BLK19K093A & 2BLK10IS093A	MVE TONGA	04-03-14	Mission completed (with CASI)
7168GC	BLK19	2BLK19L094A	L. PARAGAS	04-04-14	Mission completed (with CASI)
7171GC	BLK19	2BLK19M095A	L. PARAGAS	04-05-14	Mission completed (with CASI)
7216GC	BLK19	2BLK19AS118A & VOIDS (BLK19Q)	MVE TONGA	04-28-14	Mission completed (with CASI)
3813G	BLK19IS & BLK19KS	2BLK19IS056B	M. REYES	02-25-16	SURVEYED BLK19IS AND HALF OF BLK19KS
3815G	BLK19KS & BLK19LS	2BLK19KLS057A	J. ALAMBAN	02-26-16	SURVEYED REST OF BLK19KS AND BLK19LS
3825G	BLK19JS & BLK19FS	2BLK19JFS059B	M. REYES	02-28-16	SURVEYED BLK19J AND SOME LINES OF BLK19FS

LAS/SWATH BOUNDARIES PER MISSION FLIGHT

Flight No. :7156 GCArea:BLK19EMission name:2BLK19E088AParameters:Altitude: 1100; Scan Frequency: 50; FOV: 40; Overlap: 35 %

Flight No. : Area: Mission name: Parameters: 7158 GC BLK19E AND BLK19G 2BLK19ES089A & 2BLK19G089A Altitude: 1100; Scan Frequency: 50; FOV: 40; Overlap: 35 %

Flight No. :7160 GCArea:BLK19IMission name:2BLK19IS090AParameters:Altitude: 1000; Scan Frequency: 50; FOV: 40; Overlap: 45 %

Flight No. :7161 GCArea:BLK19IMission name:2BLK19IS090BParameters:Altitude: 1000; Scan Frequency: 50; FOV: 40; Overlap: 45 %

Flight No. : Area: Mission name: Parameters: 7167 GC BLK19K AND BLK19I 2BLK19K093A & 2BLK19IS093B Altitude: 1000; Scan Frequency: 50; FOV: 40; Overlap: 40 %

Flight No. : Area: Mission name: Parameters: 7168 GC BLK19L BLK19L Altitude: 1100; Scan Frequency: 50; FOV: 40; Overlap: 40 %

Flight No. :7171 GCArea:BLK19MMission name:2BLK19M095AParameters:Altitude: 900; Scan Frequency: 50; FOV: 40; Overlap: 20 %

Flight No. :	7216 GC
Area:	BLK19A
Mission name:	2BLK19AS118A & VOIDS (BLK19Q)
Parameters:	Altitude: 1300; Scan Frequency: 50; FOV: 34 and 40; Overlap: 50 %

Flight No. :3813GArea:BLK19IS, BLK19KSMission Name:2BLK19IS056BParameters:Altitude: 650; Scan Frequency: 40; FOV: 50; Overlap: 40 %

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :3815GArea:BLK19KS, BLK19LSMission Name:2BLK19KLS057AParameters:Altitude: 900; Scan Frequency: 40; FOV: 50; Overlap: 40 %

Flight No. :3825GArea:BLK19JS, BLK19FSMission Name:2BLK19JFS059BParameters:Altitude: 650; Scan Frequency: 40; FOV: 50; Overlap: 40 %

Annex 8. Mission Summary Reports

Tapic A' 0.1 Mission Summary Report of Mission Dikis
--

Flight Area	Albay/Sorsogon
Mission Name	Blk 19I
Inclusive Flights	7160GC, 7161GC, 7167GC, 7213GC
Range data size	51.36 GB
POS	570.4 MB
Base data size	20.91 MB
Image	
Transfer date	April 29, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.95
RMSE for East Position (<4.0 cm)	2.13
RMSE for Down Position (<8.0 cm)	7.4
Boresight correction stdev (<0.001deg)	0.000140
IMU attitude correction stdev (<0.001deg)	N/A
GPS position stdev (<0.01m)	0.0058
Minimum % overlap (>25)	27.42 %
Ave point cloud density per sq.m. (>2.0)	3.00
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	479
Maximum Height	314.54 m
Minimum Height	53.68 m
Classification (# of points)	
Ground	161,483,905
Low vegetation	147,862,292
Medium vegetation	219,358,011
High vegetation	579,999,947
Building	6,587,455
Orthophoto	No
Processed by	Victoria Rejuso, Engr. Mark Joshua Salvacion, Engr. Elainne Lopez, Engr. Ma. Ailyn Olanda

