HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Basud River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Ateneo de Naga University

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and Ateneo de Naga University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grant-in-Aid Program and is to be cited as:

E.C. Paringit and J.C. Plopenio (eds.) (2017), LiDAR Surveys and Flood Mapping of Basud River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-215pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Ms. Joanaviva C. Plopenio

Project Leader, Phil-LiDAR 1 Program Ateneo de Naga University Naga City, Philippines 4400 E-mail: inecar@gbox.adnu.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-971-9695-60-8

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	V
LIST OF FIGURES	VII
LIST OF ACRONYMS AND ABBREVIATIONS	Х
CHAPTER1:OVERVIEWOFTHEPROGRAMANDDAET-BASUDRIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Basud River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE DAET-BASUD FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2 3 Elight Missions.	11
2.4 Survey Coverage	
CHAPTER 3. LIDAR DATA PROCESSING FOR BASUD FLOODPLAIN	15
3 1 Overview of the LiDAR Data Pre-Processing	15
3.2 Transmittal of Acquired LiDAR Data	16
3.2 Traiscrary Computation	10 16
2.4 LiDAP Doint Cloud Computation	10 10
2.5 LiDAR Point Cloud Computation	10 10
2.6 LiDAR Data Quality Checking	
3.0 LIDAR POINT CIOUU CIdSSINCATION dhu Rasterization	23
3.7 LIDAR Image Processing and Orthopholograph Rectification	25
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	28
3.10 Calibration and Validation of Mosaicked LIDAR DEM.	30
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	33
3.12 Feature Extraction	35
3.12.1 Quality Checking of Digitized Features' Boundary	35
3.12.2 Height Extraction	36
3.12.3 Feature Attribution	36
3.12.4 Final Quality Checking of Extracted Features	38
CULARTER A, LIRAR VALUEATION CURVEY AND MEACUREMENTS OF THE RACIUS DIVER RACIN	20
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BASUD RIVER BASIN	
4.1 Summary of Activities	
4.1 Summary of Activities	39
4.1 Summary of Activities	39 40 45
4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment	
 4.1 Summary of Activities	39 40 45 45 45
 4.1 Summary of Activities	39 40 45 45 45 48 52
 4.1 Summary of Activities	39 40 45 45 45 45 52 54
 4.1 Summary of Activities	39 40 45 45 45 52 54 57
 4.1 Summary of Activities	39 40 45 45 45 52 57 57
 4.1 Summary of Activities	39 39 40 45 45 45 52 57 57 57
 4.1 Summary of Activities	39 39 40 45 45 52 57 57 57
 4.1 Summary of Activities	39 39 40 45 45 52 57 57 57 57
 4.1 Summary of Activities	
 4.1 Summary of Activities	39 39 39 40 45 45 52 57 57 57 57 57 57 57 57 57 57 57 61 66 67 68 70 70
 4.1 Summary of Activities	
 CHAPTER 4: LIDAR VALIDATION SORVEY AND MEASUREMENTS OF THE BASOD RIVER BASIN 4.1 Summary of Activities	
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BASUD RIVER BASIN 4.1 Summary of Activities	
 4.1 Summary of Activities	
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BASUD RIVER BASIN 4.1 Summary of Activities	
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BASOD RIVER BASIN 4.1 Summary of Activities	

Α	ANNEX 5. Data Transfer Sheet for Daet-Basud Floodplain Flightsts	130
Α	ANNEX 6. Flight logs for the flight missions	133
Α	ANNEX 7. Flight status reports	142
Α	ANNEX 8. Mission Summary Report	151
Α	ANNEX 9. Basud Model Basin Parameters	
Α	ANNEX 10. Basud Model Reach Parameters	
Α	ANNEX 11. Basud Field Validation Points	
A	ANNEX 12. Educational Institutions Affected by flooding in Basud Floodplain	203
A	ANNEX 13. Health Institutions affected by flooding in Basudl Floodplain	205

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR system Table 2. Details of the recovered NAMRIA horizontal control point CMN-33 used as base station	3
for the LiDAR acquisition Table 3. Details of the recovered NAMRIA Benchmark CN-211 with processed coordinates	7
Table 4. Details of the recovered NAMRIA horizontal control point CMN-29 used as base station	8
Table 5. Details of the established control point CMN-J2 with processed coordinates	9
Table 6. Details of the recovered NAMRIA Benchmark CM-198 with processed coordinates used as base station for the LiDAR acquisition	10
Table 7. Details of the established control point DENR with processed coordinatesused as base station for the LiDAR acquisition	10
Table 8. Ground control points used during LiDAR data acquisition	11
Table 9. Flight missions for LiDAR data acquisition in Daet-Basud floodplain	12
Table 10. Actual parameters used during LiDAR data acquisition	12
Table 11. List of Municipalities/Cities Surveyed during Daet-Basud floodplain LiDAR survey	13
Table 12. Self-Calibration Results values for Basud flights	18
Table 13. List of LiDAR blocks for Basud floodplain	19
Table 14. Basud classification results in TerraScan	23
Table 15. LIDAR blocks with its corresponding area	27
Table 16. Snift Values of each LIDAR BIOCK of Basud floodplain	
Table 17. Calibration Statistical Measures	
Table 18. Validation Statistical Measures	
Table 19. Quality Checking Ratings for Basud Bunding Federation.	
Table 20. Building Fedules Extracted Poads for Pasud Floodplain	
Table 21. Number of Extracted Water Bodies for Basud Floodplain	
Table 22. Number of Extracted Water Doules for Basud Houppaning and the second se	/12
Table 73 List of Reference and Control Points occupied for Basild River Survey	
Table 23. List of Reference and Control Points occupied for Basud River Survey	45
Table 23. List of Reference and Control Points occupied for Basud River Survey Table 24. Baseline Processing Summary Report for Basud River Survey Table 25. Control Point Constraints	45
Table 23. List of Reference and Control Points occupied for Basud River Survey Table 24. Baseline Processing Summary Report for Basud River Survey Table 25. Control Point Constraints Table 26. Adjusted Grid Coordinates	45
Table 23. List of Reference and Control Points occupied for Basud River Survey Table 24. Baseline Processing Summary Report for Basud River Survey Table 25. Control Point Constraints Table 26. Adjusted Grid Coordinates Table 27. Adjusted Geodetic Coordinates	45 46 46 47
Table 23. List of Reference and Control Points occupied for Basud River Survey Table 24. Baseline Processing Summary Report for Basud River Survey Table 25. Control Point Constraints Table 26. Adjusted Grid Coordinates Table 27. Adjusted Geodetic Coordinates Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	45 46 46 47
Table 23. List of Reference and Control Points occupied for Basud River Survey Table 24. Baseline Processing Summary Report for Basud River Survey Table 25. Control Point Constraints Table 26. Adjusted Grid Coordinates Table 27. Adjusted Geodetic Coordinates Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP) Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA	45 46 46 47 47 59
Table 23. List of Reference and Control Points occupied for Basud River Survey Table 24. Baseline Processing Summary Report for Basud River Survey Table 25. Control Point Constraints Table 26. Adjusted Grid Coordinates Table 27. Adjusted Geodetic Coordinates Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP) Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA Table 30. Range of calibrated values for the Donsol River Basin	45 46 46 47 47 59 68
Table 23. List of Reference and Control Points occupied for Basud River SurveyTable 24. Baseline Processing Summary Report for Basud River SurveyTable 25. Control Point ConstraintsTable 26. Adjusted Grid CoordinatesTable 27. Adjusted Geodetic CoordinatesTable 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)Table 29. RIDF values for Donsol Rain Gauge computed by PAGASATable 30. Range of calibrated values for the Donsol River BasinTable 31. Summary of the Efficiency Test of Basud HMS Model	45 46 46 47 47 59 68 69
Table 23. List of Reference and Control Points occupied for Basud River SurveyTable 24. Baseline Processing Summary Report for Basud River SurveyTable 25. Control Point ConstraintsTable 26. Adjusted Grid CoordinatesTable 27. Adjusted Geodetic CoordinatesTable 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)Table 29. RIDF values for Donsol Rain Gauge computed by PAGASATable 30. Range of calibrated values for the Donsol River BasinTable 31. Summary of the Efficiency Test of Basud HMS ModelTable 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values	45 46 47 47 47 59 68 69 69
Table 23. List of Reference and Control Points occupied for Basud River SurveyTable 24. Baseline Processing Summary Report for Basud River SurveyTable 25. Control Point ConstraintsTable 26. Adjusted Grid CoordinatesTable 27. Adjusted Geodetic CoordinatesTable 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)Table 29. RIDF values for Donsol Rain Gauge computed by PAGASATable 30. Range of calibrated values for the Donsol River BasinTable 31. Summary of the Efficiency Test of Basud HMS ModelTable 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour valuesTable 33. Municipalities affected in Donsol flood plain	45 46 47 47 59 68 69 70 72
Table 23. List of Reference and Control Points occupied for Basud River SurveyTable 24. Baseline Processing Summary Report for Basud River SurveyTable 25. Control Point ConstraintsTable 26. Adjusted Grid CoordinatesTable 27. Adjusted Geodetic CoordinatesTable 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)Table 29. RIDF values for Donsol Rain Gauge computed by PAGASATable 30. Range of calibrated values for the Donsol River BasinTable 31. Summary of the Efficiency Test of Basud HMS ModelTable 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour valuesTable 33. Municipalities affected in Donsol flood plainTable 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period	45 46 47 47 59 68 69 69 70 72 81
Table 23. List of Reference and Control Points occupied for Basud River SurveyTable 24. Baseline Processing Summary Report for Basud River SurveyTable 25. Control Point ConstraintsTable 26. Adjusted Grid CoordinatesTable 27. Adjusted Geodetic CoordinatesTable 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)Table 29. RIDF values for Donsol Rain Gauge computed by PAGASATable 30. Range of calibrated values for the Donsol River BasinTable 31. Summary of the Efficiency Test of Basud HMS ModelTable 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour valuesTable 33. Municipalities affected in Donsol flood plainTable 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return PeriodTable 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period	45 46 47 47 59 68 69 70 72 81 81
Table 23. List of Reference and Control Points occupied for Basud River SurveyTable 24. Baseline Processing Summary Report for Basud River SurveyTable 25. Control Point ConstraintsTable 26. Adjusted Grid CoordinatesTable 27. Adjusted Geodetic CoordinatesTable 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)Table 29. RIDF values for Donsol Rain Gauge computed by PAGASATable 30. Range of calibrated values for the Donsol River BasinTable 31. Summary of the Efficiency Test of Basud HMS ModelTable 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour valuesTable 33. Municipalities affected in Donsol flood plainTable 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return PeriodTable 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period	45 46 47 47 59 68 69 70 70 72 81 81 82
Table 23. List of Reference and Control Points occupied for Basud River SurveyTable 24. Baseline Processing Summary Report for Basud River Survey	45 46 47 47 59 68 69 70 70 72 81 81 82 84
Table 23. List of Reference and Control Points occupied for Basud River Survey.Table 24. Baseline Processing Summary Report for Basud River Survey.Table 25. Control Point Constraints.Table 26. Adjusted Grid Coordinates.Table 27. Adjusted Geodetic Coordinates.Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP).Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA.Table 30. Range of calibrated values for the Donsol River Basin.Table 31. Summary of the Efficiency Test of Basud HMS Model.Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values.Table 33. Municipalities affected in Donsol flood plain.Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 36. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.	45 46 47 59 68 69 70 72 81 81 81 82 84 84
Table 23. List of Reference and Control Points occupied for Basud River Survey.Table 24. Baseline Processing Summary Report for Basud River Survey.Table 25. Control Point Constraints.Table 26. Adjusted Grid Coordinates.Table 27. Adjusted Geodetic Coordinates.Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP).Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA.Table 30. Range of calibrated values for the Donsol River Basin.Table 31. Summary of the Efficiency Test of Basud HMS Model.Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values.Table 33. Municipalities affected in Donsol flood plain.Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.	45 46 47 47 59 70 70 72 81 81 81 82 84 84
Table 23. List of Reference and Control Points occupied for Basud River Survey.Table 24. Baseline Processing Summary Report for Basud River Survey.Table 25. Control Point Constraints.Table 26. Adjusted Grid Coordinates.Table 27. Adjusted Geodetic Coordinates.Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP).Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA.Table 30. Range of calibrated values for the Donsol River Basin.Table 31. Summary of the Efficiency Test of Basud HMS Model.Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values.Table 33. Municipalities affected in Donsol flood plain.Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte duri	45 46 47 47 59 70 72 81 81 81 82 84 84 86
Table 23. List of Reference and Control Points occupied for Basud River Survey	45 46 47 59 68 69 70 72 81 81 81 82 84 86 86
Table 23. List of Reference and Control Points occupied for Basud River Survey.Table 24. Baseline Processing Summary Report for Basud River Survey.Table 25. Control Point Constraints.Table 26. Adjusted Grid Coordinates.Table 27. Adjusted Geodetic Coordinates.Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP).Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA.Table 30. Range of calibrated values for the Donsol River Basin.Table 31. Summary of the Efficiency Test of Basud HMS Model.Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values.Table 33. Municipalities affected in Donsol flood plain.Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 40. Affected Areas in Mercedes, Camarines Norte duri	45 46 47 59 70 72 81 81 81 84 84 86 88
Table 23. List of Reference and Control Points occupied for Basud River Survey	45 46 47 59 70 72 81 81 84 84 84 86 88 89
Table 25. List of Reference and Control Points occupied for Basud River Survey.Table 24. Baseline Processing Summary Report for Basud River Survey.Table 25. Control Point Constraints.Table 26. Adjusted Grid Coordinates.Table 27. Adjusted Geodetic Coordinates.Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP).Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA.Table 30. Range of calibrated values for the Donsol River Basin.Table 31. Summary of the Efficiency Test of Basud HMS Model.Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values.Table 33. Municipalities affected in Donsol flood plain.Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 30. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period.Table 40. Affected Areas in San Lorenzo Ruiz, Camarine	45 46 47 59 68 69 70 72 81 81 81 82 84 86 88 88 89 91
Table 23. List of Reference and Control Points Occupied for Basud River Survey.Table 24. Baseline Processing Summary Report for Basud River Survey.Table 25. Control Point Constraints.Table 26. Adjusted Grid Coordinates.Table 27. Adjusted Geodetic Coordinates.Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP).Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA.Table 30. Range of calibrated values for the Donsol River Basin.Table 31. Summary of the Efficiency Test of Basud HMS Model.Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values.Table 33. Municipalities affected in Donsol flood plain.Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period.Table 40. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period.Table 41. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 5-Year Rainfall Return Period.Table 42. Affected Areas in Talisay, Camarines Norte during the 5-Year Rainfall Return Period.Table 43. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 5-Year Rainfall Return Period.Table 44. Affected	45 46 47 59 68 69 70 72 81 81 81 81 81 82 84 86 86 88 91 91
Table 23. List of Reference and Control Points occupied for Basud River Survey	45 46 47 59 68 69 70 72 81 81 81 81 84 86 88 88 88 91 94
Table 23. List of Reference and Control Points occupied for Basud River Survey.Table 24. Baseline Processing Summary Report for Basud River Survey.Table 25. Control Point Constraints.Table 25. Adjusted Grid Coordinates.Table 27. Adjusted Geodetic Coordinates.Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP).Table 30. Range of calibrated values for the Donsol River Basin.Table 31. Summary of the Efficiency Test of Basud HMS Model.Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values.Table 33. Municipalities affected in Donsol flood plain.Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 36. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period.Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period.Table 39. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period.Table 40. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 5-Year Rainfall Return Period.Table 41. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 5-Year Rainfall Return Period.Table 42. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 5-Year Rainfall Return Period.Table 43. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 5-Year Rainfall Return Period.Table 44. Affected Areas in San Vicente, Camarines Norte during the 5-Year Rainfall	45 46 47 59 68 69 70 72 81 81 81 84 84 88 88 88 89 91 94 94 95
Table 23. List of Reference and Control Points occupied for Basud River Survey	45 46 47 59 70 72 81 81 84 84 84 86 88 89 91 94 94 94 97
Table 23. List of Reference and Control Points occupied for Basud River Survey	45 46 47 59 68 69 70 72 81 81 81 81 81 82 84 86 86 91 91 94 95 97 97
Table 23. List of Reference and Control Points occupied for Basud River Survey. Table 24. Baseline Processing Summary Report for Basud River Survey. Table 25. Control Point Constraints. Table 25. Control Point Constraints. Table 25. Adjusted Grid Coordinates. Table 27. Adjusted Geodetic Coordinates. Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP) Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA. Table 31. Summary of the Efficiency Test of Basud HMS Model. Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values. Table 33. Municipalities affected in Donsol flood plain. Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period. Table 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period. Table 36. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period. Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period. Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period. Table 39. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period. Table 39. Affected Areas in Marcedes, Camarines Norte during the 5-Year Rainfall Return Period. Table 39. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return P	45 46 47 59 68 69 70 72 81 81 81 81 81 81 84 86 86 86 91 94 91 97 97 97 97

Table 41. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the	101
25-Year Rainfall Return Period	
Table 42. Affected Areas in San Vicente, Camarines Norte during the 25-Year Rainfall Return Period?	102
Table 43. Affected Areas in Talisay, Camarines Norte during the 25-Year Rainfall Return Period	104
Table 54. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period	107
Table 55. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period	107
Table 56. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period	108
Table 57. Affected Areas in Daet, Camarines Norte during the 100-Year Rainfall Return Period1	110
Table 58. Affected Areas in Daet, Camarines Norte during the 100-Year Rainfall Return Period1	110
Table 59. Affected Areas in Mercedes, Camarines Norte during the 100-Year Rainfall Return Period?	112
Table 60. Affected Areas in Mercedes, Camarines Norte during the 100-Year Rainfall Return Period?	112
Table 61. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the	114
100-Year Rainfall Return Perio	
Table 62. Affected Areas in San Vicente, Camarines Norte during the 100-Year Rainfall Return Period	115
Table 63. Affected Areas in Talisay, Camarines Norte during the 100-Year Rainfall Return Period	117
Table 64. Actual flood vs simulated flood depth at differnent levels in the Basud River Basin	120

LIST OF FIGURES

Figure 4. Location Man of the Doot Doord Diver Dooin (in heaver)	2
Figure 1. Location Map of the Daet-Basud River Basin (in brown)	2
Figure 2. Flight plans and base stations for Daet-Basud floodplain	4
Figure 3. GPS set-up over CMN-33 at Barangay Batobalani, Jose Panganiban, Camarines Norte (a)	6
and NAMRIA reference point CMN-33 (b) as recovered by the field team	
Figure 4. GPS set-up over CN-211 at Barangay Malacbang, Paracale, Camarines Norte (a)	7
and NAMRIA reference point CN-211 (b) as recovered by the field team	
Figure 5. GPS set-up over CMN-29 at Barangay Malibago, Daet-Basud, Camarines Norte (a)	8
and NAMRIA reference point CMN-29 (b) as recovered by the field team	
Figure 6. GPS set-up over CMN-J2 at Barangay Malibago, Daet-Basud, Camarines Norte (a)	9
and ground control point CMN-J2 (b) as established by the field team	
Figure 7. Actual LiDAR survey coverage for Daet-Basud floodplain	14
Figure 8.Schematic Diagram for Data Pre-Processing Component	15
Figure 9. Smoothed Performance Metric Parameters of a Basud Flight 23182P.	16
Figure 10 Solution Status Parameters of Basud Elight 23182P	17
Figure 11 Best Estimated Trajectory for Basud floodplain	18
Figure 12 Boundary of the processed LiDAR data over Basud Floodalain	10
Figure 12. Image of data overlap for Basud floodplain	20
Figure 14. Density man of morged LiDAR data for Pacud floodplain	20 21
Figure 14. Density map of mergeu LiDAN data for Dasud noouplain	21 22
Figure 15. Elevation underence map between night lines for basuu nooupidin	22
Figure 16. Quality checking for a Basud flight 23182P using the Profile 1001 of QT Modeler	23
Figure 17. Thes for Basud floodplain (a) and classification results (b) in TerraScan	24
Figure 18. Point cloud before (a) and after (b) classification	24
Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c)	25
and secondary DTM (d) in some portion of Basud floodplain	
Figure 20. Basud floodplain with available orthophotographs	26
Figure 21. Sample orthophotograph files for Basud floodplain	26
Figure 22. Portions in the DTM of Basud floodplain – a mountain ridge before (a) and after (b)	28
data retrieval; a bridge before (c) and after (d) manual editing	
Figure 23. Map of Processed LiDAR Data for Basud Flood Plain	29
Figure 24. Map of Basud Flood Plain with validation survey points in green	31
Figure 25. Correlation plot between calibration survey points and LiDAR data	32
Figure 26. Correlation plot between validation survey points and LiDAR data	33
Figure 27. Map of Basud Flood Plain with bathymetric survey points shown in blue	34
Figure 28. QC blocks for Basud building features	35
Figure 29. Extracted features for Basud floodplain	38
Figure 30. Basud River Survey Extent	40
Figure 31. GNSS Network covering Basud River	41
Figure 32. GNSS base set up, Trimble® SPS 985, at CMS-71, situated at the approach of Kilbay	42
Bridge in Brgy. Cabasag, Municipality of Del Gallego, Camarines Sur	
Figure 33. GNSS receiver setup, Trimble® SPS 882, at CS-398, located at the approach of Ragay	43
Bridge in Brgy. Pangitayan, Municipality of Ragay, Camarines Sur	
Figure 34. GNSS receiver setup, Trimble® SPS 852, at CMN-3087, located at the approach of Labo	43
Bridge in Brgy. Bakiad, Municipality of Labo, Camarines Norte	
Figure 35. GNSS receiver setup, Trimble® SPS 822, at UP-MOC, located at the approach of Mocong	44
Bridge in Brgy. Mocong, Municipality of Basud, Camarines Norte	
Figure 36. Mocong bridge facing downstream	48
Figure 37. Mocong bridge as-built survey	48
Figure 38. Mocong Bridge cross-section location map	49
Figure 39. Mocong bridge cross-secction diagram	50
Figure 40. Bridge as-built form of Mocong Bridge	51
Figure 41. Water-level markings on Mocong Bridge	52
Figure 42. Validation points acquisition survey set up along Basud River Basin	52
Figure 43. Validation point acquisition survey of Basud River basin	53
Figure 44. Bathymetric survey using Ohmex [™] single beam echo sounder in Basud River	54
Figure 45. Bathymetric survey of Basud River	55
Figure 46. Basud Riverbed Profile	56
Figure 47. The location map of Basud HEC-HMS model used for calibration	57