Figure 1.1.1 Solution Status

Figure 1.1.2 Smoothed Performance Metric Parameters

Figure 1.1.3 Best Estimated Trajectory

Figure 1.1.4 Coverage of LiDAR data

Figure 1.1.5 Image of Data Overlap

Figure 1.1.6 Density Map

Figure 1.1.7 Elevation difference between flight lines

Flight Area	ALBAY/SORSOGON
Mission Name	Blk 19EG
Inclusive Flights	7156GC, 7158GC, 7216GC
Range data size	46.75 GB
POS	547.4 MB
Base data size	24.79 MB
Image	
Transfer date	April 29, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	7.0
RMSE for East Position (<4.0 cm)	2.1
RMSE for Down Position (<8.0 cm)	10.2
Boresight correction stdev (<0.001deg)	0.000224
IMU attitude correction stdev (<0.001deg)	0.001635
GPS position stdev (<0.01m)	0.0031
Minimum % overlap (>25)	30.62 %
Ave point cloud density per sq.m. (>2.0)	3.32
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	373
Maximum Height	447.71
Minimum Height	53.24
Classification (# of points)	
Ground	145,515,827
Low vegetation	130,178,426
Medium vegetation	147,064,919
High vegetation	462,980,087
Building	7,156,764
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Aljon Rie Araneta, Engr. Gladys Mae Apat

Table A-8.2 Mission Summary Report of Mission Blk19EG

Figure 1.2.1 Solution Status

Figure 1.2.2 Smoothed Performance Metric Parameters

Figure 1.2.3 Best Estimated Trajectory

Figure 1.2.4 Coverage of LiDAR data

Figure 1.2.5 Image of Data Overlap

Figure 1.2.6 Density Map

Figure 1.2.7 Elevation difference between flight lines

Flight Area	ALBAY/SORSOGON
Mission Name	Blk 19M
Inclusive Flights	7171GC
Range data size	14.5 GB
POS	166 MB
Base data size	11.6 MB
Image	
Transfer date	April 29, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	5.2
RMSE for East Position (<4.0 cm)	4.4
RMSE for Down Position (<8.0 cm)	22.5
Boresight correction stdev (<0.001deg)	0.000258
IMU attitude correction stdev (<0.001deg)	0.000456
GPS position stdev (<0.01m)	0.0067
Minimum % overlap (>25)	15.07 %
Ave point cloud density per sq.m. (>2.0)	2.09
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	165
Maximum Height	179.86
Minimum Height	52.66
Classification (# of points)	
Ground	40578668
Low vegetation	35563429
Medium vegetation	48648596
High vegetation	105602789
Building	2349495
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Chelou Prado, Engr. Krisha Marie Bautista

Table A-8.3 Mission Summary Report of Mission Blk19M

Figure 1.3.1 Solution Status

Figure 1.3.2 Smoothed Performance Metric Parameters

Figure 1.3.3 Best Estimated Trajectory

Figure 1.3.4 Coverage of LiDAR data

Figure 1.3.5 Image of Data Overlap

Figure 1.3.6 Density Map

Figure 1.3.7 Elevation difference between flight lines

Flight Area	ALBAY/SORSOGON
Mission Name	Blk 19M_Additional
Inclusive Flights	7171GC
Range data size	14.5 GB
POS	166 MB
Base data size	11.6 MB
Image	
Transfer date	April 29, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	5.2
RMSE for East Position (<4.0 cm)	4.4
RMSE for Down Position (<8.0 cm)	22.5
Boresight correction stdev (<0.001deg)	0.000258
IMU attitude correction stdev (<0.001deg)	0.000456
GPS position stdev (<0.01m)	0.0067
Minimum % overlap (>25)	13.70 %
Ave point cloud density per sq.m. (>2.0)	2.93
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	95
Maximum Height	179.81
Minimum Height	54.08
Classification (# of points)	
Ground	15934374
Low vegetation	13968667
Medium vegetation	20218656
High vegetation	68566425
Building	1117461
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Alex John Escobido