Figure 48. The cross-section plot of Mocong Bridge	58
Figure 49. The rating curve of Mocong Bridge in Basud, Camarines Norte	58
Figure 50. Rainfall and outflow data of the Basud River Basin, which was used for modeling	59
Figure 51. The location of the Daet RIDF station relative to the Basud River Basin	60
Figure 52. The synthetic storm generated for a 24-hour period rainfall for various return periods	60
Figure 53. Soil map of Basud River Basin	61
Figure 54. Land cover map of Basud River Basin (Source: NAMRIA)	62
Figure 55. Slope map of Basud River Basin	63
Figure 56. Stream delineation map of Basud River Basin	64
Figure 57. The Basud River Basin model generated in HEC-HMS	65
Figure 58. River cross-section of Basud River generated through Arcmap HEC GeoRAS tool.	
Figure 59. Screenshot of subcatchment with the computational area to be modeled	67
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	
Figure 60. Outflow Hydrograph of Basud produced by the HEC-HMS model	68
compared with observed outflow	
Figure 61 The outflow hydrograph at the Basud Basin generated using	70
the simulated rain events for 21-hour period for Daet station	
Figure 62 Sample output man of the Basud RAS Model	71
Figure 63, 100-year flood bazard map for the Basud flood plain overlaid	/1
on Google Farth imagery	.75
Figure 64, 100 year flow donth man for the Pasud flood plain overlaid	74
on Google Farth imagory	/4
Figure CE. 2E year flood board man for the Decud flood plain everlaid	75
en Coorde Forth imagery	.75
Chi Google Edith Indgery Figure 66. 25 year flow donth man for the Dacud flood plain overlaid	76
rigure 66. 25-year now depth map for the Basud nood plain overlaid	/0
On Google Earth Imagery	
Figure 67. 5-year flood hazard map for the Basud flood plain overlaid	.//
On Google Earth Imagery	70
Figure 68. 5-year now depth map for the Basud nood plain overlaid	/8
On Google Earth Imagery	70
Figure 69. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period	79
Figure 70. Affected Areas in Basud, Camarines Norte during the 5-year Rainfall Return Period	80
Figure 71. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period	80
Figure 72. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period	82
Figure 73. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period	83
Figure 74. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period	85
Figure 75. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period	85
Figure 76. Affected Areas in San Lorenzo Ruiz, Camarines Norte during	87
the 5-Year Rainfall Return Period	
Figure 77. Affected Areas in San Vicente, Camarines Norte during the 5-Year Rainfall Return Period	89
Figure 78. Affected Areas in Talisay, Camarines Norte during the 5-Year Rainfall Return Period	90
Figure 79. Affected Areas in Basud, Camarines Norte during the 25-Year Rainfall Return Period	92
Figure 80. Affected Areas in Basud, Camarines Norte during the 25-Year Rainfall Return Period	92
Figure 81. Affected Areas in Basud, Camarines Norte during the 25-Year Rainfall Return Period	93
Figure 82. Affected Areas in Daet, Camarines Norte during the 25-Year Rainfall Return Period	95
Figure 83. Affected Areas in Daet, Camarines Norte during the 25-Year Rainfall Return Period	96
Figure 84. Affected Areas in Mercedes, Camarines Norte during the 25-Year Rainfall Return Period	98
Figure 85. Affected Areas in Mercedes, Camarines Norte during the 25-Year Rainfall Return Period	98
Figure 86. Affected Areas in San Lorenzo Ruiz, Camarines Norte during	100
the 25-Year Rainfall Return Period	
Figure 87. Affected Areas in San Vicente, Camarines Norte during the 25-Year Rainfall Return Period	102
Figure 88. Affected Areas in Talisay, Camarines Norte during the 25-Year Rainfall Return Period	103
Figure 89. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period	105
Figure 90. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period	105
Figure 91. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period	106
Figure 92. Affected Areas in Daet, Camarines Norte during the 100-Year Rainfall Return Period	108
Figure 93. Affected Areas in Daet, Camarines Norte during the 100-Year Rainfall Return Period	109
Figure 94. Affected Areas in Mercedes, Camarines Norte during the 100-Year Rainfall Return Period	111

Figure 95. Affected Areas in Mercedes, Camarines Norte during the 100-Year Rainfall Return Period1	.11
Figure 96. Affected Areas in San Lorenzo Ruiz, Camarines Norte during	13
the 100-Year Rainfall Return Period	
Figure 97. Affected Areas in San Vicente, Camarines Norte during1	115
the 100-Year Rainfall Return Period	
Figure 98. Affected Areas in Talisay, Camarines Norte during the 100-Year Rainfall Return Period1	.16
Figure 99. The validation points for the 5-Year flood depth map of the Basud flood plain1	119
Figure 100. Flood map depth vs. Actual flood depth1	L20

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation			
Ab	abutment			
ADNU	Ateneo de Naga University			
ALTM	Airborne LiDAR Terrain Mapper			
ARG	automatic rain gauge			
ATQ	Antique			
AWLS	Automated Water Level Sensor			
BA	Bridge Approach			
BM	benchmark			
CAD	Computer-Aided Design			
CN	Curve Number			
CSRS	Chief Science Research Specialist			
DAC	Data Acquisition Component			
DEM	Digital Elevation Model			
DENR	Department of Environment and Natural Resources			
DOST	Department of Science and Technology			
DPPC	Data Pre-Processing Component			
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]			
DRRM	Disaster Risk Reduction and Management			
DSM	Digital Surface Model			
DTM	Digital Terrain Model			
DVBC	Data Validation and Bathymetry Component			
FMC	Flood Modeling Component			
FOV	Field of View			
GiA Grants-in-Aid				
GCP	Ground Control Point			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System			
HEC-RAS	Hydrologic Engineering Center - River Analysis System			
HC	High Chord			
IDW Inverse Distance Weighted [interpolati method]				

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND DAET-BASUD RIVER

Enrico C. Paringit, Dr. Eng., Engr. Florentino F. Morales, Jr., and Engr. Omar P. Jayag

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The method described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Ateneo de Naga (ADNU). ADNU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 24 river basins in the Bicol Region. The university is located in Naga City in the province of Camarines Sur.

1.2 Overview of the Basud River Basin

Basud River Basin covers nineteen (19) barangays in Municipality of Basud, and six (6) barangays in Municipality of San Lorenzo Ruiz in Camarines Norte. The DENR River Basin Control Office identified the basin to have a drainage area of 270 km2 and an estimated 365 million cubic meter (MCM) annual run-off (River Basin Control Office, 2017).

The main stream in the Basud River Basin is the Basud River with a length of 91.08 km. This area is hemmed to the south by the Bicol Natural Park and to the west by Mt. Labo, a potentially active volcano. The area of the river basin is under the jurisdiction of four (4) towns: Mercedes, Daet, Basud and San Lorenzo Ruiz. Daet is a first class municipality, Basud is third class and Mercedes and San Lorenzo Ruiz are both fifth class municipalities. The population of each municipalities are as follows: Daet has a total population of 104,799 distributed to 25 barangays as of 2015; Basud is populated with 41,017 based on the same census distributed in 29 barangays of the town; Mercedes has a total of 50,841 people in its 26 barangays while San Lorenzo Ruiz is populated with 14,063 in its 12 barangays. Meanwhile, according to the 2015 national census, a total of 28,182 persons are residing within the immediate vicinity of the river which is distributed among sixteen (16) barangays in the Municipalities of Daet, Basud and Mercedes in Camarines Norte (Philippine Statistics Authority, 2016).

This basin is drained by the Daet-Basud River that empties out to the Pacific Ocean to the east with the town of Mercedes at its floodplain. The municipalities of Basud, Mercedes and Daet are mostly agriculture and fishing based economy. Local government is encouraging the locals to production of deep-sea fishing fleets to broadened the industry up to food processing. The area is also agricultural in nature with three (3) major crops: rice, coconut and pineapple. Fisheries also thrive since there are coastal barangays in the area. Livestock and poultry production is limited to backyard farming. Other industries focus on diatomaceous earth or white clay and gravel and sand. Daet moreover is one of the most popular surfing spots I the Philippines (Geocities, 2009).

Figure 1. Location Map of the Daet-Basud River Basin (in brown)

In 1998, Typhoon Loleng devastated the town of Daet particularly its coastal area. Other typhoons that impacted Camarines Norte in general are TY Dante (Kuijira) and TY Ondoy (Ketsana) both in 2009 incurring damage in properties, livelihood and lives.

The most recent typhoon that struck the area was Typhoon Nona on December 2015. However the one that recently caused trees and electric poled to topple was Typhoon Glenda on July 2014 (Inquirer, 2014).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE DAET-BASUD FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Renan D. Punto, Ms. Pauline Joanne G. Arceo

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Daet-Basud Floodplain in Camarines Norte Province. These missions were planned for 11 lines that run for at most three (3) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 1 shows the flight plan for Daet-Basud Floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 20A	1000, 600	30	50	150	30	130	5
BLK 20B	1100, 1000, 800, 600	30	50	150	30	130	5
BLK 20C	600	30	50	150	30	130	5
BLK 20D	1000, 800, 900, 700	15, 20	50	200	30	130	5
BLK 20E	800	15	50	200	30	130	5
BLK 20N	1100, 850	30	50	150	30	130	5
BLK 20S	1100	15	50	200	30	130	5

Table 1. Flight planning parameters for Pegasus LiDAR system.

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 2. Flight plans and base stations for Daet-Basud floodplain.

2.2 Ground Base Stations

The project team was able to recover two (2) NAMRIA ground control points CMN-33 and CMN-29 which are of second (2nd) order accuracy. The project team established two (2) ground control point, CMN-J2 and DENR, and reprocessed two (2) benchmarks CM-198 and CN-211. The certification for the base stations are found in Annex 2 while the baseline processing report for the established ground control points and reprocessed benchmarks are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (March 9 - 17, 2016 and April 7 - 18, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 985, TRIMBLE SPS 852 and TOPCON GR-5. Flight plans and location of base stations used during aerial LiDAR acquisition in Daet-Basud floodplain are shown in Figure 2.

Figure 3 to Figure 6 show the recovered NAMRIA reference points and established ground control points within the area. In addition, Table 2 to 7 show the details about the NAMRIA reference point and established control point, while Table 8 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over CMN-33 at Barangay Batobalani, Jose Panganiban, Camarines Norte (a) and NAMRIA reference point CMN-33 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point CMN-33 used as base station for the LiDAR
acquisition

Station Name	CMN-33		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 14' 11.70144" North 122° 44' 31.91442" East 8.58900 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 4 PRS 92)	Easting Northing	472178.341 meters 1574360.987 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 14′ 6.51050″ North 122° 44′ 36.82890" East 57.40600 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1984)	Easting Northing	472188.08 meters 1573809.93 meters	

Figure 4. GPS set-up over CN-211 at Barangay Malacbang, Paracale, Camarines Norte (a) and NAMRIA reference point CN-211 (b) as recovered by the field team

Table 3. Details of the recovered NAMRIA Benchmark CN-211 with processed coordinates used as base station for
the LiDAR acquisition

Station Name	CN-	211	
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1 :50),000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 12′ 10.35973″ North 122° 46′ 45.33929″ East 35.369 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 12′ 05.17982″ North 122° 46′ 50.25638″ East 84.372 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	476182.911 meters 1570078.228 meters	

Figure 5. GPS set-up over CMN-29 at Barangay Malibago, Daet-Basud, Camarines Norte (a) and NAMRIA reference point CMN-29 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point CMN-29 used as base station for the LiDAR
acquisition

Station Name	СМІ	N-29	
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50	,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 08′ 52.17466″ North 122° 34′ 59.83481″ East 40.92600 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Latitude Longitude Ellipsoidal Height	455011.114 meters 1564566.419 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 8′ 46.99182″ North 122° 35′ 4.75796" East 89.60600 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1984)	Easting Northing	455026.86 meters 1564018.79 meters	

Figure 6. GPS set-up over CMN-J2 at Barangay Malibago, Daet-Basud, Camarines Norte (a) and ground control point CMN-J2 (b) as established by the field team

Table 5. Details of the established control point CMN-J2 with processed coordinates used as base station for th	ıe
LiDAR acquisition	

Station Name	CMN-J2			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1 :50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 08' 53.88940" North 122° 35' 03.56309" East 51.531 meters		
Geographic Coordinates World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 08' 48.48618" North 122° 35' 08.48618" East 100.212 meters		
Grid Coordinates Universal Transverse Mercator Zone 51 North (UTM 51N PRS1992)	Easting Northing	455138.726 meters 1564071.272 meters		

Table 6. Details of the recovered NAMRIA Benchmark CM-198 with processed coordinates used as base station for the LiDAR acquisition

Station Name	CM	-198	
Order of Accuracy	21	nd	
Relative Error (horizontal positioning)	1 :50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 06' 23.36447" North 122° 51' 56.66504" East 16.891 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 06' 21.20640" North 122° 52' 03.55656" East 66.261 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	485569.809 meters 1563190.057 meters	

Table 7. Details of the established control point DENR with processed coordinates used as base station for the LiDAR acquisition.

Station Name	DE	NR	
Order of Accuracy	2	nd	
Relative Error (horizontal positioning)	1 :50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	14° 08' 11.86920" North 122° 58' 54.64302" East 11.089 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	14° 08' 06.72152" North 122° 58' 59.56437" East 60.772 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS1992)	Easting Northing	498040.596 meters 1562740.733 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
10 March 2016	23170P	1BLK20DE69A	DENR and CM-198
12 March 2016	23182P	1BLK20ABCE72A	DENR and CMN-33
14 March 2016	23190P	1BLK20BS74A	DENR and CM-198
17 March 2016	23202P	1BLK20N77A	DENR and CM-198
7 April 2016	23226P	1BLK20A98A	CMN-29 and CMN-J2
9 April 2016	23234P	1BLK20D100A	CMN-33 and CN-211
17 April 2016	23266P	1BLK20D098A	CMN-33 and CN-211
17 April 2016	23268P	1BLK20S108	CMN-33 and CN-211
18 April 2016	23270P	1BLK20S109A	CMN-33 and CN-211

Table 8. Ground control points used during LiDAR data acquisition.

2.3 Flight Missions

Twelve (12) missions were conducted to complete the LiDAR Data Acquisition in Daet-Basud floodplain, for a total of twenty nine hours and six minutes (29+06) of flying time for RP-C9122. All missions were acquired using the Pegasus LiDAR system. Table 9 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 10 presents the actual parameters used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Flight Plan Area (km²)	Surveyed Area (km²)	ed Area Area Surveyed Surveyed within the Outside the	Area Surveyed Outside the	No. of Images (Frames)	Fly Ho	ying ours
				Floodplain (km²)	Floodplain (km2)		Hr	Min
9 March 2016	23170P	278.95	186.61	102.55	84.06	631	3	01
12 March 2016	23182P	316.23	94.23	26.30	67.93	326	4	15
14 March 2016	23190P	362.97	156.39	17.17	139.22	23	3	59
17 March 2016	23202P	407.26	237.25	0	237.25	766	4	28
7 April 2016	23226P	348.53	223.80	0	223.80	NA	4	17
9 April 2016	23234P	236.67	48.49	0	48.49	399	2	11
17 April 2016	23266P	233.4	171.41	0	171.41	456	3	11
17 April 2016	23268P	236.67	157.33	0.34	156.99	54	3	5
18 April 2016	23270P	234.1	31.51	0	31.51	NA	0	39
тот	TAL .	2654.78	1307.02	146.36	1160.66	2655	29	06

Table 9. Flight missions for LiDAR data acquisition in Daet-Basud floodplain.

Table 10. Actual parameters used during LiDAR data acquisition.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
23170P	1000	30	50	150	30	130	5
23182P	1000	30	50	150	30	130	5
23190P	1000	30	50	200	30	130	5
23202P	1100, 850	30	50	150	30	130	5
23226P	800	15	50	200	30	130	5
23234P	900	15	50	200	30	130	5
23266P	1000	30	50	200	30	130	5
23268P	1100	15	50	200	30	130	5
23270P	1100	15	50	200	30	130	5

2.4 Survey Coverage

Daet-Basud floodplain is situated within the municipalities of Camarines Norte. The municipality of Talisay is fully covered during the entire duration of the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 11. The actual coverage of the LiDAR acquisition for Daet-Basud floodplain is presented in Figure 7.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Camarines Norte	Daet	42.20	42.20	100%
	Jose Panganiban	211.71	196.51	92.82%
	Paracale	148.28	132.42	89.30%
	Talisay	37.90	27.32	72.09%
	Basud	251.71	116.88	46.43%
	San Vicente	47.17	20.81	44.11%
	San Lorenzo Ruiz	108.81	31.07	28.56%
	Vinzons	90.44	19.67	21.75%
	Mercedes	117.17	18.96	16.18%
	Labo	622.52	89.14	14.32%
	Capalonga	220.07	15.85	7.20%
TOTAL		1897.98	710.83	48%

Table 11. List of Municipalities/Cities Surveyed during Daet-Basud floodplain LiDAR survey

Figure 7. Actual LiDAR survey coverage for Daet-Basud floodplain

CHAPTER 3: LIDAR DATA PROCESSING OF THE BASUD FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Engr. Harmond F. Santos , Engr. Ma. Ailyn L. Olanda, Engr. Christy T. Lubiano, Engr. Justine Y. Francisco , Jerry P. Ballori, Jaylyn L. Paterno, Maria Jemelita B. Adbalagao, Christian Javier B. Arroyo, Daniel S. Baer, Jr., Juvylin B. Bismonte, Mark D. Delloro, Arnulfo G. Enciso, Jr., Berlin Phil V. Garciano, Jan Karl T. Ilarde, Kevin Kristian L. Peñaserada, Richmund P. Saldo, Jayrik T. San Buenaventura, Jess Andre S. Soller, Julius Hector S. Manchete, Engr. Herminio Magpantay and Engr. Ferdinand E. Bien

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 8.

Figure 8. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Basud floodplain can be found in Annex 5. Missions flown during the first survey conducted on January 2016 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system while missions acquired during the second survey on May 2016 were flown using the same system over Basud, Camarines Norte.

The Data Acquisition Component (DAC) transferred a total of 135.72 Gigabytes of Range data, 1.72 Gigabytes of POS data, 826.22 Megabytes of GPS base station data, and 596.10 Gigabytes of raw image data to the data server on January 4, 2014 for the first survey and May 11, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Basud was fully transferred on May 18, 2016, as indicated on the Data Transfer Sheets for Basud floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 23182P, one of the Basud flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on March 12, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 9. Smoothed Performance Metrics of a Basud Flight 23182P

The time of flight was from 516500 seconds to 526000 seconds, which corresponds to morning of March 12, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 1.30 centimeters, the East position RMSE peaks at 1.70 centimeters, and the Down position RMSE peaks at 2.50 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 10. Solution Status Parameters of Basud Flight 23182P

The Solution Status parameters of flight 23182P, one of the Basud flights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did not go down to 7. Most of the time, the number of satellites tracked was between 7 and 9. The PDOP value also did not go above the value of 2.4, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Basud flights is shown in Figure 11.