Table A-8.4 Mission Summary Report of Mission Blk19M_Additional

Figure 1.4.1 Solution Status

Figure 1.4.2 Smoothed Performance Metric Parameters

Figure 1.4.3 Best Estimated Trajectory

Figure 1.4.4 Coverage of LiDAR data

Figure 1.4.5 Image of Data Overlap

Figure 1.4.6 Density Map

Figure 1.4.7 Elevation difference between flight lines

Flight Area	ALBAY/SORSOGON
Mission Name	Blk 19L
Inclusive Flights	7168GC
Range data size	22.4 GB
POS	193 MB
Base data size	10.9 MB
Image	
Transfer date	April 29, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	7.7
RMSE for East Position (<4.0 cm)	10.6
RMSE for Down Position (<8.0 cm)	17.5
Boresight correction stdev (<0.001deg)	0.000200
IMU attitude correction stdev (<0.001deg)	0.001959
GPS position stdev (<0.01m)	0.0024
Minimum % overlap (>25)	21.81 %
Ave point cloud density per sq.m. (>2.0)	2.70
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	265
Maximum Height	238.97
Minimum Height	52.76
Classification (# of points)	
Ground	58020284
Low vegetation	46865776
Medium vegetation	84917293
High vegetation	266182218
Building	2788874
`Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Antonio Chua, Jr., Ailyn Biñas

Table A-8.5 Mission Summary Report of Mission Blk19L

Figure 1.5.1 Solution Status

Figure 1.5.2 Smoothed Performance Metric Parameters

Figure 1.5.3 Best Estimated Trajectory

Figure 1.5.4 Coverage of LiDAR data

Figure 1.5.5 Image of Data Overlap

Figure 1.5.6 Density Map

Figure 1.5.7 Elevation difference between flight lines

Flight Area	ALBAY/SORSOGON
Mission Name	Blk 19K
Inclusive Flights	7167GC
Range data size	25.5 GB
POS	222 MB
Base data size	7.6 MB
Image	
Transfer date	April 29, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.95
RMSE for East Position (<4.0 cm)	2.13
RMSE for Down Position (<8.0 cm)	7.4
Boresight correction stdev (<0.001deg)	0.000214
IMU attitude correction stdev (<0.001deg)	0.000503
GPS position stdev (<0.01m)	0.0076
Minimum % overlap (>25)	30.10 %
Ave point cloud density per sq.m. (>2.0)	3.01
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	308
Maximum Height	314.54
Minimum Height	54.37
Classification (# of points)	
Ground	95392016
Low vegetation	93507131
Medium vegetation	131188293
High vegetation	342412034
Building	3934510
Orthophoto	No
Processed by	Victoria Rejuso, Engr. Mark Joshua Salvacion, Engr. Krisha Marie Bautista

Table A-8.6 Mission Summary Report of Mission Blk19K

Figure 1.6.1 Solution Status

Figure 1.6.2 Smoothed Performance Metric Parameters

Figure 1.6.3 Best Estimated Trajectory

Figure 1.6.4 Coverage of LiDAR data

Figure 1.6.5 Image of Data Overlap

Figure 1.6.6 Density Map

Figure 1.6.7 Elevation difference between flight lines

Flight Area	Albay-Sorsogon Reflights
Mission Name	Blk 19Q
Inclusive Flights	3825G
Range data size	19.1 GB
POS data size	176 MB
Base data size	6.33 MB
Image	4.37 MB
Transfer date	March 21, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.925
RMSE for East Position (<4.0 cm)	1.005
RMSE for Down Position (<8.0 cm)	4.500
Boresight correction stdev (<0.001deg)	0.000491
IMU attitude correction stdev (<0.001deg)	0.002958
GPS position stdev (<0.01m)	0.0103
Minimum % overlap (>25)	47.44 %
Ave point cloud density per sq.m. (>2.0)	7.42
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	89
Maximum Height	224.93 m
Minimum Height	53.78 m
Classification (# of points)	
Ground	44,126,598
Low vegetation	26,703,296
Medium vegetation	147,927,046
High vegetation	2377,320,296
Building	320,912
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Chelou Prado, Engr. Krisha Marie Bautista