Figure 11. Best estimated trajectory for Basud floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 182 flight lines, with each flight line containing two channels, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Basud floodplain are given in Table 12.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000368
IMU Attitude Correction Roll and Pitch Correction stdev)	<0.001degrees	0.000811
GPS Position Z-correction stdev)	<0.01meters	0.0086

The optimum accuracy values for all Basud flights were calculated based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the ANNEX 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 12. Boundary of the processed LiDAR data on top of a SAR Elevation Data over Basud Floodplain.

The total area covered by the Basud missions is 824.71 sq.km that is comprised of eleven (11) flight acquisitions grouped and merged into nine (9) blocks as shown in Table 13.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Bagasbas_Blk20E_suplement	23182P	37.87	
	23190P		
Bagasbas_Blk20E_additional	23268P	25.85	
Bagasbas_Blk20DE	23170P	185.93	
Bagasbas_Blk20Q	23270P	10.01	
Bagasbas_Blk20P	23226P	120.08	
Bagasbas_Blk20O 23226P		127.35	
	23234P		
Bagasbas_Blk20N	23202P	251.53	
Bagasbas_Blk20N_supplement	23266P	62.05	
Bagasbas_Blk20C_additional	23270P	8.03	
TO	808.70 sq.km		

Table 13.	List of	LiDAR	blocks	for	Basud	flood	plain

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 13. Image of data overlap for Basud floodplain

The overlap statistics per block for the Basud floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 31.21% and 83.93% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 14. It was determined that all LiDAR data for Basud floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.56 points per square meter.

Figure 14. Pulse density map of merged LiDAR data for Basud floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 15. Elevation difference map between flight lines for Basud floodplain

A screen capture of the processed LAS data from a Basud flight 23182P loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 16. Quality checking for a Basud flight 23182P using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	695,673,949
Low Vegetation	508,813,813
Medium Vegetation	1,037,037,861
High Vegetation	2,491,646,331
Building	62,622,212

Table 14. Basud classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Basud floodplain is shown in Figure 17. A total of 1,168 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 14. The point cloud has a maximum and minimum height of 813.35 meters and 9.37 meters respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 17. Tiles for Basud floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 18. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Basud floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 624 1km by 1km tiles area covered by Basud floodplain is shown in Figure 20. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Basud floodplain has a total of 443.31 sq.km orthophotograph coverage comprised of 1733 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 21.

Figure 20. Basud floodplain with available orthophotographs

Figure 21. Sample orthophotograph tiles for Basud floodplain

3.8 DEM Editing and Hydro-Correction

Nine (9) mission blocks were processed for Basud flood plain. These blocks are composed of Bagasbas blocks with a total area of 808.70 square kilometers. Table 15 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)			
Bagasbas_Blk20E_supplement	37.87			
Bagasbas_Blk20E_additional	25.85			
Bagasbas_Blk20DE	185.93			
Bagasbas_Blk20Q	10.01			
Bagasbas_Blk20P	120.08			
Bagasbas_Blk20O	127.35			
Bagasbas_Blk20N	251.53			
Bagasbas_Blk20N_supplement	62.05			
Bagasbas_Blk20C_additional	8.03			
TOTAL	808.70 sq.km			

Table 15. LiDAR blocks with its corresponding area
--

Portions of DTM before and after manual editing are shown in Figure 22. The mountain ridge (Figure 22a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 22b) to allow the correct flow of water. The bridge (Figure 22c) is also considered to be impedance to the flow of water along the river and has to be removed (Figure 22d) in order to hydrologically correct the river.

Figure 22. Portions in the DTM of Basud floodplain – a mountain ridge before (a) and after (b) data retrieval; a bridge before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

Bagasbas Blk20DE was used as the reference block at the start of mosaicking because it is the located in the estuary of the river. Table 16 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Basud floodplain is shown in Figure 23. It can be seen that the entire Basud floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)			
	х	У	Z	
Bagasbas_Blk20E_supplement	1.00	-7.00	-7.21	
Bagasbas_Blk20E_additional	0.00	1.00	-2.78	
Bagasbas_Blk20DE	Reference Raster			
Bagasbas_Blk20Q	0.00	-10.00	0.06	
Bagasbas_Blk20P	0.00	0.00	0.01	
Bagasbas_Blk20O	-1.00	1.00	0.16	
Bagasbas_Blk20N	0.00	0.00	0.00	
Bagasbas_Blk20N_supplement	1.62	0.00	0.39	
Bagasbas_Blk20C_additional	1.00	-8.00	2.80	

Table 16. Shift Values of each LiDAR Block of Basud floodplain

Figure 23. Map of Processed LiDAR Data for Basud Flood Plain

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Basud to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 3652 survey points were used for calibration and validation of Basud LiDAR data. Random selection of 80% of the survey points, resulting to 3292 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 2.80 meters with a standard deviation of 0.11 meters. Calibration of Basud LiDAR data was done by subtracting the height difference value, 2.80 meters, to Basud mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 24. Map of Basud Flood Plain with validation survey points in green

Figure 25. Correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	2.80
Standard Deviation	0.11
Average	-2.80
Minimum	-3.02
Maximum	-2.58

Table 17. Calibration Statistical Measures

The remaining 20% of the total survey points, resulting to 731 points, were used for the validation of calibrated Basud DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.11 meters with a standard deviation of 0.11 meters, as shown in Table 18.

Figure 26. Correlation plot between validation survey points and LiDAR data

Validation Statistical Measures	Value (meters)
RMSE	0.11
Standard Deviation	0.11
Average	0.00
Minimum	-0.22
Maximum	0.23

Table 18. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data was available for Basud with 17,380 bathymetric survey points. The resulting raster surface produced was done by Kernel interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.11 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Basud integrated with the processed LiDAR DEM is shown in Figure 27.

Figure 27. Map of Basud Flood Plain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Basud floodplain, including its 200 m buffer, has a total area of 105. 83 sq km. For this area, a total of 1.11 sq km, corresponding to a total of 16,005 building features, are considered for QC. Figure 28 shows the QC blocks for Basud floodplain.

Figure 28. QC blocks for Basud building features

Quality checking of Basud building features resulted in the ratings shown in Table 19.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS	
Basud	96.09	98.83	83.45	PASSED	

Table 19. Quality Checking Ratings for Basud Building Features

3.12.2 Height Extraction

Height extraction was done for 16, 519 building features in Basud floodplain. Of these building features, 514 were filtered out after height extraction, resulting to 16,005 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 7.97 m.

3.12.3 Feature Attribution

Feature Attribution was done for 16,005 building features in Basud Floodplain with the use of participatory mapping and innovations. The approach used in participatory mapping undergoes the creation of feature extracted maps in the area and presenting spatial knowledge to the community with the premise that the local community in the area are considered experts in determining the correct attributes of the building features in the area.

The innovation used in this process is the creation of an android application called reGIS. The Resource Extraction for Geographic Information System (reGIS)¹ app was developed to supplement and increase the field gathering procedures being done by the AdNU Phil-LiDAR 1. The Android application allows the user to automate some procedures in data gathering and feature attribution to further improve and accelerate the geotagging process. The app lets the user record the current GPS location together with its corresponding exposure features, code, timestamp, accuracy and additional remarks. This is all done by a few swipes with the help of the device's pre-defined list of exposure features. This effectively allows unified and standardized sets of data.

Table 23 summarizes the number of building features per type. On the other hand, Table 24 shows the total length of each road type, while Table 25 shows the number of water features extracted per type.

¹Resource Extraction for Geographic Information System (reGIS), March 17,2015.

Facility Type	No. of Features		
Residential	15,567		
School	246		
Market	6		
Agricultural/Agro-Industrial Facilities	23		
Medical Institutions	11		
Barangay Hall	29		
Military Institution	0		
Sports Center/Gymnasium/Covered Court	18		
Telecommunication Facilities	0		
Transport Terminal	1		
Warehouse	4		
Power Plant/Substation	0		
NGO/CSO Offices	0		
Police Station	2		
Water Supply/Sewerage	6		
Religious Institutions	31		
Bank	0		
Factory	0		
Gas Station	4		
Fire Station	1		
Other Government Offices	38		
Other Commercial Establishments	18		
Total	16,005		

Table 20. Building Features Extracted for Basud Floodplain

Table 21. Total Length of Extracted Roads for Basud Floodplain

Floodplain	Road Network Length (km)					
	Barangay Road	City/Municipal Road	National Road	Others		
Basud	94.75641	20.89968	0	18.93541	0.00	134.5915

Table 22 Number of Extracted	Water Bodies fo	r Basud Floodplain
Tuble 22. I tulliber of Encluceed	Water Doules to	i Duoud i ioodpium

Floodplain	Water Body Type						
	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen						
Basud	1	256	0	0	0	257	

A total of 22 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 29 shows the Digital Surface Model (DSM) of Basud floodplain overlaid with its ground features.

Figure 29. Extracted features for Basud floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BASUD RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Basud River on June 28 – July 12, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built survey at Mocong Bridge in Brgy. Mocong, Municipality of Basud; validation points acquisition of about 55 km covering the Basud River Basin area; and bathymetric survey from its upstream in Brgy. San Jose, Municipality of Basud to the mouth of the river located in Brgy. Maguisoc, in the Municipality of Mercedes, with an approximate length of 11.862 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (see Figure 30).

Figure 30. Basud River Survey Extent

4.2 Control Survey

A GNSS network from Labo River Survey was established on January 28, 2016 occupying the control points CMN-36, a second-order GCP, in Brgy. Mampungo, Municipality of Paracale; and CN-168, a first-order BM, in Brgy. Sant Domingo, Muncipality of Vinzonz; both in Camarines Norte.

The GNSS network used for Basud River Basin is composed of two (2) loops established on June 30, 2016 occupying the following reference points: CMS-71, a second-order GCP in Brgy. Cabasag, Municipality of Del Gallego; CS-398, a first order BM, in Brgy. Pangitayan, Municipality of Ragay; and CMN-3087, a fixed point from Labo Survey, located in Brgy. Bakiad, Municipality of Labo.

A control point was established along the approach of Mocong Bridge namely: UP-MOC, located in Brgy. Mocong, Municipality of Basud, Camarines Norte.

The summary of reference and control points and its location is summarized in Table 23 while the GNSS network established is illustrated in Figure 31.

Figure 31. GNSS Network covering Basud River

Control	Order of	Geographic Coordinates (WGS 84)				
Point Accuracy		Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established
		Control S	urvey on June 30, 201	L6		
CMN-36	2nd Order GCP	14°15'02.89999"N	122°51'10.48832"E	54.569	5.129	2007
CN-168	1st Order BM	14°08'31.19463"N	122°53'08.49490"E	62.569	12.721	2007
CMN- 3087	Used as Marker	14°09'12.36125"N	122°49'52.53365"E	64.661	14.905	2007
		Control S	urvey on June 28, 201	L6		
CMS-71	2nd order, GCP	13°55'14.18695"N	122°36'12.89833"E	59.636	-	2007
CS-398	1st order, BM	-	-	60.994	10.576	2008
CMN- 3087	Fixed Control	14°09'12.36125"N	122°49'52.53365"E	64.661	14.905	2007
UP-MOC	UP Established	-	-	-	-	06-28-16

Table 23. List of Reference and Control Points occupied for Basud River Survey

The GNSS set-ups on recovered reference points and established control points in Basud River are shown in Figure 32 to Figure 35.

Figure 32. GNSS base set up, Trimble® SPS 985, at CMS-71, situated at the approach of Kilbay Bridge in Brgy. Cabasag, Municipality of Del Gallego, Camarines Sur

Figure 33. GNSS receiver setup, Trimble® SPS 882, at CS-398, located at the approach of Ragay Bridge in Brgy. Pangitayan, Municipality of Ragay, Camarines Sur

Figure 34. GNSS receiver setup, Trimble® SPS 852, at CMN-3087, located at the approach of Labo Bridge in Brgy. Bakiad, Municipality of Labo, Camarines Norte

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 35. GNSS receiver setup, Trimble® SPS 822, at UP-MOC, located at the approach of Mocong Bridge in Brgy. Mocong, Municipality of Basud, Camarines Norte

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Basud River Basin is summarized in Table 24 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CMS-71 CS-398	06-30-16	Fixed	0.003	0.014	118°07'06"	23448.013	1.313
CMS-71 UP-MOC	06-30-16	Fixed	0.004	0.014	68°18'41"	43178.316	-4.130
UP-MOC CS-398	06-30-16	Fixed	0.004	0.015	215°50'13"	33277.281	5.437
CMN-3087 UP-MOC	06-30-16	Fixed	0.003	0.015	122°19'44"	18380.742	-9.211
CMN-3087 CMS-71	06-30-16	Fixed	0.003	0.017	223°41'59"	35614.428	-5.115

Table 24. Baseline Processing Summary Report for Basud River Survey

As shown in Table 24, a total of five (5) baselines were processed with reference points CMS-71 and CS-398 held fixed for coordinate and elevation values, including CMS-3087 as fixed control from Labo Survey. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 cm$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 25 to Table 28 for complete details.

The four (4) control points, CMS-71, CS-398, CMS-3087 and UP-MOC were occupied and observed simultaneously to form a GNSS loop. Coordinates of CMS-71 and CMN-3087; and elevation values of CS-398 and CMN-3087 were held fixed during the processing of the control points as presented in Table 25. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
CMS-71	Local	Fixed	Fixed				
CS-398	Grid				Fixed		
CMN-3087	Local	Fixed	Fixed	Fixed			
Fixed = 0.000001 (Meter)							

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 26. The fixed control CMS-110 has no values for grid errors while CS-461 has no value for elevation errors.

Table 26. Adjusted Grid Coordinates	
-------------------------------------	--

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
CMS-71	457175.646	?	1538981.558	?	10.059	0.046	LL
CS-398	477829.729	0.011	1527900.590	0.010	10.576	?	е
CMN-3087	481789.697	?	1564701.975	?	14.905	?	LLh
UP-MOC	497307.927	0.011	1554865.116	0.010	5.214	0.046	

With the mentioned equation, $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm$ for horizontal and $z_e < 10 cm$ for the vertical; the computation for the accuracy are as follows:

а.	CMS-71 Horizontal Accuracy Vertical Accuracy	= =	Fixed 4.6 < 10 cm
b.	CS-398 Horizontal Accuracy Vertical Accuracy	= = =	√((1.1) ² + (1.0) ² √ (1.21 +1.0) 1.49 < 20 cm Fixed
С.	CMN-3087 Horizontal Accuracy Vertical Accuracy	= =	Fixed Fixed
d.	UP-MOC Horizontal Accuracy Vertical Accuracy	= = =	V((1.1) ² + (1.0) ² V (1.21 + 1.0) 1.49 < 20 cm 4.6 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
CMS-71	N13°55'14.18695"	E122°36'12.89833"	59.636	0.046	LL
CS-398	N13°49'14.33596"	E122°47'41.49841"	60.994	?	е
CMN-3087	N14°09'12.36125"	E122°49'52.53365"	64.661	?	LLh
UP-MOC	N14°03'52.37147"	E122°58'30.23146"	55.501	0.046	

Table 27. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 27. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 28.

Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

Control Point	Order of Accuracy	Geographi	UTM ZONE 51 N				
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
CMS-71	2nd order, GCP	13°55'14.18695"	122°36'12.89833"	59.636	1538981.558	457175.646	10.059
CS-398	1st order, BM	13°49'14.33596"	122°47'41.49841"	60.994	1527900.59	477829.729	10.576
CMN- 3087	Fixed Control	14°09'12.36125"	122°49'52.53365"	64.661	1564701.975	481789.697	14.905
UP-MOC	UP Established	14°03'52.37147"	122°58'30.23146"	55.501	1554865.116	497307.927	5.214

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were conducted on July 1 and 2, 2016 at the upstream side of Mocong Bridge in Brgy. Mocong, Municipality of Basud, Camarines Norte as shown in Figure 36. A total station through open traverse method was utilized for this survey as shown in Figure 37.

Figure 36. Mocong bridge facing downstream

Figure 37. Mocong bridge as-built survey

The cross-sectional line of Mocong Bridge is about 163 m with one hundred and twenty-two (122) crosssectional points using the control point UP-MOC as the GNSS base station. The cross-section diagram, planimetric map, and the bridge data form, are shown in Figure 38 to Figure 40, respectively.

Figure 38. Mocong Bridge cross-section location map

	Station (Distance nom DAX)	Lievation
Ab1	Not available	Not available
Ab2	Not available	Not available

Pier (Please start your measurement from the left side of the bank facing upstream)

Shape: Flat oval Number of Piers: 5 Height of column footing: N/A

	Station (Distance from BA1)	Elevation	Pier Diameter
Pier 1	54.158 m	5.174 m	NA
Pier 2	69.155 m	5.211 m	NA
Pier 3	84.071 m	5.173 m	NA
Pier 4	99.098 m	5.224 m	NA
Pier 5	113.867 m	5.150 m	NA

NOTE: Use the center of the pier as reference to its station

Figure 40. Bridge as-built form of Mocong Bridge

Water surface elevation of Basud River was determined using a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on July 1, 2016 at 12:22 PM with a value of -0.167 m in MSL as shown in Figure 39. This was translated into marking on the bridge's deck using the same technique. The making has a value of 3.254 m in MSL as shown in Figure 41. This will serve as reference for flow data gathering and depth gauge deployment of partner HEI responsible for Basud river, the Ateneo De Naga University.

Figure 41. Water-level markings on Mocong Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on July 1-3, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted in front of a vehicle as shown in Figure 42. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna heights were 1.71, 2.28, and 2.24 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-MOC occupied as the GNSS base stations in the conduct of the survey.

Figure 49. The validation point acquisition survey setup using a GNSS receiver fixed in a van along the Silaga River Basin

TThe survey started from the Mocong Bridge in Brgy. Mocong, in the Municipality of Bansud; going north covering twenty-three (23) barangays in Municipalities of Basud, Daet, Mercedes and ended in Brgy. Itomang, Municipality of Talisay; and going south covering thirteen (13) more barangays in Municipalities of Basud and San Lorenzo Ruiz, Camarines Norte and nine (9) barangays in Municipalities of Sipocot and Lupi, ended in Brgy. Alteza, Municipality of Sipocot, Camarines Sur. The survey gathered a total of 5,800 points with approximate length of 55 km using UP-MOC as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 43.

Figure 43. Validation point acquisition survey of Basud River basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on July 2, 2016 using an Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 44. The survey started in Brgy. San Jose, Municipality of Basud, with coordinates 14°03′45.01207″N, 122°57′34.70089″E, and ended at the mouth of the river in Brgy. Manguisoc, in Municipality of Mercedes with coordinates 14°06′41.13753″N, 123°00′52.08692″E. The control point UP-MOC was used as the GNSS base station all throughout the entire survey.

Figure 44. Bathymetric survey using Ohmex™ single beam echo sounder in Basud River

The bathymetric survey for Basud River gathered a total of 17,265 points covering 11,862 km of the river traversing sixteen (16) barangays in Municipalities of Basud, Daet and Mercedes. A CAD drawing was also produced to illustrate the riverbed profile of Basud River. As shown in Figure 46, the highest and lowest elevation has a 11-m difference. The highest elevation observed was 0.185 m in MSL located at Brgy. Mampili, Basud, while the lowest was -11.146 m below MSL located at the downstream portion of the river in Brgy. Poblacion VII, in Municipality of Mercedes. A 2-km bathymetric line was not surveyed because there is already an existing LiDAR survey data for it.

Figure 45. Bathymetric survey of Basud River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Gianni Sumajit, Christian Javier B. Arroyo, Daniel S. Baer, Jr., Mark D. Delloro, Julius Hector S. Manchete, John Paul B. Obina, Engr. Herminio Magpantay, Lech Fidel C. Pante, Aaron San Andres, and Engr. Ferdinand E. Bien

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Basud River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Basud River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from one automatic rain gauge (ARGs) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The rain gauge was installed at San Lorenzo Ruiz (Figure 47). The precipitation data collection started from July 30, 2016 at 12:00 AM to July 31, 2016 at 2:00 AM with a 15-minute recording interval.

The total precipitation for this event in San Lorenzo Ruiz ARG is 28.6mm. It has a peak rainfall of 4.4mm on July 30, 2016 at 1:00 AM. The lag time between the peak rainfall and discharge is 17 hours and 40 minutes.

Figure 47. The location map of Basud HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Mocong Bridge, Basud, Camarines Norte (14°3'53.30"N, 122°58'28.67"E). It gives the relationship between the observed water levels at Mocong Bridge and outflow of the watershed at this location.

Figure 48. The cross-section plot of Mocong Bridge

For Mocong Bridge, the rating curve is expressed as Q = 40.159e0.4935h as shown in Figure 49.

Figure 49. The rating curve of Mocong Bridge in Basud, Camarines Norte

This rating curve equation was used to compute the river outflow at Mocong Bridge for the calibration of the HEC-HMS model shown in Figure 50. The total rainfall for this event is 28.6mm and the peak discharge is 76.5 m3/s at 6:40 PM, July 30, 2016.

Figure 50. Rainfall and outflow data of the Basud River Basin, which was used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Daet RIDF. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station was chosen based on its proximity to the Basud watershed. The extreme values for this watershed were computed based on a 26-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	21.8	33.8	43.1	59.6	84	101	130.4	163.2	190.4
5	31.8	47.2	59.1	81.9	120.3	146.8	194.7	236.8	278.7
10	38.5	56.1	69.7	96.7	144.4	177.1	237.2	285.6	337.2
15	42.3	61.1	75.7	105	158	194.1	261.2	313.1	370.2
20	44.9	64.6	79.9	110.8	167.5	206.1	278	332.4	393.3
25	46.9	67.3	83.1	115.3	174.8	215.3	291	347.2	411.1
50	53.2	75.6	93	129.2	197.3	243.7	330.8	392.9	465.9
100	59.4	83.9	102.9	143	271.9	271.9	370.4	438.3	520.3

Table 29. RIDF values for Donsol Rain Gauge computed by PAGASA

Figure 51. The location of the Daet RIDF station relative to the Basud River Basin

Figure 52. The synthetic storm generated for a 24-hour period rainfall for various return periods
5.3 HMS Model

The soil shapefile was generated before 2004 and borrowed from the Bureau of Soils and Water Management. It is under the Department of Agriculture. The land cover dataset is from the National Mapping and Resource Information Authority (NAMRIA). The soil and land cover of the Donsol River Basin are shown in Figures 53 and 54, respectively.

Figure 53. Soil map of Basud River Basin

Figure 54. Land cover map of Basud River Basin (Source: NAMRIA)

For Basud, six soil classes were identified. These are Alaminos clay loam, Luisiana clay loam, Indan loam, San Manuel loam, hydrosol, and mountain soil. Moreover, six land cover classes were identified. These are shrubland, grassland, open and closed forests, cultivated, and built-up areas.

Figure 55. Slope map of Basud River Basin

Figure 56. Stream delineation map of Basud River Basin

Using the SAR-based DEM, the Basud basin was delineated and further divided into subbasins. The model consists of 21 sub basins, 10 reaches, and 10 junctions, as shown in Figure 57. The main outlet is Mocong Bridge.

Figure 57. The Basud River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 58. River cross-section of Basud River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south and southwest of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 59. Screenshot of subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 66.00684 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0m2/s. The generated hazard maps for Basud are in Figures 63, 65, and 67.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 51,474,100.00m2. The generated flood depth maps for Basud are in Figures 64, 66, and 68.

There is a total of 38,905,193.13m3 of water entering the model. Of this amount, 22,274,966.94m3 is due to rainfall while 16,630,226.19m3 is inflow from other areas outside the model. 4,918,806.50m3 of this water is lost to infiltration and interception, while 3,121,939.75m3 is stored by the flood plain. The rest, amounting up to 30,864,297.57m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Basud HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 60 shows the comparison between the two discharge data.

Figure 60. Outflow Hydrograph of Basud produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 30 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	0.001-23
			Curve Number	94-99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.02-27
			Storage Coefficient (hr)	0.02-0.4
	Baseflow	Recession	Recession Constant	0.00001-0.00003
			Ratio to Peak	0.0008-1
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.0009-0.01

Table 30. Range of calibrated values for the Donsol River Basin

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.001mm to 23mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 94-99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Basud, the basin mostly consists of shrubland and the soil consists of Alaminos clay loam, Luisiana clay loam, and mountain soil.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.02 hours to 27 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. For Basud river basin, it will take at least 18 hours from the peak discharge to go back to the initial discharge.

Manning's roughness coefficient of 0.0001 corresponds to the common roughness in Basud watershed, which is determined to be built-up area that is concrete and float-finished (Brunner, 2010).

Accuracy measure	Value
RMSE	6.70
r2	0.78
NSE	0.76
PBIAS	2.68
RSR	0.49

Table 31. Summary of the Efficiency Test of Basud HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 6.70 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.78.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.76.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 2.68.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.49.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 61) shows the Basud outflow using the synthetic storm events using the Daet Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods from 1,310.4m3/s in a 5-year return period to 2,518.5m3/s in a 100-year return period.

Figure 61. The outflow hydrograph at the Basud Basin, generated using the simulated rain events for 24-hour period for Daet station

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Basud discharge using the Daet Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 32.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	277.54	31.8	1310.4	1 hour, 50 minutes
10-Year	335.77	38.5	1602.3	1 hour, 40 minutes
25-Year	409.33	46.9	1971.7	1 hour, 30 minutes
50-Year	463.87	53.2	2245.7	1 hour, 30 minutes

59.4

2518.5

1 hour, 20 minutes

100-Year

518.02

Table 32. Peak values of the Basud HEC-HMS Model outflow using the Daet RIDF 24-hour values

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the ADNU-DVC base flow was calibrated. Figure 62 shows a generated sample map of the Basud River using the calibrated HMS base flow.

Figure 62. Sample output map of the Basud RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figures 63 to 68 show the 5-, 25-, and 100-year rain return scenarios of the Basud flood plain. The flood plain, with an area of 241.35km2, covers six (6) municipalities, namely Basud, Daet, Mercedes, San Lorenzo Ruiz, San Vicente, and Talisay. Table 33 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area (km²)	Area Flooded (km ²)	% Flooded
Basud	251.71	117.55	46.7
Daet	42.20	42.18	99.94
Mercedes	117.17	18.07	15.42
San Lorenzo Ruiz	108.81	28.76	26.43
San Vicente	47.17	15.36	32.56

Table 33. Municipalities affected in Donsol flood plain

78

5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the basud River Basin, grouped accordingly by municipality. For the said basin, six (6) municipalities consisting of 93 barangays are expected to experience flooding when subjected to the three rainfall return period scenarios.

For the 5-year rainfall return period, 33.69% of the municipality of Basud with an area of 251.71 sq. km. will experience flood levels of less than 0.20 meters. 2.88% of the area will experience flood levels of 0.21 to 0.50 meters, while 3.38%, 4.19%, 2.01%, and 0.55% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 69-71 depict the areas affected in Basud in square kilometers by flood depth per barangay.

Figure 69. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period

Figure 70. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period

Figure 71. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by					Area of affect	ed barangay.	s in Bas	ud (in se	q. km.)				
(in m.)	Angas	Bactas	Binatagan	Caayunan	Guinatungan	Hinampacan	Langa	Laniton	Lidong	Mampili	Mandazo	Mangcamagong	Manmuntay
0.03-0.20	3.15	1.71	4.64	7.39	3.13	1.43	2.86	3.09	2.11	1.08	1.75	1.81	1.3
0.21-0.50	0.39	0.59	0.32	0.34	0.16	0.2	0.15	0.17	0.097	0.8	0.32	0.18	0.082
0.51-1.00	0.34	0.32	0.29	0.34	0.12	0.4	0.17	0.22	0.11	1.26	0.51	0.29	0.2
1.01-2.00	0.33	0.24	0.23	0.37	0.069	0.9	0.17	0.32	0.13	2.35	0.61	0.35	0.48
2.01-5.00	0.092	0.02	0.15	0.24	0.011	0.22	0.064	0.2	0.19	0.24	0.26	0.11	0.45
> 5.00	0	0	0.013	0.066	0	0.035	0.015	0.022	0.053	0.009	0.0002	0.0002	0.037

Table 34. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period

Table 35. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth				4	Area of affecte	d barangays in B	asud (in s	q. km.)			
(in m.)	Mantugawe	Matnog	Mocong	Oliva	Pagsangahan	Pinagwarasan	Plaridel	Poblacion 1	Poblacion 2	San Felipe	San Jose
0.03-0.20	3.15	2.78	0.34	11.43	2.41	3.71	2.52	0.69	0.83	5.23	2.39
0.21-0.50	0.14	0.26	0.15	0.48	0.1	0.44	0.14	0.099	0.24	0.29	0.17
0.51-1.00	0.14	0.19	0.25	0.45	0.094	0.65	0.12	0.055	0.1	0.26	0.21
1.01-2.00	0.12	0.19	0.42	0.49	0.12	0.61	0.083	0.036	0.045	0.25	0.34
2.01-5.00	0.12	0.1	0.39	0.4	0.14	0.37	0.025	0.009	0.032	0.24	0.38
> 5.00	0.084	0.0001	0.072	0.17	0.18	0.068	0.0001	0	0.0017	0.052	0.32

Affected area (sq. km.) by flood depth (in m.)	Ar	ea of affected b	oarangays in B	asud (in sq. kr	n.)
(San Pascual	Taba-Taba	Tacad	Taisan	Tuaca
0.03-0.20	7.16	1.59	1.53	2.93	0.63
0.21-0.50	0.25	0.16	0.35	0.16	0.036
0.51-1.00	0.27	0.28	0.62	0.22	0.016
1.01-2.00	0.39	0.28	0.47	0.17	0.011
2.01-5.00	0.33	0.14	0.042	0.1	0.0032
> 5.00	0.1	0	0.076	0.0015	0.000067

Table 36. Affected Areas in Basud, Camarines Norte during the 5-Year Rainfall Return Period

For the municipality of Daet with an area of 42.2 sq. km., 56.03% will experience flood levels of less than 0.20 meters. 17.48% of the area will experience flood levels of 0.21 to 0.50 meters, while 11.91%, 7.95%, 5.35%, and 1.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figuress 72 and 73 depict the areas affected in Daet in square kilometers by flood depth per barangay.

Figure 72. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period

Figure 73. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth						Area of affe	cted barang	ays in Dae	:t (in sq. km	÷				
(in m.)	Alawihao	Awitan I	Bagasbas	Barangay I	Barangay II	Barangay III	Barangay IV	Barangay V	Barangay VI	Barangay VII	Barangay VIII	Bibirao	Borabod	Calasgasan
0.03-0.20	3.26	0.7	0.95	0.28	0.14	0.042	0.37	0.59	0.12	0.18	0.14	1.7	1.36	1.79
0.21-0.50	0.84	0.31	0.29	0.093	0.093	0.061	0.17	0.14	0.097	0.21	0.06	0.27	0.59	0.2
0.51-1.00	0.31	0.26	0.2	0.025	0.19	0.075	0.089	0.027	0.044	0.087	0.037	0.21	0.25	0.11
1.01-2.00	0.49	0.061	0.033	0.014	0.085	0.034	0.039	0.0026	0	0.0096	0.00039	0.2	0.018	0.095
2.01-5.00	1.03	0	0	0.024	0.00096	0.014	0.0001	0	0	0	0	0.18	0	0.039
> 5.00	0.079	0	0	0.039	0	0.019	0	0	0	0	0	0.031	0	0.0001

Table 37. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period

Table 38. Affected Areas in Daet, Camarines Norte during the 5-Year Rainfall Return Period

	n San Isidro	1.1	0.42	0.29	0.12	0.12	0.038
	Pamorango	0.98	0.39	0.42	0.087	0	0
	Mancruz	1	0.16	0.1	0.058	0.0015	0
m.)	Mambalite	0.68	0.41	0.6	0.75	0.056	0
t (in sq. k	Magang	1.05	0.28	0.22	0.12	0.032	0
s in Dae	Lag-On	1.12	0.33	0.16	0.11	0.025	0.0056
arangay	Gubat	1.74	0.68	0.33	0.044	0	0
f affected b	Gahonon	1.41	0.45	0.11	0.0016	0	0
Area o	Dogongan	2	0.36	0.37	0.69	0.47	0.21
	Cobangbang	0.58	0.27	0.24	0.15	0.0022	0
	Camambugan	0.38	0.2	0.27	0.14	0.27	0.096
Affected Area (sq. km.) by flood depth	(in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

For the municipality of Mercedes with an area of 117.17 sq. km., 9.49% will experience flood levels of less than 0.20 meters. 1.78% of the area will experience flood levels of 0.21 to 0.50 meters, while 2.39%, 1.67%, 0.08%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 74 and 75 depict the areas affected in Mercedes in square kilometers by flood depth per barangay.

Figure 74. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period

Figure 75. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period

Table 39. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth (in				Area	of affected ba	ırangays in M	lercedes (in sq.	km.)		
m.)	Barangay I	Barangay II	Barangay III	Barangay IV	Barangay V	Barangay VI	Barangay VII	Catandunganon	Cayucyucan	Del Rosario
0.03-0.20	0.19	0.13	0.088	0.075	0.072	0.065	0.063	0.47	2.32	0.84
0.21-0.50	0.048	0.046	0.033	0.026	0.011	0.014	0.013	0.096	0.52	0.29
0.51-1.00	0.016	0.091	0.042	0.059	0.0074	0.0069	0.002	0.2	0.44	0.4
1.01-2.00	0.0009	0.12	0.024	0.088	0.019	0	0.00076	0.55	0.06	0.2
2.01-5.00	0	0	0	0.0072	0.000037	0.000057	0.0014	0.077	0.0003	0
> 5.00	0	0	0	0	0	0.00011	0.0012	0.0053	0	0

Table 40. Affected Areas in Mercedes, Camarines Norte during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth	4	offected Baranga	ys in Daraga	
(in m.)	Gaboc	Mambungalon	Manguisoc	San Roque
0.03-0.20	3.03	2.06	0.92	0.79
0.21-0.50	0.2	0.36	0.24	0.19
0.51-1.00	0.2	0.39	0.7	0.23
1.01-2.00	0.46	0.16	0.096	0.18
2.01-5.00	0.0082	0.00078	0.0011	0
> 5.00	0	0	0	0

For the municipality of San Lorenzo Ruiz with an area of 108.81 sq. km., 20.77% will experience flood levels of less than 0.20 meters. 1.92% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.45%, 1.29%, 0.77%, and 0.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 76 depicts the areas affected in San Lorenzo Ruiz in square kilometers by flood depth per barangay.

Figure 76. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 5-Year Rainfall Return Period

Table 41. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in			Area	of affected	barangays in	San Lorenzo	Ruiz (in sq. km.)		
m.)	Daculang Bolo	Dagotdotan	Langga	Laniton	Maisog	Mampurog	Manlimonsito	Matacong	San Ramon
0.03-0.20	4.62	2.8	1.98	3.08	4.41	4.72	0.064	0.66	0.26
0.21-0.50	0.51	0.5	0.18	0.26	0.26	0.32	0.0027	0.028	0.019
0.51-1.00	0.36	0.31	0.12	0.22	0.31	0.22	0.0009	0.017	0.025
1.01-2.00	0.27	0.18	0.1	0.23	0.36	0.25	0.0015	0.012	0.0043
2.01-5.00	0.084	0.071	0.014	0.11	0.33	0.23	0.000029	0.003	0.0007
> 5.00	0.025	0.0008	0	0.0001	0.2	0.03	0.000082	0.0002	0

For the municipality of San Vicente with an area of 47.17 sq. km., 24.44% will experience flood levels of less than 0.20 meters. 2.34% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.83%, 2.25%, 1.47%, and 0.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 77 depicts the areas affected in San Vicente in square kilometers by flood depth per barangay.

Figure 77. Affected Areas in San Vicente, Camarines Norte during the 5-Year Rainfall Return Period

Affected area	ŀ	Area of affe	cted baran	gays in San	Vicente (ii	n s q. km.)	
flood depth (in m.)	Del Rosario	Florista	San Isidro	San Roque	Poblacion District I	Poblacion District II	San Jose
0.03-0.20	5.459	0.314079	0.749859	0.730638	0.17	0.000082	2.37
0.21-0.50	0.194233	0.004176	0.039221	0.029456	0.011	0	0.43
0.51-1.00	0.193042	0.0048	0.022222	0.024662	0.025	0	0.31
1.01-2.00	0.3305	0.009169	0.015202	0.031615	0.034	0	0.3
2.01-5.00	0.661169	0.026188	0.001041	0.014688	0	0	0.25
> 5.00	0.041644	0.012843	0	0	0.0029	0	0.095

Table 42. Affected Areas in San Vicente, Camarines Norte du	ring the 5-Year Rainfall Return Period
---	--

For the municipality of Talisay with an area of 37.9 sq. km., 22.36% will experience flood levels of less than 0.20 meters. 7.89% of the area will experience flood levels of 0.21 to 0.50 meters, while 6.64%, 3.42%, 2.3%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 78 depicts the areas affected in Talisay in square kilometers by flood depth per barangay.

Figure 78. Affected Areas in Talisay, Camarines Norte during the 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth (in				Affe	cted Baranga	ıys in Daraga			
m.)	Binanuaan	Cahabaan	Calintaan	Itomang	Poblacion	San Francisco	San Jose	San Nicolas	Santa Cruz
0.03-0.20	2.06	0.39	1.05	1.34	0.0044	0.65	0.35	0.88	1.76
0.21-0.50	1.15	0.064	0.22	0.35	0.00043	0.38	0.19	0.43	0.2
0.51-1.00	0.71	0.041	0.11	0.21	0	0.15	0.43	0.72	0.13
1.01-2.00	0.19	0.03	0.13	0.14	0	0.0064	0.088	0.47	0.24
2.01-5.00	0.11	0.16	0.18	0.0078	0	0.00052	0.003	0.032	0.37
> 5.00	0	0.017	0.0084	0	0	0	0	0	0.0015

Table 43. Affected Areas in Talisay, Camarines Norte during the 5-Year Rainfall Return Period

For the 25-year rainfall return period, 30.36% of the municipality of Basud with an area of 251.71 sq. km. will experience flood levels of less than 0.20 meters. 2.46% of the area will experience flood levels of 0.21 to 0.50 meters, while 2.79%, 4.3%, 5.67%, and 1.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 79 to 81 depict the areas affected in Basud in square kilometers by flood depth per barangay.

Figure 79. Affected Areas in Basud, Camarines Norte during the 25-Year Rainfall Return Period

Figure 80. Affected Areas in Basud, Camarines Norte during the 25-Year Rainfall Return Period

Figure 81. Affected Areas in Basud, Camarines Norte during the 25-Year Rainfall Return Period

n Period
ll Returi
ar Rainfa
he 25-Ye
: during t
ies Norte
Camarir
n Basud,
d Areas i
. Affecte
Table 44

Affected Area (sq. km.) by flood denth					Area of affect	ed barangay	s in Bas	ud (in s	q. km.)				
(in m.)	Angas	Bactas	Binatagan	Caayunan	Guinatungan	Hinampacan	Langa	Laniton	Lidong	Mampili	Mandazo	Mangcamagong	Manmuntay
0.03-0.20	2.87	1	4.03	7.15	2.98	1.23	2.77	2.72	2.03	0.41	1.52	1.72	1.19
0.21-0.50	0.45	0.63	0.24	0.34	0.13	0.063	0.14	0.18	0.097	0.25	0.27	0.14	0.071
0.51-1.00	0.36	0.52	0.29	0.34	0.14	0.067	0.17	0.24	0.12	0.35	0.47	0.26	0.11
1.01-2.00	0.25	0.64	0.43	0.44	0.16	0.29	0.21	0.43	0.13	1.34	0.77	0.41	0.45
2.01-5.00	0.37	0.1	0.49	0.38	0.07	1.49	0.099	0.4	0.22	3.37	0.42	0.2	0.67
> 5.00	0	0	0.17	0.1	0.0037	0.039	0.029	0.06	0.088	0.015	0.0005	0.00082	0.049

Table 45. Affected Areas in Basud, Camarines Norte during the 25-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth				4	Area of affected	l barangays in B	asud (in s	q. km.)			
(in m.)	Mantugawe	Matnog	Mocong	Oliva	Pagsangahan	Pinagwarasan	Plaridel	Poblacion 1	Poblacion 2	San Felipe	San Jose
0.03-0.20	2.87	2.6	0.16	11.1	2	3.49	2.25	0.52	0.64	4.75	1.37
0.21-0.50	0.13	0.32	0.096	0.49	0.099	0.34	0.12	0.14	0.25	0.28	0.19
0.51-1.00	0.14	0.23	0.21	0.47	0.09	0.62	0.13	0.1	0.19	0.26	0.32
1.01-2.00	0.16	0.21	0.42	0.57	0.14	0.72	0.19	0.082	0.098	0.3	0.49
2.01-5.00	0.2	0.17	0.62	0.51	0.28	0.59	0.16	0.045	0.06	0.48	0.92
> 5.00	0.26	0.0011	0.12	0.29	0.44	0.086	0.046	0.000015	0.0055	0.24	0.51

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Basud (in sq. km.)						
(,	San Pascual	Taba-Taba	Tacad	Taisan	Tuaca		
0.03-0.20	6.98	1.47	1.15	2.85	0.61		
0.21-0.50	0.27	0.14	0.12	0.16	0.043		
0.51-1.00	0.26	0.16	0.18	0.2	0.019		
1.01-2.00	0.4	0.25	0.64	0.2	0.016		
2.01-5.00	0.43	0.44	0.92	0.15	0.0038		
> 5.00	0.16	0	0.08	0.0025	0.00026		

Table 46. Affected Areas in Basud, Camarines Norte during the 25-Year Rainfall Return Period

For the municipality of Daet with an area of 42.2 sq. km., 39.91% will experience flood levels of less than 0.20 meters. 17.84% of the area will experience flood levels of 0.21 to 0.50 meters, while 16.15%, 14.39%, 9.6%, and 2.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 82 and 83 depict the areas affected in Daet in square kilometers by flood depth per barangay.