Table A-8.7 Mission Summary Report of Mission Blk19Q

Figure 1.7.1. Solution Status

Figure 1.7.2. Smoothed Performance Metric Parameters

Figure 1.7.3. Best Estimated Trajectory

Figure 1.7.4. Coverage of LiDAR Data

Figure 1.7.5. Image of data overlap

Figure 1.7.6. Density map of merged LiDAR data

Figure 1.7.7. Elevation difference between flight lines
Flight Area	Albay-Sorsogon Reflights
Mission Name	Blk 19L
Inclusive Flights	3815G
Range data size	22.1 GB
POS data size	209 MB
Base data size	7.02 MB
Image	51.6 MB
Transfer date	March 4, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.402
RMSE for East Position (<4.0 cm)	1.710
RMSE for Down Position (<8.0 cm)	3.345
Boresight correction stdev (<0.001deg)	0.000626
IMU attitude correction stdev (<0.001deg)	0.004092
GPS position stdev (<0.01m)	0.0161
Minimum % overlap (>25)	34.93 %
Ave point cloud density per sg.m. (>2.0)	6.60
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	103
Maximum Height	200.52 m
Minimum Height	53.21 m
Classification (# of points)	
Ground	33 363 169
	35,353,120
Medium vegetation	199 279 7/6
High vegetation	167 904 428
Building	1 115 952
	1,113,033
	Engr Jennifer Saguran Engr Velina An
Processed by	gela Bemida, Maria Tamsyn Malabanan, Ryan James Nicholai Dizon

Table A-8.8 Mission Summary Report of Mission Blk19L

Figure 1.8.1. Solution Status

Figure 1.8.2. Smoothed Performance Metric Parameters

Figure 1.8.3. Best Estimated Trajectory

Figure 1.8.4. Coverage of LiDAR Data

Figure 1.8.5. Image of data overlap

Figure 1.8.6. Density map of merged LiDAR data

Figure 1.8.7. Elevation difference between flight lines

Flight Area	Albay-Sorsogon Reflights
Mission Name	Blk 19I
Inclusive Flights	3813G
Range data size	26.8 GB
POS data size	202 MB
Base data size	5.61 MB
Image	66.8 MB
Transfer date	March 4, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.001
RMSE for East Position (<4.0 cm)	1.070
RMSE for Down Position (<8.0 cm)	2.090
Boresight correction stdev (<0.001deg)	0.002121
IMU attitude correction stdev (<0.001deg)	0.005422
GPS position stdev (<0.01m)	0.0020
Minimum % overlap (>25)	28.49 %
Ave point cloud density per sq.m. (>2.0)	6.18
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	154
Maximum Height	222.00 m
Minimum Height	53.88 m
Classification (# of points)	
Ground	37,487,618
Low vegetation	42,720,599
Medium vegetation	181,607,838
High vegetation	162,838,123
Building	825,908
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Velina Angela Bemida, Maria Tamsyn Malabanan

Table A-8.8 Mission Summary Report of Mission Blk19I

Figure 1.9.1. Solution Status

Figure 1.9.2. Smoothed Performance Metric Parameters

Figure 1.9.3. Best Estimated Trajectory

Figure 1.9.4. Coverage of LiDAR Data

Figure 1.9.5. Image of data overlap

Figure 1.9.6. Density map of merged LiDAR data

Figure 1.9.7. Elevation difference between flight lines

Flight Area	Albay-Sorsogon Reflights
Mission Name	Blk 19I_additional
Inclusive Flights	3813G
Range data size	26.8 GB
POS data size	202 MB
Base data size	5.61 MB
Image	66.8 MB
Transfer date	March 4, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.275
RMSE for East Position (<4.0 cm)	1.524
RMSE for Down Position (<8.0 cm)	3.333
Boresight correction stdev (<0.001deg)	0.000343
IMU attitude correction stdev (<0.001deg)	0.001725
GPS position stdev (<0.01m)	0.0017
Minimum % overlap (>25)	26.86 %
Ave point cloud density per sq.m. (>2.0)	6.01
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	134
Maximum Height	198.30 m
Minimum Height	53.71 m
Classification (# of points)	
Ground	35,301,737
Low vegetation	47,816,552
Medium vegetation	180,246,768
High vegetation	152,332,905
Building	761,702
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Jovelle Anjea- nette Canlas, Engr. Elainne Lopez