Figure 82. Affected Areas in Daet, Camarines Norte during the 25-Year Rainfall Return Period

Figure 83. Affected Areas in Daet, Camarines Norte during the 25-Year Rainfall Return Period
Affected Area (sq. km.) by						Area of affe	cted barang	gays in Dae	et (in sq. km	.				
flood depth (in m.)	Alawihao	Awitan	Bagasbas	Barangay I	Barangay II	Barangay III	Barangay IV	Barangay V	Barangay VI	Barangay VII	Barangay VIII	Bibirao	Borabod	Calasgasan
0.03-0.20	2.77	0.42	0.71	0.14	0.042	0.014	0.28	0.48	0.076	0.046	0.09	1.38	0.81	1.66
0.21-0.50	0.98	0.25	0.27	0.16	0.062	0.023	0.17	0.22	0.077	0.13	0.065	0.36	0.71	0.26
0.51-1.00	0.46	0.38	0.23	0.093	0.15	0.091	0.14	0.059	0.1	0.27	0.075	0.3	0.52	0.13
1.01-2.00	0.27	0.27	0.25	0.021	0.24	0.079	0.08	0.0042	0.0075	0.043	0.0072	0.28	0.16	0.11
2.01-5.00	1.31	0.013	0.019	0.026	0.017	0.017	0.003	0	0	0	0	0.18	0	0.06
> 5.00	0.22	0	0	0.043	0	0.022	0	0	0	0	0	0.086	0	0.0037

Table 47. Affected Areas in Daet, Camarines Norte during the 25-Year Rainfall Return Period

Table 48. Affected Areas in Daet, Camarines Norte during the 25-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth			Area o	f affected b	arangay	s in Daet	t (in sq. k	ш.)			
(in m.)	Camambugan	Cobangbang	Dogongan	Gahonon	Gubat	Lag-On	Magang	Mambalite	Mancruz	Pamorangon	San Isidro
0.03-0.20	0.055	0.2	1.69	1.23	0.94	0.88	0.75	0.11	0.92	0.56	0.59
0.21-0.50	0.17	0.36	0.39	0.56	0.69	0.42	0.28	0.13	0.19	0.24	0.38
0.51-1.00	0.36	0.33	0.31	0.18	0.75	0.24	0.33	0.37	0.11	0.43	0.39
1.01-2.00	0.36	0.33	0.61	0.0073	0.38	0.13	0.28	0.96	0.092	0.61	0.48
2.01-5.00	0.29	0.019	0.77	0	0.037	0.082	0.06	0.93	0.0036	0.027	0.19
> 5.00	0.12	0	0.32	0	0	0.0081	0	0	0	0	0.045

For the municipality of Mercedes with an area of 117.17 sq. km., 7.55% will experience flood levels of less than 0.20 meters. 1.48% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.72%, 2.41%, 2.19%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 84 and 85 depict the areas affected in Mercedes in square kilometers by flood depth per barangay.

Figure 84. Affected Areas in Mercedes, Camarines Norte during the 25-Year Rainfall Return Period

Figure 85. Affected Areas in Mercedes, Camarines Norte during the 25-Year Rainfall Return Period

Affected Area (sq. km.) by				Area	of affected ba	rangays in M	lercedes (in sq.	km.)		
flood depth (in m.)	Barangay I	Barangay II	Barangay III	Barangay IV	Barangay V	3arangay VI	Barangay VII	Catandunganon	Cayucyucan	Del Rosario
0.03-0.20	0.17	0.047	0.068	0.051	0.04	0.049	0.034	0.26	2.05	0.099
0.21-0.50	0.054	0.019	0.024	0.019	0.017	0.0095	0.01	0.049	0.59	0.095
0.51-1.00	0.011	0.022	0.0047	0.0058	0.016	0.0054	0.012	0.08	0.45	0.29
1.01-2.00	0.0076	0.097	0.025	0.03	0.011	0.016	0.018	0.22	0.26	0.73
2.01-5.00	0.021	0.2	0.066	0.15	0.026	0.0064	0.0046	0.73	0.0005	0.52
> 5.00	0	0	0	0.0048	0.000000003	0.00011	0.0016	0.058	0	0

Table 49. Affected Areas in Mercedes, Camarines Norte during the 25-Year Rainfall Return Period

Table 50. Affected Areas in Mercedes, Camarines Norte during the 25-Year Rainfall Return Period

Affected Area (sq. km.) by	∢	uffected Baranga	ys in Daraga	
(in m.)	Gaboc	Mambungalon	Manguisoc	San Roque
0.03-0.20	2.93	1.89	0.81	0.34
0.21-0.50	0.2	0.39	0.12	0.14
0.51-1.00	0.2	0.38	0.37	0.18
1.01-2.00	0.11	0.31	0.65	0.35
2.01-5.00	0.45	0.013	0.0043	0.39
> 5.00	0	0	0	0

For the municipality of San Lorenzo Ruiz with an area of 108.81 sq. km., 19.31% will experience flood levels of less than 0.20 meters. 2.29% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.6%, 1.63%, 1.26%, and 0.34% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 86 depicts the areas affected in San Lorenzo Ruiz in square kilometers by flood depth per barangay.

Figure 86. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 25-Year Rainfall Return Period

San Ramon 0.0016 0.024 0.017 0.021 0.24 Matacong 0.0018 0.036 0.034 0.041 0.03 0.57 Area of affected barangays in San Lorenzo Ruiz (in sq. km.) Mampurog Manlimonsito 0.00091 0.0019 0.0028 0.00032 0.00011 0.063 0.068 0.25 0.36 4.51 0.37 0.22 Maisog 4.19 0.25 0.26 0.46 0.43 0.26 0.0013 Laniton 2.87 0.32 0.25 0.26 0.2 Langga 0.031 0.140.13 0.21 1.9Daculang Dagotdotan 0.0034 0.29 0.13 2.4 0.64 0.41 Bolo 0.029 4.28 0.33 0.17 0.64 0.42 (sq. km.) by flood depth (in m.) Affected Area 1.01-2.00 0.03-0.20 0.21-0.50 0.51-1.00 2.01-5.00

0

0

> 5.00

Table 51. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 25-Year Rainfall Return Period

For the municipality of San Vicente with an area of 47.17 sq. km., 23.17% will experience flood levels of less than 0.20 meters. 2.53% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.83%, 2.28%, 2.34%, and 0.42% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 87 depicts the areas affected in San Vicente in square kilometers by flood depth per barangay.

Figure 87. Affected Areas in San Vicente, Camarines Norte during the 25-Year Rainfall Return Period

Affected area (sg. km.) by	ļ	Area of affe	cted baran	gays in San	Vicente (ii	n sq. km.)	
flood depth (in m.)	Del Rosario	Florista	San Isidro	San Roque	Poblacion District I	Poblacion District II	San Jose
0.03-0.20	2.23	0.25	2.67	3.42	0.16	0.000082	2.19
0.21-0.50	0.33	0.031	0.15	0.26	0.013	0	0.41
0.51-1.00	0.19	0.01	0.099	0.21	0.015	0	0.34
1.01-2.00	0.26	0.00086	0.12	0.35	0.052	0	0.29
2.01-5.00	0.2	0	0.17	0.37	0	0	0.36
> 5.00	0	0	0.014	0.025	0.0029	0	0.16

Table 52. Affected Areas in San Vicente, G	Camarines Norte during the 25-Year Rainfall Return Perio	d
--	--	---

For the municipality of Talisay with an area of 37.9 sq. km., 15.41% will experience flood levels of less than 0.20 meters. 8.2% of the area will experience flood levels of 0.21 to 0.50 meters, while 7.99%, 6.98%, 3.91%, and 0.18% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 88 depicts the areas affected in Talisay in square kilometers by flood depth per barangay.

Figure 88. Affected Areas in Talisay, Camarines Norte during the 25-Year Rainfall Return Period

Table 53. Affected Areas in Talisay, Camarines Norte during the 25-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth (in				Affe	cted Baranga	ıys in Daraga			
m.)	Binanuaan	Cahabaan	Calintaan	Itomang	Poblacion	San Francisco	San Jose	San Nicolas	Santa Cruz
0.03-0.20	1.51	0.24	0.46	1.05	0.0038	0.39	0.21	0.44	1.52
0.21-0.50	1.22	0.14	0.41	0.41	0.00099	0.34	0.061	0.26	0.27
0.51-1.00	1.06	0.089	0.37	0.32	0	0.37	0.18	0.46	0.17
1.01-2.00	0.31	0.042	0.18	0.24	0	0.082	0.56	1.01	0.22
2.01-5.00	0.13	0.14	0.25	0.029	0	0.0014	0.041	0.37	0.52
> 5.00	0.0002	0.038	0.023	0	0	0	0	0	0.0085

For the 100-year rainfall return period, 28.85% of the municipality of Basud with an area of 251.71 sq. km. will experience flood levels of less than 0.20 meters. 2.3% of the area will experience flood levels of 0.21 to 0.50 meters, while 2.67%, 3.98%, 7.42%, and 1.47% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 89 to 91 depict the areas affected in Basud in square kilometers by flood depth per barangay.

Figure 89. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period

Figure 90. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period

Figure 91. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period

-													
Affected Area (sq. km.) by flood denth					Area of affect	ed barangay	s in Bas	sud (in so	q. km.)				
(in m.)	Angas	Bactas	Binatagan	Caayunan	Guinatungan	Hinampacan	Langa	Laniton	Lidong	Mampili	Mandazo	Mangcamagong	Manmuntay
0.03-0.20	2.69	0.54	3.86	7	2.94	1.16	2.71	2.59	1.98	0.28	1.39	1.66	1.13
0.21-0.50	0.48	0.41	0.24	0.35	0.13	0.066	0.15	0.19	0.1	0.12	0.24	0.13	0.069
0.51-1.00	0.39	0.58	0.27	0.32	0.14	0.062	0.17	0.24	0.12	0.16	0.4	0.21	0.098
1.01-2.00	0.27	0.88	0.42	0.46	0.18	0.099	0.24	0.43	0.14	0.54	0.82	0.47	0.34
2.01-5.00	0.47	0.47	0.61	0.49	0.091	1.75	0.13	0.5	0.24	4.62	0.59	0.26	0.84
> 5.00	0.0014	0	0.25	0.13	0.0069	0.052	0.032	0.077	0.12	0.019	0.0007	0.0038	0.067

Table 54. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period

Table 55. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth				4	Area of affected	d barangays in B:	asud (in s	q. km.)			
(in m.)	Mantugawe	Matnog	Mocong	Oliva	Pagsangahan	Pinagwarasan	Plaridel	Poblacion 1	Poblacion 2	San Felipe	San Jose
0.03-0.20	2.69	2.34	0.11	10.86	1.8	3.35	2.2	0.37	0.57	4.57	1.17
0.21-0.50	0.13	0.38	0.053	0.5	0.1	0.3	0.12	0.16	0.24	0.27	0.15
0.51-1.00	0.14	0.3	0.15	0.47	0.11	0.55	0.12	0.16	0.24	0.27	0.28
1.01-2.00	0.19	0.25	0.37	0.6	0.15	0.74	0.19	0.12	0.12	0.31	0.57
2.01-5.00	0.26	0.24	0.81	0.62	0.32	0.8	0.19	0.084	0.071	0.53	1
> 5.00	0.34	0.0053	0.14	0.38	0.57	0.11	0.069	0.00022	0.008	0.37	0.63

Affected area (sq. km.) by flood depth (in m.)	Ar	ea of affected b	parangays in B	Basud (in sq. kr	n.)
(San Pascual	Taba-Taba	Tacad	Taisan	Tuaca
0.03-0.20	6.85	1.38	1.04	2.8	0.61
0.21-0.50	0.28	0.14	0.1	0.16	0.046
0.51-1.00	0.26	0.15	0.13	0.2	0.022
1.01-2.00	0.38	0.25	0.26	0.21	0.018
2.01-5.00	0.52	0.49	1.47	0.19	0.0046
> 5.00	0.21	0.033	0.086	0.0033	0.00046

Table 56. Affected Areas in Basud, Camarines Norte during the 100-Year Rainfall Return Period

For the municipality of Daet with an area of 42.2 sq. km., 29.66% will experience flood levels of less than 0.20 meters. 15.01% of the area will experience flood levels of 0.21 to 0.50 meters, while 16.18%, 20.08%, 16.31%, and 2.7% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 92 and 93 depict the areas affected in Daet in square kilometers by flood depth per barangay.

Figure 92. Affected Areas in Daet, Camarines Norte during the 100-Year Rainfall Return Period

Figure 93. Affected Areas in Daet, Camarines Norte during the 100-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth						Area of affe	ected barang	ays in Dae	et (in sq. km	.				
(in m.)	Alawihao	Awitan	Bagasbas	Barangay 	Barangay II	Barangay III	Barangay IV	Barangay V	Barangay VI	Barangay VII	Barangay VIII	Bibirao	Borabod	Calasgasan
0.03-0.20	2.26	0.2	0.36	0.073	0.022	0.0064	0.24	0.42	0.053	0.024	0.053	1.14	0.39	1.46
0.21-0.50	1.05	0.12	0.14	0.13	0.037	0.016	0.14	0.24	0.074	0.048	0.064	0.38	0.48	0.34
0.51-1.00	0.74	0.23	0.24	0.17	0.13	0.066	0.17	0.088	0.1	0.27	0.086	0.38	0.48	0.19
1.01-2.00	0.34	0.57	0.48	0.035	0.29	0.11	0.099	0.011	0.034	0.15	0.034	0.36	0.75	0.14
2.01-5.00	1.31	0.22	0.25	0.027	0.03	0.022	0.0098	0	0	0.0002	0	0.22	0.11	0.079
> 5.00	0.33	0	0	0.044	0	0.023	0	0	0	0	0	0.11	0	0.018

Table 57. Affected Areas in Daet, Camarines Norte during the 100-Year Rainfall Return Period

Table 58. Affected Areas in Daet, Camarines Norte during the 100-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth			Area o	f affected b	arangay	s in Dae	t (in sq. k	m.)			
(in m.)	Camambugan	Cobangbang	Dogongan	Gahonon	Gubat	Lag-On	Magang	Mambalite	Mancruz	Pamorangon	San Isidro
0.03-0.20	0.028	0.085	1.36	1.08	0.41	0.72	0.63	0.011	0.83	0.38	0.28
0.21-0.50	0.073	0.2	0.39	0.61	0.39	0.42	0.25	0.016	0.22	0.22	0.28
0.51-1.00	0.35	0.37	0.33	0.27	0.71	0.32	0.37	0.059	0.14	0.34	0.25
1.01-2.00	0.46	0.54	0.43	0.017	0.89	0.19	0.36	0.62	0.12	0.76	0.68
2.01-5.00	0.31	0.049	1.16	0	0.4	0.098	0.087	1.8	0.014	0.17	0.53
> 5.00	0.13	0	0.43	0	0	0.0092	0	0	0	0	0.049

For the municipality of Mercedes with an area of 117.17 sq. km., 6.49% will experience flood levels of less than 0.20 meters. 1.3% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.5%, 2.54%, 3.52%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 94 and 95 depict the areas affected in Mercedes in square kilometers by flood depth per barangay.

Figure 94. Affected Areas in Mercedes, Camarines Norte during the 100-Year Rainfall Return Period

Figure 95. Affected Areas in Mercedes, Camarines Norte during the 100-Year Rainfall Return Period

Table 59. Affected Areas in Mercedes, Camarines Norte during the 100-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in				Area	of affected b	arangays in N	lercedes (in sq.	km.)		
	Barangay I	Barangay II	Barangay III	Barangay IV	Barangay V	Barangay VI	Barangay VII	Catandunganon	Cayucyucan	Del Rosario
0.03-0.20	0.082	0.0013	0.045	0.019	0.03	0.025	0.0081	0.16	1.74	0.0075
0.21-0.50	0.032	0.0028	0.0099	0.0046	0.0068	0.015	0.0053	0.024	0.68	0.01
0.51-1.00	0.073	0.037	0.015	0.018	0.0035	0.012	0.012	0.08	0.49	0.048
1.01-2.00	0.042	0.051	0.027	0.033	0.032	0.011	0.029	0.16	0.44	0.42
2.01-5.00	0.031	0.29	0.091	0.17	0.037	0.023	0.022	0.9	0.0022	1.24
> 5.00	0	0	0	0.0065	0.000037	0.00017	0.0033	0.066	0	0

Table 60. Affected Areas in Mercedes, Camarines Norte during the 100-Year Rainfall Return Period

Affected Area (sq. km.) by flood denth	4	vffected Baranga	ys in Daraga	
(in m.)	Gaboc	Mambungalon	Manguisoc	San Roque
0.03-0.20	2.88	1.77	0.76	0.078
0.21-0.50	0.21	0.38	0.096	0.041
0.51-1.00	0.21	0.42	0.18	0.17
1.01-2.00	0.12	0.38	0.87	0.38
2.01-5.00	0.48	0.028	0.056	0.74
> 5.00	0	0	0	0

For the municipality of San Lorenzo Ruiz with an area of 108.81 sq. km., 17.83% will experience flood levels of less than 0.20 meters. 2.68% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.95%, 1.87%, 1.67%, and 0.43% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 96 depicts the areas affected in San Lorenzo Ruiz in square kilometers by flood depth per barangay.

Figure 96. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 100-Year Rainfall Return Period

Table 61. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 100-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in			Area	of affected	barangays in	San Lorenzo	Ruiz (in sq. km.)		
ш.)	Daculang Bolo	Dagotdotan	Langga	Laniton	Maisog	Mampurog	Manlimonsito	Matacong	San Ramon
0.03-0.20	3.8	2.06	1.79	2.51	4.02	4.35	0.063	0.56	0.24
0.21-0.50	0.78	0.68	0.26	0.42	0.28	0.43	0.0029	0.035	0.019
0.51-1.00	0.56	0.54	0.15	0.32	0.25	0.23	0.001	0.036	0.024
1.01-2.00	0.42	0.38	0.14	0.33	0.46	0.24	0.0017	0.036	0.023
2.01-5.00	0.25	0.19	0.058	0.31	0.54	0.41	0.00068	0.044	0.0023
> 5.00	0.045	0.0078	0	0.0087	0.3	0.1	0.00011	0.0033	0

For the municipality of San Vicente with an area of 47.17 sq. km., 21.79% will experience flood levels of less than 0.20 meters. 2.75% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.99%, 2.27%, 3.15%, and 0.62% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 97 depicts the areas affected in San Vicente in square kilometers by flood depth per barangay.

Figure 97. Affected Areas in San Lorenzo Ruiz, Camarines Norte during the 100-Year Rainfall Return Period

Affected area (sg. km.) by	ŀ	Area of affe	cted baran	gays in San	Vicente (ii	n sq. km.)	
flood depth (in m.)	Del Rosario	Florista	San Isidro	San Roque	Poblacion District I	Poblacion District II	San Jose
0.03-0.20	2.04	0.24	2.59	3.26	0.16	0.000082	1.98
0.21-0.50	0.38	0.034	0.18	0.28	0.014	0	0.41
0.51-1.00	0.2	0.013	0.11	0.21	0.011	0	0.39
1.01-2.00	0.25	0.0016	0.11	0.32	0.058	0	0.32
2.01-5.00	0.33	0	0.22	0.5	0.0018	0	0.43
> 5.00	0.00019	0	0.02	0.049	0.0029	0	0.22

Table 62. Affected Areas in San Vicente, Camarines Norte during the 100-Year Rainfall Return Period

For the municipality of Talisay with an area of 37.9 sq. km., 9.86% will experience flood levels of less than 0.20 meters. 6.68% of the area will experience flood levels of 0.21 to 0.50 meters, while 9.82%, 9.81%, 6.23%, and 0.28% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 98 depicts the areas affected in Talisay in square kilometers by flood depth per barangay.