Table A-8.10 Mission Summary Report of Mission Blk19I_additional

Figure 1.10.1. Solution Status

Figure 1.10.2. Smoothed Performance Metric Parameters

Figure 1.10.3. Best Estimated Trajectory

Figure 1.10.4. Coverage of LiDAR Data

Figure 1.10.5. Image of data overlap

Figure 1.10.6. Density map of merged LiDAR data

Figure 1.10.7. Elevation difference between flight lines

Basin	Cul	rve Number Lo	S	Clark Unit Hy Transfo	drograph rm		Reces	sion Base flo	M	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (m3/s)	Recession Constant	Threshold Type	Ratio to Peak
W 200	2.035	000.66	0	14.391	7.07470	Discharge	11.2800	0.83080	Ratio to Peak	0.61468
W210	3.830	000.66	0	16.993	3.40960	Discharge	2.0475	1.00000	Ratio to Peak	1.00000
W 220	4.397	96.634	0	6.011	10.18100	Discharge	7.2599	1.00000	Ratio to Peak	1.00000
W230	4.424	93.625	0	0.167	3.19730	Discharge	1.8025	1.00000	Ratio to Peak	1.00000
W240	4.143	98.887	0	0.143	3.40000	Discharge	0.9872	1.00000	Ratio to Peak	1.00000
W250	4.411	98.940	0	0.017	8.52310	Discharge	1.6786	1.00000	Ratio to Peak	1.00000
W260	35.312	000.66	0	0.126	0.22431	Discharge	0.0018	0.66051	Ratio to Peak	1.00000
W270	3.951	92.808	0	0.165	2.32820	Discharge	0.4412	0.65398	Ratio to Peak	1.00000
W280	4.458	69.169	0	0.146	6.51440	Discharge	1.6715	1.00000	Ratio to Peak	0.46488
W 290	3.949	76.424	0	0.146	5.70260	Discharge	1.9126	0.66643	Ratio to Peak	0.96600
W300	4.048	94.064	0	0.147	9.57070	Discharge	1.7442	0.64027	Ratio to Peak	0.66667

ANNEX 9. Donsol Model Basin Parameters

	Ratio to Peak	1.00000	1.00000	0.32014	1.00000	0.96504	1.00000	1.00000	0.43045
Recession Base flow	Threshold Type	Ratio to Peak							
	Recession Constant	0.65863	1.00000	1.00000	1.00000	0.67898	0.95976	1.00000	0.68042
	Initial Discharge (m3/s)	0.4529	2.0103	0.1502	2.6756	1.9141	2.5278	5.6395	0.2029
	Initial Type	Discharge							
graph Transform	Storage Coefficient (HR)	3.97860	7.40240	5.71030	4.78960	4.49550	5.70840	7.80920	0.06637
Clark Unit Hydro	Time of Concentration (HR)	0.017	0.017	0.155	0.149	0.017	0.165	0.166	0.888
SS	Impervious (%)	0	0	0	0	0	0	0	0
Curve Number Los	Curve Number	86.762	64.251	000.66	72.742	71.903	75.111	76.628	92.138
	Initial Abstraction (mm)	2.756	4.324	1.322	4.108	5.988	4.022	3.622	4.784
Bacio	Number	W310	W320	W330	W340	W350	W360	W370	W380

	Side slope	1	1	1	1	1	1	1	1	1
	Width (m)	35.961	35.961	35.961	35.961	35.961	35.961	35.961	35.961	35.961
ß	Shape	Trapezoid								
m-Cunge Channel Routir	Manning's n	1.00000	0.48358	0.04033	0.25088	0.47604	0.00010	0.0793342	0.0023624	0.24468
Muskingu	Slope (m/m)	0.43297	0.21088	0.05785	0.10355	0.30433	0.00010	0.050017	0.0015498	0.10352
	Length (m)	2335.6	1910.5	38.3	2067.2	747.7	1044.0	3946.9	6420.7	560.62
	Time Step Method	Automatic Fixed Interval								
Reach	Number	R30	R60	R70	R100	R120	R130	R150	R180	R190

Annex 10. Donsol Model Reach Parameters

DONSOL						
ID	Latitude	Longitude	Depth			
1	12.90223	123.6187	0.5			
2	12.90235	123.6189	0.6			
3	12.9023	123.6191	0.7			
4	12.90274	123.6194	0.9			
5	12.90318	123.6196	0.5			
6	12.9059	123.622	0			
7	12.90714	123.6225	1			
8	12.9072	123.6225	0.6			
9	12.90742	123.6225	1.1			
10	12.90779	123.6227	1.3			
11	12.90884	123.6261	1.7			
12	12.90896	123.6262	0			
13	12.90948	123.6294	1.65			
14	12.90931	123.6306	1.6			
15	12.90923	123.6304	1.3			
16	12.91006	123.6323	1.35			
17	12.9111	123.6333	2.9			
18	12.91399	123.6392	3.07			
19	12.9146	123.6405	3			
20	12.91569	123.6414	2.967			
21	12.91565	123.6413	3.36			
22	12.91751	123.6455	1			
23	12.91739	123.6454	2.2			
24	12.91827	123.6495	0.4			
25	12.90096	123.6162	0.8			
26	12.90081	123.6157	0.1			
27	12.90105	123.6146	0.1			
28	12.90148	123.6124	0.23			
29	12.90018	123.6159	0.92			
30	12.89782	123.6308	0			
31	12.89795	123.631	0.25			
32	12.90043	123.6158	0.58			
33	12.90009	123.6158	0.75			
34	12.89979	123.6162	1.17			
35	12.89931	123.6167	0.36			
36	12.89916	123.617	0			
37	12.90043	123.6166	0.8			
38	12.89893	123.617	0			
39	12.89871	123.617	1.15			
40	12.89872	123.619	0.78			
41	12.89865	123.6189	0.54			

Annex 11. Donsol Floodplain Field Validation Points

DONSOL						
ID	Latitude	Longitude	Depth			
42	12.89873	123.6192	0.49			
43	12.89878	123.6191	1.27			
44	12.89865	123.6194	0.2			
45	12.89846	123.6197	0.15			
46	12.89845	123.6199	1.07			
47	12.89835	123.6204	0.7			
48	12.89811	123.6208	1.35			
49	12.8979	123.6212	0.8			
50	12.8985	123.6215	0.6			
51	12.89813	123.6236	0			
52	12.89839	123.6238	0.4			
53	12.89839	123.6246	0.98			
54	12.89831	123.6249	0.98			
55	12.89812	123.6267	0.54			
56	12.89758	123.6282	0.8			
57	12.89749	123.631	0			
58	12.89581	123.6339	0.57			
59	12.89546	123.6343	0.56			
60	12.89443	123.6362	0.48			
61	12.8941	123.6364	0.45			
62	12.89798	123.6385	0.25			
63	12.89814	123.6387	0.32			
64	12.89812	123.6388	0.4			
65	12.90126	123.6438	0			
65	12.90123	123.6438	0			
66	12.90127	123.6441	0			
67	12.90255	123.6459	0			
68	12.91337	123.6487	0			
69	12.92347	123.6561	0.5			
70	12.92359	123.6561	0.95			
71	12.91726	123.6557	0			
72	12.90092	123.6162	0.5			
73	12.90025	123.617	0.8			
74	12.90025	123.6168	1.2			
75	12.89988	123.6179	0.5			
76	12.89929	123.6201	0.5			
77	12.899	123.6211	0.6			
78	12.89893	123.6213	0.6			
79	12.89838	123.6241	0.8			
80	12.89799	123.6312	2			
81	12.90249	123.619	0.8			
82	12.90235	123.619	0.5			
83	12.90408	123.6211	1.5			