Figure 98. Affected Areas in Talisay, Camarines Norte during the 100-Year Rainfall Return Period

Table 63. Affected Areas in Talisay, Camarines Norte during the 25-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in				Affe	cted Baranga	ys in Daraga			
m.)	Binanuaan	Cahabaan	Calintaan	Itomang	Poblacion	San Francisco	San Jose	San Nicolas	Santa Cruz
0.03-0.20	6.0	0.14	0.16	0.65	0.0014	0.24	0.15	0.2	1.29
0.21-0.50	0.93	0.11	0.32	0.4	0.003	0.27	0.04	0.15	0.31
0.51-1.00	1.51	0.19	0.57	0.49	0.00038	0.35	0.077	0.32	0.22
1.01-2.00	0.73	0.072	0.35	0.4	0	0.32	0.56	1.06	0.22
2.01-5.00	0.15	0.14	0.29	0.11	0	0.0051	0.23	0.79	0.64
> 5.00	0.0003	0.05	0.03	0	0	0	0	0	0.025

Among the barangays in the municipality of Basud, Oliva is projected to have the highest percentage of area that will experience flood levels at 5.33%. Meanwhile, Caayunan posted the second highest percentage of area that may be affected by flood depths at 3.48%.

Among the barangays in the municipality of Daet, Alawihao is projected to have the highest percentage of area that will experience flood levels at 14.26%. Meanwhile, Dogongan posted the second highest percentage of area that may be affected by flood depths at 9.71%.

Among the barangays in the municipality of Mercedes, Gaboc is projected to have the highest percentage of area that will experience flood levels of at 3.33%. Meanwhile, Cayucyucan posted the second highest percentage of area that may be affected by flood depths of at 2.86%.

Among the barangays in the municipality of San Lorenzo Ruiz, Daculang Bolo is projected to have the highest percentage of area that will experience flood levels of at 5.39%. Meanwhile, Mampurog posted the second highest percentage of area that may be affected by flood depths of at 5.31%.

Among the barangays in the municipality of San Vicente, Man-Ogob is projected to have the highest percentage of area that will experience flood levels of at 9.82%. Meanwhile, San Jose posted the second highest percentage of area that may be affected by flood depths of at 7.95%.

Among the barangays in the municipality of Talisay, Binanuaan is projected to have the highest percentage of area that will experience flood levels of at 11.14%. Meanwhile, Santa Cruz posted the second highest percentage of area that may be affected by flood depths of at 7.14%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, performing a validation survey work is needed. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel then went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 201 points randomly selected all over the Basud flood plain. It has an RMSE value of 0.863404408.

Figure 99. The validation points for the 5-Year flood depth map of the Basud flood plain

Figure 100. Flood map depth vs. Actual flood depth

Actual			Model	ed Flood Dep	th (m)		
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	48	31	34	11	1	0	125
0.21-0.50	2	2	4	7	1	0	16
0.51-1.00	2	5	3	4	1	0	15
1.01-2.00	8	0	2	11	6	0	27
2.01-5.00	3	0	1	1	11	0	16
> 5.00	0	0	0	0	0	0	0
Total	63	38	44	34	20	0	199

Table 64. Actual flood vs simulated flood depth at differnent levels in the Basud River Basin.

The overall accuracy generated by the flood model is estimated at 37.69%, with 75 points correctly matching the actual flood depths. In addition, there were 55 points estimated one level above and below the correct flood depths, 45 points estimated two levels above and below, and 24 points estimated three or more levels above and below the correct flood depths. A total of 100 points were overestimated while a total of 24 points were underestimated in the modelled flood depths of Basud. Table 65 depicts the summary of the accuracy assessment in the Basud River Basin survey.

Table 65. Summary of the Accuracy Assessment in the Basud River Basin Survey

BASUD	No. of Points	%
Correct	75	37.69
Overestimated	100	50.25
Underestimated	24	12.06
Total	199	100

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

ANNEX 1. Optech Technical Specification of the Pegasus Sensor

Parameter	Specification		
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal		
Laser wavelength	1064 nm		
Horizontal accuracy (2)	1/5,500 x altitude, 1σ		
Elevation accuracy (2)	< 5-20 cm, 1σ		
Effective laser repetition rate	Programmable, 100-500 kHz		
Position and orientation system	POS AV ™AP50 (OEM)		
Scan width (FOV)	Programmable, 0-75 °		
Scan frequency (5)	Programmable, 0-140 Hz (effective)		
Sensor scan product	800 maximum		
Beam divergence	0.25 mrad (1/e)		
Roll compensation	Programmable, ±37° (FOV dependent)		
Vertical target separation distance	<0.7 m		
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns		
Intensity capture	Up to 4 intensity returns for each pulse, including las (12 bit)		
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)		
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer		
Data storage	Removable solid state disk SSD (SATA II)		
Power requirements	28 V, 800 W, 30 A		
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;		
	Control rack: 650 x 590 x 490 mm; 46 kg		
Operating Temperature	-10°C to +35°C		
Relative humidity	0-95% non-condensing		

ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

CMN-33 1.

March 11, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province:	CAMARINES NORTE			
	Statio	n Name: CMN-33			
	0	der: 2nd			
Island: LUZON Municipality: JOSE P	ANGANIBAN MSL E	ay: BATOBALANI evation: RS92 Coordinates			
alibude: 14º 14' 11	70144" Longitu	de: 122º 44' 31.91442'	Elipsoidal	Hat	8.58900 m.
	congris	00. IAA	Lapoorda	. ge	
	и	GS84 Coordinates			
Latitude: 14º 14' 6	51050" Longitu	de: 122º 44' 36.82890'	 Ellipsoidal 	Hgt	57.40600 m
	PTM	/ PRS92 Coordinates			
Northing: 1574360.	987 m. Easting	472178.341 m.	Zone:	4	
	UTM	/ PRS92 Coordinates			
Northing: 1,573,80	9.93 Easting	472,188.08	Zone:	51	

CMN-33

Location Description

From Mun. of Labo, travel NW along Maharlika Highway for about 5.5 Km. up to Brgy. Talobatib, upon reaching Brgy. Talobatib turn right at road junction, then travel for about 7 Km. up to Brgy. Batobalani. Station is located at Brgy. Batobalani. It was established NW wing of Malaquit Bridge, 100 m S of road junction going to Paracale. Mark is the head of a 3 in. copper nail centered on a drilled hole with 30 cm x 30 cm cement putty, embedded at concrete bridge, with inscriptions, "CMN-33, 2007, NAMRIA".

Requesting Party: PHIL-LIDAR 1 Purpose: OR Number: T.N.:

Reference 8090013 I 2016-0613

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

A OF Hain : Lawtor Avenue, Font Banilacia, 1634 Tapoig City, Philippines. Tel. No. (630) 810-4831 to 41 Branch : 421 Banaca St. San Nicolas, 1010 Hanila, Philippines, Tel. No. (632) 241-3454 to 98 www.namria.gov.ph

ISO 801: 2008 CERTIFIED FOR MAPPING AND GEOSPHITAL INFORMATION MANAGEMENT

2. CMN-29

Location Description

CMN-29

From Mun. of Labo, travel W along Maharlika highway for approx. 30 Km. then turn left to a road going to Brgy. Malaya, passing through Malibago Elem. School for about 3 Km. Station is located at Brgy. Malibago. It was established at Basigan, NW of spillway. Mark is the head of a 4 in. copper nail centered on a drilled hole with cement putty, embedded at concrete pavement with inscriptions, "CMN-29, 2007, NAMRIA".

Requesting Party: UP DREAM Purpose: Reference OR Number: 8084228 I T.N.: 2016-0910

11 en

RUEL DM, BELEN, MNSA

Main: Lawton Avenue, Port Bondacio, HEM Tagaig City, Philippines, Tal. No. (ES2) 810-4831 to 41 Branch: 421 Bannue St. San Nicolae, 1010 Manla, Philippines, Tal. No. (ES2) 341-5484 to 98 www.namria.gov.ph

ISO 1011: 2008 CERTIFIED FOR MAPPING AND GEOSPIKITAL INFORMATION MANAGEMENT

ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. DENR

Vector Components (Mark to Mark)

From:	CMN-33					
	Brid	Lo	cal		Gk	obal
Easting	472188.079 m	Latitude	N14°14'11.7014	4" Latitude		N14°14'06.51050"
Northing	1573809.933 m	Longitude	E122*44'31.9144	2" Longitude		E122*44'36.82890"
Elevation	8.054 m	Height	8.589	m Height		57.406 m
To:	DENR					
	Brid	Lo	cal		Gl	obal
Easting	498040.596 m	Latitude	N14*08'11.8692	0" Latitude		N14*08'06.72152"
Northing	1562740.733 m	Longitude	E122°58'54.6430	54.64302" Longitude E122°58'59.5		E122°58'59.56437"
Elevation	10.763 m	Height	11.089	m Height		60.772 m
Vector						
∆Easting	25852.51	7 m NS Fwd Azimuth		113*06'57*	ΔX	-23201.756 m
∆Northing	-11069.20	0 m Ellipsoid Dist.		28133.743 m	ΔY	-11758.951 m
∆Elevation	2.70	9 m ∆Height		2.501 m	ΔZ	-10719.727 m

Standard Errors

Vector errors:					
σ ∆Easting	0.002 m	σ NS fwd Azimuth	0*00'00*	σΔX	0.005 m
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔY	0.008 m
σ ΔElevation	0.009 m	σ ΔHeight	0.009 m	σΔZ	0.003 m

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z
x	0.0000239070		
Y	-0.0000322289	0.0000585638	
z	-0.0000143603	0.0000201237	0.0000119954

2. CM-198

DEN	DENR - CM-186 (7.15.40 Am-11.28.58 Am) (55)				
Baseline observation:	DENR CM-195 (B3)				
Processed:	4/22/2016 2:41:05 PM				
Solution type:	Fixed				
Frequency used:	Dual Frequency (L1, L2)				
Hortzontal precision:	0.004 m				
Vertical precision:	0.019 m				
RMS:	0.003 m				
Maximum PDOP:	2.457				
Ephemeris used:	Broadcast				
Antenna model:	No phase table corrections applied.				
Processing start time:	3/14/2016 7:15:40 AM (Local: UTC+8hr)				
Processing stop time:	3/14/2016 11:29:59 AM (Local: UTC+8hr)				
Processing duration:	04:14:19				
Processing interval:	1 second				

DENR - CM-198 (7:15:40 AM-11:29:59 AM) (S3)

Vector Components (Mark to Mark)

From:	DENR						
	Grid		Local		G	lobal	
Easting	495040.590 m	Latitude	N14"00"11.86904"	Latitude		N14*00'06.72136*	
Northing	1562740.726 m	Longitude	E122"50"54.64282"	Longitude		E122'50'59.56417*	
Elevation	10.717 m	Height	11.043 m	Height		60.726 m	
To:	CM-198						
	Grid	Local		Global		lobal	
Easting	400009.009 m	Latitude	N14"00"26.36447"	Latitude		N14"00"21.20540"	
Northing	1563190.057 m	Longitude	E122"51"58.66504"	Longitude		E122"52'03.56666"	
Elevation	16.441 m	Height	16.891 m	Height		66.201 m	
Vector							
ΔEasting	-12470.70	2 m NS Fwd Azin	muth	272'03'33*	ΔX	10525.200 m	
ΔNorthing	449.32	9 m Ellipsoid Dist	L	12403.000 m	ΔY	6694.508 m	
AElevation	5.72	4 m ΔHeight		5.848 m	ΔZ	433.054 m	

Standard Errors

Vector errors:						
σΔEasting	0.001 m	σ NS fwd Azimuth	0.00.00.	σΔΧ	0.005 m	
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.008 m	
σ ΔElevation	0.010 m	σ ΔHeight	0.010 m	σΔΖ	0.003 m	

3. CN-211

CMN-33 - CN-211 (2:32:11 PM-3:47:13 PM) (S1)

	CMIT-00 - CIT-211 (2.02.111 PM-0.47.10 PM) (01)
Baseline observation:	CMN-33 CN-211 (B1)
Processed:	6/13/2016 3:39:11 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Hortzontal precision:	0.006 m
Vertical precision:	0.019 m
RMS:	0.004 m
Maximum PDOP:	2.989
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Proceesing start time:	4/6/2016 2:32:11 PM (Local: UTC+8hr)
Processing stop time:	4/6/2016 3:47:13 PM (Local: UTC+8hr)
Processing duration:	01:15:02
Processing Interval:	1 second

Vector Components (Mark to Mark)

From:	CMN-33	2MN-33					
Grid		Local		Giobal			
Easting	472188.079 m	Latitude	N14"14'11.70144"	Latitude	N14*14'06.51050"		
Northing	1573809.933 m	Longitude	E122*44'31.91442*	Longitude	E122*44'36.82890*		
Elevation	8.054 m	Height	8.589 m	Height	57.406 m		

To:	CN-211	DN-211					
G	rid	L	iacai		G	lobal	
Easting	476182.911 m	Latitude	N14*12'10.3	35973" Latitude		N14*12'05.17982"	
Northing	1570078.228 m	Longitude	E122*46'45.3	33929" Longitude		E122*46'50.25638"	
Elevation	34.838 m	Height	35	.369 m Height		84.372 m	
Vector							
∆Easting .	3994.83	2 m NS Fwd Azimuth	1	132*59'10'	ΔX	-3873.755 m	

∆Elevation	26.784 m	∆Height	26.780 m	۸Z	
ΔNorthing	-3731.705 m	Ellipsold Dist.	5468.796 m	ΔY	
DEalering	3994.832 m	NS PWG Azimuth	132 59 10	22	

Standard Errors

Vector errors:							
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0*00'00*	σΔΧ	0.006 m		
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔY	0.008 m		
σ ΔElevation	0.010 m	σΔHeight	0.010 m	σΔZ	0.003 m		

-1372.596 m -3608.128 m

4. CMN-J2

Vector Compor	nents (Ma	irk to Mark)								
From:	CMI	4-33								
	Grid			Loo	cal			G	lobal	
Easting		472188.079 m	Latitu	ude	N14°14'1	1.70144"	Latitude		N14°14'06.51050'	
Northing		1573809.933 m	Long	jitude	E122°44'3	1.91442"	Longitude		E122°44'36.82890'	
Elevation		8.054 m	Heig	ht		8.589 m	Height		57.406 m	
To:	CMI	N-J2								
	Grid			Local		Global		lobal		
Easting		455138.726 m	Latitu	ude	N14°08'53	3.88940"	Latitude		N14°08'48.70654"	
Northing		1564071.272 m	Long	jitude	E122°35'03	3.56309"	Longitude		E122°35'08.48618'	
Elevation		51.090 m	Heig	ht	5	51.531 m	m Height		100.212 m	
Vector										
ΔEasting		-17049.35	54 m I	NS Fwd Azimuth			240°12'06"	ΔX	13031.656 m	
ΔNorthing		-9738.66	61 m I	Ellipsoid Dist.			19642.244 m	ΔY	11248.492 m	
∆Elevation		43.03	36 m /	∆Height			42.942 m	ΔZ	-9458.830 m	

Standard Errors

Vector errors:					
σ ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.007 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.011 m
σ ΔElevation	0.014 m	σ ΔHeight	0.014 m	σΔZ	0.004 m

Aposteriori Covariance Matrix (Meter*)

	Х	Y	Z
х	0.0000516438		
Y	-0.0000773807	0.0001288439	
Z	-0.0000233071	0.0000375098	0.0000122595

Occupations

	From	To
Point ID:	CMN-33	CMN-J2
Data file:	C:\Users\Windows User\Documents \Business Center - HCE\Unnamed(1)\CMN- 33 (Topcon) 1.403M [04-08-16].16O	C:\Users\Windows User\Documents \Business Center - HCE\Unnamed(1)\CMN- J2 (Modular) 1.500M [04-08-16].T02
Receiver type:	Unknown	SPS852
Receiver serial number:	U034ESOECQW	5217K84538
Antenna type:	CR.G5	Zephyr Geodetic 2 RoHS
Antenna serial number:	-Unknown-	
Antenna height (measured):	1.403 m	1.500 m
Antenna method:	Bottom of antenna mount	Bottom of notch

Tracking Summary

ANNEX 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUNA	UP TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP TCAGP
	FIELD T	EAM	
	Senior Science Research	JASMINE ALVIAR	UP-TCAGP
	Specialist (SSRS)	PAULINE JOANNE ARCEO	UP-TCAGP
		KRISTINE JOY ANDAYA	UP-TCAGP
LIDAR Operation	Desserve Associate (DA)	MILLIE SHANE REYES	UP-TCAGP
	Research Associate (RA)	JONATHAN ALMALVEZ	UP-TCAGP
		JERIEL PAUL ALAMBAN	UP-TCAGP
Ground Survey, Data	DA	JASMIN DOMINGO	UP-TCAGP
Download and Transfer	KΑ	GEF SORIANO	UP-TCAGP
	Airborno Socurity	SSG. ERWIN DELOS SANTOS	PHILIPPINE AIR FORCE (PAF)
	Airbonne Security	SSG JAYCO MANZANO	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. CESAR ALFONSO III	ASIAN AEROSPACE CORPORATION (AAC)
	i not	CAPT. MARK TANGONAN	AAC
		CAPT. RANDY LAGCO	AAC
		CAPT. KHALIL ANTHONY CHI	AAC

ANNEX 5. Data Transfer Sheet for Daet-Basud Floodplain Flights

								01/04/2016	BAGASBAS								
			L	RAM	541			-	MISSION LOG		L	BANK ST	(shour	CPERATOR	FLIGHT	I PLAN	
DATE	FLIGHT NO	HWWW MORESHIE	BUNBOR	Output LAS	KORL (swell)	roostawai	POS	MADE INCASH	FLEROASI	RANDE	Deputation	(theourus	(and) when (and	(on Loos	Actival	NM	SERVER LOCATION
2016	231700	184X20DE69A	PEGASUS	1.77	1245	11.5	253	40.6	309	18.2	MA	171	IKB	108	1.41	M	Z-\DMC\RAWDATA
2016	231729	1BUX204698	PEGASUS	815	552	6.27	149	14.9	123	8.3	NA	171	IKB	108	5.05	M	Z-\DMC\RAWDATA
2016	23174P	1BUC20ASC70A	PEGASUS	2.12	1484	12.5	266	41.4	NA	22.5	NA	186	IKB	108	7.17	M	Z:\DMC\RAWDATA
2016	23176P	1BUK208708	PEGASUS	903	490	5.53	159	15.7	NA	8.7	NA	186	IKB	108	NA	M	Z-\DAC\RAWDATA
12016	131829	1BLK20ABCE72A	PEGASUS	1.04	686	8.96	265	20.8	NA	10.8	NA	3.82	IKB	108	NA	M	Z-\DMC\RAWDATA
72016	231869	1BUK20K73A	PEGASUS	1.26	630	6.63	190	17.7	NA N	12.8	NA	1.9	tKB	108	377	NA	Z-\DMC\RAWDATA
2016	231900	18LK208574A	PEGASUS	1.66	638	68'6	254	1.52	NA .	17.4	NA	69.3	IKB	108	448	NA	Z:\DMC\RAWDATA
2016	23194P	1BLK200KL75A	PEGASUS	2.15	1241	10.8	267	35.6	263	22.4	NA	81.5	IKB	108	103	NA	Z-\DMC\RAWDATA
2016	231989	1BUK20M/YEA	PEGASUS	1.96	1241	11	279	33.8	NA N	22	NA	84	IKB	108	1.52	NA	Z:\DAC\RAWDATA
2016	232029	1BUK20N77A	PEGASUS	2.29	1664	12.5	287	50.5	NA .	25.9	NA	131	IKB	108	60.6	NA	Z:\DMC\RAWDATA

130

Name Irish Cortez 4/11/16 Summe RA

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

1-91

iu.	- 10
	÷
x	- 22
40	- 64
	-
20	-5
m	- 10
35	- 10
2	- 22
-2	2
82	- 25
F	- 24
-	6
2	-24
-	2
2	_
-	

DATE PU				RAW	LAS				MISSION LOG			DASK ST.	(S)MO(L)	OPERATOR	FLIGHT	PLAN	
	UGHT ND.	MISSION NAME	SENSOR	Output LAS	KOML (swath)	L005	POS	MAGESICASI	FLEICASI LOGS	RANGE	DIGITURE	BASE STATION(S)	Base Info (Lot)	(Derrod)	Actual	KML	LOCATION
16,2016 2	23262P	18LK205107A	PEGASUS	NA	206	976	222	26.3	277	15.8	Ň	8	168	W	ž	W	Z-IDAC/RAW DATA
16,2016 2	23264P	1BLK2005107B	PEGASUS	W	205	6.01	456	18.5	1KB	8	NA	83	1KB	1KB	N	NA	ZIDACRAW
17,2016 2	23266P	1BUK205108A	PEGASUS	W	362	8.06	198	32.5	529	18.1	NA	154	1KB	1KB	NA	NA	ZYDACRAW DATA
17,2016 2	23268P	18UK2051088	PEGASUS	NA	359	8.74	203	3.68	66	18.7	NA	154	168	NA	N	NA	ZYDACIRAW DATA
18,2016 2.	13270P	1BLK205109A	PEGASUS	W	112	3.36	8	455	7.2	5.52	NA	29.1	168	N	ž	W	ZIDACRAW DATA