DONSOL					
ID	Latitude	Longitude	Depth		
84	12.90416	123.621	0.5		
85	12.90709	123.6225	0.1		
86	12.90708	123.6226	0.8		
87	12.90739	123.6227	0.5		
88	12.90743	123.6225	1		
89	12.90806	123.623	0.5		
90	12.90896	123.6296	2		
91	12.90899	123.6296	0.5		
92	12.90919	123.6308	1		
93	12.91108	123.633	2		
94	12.91101	123.633	2		
95	12.9113	123.6341	2.5		
96	12.91261	123.6367	1		
97	12.91277	123.6368	1		
98	12.91372	123.6383	5		
99	12.91372	123.6383	3		
100	12.9137	123.6382	2		
101	12.91637	123.6415	2.5		
102	12.91714	123.6438	2		
103	12.91742	123.6456	0.8		
104	12.91734	123.6458	3		
105	12.91735	123.6459	5		
106	12.91899	123.6509	0.5		
107	12.91949	123.6513	0.5		
108	12.96173	123.6749	0.5		
109	12.96146	123.6748	0.5		
110	12.95935	123.6737	2		
111	12.9594	123.6736	2		
112	12.95922	123.6733	2		
113	12.95921	123.6733	2		
114	12.95856	123.6726	3		
115	12.95846	123.6726	3		
116	12.95845	123.6726	4		
117	12.95843	123.6726	3		
118	12.95843	123.6726	4		
119	12.95585	123.6731	1.5		
120	12.95582	123.6732	1.7		
121	12.95579	123.6732	1.7		
122	12.95454	123.6735	2.5		
123	12.95439	123.6736	2.3		
124	12.95384	123.6741	2		
125	12.95376	123.6742	2		
126	12.95375	123.6742	2		

DONSOL					
ID	Latitude	Longitude	Depth		
127	12.95365	123.6742	1.5		
128	12.9528	123.675	2		
129	12.95278	123.675	1.5		
130	12.95286	123.6751	2		
131	12.95273	123.6752	3		
132	12.95203	123.6761	2		
133	12.95204	123.6762	2		
134	12.95105	123.6768	1.3		
135	12.95078	123.6766	1.3		
136	12.94986	123.6757	1.5		
137	12.94992	123.6758	1.5		
138	12.94918	123.6748	1.2		
139	12.9492	123.6748	2		
140	12.94917	123.6749	1		
141	12.93584	123.669	0.5		
142	12.93584	123.669	1		
143	12.93574	123.6688	1		
144	12.97412	123.6489	2.5		
145	12.96141	123.6747	1		
146	12.95923	123.6732	1.5		
147	12.95915	123.6731	2		
148	12.95895	123.6729	2		
149	12.95884	123.6728	2		
150	12.9586	123.6727	2.2		
151	12.95845	123.6725	1.8		
152	12.95666	123.6413	2		
153	12.95649	123.6414	2		
154	12.95636	123.6414	1.5		
155	12.95626	123.6414	0.5		
156	12.95658	123.6414	2		
157	12.95655	123.6415	3		
158	12.95687	123.6411	0.5		
159	12.95685	123.6409	3		
160	12.95687	123.6408	2		
161	12.95523	123.6437	0.5		
162	12.95542	123.6436	0.5		
163	12.95544	123.6462	0.5		
164	12.95545	123.6465	0.2		
165	12.95587	123.6533	1		
166	12.9558	123.6534	0.8		
167	12.95539	123.6543	1		
168	12.95547	123.6545	0.2		
169	12.95572	123.6546	0.1		

DONSOL						
ID	Latitude	Longitude	Depth			
170	12.95596	123.6547	0.1			
171	12.9548	123.6576	0.1			
172	12.95391	123.6622	0.1			
173	12.95417	123.6623	0.1			
174	12.95427	123.6645	0.1			
175	12.95424	123.6646	0.5			
176	12.95344	123.6689	0.2			
177	12.95201	123.6709	0.1			
178	12.95205	123.671	0.1			
179	12.95287	123.6738	0.5			
180	12.94108	123.6728	0.1			
181	12.94102	123.6728	0.1			
182	12.94106	123.6727	0.1			
183	12.94018	123.6726	1			
184	12.94006	123.6726	1			
185	12.94	123.6726	1			
186	12.93288	123.6665	1			
187	12.93276	123.6665	1.2			
188	12.93267	123.6663	1.2			
189	12.92947	123.666	0.5			
190	12.92927	123.6661	0.8			
191	12.92914	123.6661	0.9			
192	12.89674	123.6322	3			
193	12.89673	123.6323	3			
194	12.8957	123.6339	0.5			
195	12.89576	123.6338	0.5			
196	12.89554	123.6342	0.5			