Received from

R. PHUT S Van

16-31

La	
ž	192
ŝ	5
NSI I	8
E.	INSI INSI
ATA	M.
۵	

				RAW	3				MISSION LOG			DASE STA	(IDMOR)	OPERATOR	FLIGHT	PLAN	warman.
ATE	FLIGHT ND.	MISSION NAME	SENSOR	Output LAS	KOML (swath)	LOG5	POS	MAGESICASI	FLEICASI LOGS	RANGE	DIGITURE	BASE STATION(S)	Base Info (.tel)	(DULOG)	Actual	KML	LOCATION
16,2016	23262P	18LK205107A	PEGASUS	NA	200	976	222	26.3	277	15.8	W	8	168	NA	ž	W	Z:DAC/RAW DATA
16,2016	23264P	1BLK20D5107B	PEGASUS	W	295	6.01	456	18.5	1KB	8	NA	83	1KB	168	¥N.	NA	ZIDACRAW
17,2016	23266P	1BLK205108A	PEGASUS	W	362	8.08	196	32.5	229	18.1	NA	154	1968	1KB	NA	NA	ZYDACIRAW
17,2016	23268P	18UK2051088	PEGASUS	NA	350	8.74	203	3.68	65	18.7	NA	154	1908	NA	NA	NA	ZIDACRAW
18,2016	23270P	1BUK205109A	PEGASUS	NA	112	3.36	88	455	72	5.52	NA	29.1	168	NA	ž	NA	ZIDACRAW

Received from

ちろうろん

5/18/16

16-31

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)
ANNEX 6. Flight logs for the flight missions

1. Flight Log for 23170P Mission

10.1	9	And a state of the		Flight Log No.: 23170
Pilot: M. Tarago way	8 Co-Pilot: K. Lagio	3 Mission Name: IBULD PELAN 9 Route:	4 Type: VFR 5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 922
0 Date: 1 - 9 - 16	12 Airport of Departure (A	irport, Gty/Province): 12 A	rport of Arrival (Airport, Gty/Province):	
3 Engine On: 7:44 AM	14 Engine Off	15 Total Engine Time: 16 Ti	Xe off: 17 Landing:	18 Total Flight Time:
9 Weather			A consideration of the second se	
Flight Classification			21 Remarks	
.a Billable	20.b Non Billable	20.c Others	successed Flight. Complete	BHK 20D and
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 UDAR System Maintenance Aircraft Maintenance Phil-LiDAR Admin Activities 	surveyed 10 lines at B	lik zot.
Problems and Solutions	and the second sec	to set us any support to a set of the set of the set of the	the same of a state strength and the	
O Weather Problem				
 O System Problem O Aircraft Problem 				
O Pilot Problem				
o ones:				2
		V		
Acquisition Fight Approved by	Acquisition Flight Certified	by Pilot-Jaccomenan	Lidar Operation	Alrcraft Mechanic/ Technician
V. Alce	ALC TANGO TANKING	Fir M. Yan	Joran J. Attention	
signature over Printed Name	Signature over Printed Nam	e Signature èver Pri	sted Name Cimature View Drinted Manue	The same is a second se

133

when the state of	while a AITH Madel Parts	3 Mission Name: 192454724	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9122
UDAR Operator: U UDAR Operator:	May C ALIM MODEL PURA	0 Bouter			
10 Date: M- Tongonon	8 Co-Pilot: - Low Lo	Airport, Gty/Province):	12 Airport of Arrival (Airport, City/Province):	
3 Engine On: 	14 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather					
20 Flight Classification			21. Remarks		
20.a Billable	20.b Non Billable	20.c Others	SU (CAN	spil Pright. Come	& vid, at
 Acquisition Flight Ferry Flight System Test Flight Cationation Effect 	 Aircraft Test Flight AAC Admin Flight Others: 	 UDAR System Mainten Aircraft Maintenance Phil-UDAR Admin Activ 	ance BUK	A, B, C, and E	
22 Problems and Solutions					
O Weather Problem					
O Alrcraft Problem					
O Others:					
			5		
Acquisition Elight Approved	by Acquisition Flight Ce	rtified by Plot-ip4	ommand	LIDAR Operator	Aircraft Mechanic/ LIDAR Technician
	AC JOHOOVS MARK	Amme P.M. Not.	Veryo Mun	Signature over Printed Name	Signature over Printed Name

Mission
23190P
log for
Flight

ъ.

A lill and and a lill f	TUES 1 AITM Model - Pedanuc	3 Mission Name: /BLK 200	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9122
ot: N. Tangionent	RCo-Pilot: R. (advo	9 Route:			
ate: 7 - 14 - 14	12 Airport of Departure (Airport, City/Province): 1	2 Aiport of Arrival	(Airport, City/Province):	
igine On: 7:09	14 Engine Off:	15 Total Engine Time: 1	6 Take off:	17 Landing:	18 Total Flight Time:
feather					
ght Classification			21 Remark	5	
Billable	20.b Non Billable	20.c Others	En	icentral flight. (a	week wids
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	o Aircraft Test Flight o AAC Admin Flight o Others:	 LIDAR System Maintena Alicraft Maintenance Phil-LIDAR Admin Activiti 	lies	NW \$1K 20\$3	
roblems and Solutions					
 Weather Problem System Problem Alrcraft Problem Pilot Problem 					
b. Hight Approved b	Acquisition Flight Cert	Ined by Plot-ipCo	Tang ong r	UDAR Operator	Aircraft Mechanic/ UDAR Technician
Signature overbrinted Name	Signature over Minted	Name Signature	wer Printed Name	Signature over Printed Name	Signature over Printed Name

135

Flight Log No.: 232 029 Aircraft Mechanic/ UDAR Technician 6 Aircraft Identification: 9 22 Signature over Printed Name pright over BIKZON with 18 Total Flight Time: 5 Aircraft Type: Cesnna T206H Printed Nam 12 Alport of Arrival (Airport, City/Province): Banachas LIDAR Opera 17 Landing: vinds N uchspul S 21 Remarks 4 Type: VFR Signature over Printed Name 16 Take off: M. Hone ander UIDAR System Maintenance
 Aircraft Maintenance
 Phil-LIDAR Admin Activities flot-in-Cort 1 LIDAR Operator:) + # Imu(wMx | 2 ALTM Model: 0 2 2 4 2 3 Mission Name: 194,2037) 7 Pilot: M. + 7 MM MAK | 8 Co-Pilot: 2, Cup Lo 9 Route: 10 Date: 10 Date: 12 Althort of Departure (Airport, Gty/Province): 15 Total Engine Time: 20.c Others 来 Acquisition Flight Certified by rinted Name entative) Alircraft Test Flight
 AAC Admin Flight
 Others: Bagarbus (PAF Rep 20:11 20.b Non Billable 14 Engine Off: AIC PHIL-LIDAR 1 Data Acquisition Flight Log Acquisition Flight Approved by 2-17-6 Signature over Printed Name (End User Representative) System Test Flight Weather Problem 22 Problems and Solutions 13 Engine On: 71 M Acquisition Flight O Calibration Flight Aircraft Problem System Problem Pilot Problem 20 Flight Classification O Ferry Flight Others: FE-19 Weather 20.a Billable 0 0 0 000 à

Flichttog No: 3074	dentification: 2/2-C	francipien crov		crait Mechanic/ IIDAR Technician <i>MM</i> painte over Printed Name
	6 Alrcraft 18 Total F	t of		Air
	S Aircraft Type: Cesnna T20611 (Airport, City/Province): 17 Landing:	Cancelled due Re shutters)		URAR Operator
	A Type: VFR port of Arrival ke off:	21 Remark		and J Br P J
	24 24 04 4 4 - Daved cel: 12 Al me: 16 Ta	em Maintenance aintenance Admin Activities		Pilot-In-Comm
	3 Mission Name: [] 9 Route: Dave (Algort, Gty/Provinc 15 Total Engine Ti	20.c Others O LIDAR Syste O Aircraft Ma O Phil-IIDAR		Art SallEbb
	2 ALTM Model: 75 & lot: K- Chi 12 Alrport of Departure ne Off:	Non Billable o Aircraft test Flight o AhC Admin Flight o Others:		Acquisition Flight G
	Acquisition Hight Log House III 8 Co-PI 7 20 (G	ation 20.b glid Test Flight ton Flight ton Flight	Looketions Problem Problem oblem	gii Approved by Mr en
	Dats 7 Pilot: C. / 10 Date: 13 Engine On:	20 Flight Classific 20.a Billable O Acquisit O Ferry Fl O System O Calibrat	22 Problems and 0 Weath 0 Alicraft 0 Pliot P	Acquisition F

<u>ю</u>.

Aircraft Mechanic/ IIDAR Technician 2222 Flight Log No.: 3050 Signature over Printed Name 18 Total Flight Time: 2 4 61 6 Aircraft Identification: - of 34102 XTSL a 700m Signature over Printed Name 3 Mission Name: / Sck 2005 / 004 4 Type: VFR 5 Aircraft Type: Cesnna T2061 K. Quisnelo Centourodo 69494 12 Airport of Arrival (Airport, City/Province): JD4R Operator Sempo • 5 minus 17 Landing: Ļ 21 Remarks 16 Take off: 6718H Signature over Printed Name A reg HONSO Pilot-in-Command O LIDAR System MaIntenance Alrcraft Maintenance
 Phil-LIDAR Admin Activities - Dav 15 Total Engine Time: 12 Airport of Departure (Airport, City/Province): Pot lot wo CALMOLLEDO 20.c Others 9 Route: Acquisition Flight Certified by Signature over Printed Name (PAF Representative) /booco 0924 # 8. Alicraft Test Flight AAC Admin Flight No. 1 LIDAR Operator: K. Quissolo 2 ALTM Model: / G 7 Pilot: C. Alfres II 8 Co-Pilot: K. 20.b Non Billable Others: clumate 14 Engine Off: 0 0 Data Acquisition Hight Log Acquisition Fight Approved by 2/ 2016 over Printed Name (End User Representative) 07154 Weather Problem System Test Flight 22 Problems and Solutions Acquisition Flight O Calibration Flight System Problem Aircraft Problem Pilot Problem 20 Flight Classification Ferry Flight Others: 13 Engine On: 20.a Billable 19 Weather Signatu 10 Date:, 0 0 0 0 0 0 0 R

Flight log for 23234P (renamed from 3080P) Mission

<u>ە</u>.

(Mission
à
2
÷.
Τ
\mathbf{c}
or 23266P(
Ę
log
÷
Ę
<u>_</u>
ш
_

7.

tht log No.: 3112	ification: 1/2V		Time: 3101										lechanic/ UIDAR Technician
E	6 Aircraft Ident		18 Total Flight			202							Aircraft M Signatun
	5 Aircra ft Type: Ces n na T206H	Airport, City/Province):	17 Landing: 1652 H			Summer BUR-	5						LIDAR Operator
	acost 4 Type: VFR	12 Airport of Arrival (16 Take off: 07514		21 Remarks		tenance ce uctivities						-in-Command
	3 Mission Name: Itstk-20 9 Route: Thave - De	Airport, City/Province):	15 Total Engine Time:			20.c Others	 LIDAR System Main Aircraft Maintenan Phil-LIDAR Admin A 						Effed by Priot
	2 ALTM Model: Proven	12 Airport of Departure (ine off: 1657H	party cloudy		Non Billable	o Alrcraft Test Flight o AAC Admin Flight o Others:					I	Acquisition Flught Car Acquisition Flught Car Signature over Printed
AR 1 Data Acculation fileht Lo	R Operator: JP Alamban	E. L. L. Townshipson	ine On: 0746H 14 Eng	ather	A Classification	illable 20.b	 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	blems and Solutions	> Weather Problem	O System Problem	> Pilot Problem	o Others:	qualition Flight Approved by K. Marker control for the printed Name

it Log No.: 311 4	ication: A/2C		me: 2+5C			3					schanic/ UDAR Technician
FILE	6 Aircraft Identif		18 Total Flight T			in BUK					Aircraft Me
	5 Aircraft Type: Cesnna T206H	(Ai port, City/Province):	17 Landing: S54 H		2	Surveyed Sups		לפררטון			LIDAR Operator LIDAR Operator LIDAR Operator Signature over Printed Name
	-Dard	12 Airport of Arrival	16 Take off: 2594		21 Remark		ance Activities	calib- cam o		Υ.	liot-in-Command M. G. L. M. G. M. D. T. C M. 15A150
	3 Mission Name: 1842	Airport, City/Province):	15 Total Engine Time:			20.c Others	 LIDAR System Ma Aircraft Maintena Phil-LIDAR Admit 	Cam			rtified by Pa
	2 ALTM Model: Provesus	12 Airport of Departure (ine Off: 1559H	party dowely		Non Billable	o Alrcraft Test Flight o AAC Admin Flight o Others:			1	Acquisition Flight Se
•	R Operator: K. Guilson Hight Lo	te: X . 1	gine On: 12.54 H 34 Engl	sather	tht Classification	Billable 20.b	 Acquisition Flight Ferry Flight System Test Flight Callbration Flight 	oblems and Solutions	O Weather Problem O System Problem	o Pilot Problem O Others:	Acquisition Flight Approved by

∞.

9122 Flight Log No.: 311 (Aircraft Mechanic/ UDAR Technician Signature over Printed Name 6 Aircraft Identification: 大 18 Total Flight Time: 424 5 Aircraft Type: Cesnna T206H Gap - filling - Dart - Dart of Arrival (Airport, City/Province): LIDAR Operator 17 Landing: 21 Remarks 1 UDAR Operator: J. Alucar 2 ALTM Model: Prosess 3 Mission Name: 13 U.205 and 4 Type: VFR 7 Pilot. C. Alfanca UL 8 Co-Pilot: K. Oni 9 Route: Da ch - Da ch 10 Date: 12 Almort of Departure (Airport, Gty/ Province): 12 Airport of Arrive Signature over Printed Name 1 toNSo 16 Take off: Pilot-in-Command O LIDAR System Maintenance Aircraft Maintenance
 Phil-UDAR Admin Activities 15 Total Engine Time: 20.c Others A CLUT CONFOLLED Acquisition Flight Certified by Signature over Printed Name (PAF Representative) pratty clunchy O Aircraft Test Flight AAC Admin Flight 20.b Non Billable Others: iq, Zoi V 0 0 PHIL-LIDAR 1. Data Acquisition Flight Log Acquisition Flight Approved by over Printed Name (End User Representative) O System Test Flight O Weather Problem 22 Problems and Solutions A Man **Calibration Flight** Acquisition Flight System Problem O Aircraft Problem O Pilot Problem O Others: 20 Hight Classification Ferry Flight 13 Engine On: DA3Y April 20.a Billable 19 Weather Signatury 0 0 0

9.

Flight log for 23270P (renamed from 3116P) Mission

ANNEX 7. Flight status reports

CAMARINES SUR & QUEZON (March 7-21, 2016 and May 10-17, 2016)

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
23170P	BAGASBAS	1BLK20DE69A	J. ALMALVEZ	9 March 2016	COMPLETED BLK 20D AND SURVEYED 10 LINES AT BLK 20E.
23182P	BAGASBAS	1BLK20ABCE72A	J. ALMALVEZ	12 March 2016	COVERED VOIDS AT BLK 20A, 20B, 20C, AND 20E.
23190P	BAGASBAS	1BLK20BS74A	M.S. REYES	14 March 2016	COVERED VOIDS AT BLK20B
23202P	BAGASBAS	1BLK20N77A	J. ALMALVEZ	17 March 2016	SUCCESSFUL FLIGHT OVER BLK20N WITH VOIDS
23226P	BLK 20DE DAET, PARACALE	1BLK20D098A	K. QUISADO	APRIL 7	SURVEYED BLK 20D,E 224.61 SQ.KM
23234P	PARACALE	1BLK20D100A	J. ALAMBAN	APRIL 9	SURVEYED BLK PARACALE; HEAVY BUILD UP 45.78 SQ.KM
23266P	BLK 20DS, JOSE PANGANIBAN GAPS BLK 20DS, JOSE PANGANIBAN GAPS	1BLK20S108A	J. ALAMBAN	APRIL 17	SURVEYED GAPS IN BLK20D 183.08 SQ.KM
23268P	BLK 20DES	1BLK20S108	K. QUISADO	APRIL 17	SURVEYED BLK20DES 161.62 SQ.KM
23270P	BLK 20S	1BLK20S109A	J. ALVIAR	APRIL 18	SURVEYED REMAINING GAPS IN BLK 20 31.02 SQ.KM

LAS BOUNDARIES PER FLIGHT

FLIGHT NO.: AREA: MISSION NAME: ALT: SCAN ANGLE: 23170P Bagasbas 1BLK20DE69A 600-1100m 50 deg

SCAN FREQ: SURVEYED AREA: 30Hz 162.13 sq.km.

FLIGHT NO.:	23182P		
AREA:	Bagasbas		
MISSION NAME:	1BLK20ABCE72A		
ALT:	600-1100m	SCAN FREQ:	30Hz
SCAN ANGLE:	50 deg	SURVEYED AREA:	77.2 sq.km.

Flight No. : Area:	23226P Bagasbas		
PRF: Lidar FOV:	200 kHz 50 deg	SCF:	30 Hz

Flight No. :	23234P	
Area:	Bagasbas	
PRF:	200 kHz	SCF:
Lidar FOV:	50 deg	

30 Hz

Flight No. :	23266P		
Area:	Bagasbas		
PRF:	200 kHz	SCF:	30 Hz
Lidar FOV:	50 deg		

Flight No. :23268PArea:BagasbasPRF:200 kHzSCF:Lidar FOV:50 deg

30 Hz

Flight No. : Area: PRF: Lidar FOV:	23270P Bagasbas 200 kHz 50 deg	SCF:	30 Hz	
---	---	------	-------	--

ANNEX 8. Mission Summary Reports

Table A-8.1 Mission Summary Report of Mission Blk20E_supplement

Flight Area	Bagasbas	
Mission Name	Bagasbas_Blk20E_supplement	
Inclusive Flights	23182P,23190P	
Range data size	10.8 GB	
POS	265 MB	
Base data size	3.82 MB	
Image	n/a	
Transfer date	April 11,2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.3	
RMSE for East Position (<4.0 cm)	1.7	
RMSE for Down Position (<8.0 cm)	2.5	
Boresight correction stdev (<0.001deg)	0.000368	
IMU attitude correction stdev (<0.001deg)	0.000584	
GPS position stdev (<0.01m)	0.0086	
Minimum % overlap (>25)	83.93%	
Ave point cloud density per sq.m. (>2.0)	8.52	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	77	
Maximum Height	219.96	
Minimum Height	0.09	
Classification (# of points)		
Ground	38077996	
Low vegetation	23521084	
Medium vegetation	75376526	
High vegetation	190498019	
Building	3343819	
Orthophoto		
Processed by	Engr. Jennifer Saguran, Aljon Rie Araneta, Maria Tamsyn Malabanan	

Figure 1.1.1. Solution Status

Figure 1.1.2. Smoothed Performance Metric Parameters

Figure 1.1.3. Best Estimated Trajectory

Figure 1.1.4. Coverage of LiDAR Data

Figure 1.1.5. Image of data overlap

Figure 1.1.6. Density map of merged LiDAR data

Figure 1.1.7. Elevation difference between flight line

Flight Area	Bagasbas	
Mission Name	Bagasbasa_Blk20E_additional	
Inclusive Flights	23268P	
Range data size	18.7 GB	
POS	203 MB	
Base data size	154 MB	
Image	n/a	
Transfer date	May 18,2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.2	
RMSE for East Position (<4.0 cm)	1.1	
RMSE for Down Position (<8.0 cm)	1.9	
Boresight correction stdev (<0.001deg)	0.000481	
IMU attitude correction stdev (<0.001deg)	0.002637	
GPS position stdev (<0.01m)	0.0118	
Minimum % overlap (>25)	41.03%	
Ave point cloud density per sq.m. (>2.0)	3.97	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	52	
Maximum Height	204.61	
Minimum Height	53.28	
Classification (# of points)		
Ground	17373866	
Low vegetation	13805955	
Medium vegetation	39791743	
High vegetation	102541924	
Building	1710622	
Orthophoto	Yes	
Processed by	Engr. Jennifer Saguran, Aljon Rie Araneta, Maria Tamsyn Malabanan	