ALBAY							
Daraga							
Nome	Barangay	R	ainfall Scena	rio			
Name		5-YR	25-YR	100-YR			
Bigay Elementary School	Bigao						
Lourdes Elementary School	Bigao						
Nabasan Elementary School	Nabasan						
San Ramon Elementary School	San Ramon						
San Ramon Multipurpose Day Care	San Ramon						
San Vicente Grande High School	San Vicente Grande						
	Jovellar						
Norma	Deveneeu	Rainfall Scenario					
Name	Barangay	5-YR	25-YR	100-YR			
Del Rosario Elementary School	Del Rosario						
San isidro Elementary School	Del Rosario						
San Isidro National High School	Del Rosario						

Annex 12. Educational Institutions Affected in Donsol Floodplain

SORSOGON Donsol					
					Name
5-YR	25-YR	100-YR			
Banuang Gurang Day Care Center	Banuang Gurang	High	High	High	
Baras Elementary School	Banuang Gurang			Medium	
Alin Day Care Center	Baras	Low	Low	Medium	
Alin Elementary School	Baras	Medium	High	High	
Cristo Elementary School	Bayawas				
Bamban Elementary school	De Vera	Medium	Medium	Medium	
Bamban Elementary School	De Vera	Medium	Medium	Medium	
Daycare Brgy Bamban	De Vera	Medium	Medium	Medium	
Bayawas Elementary School	Gura				
Gura Elementary School	Gura				
Mabini Day Care Center	Mabini		Low	Low	
Mabini Elementary School	Mabini				
Nagalon Elementary School San Vicente	Mabini				
Ogod Daycare Center	Ogod			Low	
San Antoio Elementary School	San Antonio				
San Vicente Elementary School	San Vicente				
Tongdol Daycare Center	San Vicente				
Tungdol Elementary School	San Vicente				
DSWD Sevilla Day Care Center	Sevilla				
Sevilla Elementary School	Sevilla				

SORSOGON				
Pilar				
Name	Barangay	Rainfall Scenario		
		5-YR	25-YR	100-YR
Cogdongon Elementary School	Abucay			
Day Care Center Cagdongon	Abucay			
Lipason Elementary School	Abucay			
Abucay Elementary School	Cabiguan	Low	Medium	Medium
Abucay National High School	Cabiguan			
Calongay Elementary School	Calongay			
Cabiguan Elementary School	Catamlangan	Medium	Medium	High
Catamlangan Elementary School	Catamlangan	Medium	Medium	High
Leona Elementary School	Catamlangan			
Migabod Elementary School	Catamlangan			
Abucay National High School	Leona			
Mabanate Elementary School	Mabanate	Medium	High	High
MM2P Learning Center and SMMG(closed)(clinic)	Marifosque			
Leona Elementary School	San Antonio			
Pinagsalog Elementary School	San Antonio			
San Antonio or Millabas	San Antonio			

Annex 13. Medical Institutions Affected in Donsol Floodpla	ain
--	-----

ALBAY				
Daraga				
Name	Barangay	Rainfall Scenario		
		5-YR	25-YR	100-YR
Barangay Health Station	San Vicente Grande			
Jovellar				
Name	Barangay	Rainfall Scenario		
		5-YR	25-YR	100-YR
Brgy Del Rosario Health Center	Del Rosario			

SORSOGON					
Donsol					
Name	Barangay	Rainfall Scenario			
		5-YR	25-YR	100-YR	
Baras Barangay Health Center	Banuang Gurang		High	High	
Brgy Alin Health Center	Baras	Medium	High	High	
Barangay Cristo Health Center	Bayawas				
Healthcare Center	De Vera	Medium	Medium	Medium	
Mabini Health Center	Mabini				
Brgy Health Center	Sevilla				
Jovellar					
Name	Barangay	Rainfall Scenario			
		5-YR	25-YR	100-YR	
Lipason Health Center	Abucay				
Intergrated Health Center	Cabiguan				
Intervida Health Facility	Cabiguan				
Health Center Mabanate	San Jose	Medium	High	High	