Table A-8.2 Mission Summary Report of Mission Blk20E_additional

Figure 1.2.1. Solution Status

Figure 1.2.2. Smoothed Performance Metric Parameters

Figure 1.2.3. Best Estimated Trajectory

Figure 1.2.4. Coverage of LiDAR Data

Figure 1.2.5. Image of data overlap

Figure 1.2.6. Density map of merged LiDAR data

Figure 1.2.7. Elevation difference between flight line

Table A-8.3 Mission Summary Report of Mission Blk20DE		
Flight Area	Bagasbas	
Mission Name	Bagasbasa_BIk20DE	
	23170P	
Range data size	18.2 GB	
POS	253 MB	
Base data size	1/1 MB	
Image	n/a	
Transfer date	April 11,2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.2	
RMSE for East Position (<4.0 cm)	1.3	
RMSE for Down Position (<8.0 cm)	3.1	
Boresight correction stdev (<0.001deg)	0.000394	
IMU attitude correction stdev (<0.001deg)	0.004139	
GPS position stdev (<0.01m)	0.0265	
Minimum % overlap (>25)	54.01%	
Ave point cloud density per sq.m. (>2.0)	3.10	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	233	
Maximum Height	238.71	
Minimum Height	9.81	
Classification (# of points)		
Ground	132618782	
Low vegetation	120066956	
Medium vegetation	232832451	
High vegetation	517053547	
Building	11330479	
Orthophoto	Yes	
Processed by	Engr. Jennifer Saguran, Engr. Edgardo Gubatanga Jr., Jovy Narisma	

Figure 1.3.1. Solution Status

Figure 1.3.2. Smoothed Performance Metric Parameters

Figure 1.3.3. Best Estimated Trajectory

Figure 1.3.4. Coverage of LiDAR Data

Figure 1.3.5. Image of data overlap

Figure 1.3.6. Density map of merged LiDAR data

Figure 1.3.7. Elevation difference between flight line

Flight Area	Bagasbas	
Mission Name	Bagasbasa_Blk20Q	
Inclusive Flights	23270P	
Range data size	5.52 GB	
POS	99 MB	
Base data size	29.1 MB	
Image	n/a	
Transfer date	May 18 ,2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.1	
RMSE for East Position (<4.0 cm)	1.0	
RMSE for Down Position (<8.0 cm)	2.1	
Boresight correction stdev (<0.001deg)	0.000277	
IMU attitude correction stdev (<0.001deg)	0.000421	
GPS position stdev (<0.01m)	0.0090	
Minimum % overlap (>25)	43.68%	
Ave point cloud density per sq.m. (>2.0)	4.28	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	32	
Maximum Height	507.17	
Minimum Height	9.37	
Classification (# of points)		
Ground	24019582	
Low vegetation	8662706	
Medium vegetation	11182538	
High vegetation	3058599	
Building	0	
Orthophoto		
Processed by	Engr. Jommer Medina, Aljon Rie Araneta, Engr. Elainne Lopez	

Table A-8.4 Mission Summary Report of Mission Blk20Q

Figure 1.4.1. Solution Status

Figure 1.4.2. Smoothed Performance Metric Parameters

Figure 1.4.3. Best Estimated Trajectory

Figure 1.4.4. Coverage of LiDAR Data

Figure 1.4.5. Image of data overlap

Figure 1.4.6. Density map of merged LiDAR data

Figure 1.4.7. Elevation difference between flight line

	diminary Report of Mission Diczor
Flight Area	Bagasbas
Mission Name	Bagasbasa_Blk20P
Inclusive Flights	23226P
Range data size	26.6 GB
POS	226 MB
Base data size	130 MB
Image	n/a
Transfer date	May 16 ,2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	2.2
Boresight correction stdev (<0.001deg)	0.000184
IMU attitude correction stdev (<0.001deg)	0.000400
GPS position stdev (<0.01m)	0.0062
Minimum % overlap (>25)	31.21%
Ave point cloud density per sq.m. (>2.0)	2.92
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	175
Maximum Height	294.35
Minimum Height	43.31
Classification (# of points)	
Ground	138409998
Low vegetation	119886032
Medium vegetation	140219976
High vegetation	316314086
Building	16548491
Orthophoto	
Processed by	Engr. Jommer Medina, Engr. Christy Lubiano, Alex John Escobido

Table A-8.5 Mission Summary Report of Mission Blk20P

Figure 1.5.1. Solution Status

Figure 1.5.2. Smoothed Performance Metric Parameters

Figure 1.5.3. Best Estimated Trajectory

Figure 1.5.4. Coverage of LiDAR Data

Figure 1.5.5. Image of data overlap

Figure 1.5.6. Density map of merged LiDAR data

Figure 1.5.7. Elevation difference between flight lines

Flight Area	Bagasbas
Mission Name	Bagasbasa_Blk20O
Inclusive Flights	23234P,23226P
Range data size	12.6 GB
POS	132 MB
Base data size	138 MB
Image	n/a
Transfer date	May 16 ,2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.9
RMSE for East Position (<4.0 cm)	1.0
RMSE for Down Position (<8.0 cm)	3.0
Boresight correction stdev (<0.001deg)	0.000255
IMU attitude correction stdev (<0.001deg)	0.000622
GPS position stdev (<0.01m)	0.0077
Minimum % overlap (>25)	24.21%
Ave point cloud density per sq.m. (>2.0)	4.19
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	186
Maximum Height	813.35 m
Minimum Height	39.97 m
Classification (# of points)	
Ground	142,285,660
Low vegetation	72,465,031
Medium vegetation	215,191,412
High vegetation	568,979,873
Building	16,300,515
Orthophoto	Yes
Processed by	Engr. Jommer Medina, Engr. Edgardo Gubatanga, Maria Tamsyn Malabanan

Table A-8.6 Mission Summary Report of Mission Blk200

Figure 1.6.1. Solution Status

Figure 1.6.2. Smoothed Performance Metric Parameters

Figure 1.6.3. Best Estimated Trajectory

Figure 1.6.4. Coverage of LiDAR Data

Figure 1.6.5. Image of data overlap

Figure 1.6.6. Density map of merged LiDAR data

Figure 1.6.7. Elevation difference between flight lines

	summary Report of Mission Dikzon
Flight Area	Bagasbas
Mission Name	Bagasbasa_Blk20N
Inclusive Flights	23202P
Range data size	25.9 GB
POS	287 MB
Base data size	131 MB
Image	n/a
Transfer date	April 11,2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	2.3
Boresight correction stdev (<0.001deg)	0.000285
IMU attitude correction stdev (<0.001deg)	0.007923
GPS position stdev (<0.01m)	0.0091
Minimum % overlap (>25)	45.27%
Ave point cloud density per sq.m. (>2.0)	2.77
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	286
Maximum Height	480.35 m
Minimum Height	49.55 m
Classification (# of points)	
Ground	154,031,800
Low vegetation	108,265,331
Medium vegetation	239,655,059
High vegetation	563,215,524
Building	9,269,645
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Velina Angelina Bemida, Engr. Monalyne Rabino

Table A-8.7 Missi	on Summary Repor	t of Mission Blk20N
-------------------	------------------	---------------------

Figure 1.7.1. Solution Status

Figure 1.7.2. Smoothed Performance Metric Parameters

Figure 1.7.3. Best Estimated Trajectory

Figure 1.7.4. Coverage of LiDAR Data

Figure 1.7.5. Image of data overlap

Figure 1.7.6. Density map of merged LiDAR data

Figure 1.7.7. Elevation difference between flight line

Flight Area	Bagasbas
Mission Name	Bagasbasa_Blk20N_supplement
Inclusive Flights	23266P
Range data size	26.6 GB
POS	226 MB
Base data size	130 MB
Image	n/a
Transfer date	May 16 ,2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.9
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	2.3
Boresight correction stdev (<0.001deg)	0.000346
IMU attitude correction stdev (<0.001deg)	0.000497
GPS position stdev (<0.01m)	0.0123
Minimum % overlap (>25)	22.68%
Ave point cloud density per sq.m. (>2.0)	2.79
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	104
Maximum Height	383.83 m
Minimum Height	49.47 m
Classification (# of points)	
Ground	43,027,089
Low vegetation	35,835,777
Medium vegetation	63,920,261
High vegetation	165,063,417
Building	3,275,730
Orthophoto	Yes

Table A-8.8 Mission Summary Report of Mission Blk20N_supplement

Figure 1.8.1. Solution Status

Figure 1.8.2. Smoothed Performance Metric Parameters

Figure 1.8.3. Best Estimated Trajectory

Figure 1.8.4. Coverage of LiDAR Data

Figure 1.8.5. Image of data overlap

Figure 1.8.6. Density map of merged LiDAR data

Figure 1.8.7. Elevation difference between flight line

	ary report of Mission Bit200_udditional
Flight Area	Bagasbas
Mission Name	Bagasbasa_Blk20C_additional
Inclusive Flights	23270P
Range data size	5.52 GB
POS data size	99 MB
Base data size	29.1 MB
Image	n/a
Transfer date	May 18,2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.0
RMSE for Down Position (<8.0 cm)	1.7
Boresight correction stdev (<0.001deg)	0.003619
IMU attitude correction stdev (<0.001deg)	0.006918
GPS position stdev (<0.01m)	0.0262
Minimum % overlap (>25)	0%
Ave point cloud density per sq.m. (>2.0)	5.0
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	23
Maximum Height	179.88 m
Minimum Height	9.63 m
Classification (# of points)	
Ground	5,256,105
Low vegetation	5,553,072
Medium vegetation	16,064,438
High vegetation	20,58,1604
Building	36,980
Orthophoto	No
Processed by	Engr. Jommer Medina, Engr. Merven Matthew Natino, Engr. Monalyne Rabino

Table A-8.9 Mission Summary	v Re	port of 1	Mission	Blk20C	additional
	/				

Figure 1.9.1. Solution Status

Figure 1.9.2. Smoothed Performance Metric Parameters

Figure 1.9.3. Best Estimated Trajectory

Figure 1.9.4. Coverage of LiDAR Data

Figure 1.9.5. Image of data overlap

Figure 1.9.6. Density map of merged LiDAR data

Figure 1.9.7. Elevation difference between flight line

ANNEX 9. Basud Model Basin Parameters

Table A-9.1 Basud Model Basin Parameters

	SCS CL	urve Number	Loss	Clark Unit Hydro	graph Transform		RECI	ESSION BASEFL	WO.	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (CU.M/S)	Recession Constant	Threshold Type	Ratio to Peak
W220	0.117	000.66	0	26.701	0.10215	Discharge	0.2075	0.00001	Ratio to Peak	0.01167
W230	0.001	000.66	0	25.200	0.10483	Discharge	1.7547	0.00001	Ratio to Peak	0.06195
W240	0.001	000.66	0	0.215	0.10818	Discharge	0.0172	0.00001	Ratio to Peak	0.04712
W250	0.001	94.156	0	18.550	0.09101	Discharge	2.8292	0.00001	Ratio to Peak	0.17249
W260	0.003	000.66	0	0.194	9.26220	Discharge	0.8790	0.00001	Ratio to Peak	0.00083
W270	0.001	000.66	0	0.017	0.12047	Discharge	1.0304	0.00001	Ratio to Peak	0.04782
W280	0.008	000.66	0	2.351	0.11045	Discharge	3.6937	0.00002	Ratio to Peak	0.12917
W290	0.001	000.66	0	0.219	0.10616	Discharge	0.0457	0.00001	Ratio to Peak	0.06482
W300	0.001	000.66	0	0.206	0.11177	Discharge	1.1933	0.00001	Ratio to Peak	0.01067
W310	0.001	000.66	0	0.248	0.12439	Discharge	2.7623	0.00001	Ratio to Peak	0.01161
W320	6.850	000.66	0	18.950	0.39931	Discharge	1.6225	0.00003	Ratio to Peak	0.08645
W330	0.001	000.66	0	0.017	0.08595	Discharge	0.9181	0.43930	Ratio to Peak	0.96633
W340	0.001	000.66	0	0.017	0.10108	Discharge	1.6944	0.00001	Ratio to Peak	0.05183
W350	0.001	000.66	0	0.208	0.01667	Discharge	1.0911	0.00001	Ratio to Peak	0.00349
W360	14.941	98.736	0	0.250	0.11171	Discharge	0.7559	0.00001	Ratio to Peak	0.00483
W370	16.937	000.66	0	0.183	0.08671	Discharge	0.4217	0.00001	Ratio to Peak	0.00441
W380	23.004	000.66	0	0.017	0.01667	Discharge	3.0867	0.00001	Ratio to Peak	0.40702
W390	16.011	000.66	0	0.191	0.01667	Discharge	0.7488	0.00001	Ratio to Peak	0.08041
W400	0.001	000.66	0	0.017	0.10651	Discharge	2.1217	0.00001	Ratio to Peak	0.01565
W410	15.917	000.66	0	0.017	0.10965	Discharge	1.8369	0.00001	Ratio to Peak	0.11487
W420	0.011	94.642	0	0.218	0.11365	Discharge	2.8221	0.00001	Ratio to Peak	0.61697

ANNEX 10. Basud Model Reach Parameters

Deach	Muskingum Cunge Channel Routing						
Number	Time Step Method	Length (M)	Slope(M/M)	Manning's n	Shape	Width (M)	Side Slope (xH:1V)
R10	Automatic Fixed Interval	1427.7	0.00142	0.40720	Trapezoid	115.102	1
R20	Automatic Fixed Interval	241.4	0.01188	0.99300	Trapezoid	115.102	1
R30	Automatic Fixed Interval	4914.0	0.00086	0.07196	Trapezoid	115.102	1
R40	Automatic Fixed Interval	1750.7	0.00329	0.44252	Trapezoid	115.102	1
R50	Automatic Fixed Interval	625.6	0.01216	0.00010	Trapezoid	115.102	1
R60	Automatic Fixed Interval	5408.4	0.00678	0.00010	Trapezoid	115.102	1
R70	Automatic Fixed Interval	2974.2	0.00569	0.35856	Trapezoid	115.102	1
R110	Automatic Fixed Interval	3614.3	0.00713	0.05524	Trapezoid	115.102	1
R160	Automatic Fixed Interval	2985.3	0.01152	0.00010	Trapezoid	115.102	1
R170	Automatic Fixed Interval	4006.5	0.00603	0.04730	Trapezoid	115.102	1

BASUD					
ID	Latitude	Longitude	Depth	Accuracy (m)	
1	13.8223031	122.7581565	0	3	
2	13.82088941	122.7566752	0	3	
3	13.82219565	122.7583349	0	3	
4	13.82190355	122.7586748	0	3	
5	13.82152239	122.7589239	0	3	
6	13.82126875	122.7591099	0	3	
7	13.81884317	122.7637424	0	3	
8	13.81698964	122.765904	1.1	3	
9	13.81494363	122.7659222	2.7	9	
10	13.82006045	122.7713142	5	3	
11	13.81837518	122.7929818	1.5	3	
12	13.81868754	122.7930126	2	3	
13	13.82061222	122.7907707		3	
14	13.82051119	122.7905127	0.7	11	
15	13.82009012	122.7925951	1.3	3	
16	13.82029517	122.7937957	3	3	
17	13.82097373	122.7926957	1.6	3	
18	14.10976769	123.0045858	1.2	4	
19	14.10898533	123.0044965	0.55	3	
20	14.06818953	122.9654192	0	3	
21	14.06821675	122.9710386	0.6	3	
22	14.06719436	122.9675665	0.8	3	
23	14.06690165	122.9674384	0.3	3	
24	14.06617795	122.9667594	0.2	3	
25	14.0652009	122.9660419	0.1	3	
26	14.06469943	122.9656285	0.3	3	
27	14.06386141	122.9651124	0.3	3	
28	14.06348497	122.96476	0	3	
29	14.06310409	122.9644409	0	3	
30	14.06292455	122.964285	2	4	
31	14.0633835	122.9638931	0	3	
32	14.06416236	122.9629141	0.7	3	
33	14.06394787	122.961471	0	3	
34	14.06526168	122.9617979	2.3	3	
35	14.0652727	122.9636386	0.5	3	
36	14.06579177	122.964599	0	3	
37	14.06631012	122.9637864	0	3	
38	14.08053989	122.9578885	0.8	3	
39	14.08106	122.9577428	0	3	
40	14.08229588	122.9573812	0	3	
41	14.08324867	122.9572973	0	3	

Annex 11. Basud Floodplain Field Validation Points

BASUD				
ID	Latitude	Longitude	Depth	Accuracy (m)
42	14.08392842	122.9572683	0	3
43	14.08983056	122.957211	0	3
44	14.09030316	122.9570354	0	3
45	14.09079644	122.9569241	0	3
46	14.09179997	122.956846	0	3
47	14.09386392	122.9610062	0	3
48	14.11280008	122.9678472	0	3
49	14.11291966	122.967609	0	3
50	14.11399632	122.9672842	0	3
51	14.11281803	122.9686454	0	3
52	14.11248486	122.968869	0	3
53	14.11293167	122.9691818	0.1	3
54	14.11382115	122.9692732	0.1	3
55	14.11495171	122.9660258	0	3
56	14.11580481	122.9559196	0	3
57	14.11687173	122.9567652	0.1	5
58	14.11826947	122.9578041	0.2	3
59	14.11887258	122.9581388	0	3
60	14.11996531	122.9573347	0.1	3
61	14.1201257	122.9570079	0.2	3
62	14.11928142	122.9564024	0	4
63	14.118016	122.9557617	0	3
64	14.11638402	122.9546404	0	9
65	14.10583381	122.9562549	0	3
66	14.11078667	123.013485	2	4.099999905
67	14.11023833	123.0131017	0.2	2.799999952
68	14.109435	123.0127033	1.9	1.5
69	14.10916667	123.0124217	2	2.599999905
70	14.10918833	123.0117733		2
71	14.10952167	123.0117	0.9	2.299999952
72	14.10927	123.0117617	1.8	2.200000048
73	14.10856167	123.010465	1.3	1
74	14.108155	123.0101733	2.2	1.799999952
75	14.10825167	123.00994	2	2.099999905
76	14.10728167	123.0095	2.2	1
77	14.10772333	123.0090583	1.5	2.799999952
78	14.108465	123.0094417	1.2	1
79	14.10867333	123.0085067	2	1.5
80	14.10813667	123.0073583	0	1.5
81	14.10840167	123.0073983	0	2.099999905
82	14.10856333	123.0073733	0	2.099999905
83	14.10872667	123.006655	0.5	2.5
84	14.10902667	123.0061833	0.9	2.90000095

BASUD					
ID	Latitude	Longitude	Depth	Accuracy (m)	
85	14.10959667	123.006545	0	2.799999952	
86	14.10960833	123.00463	0.5	3.900000095	
87	14.1084	123.004345	1.1	3.400000095	
88	14.10799667	122.9836117	2	1	
89	14.10799333	122.9843817	2	2.200000048	
90	14.10881	122.9847933	0	1.700000048	
91	14.11112833	122.985695	0.3	1	
92	14.11347167	122.9857383	1.4	1.200000048	
93	14.11285167	122.987635	1.4	1.10000024	
94	14.11280833	122.9874517	1.5	1.899999976	
95	14.11349667	122.98861	0.9	1	
96	14.06779167	122.97036	0	0.899999976	
97	14.067645	122.9707833	0.1	0.80000012	
98	14.065205	122.966055	0.4	1.10000024	
99	14.06341333	122.9638917	0	2.200000048	
100	14.066785	122.9616183	0	1.200000048	
101	14.06788167	122.9628117	0	3	
102	14.06854667	122.9628133	0	1.899999976	
103	14.113745	122.9684967	0	0.80000012	
104	14.11332167	122.9679433	0	1	
105	14.11282667	122.9679317	0	1.299999952	
106	14.11289167	122.9676317	0	0.899999976	
107	14.11398667	122.9672983	0	0.899999976	
108	14.11280667	122.9685883	0	0.899999976	
109	14.11248333	122.968845	0	1.10000024	
110	14.112905	122.9691933	0.1	1.399999976	
111	14.11379167	122.9692817	0	1.10000024	
112	14.114925	122.9660767	0	1.200000048	
113	14.11992167	122.957285	0.1	1.399999976	
114	14.12004167	122.9570017	0.2	0.899999976	
115	14.12128333	122.9577867	0.7	1.799999952	
116	14.12234167	122.9552983	0	1.799999952	
117	14.11931167	122.9564783	0	0.899999976	
118	14.11807	122.9557933	0	1.100000024	
119	14.11637833	122.954625	0	2.200000048	
120	14.08301333	122.9562167	0	1	
121	14.08303	122.9570883	0	1	
122	14.11501333	122.96419	0	1.100000024	
123	14.11500833	122.9635617	0.6	1.10000024	
124	14.11508833	122.963325	0.6	1.799999952	
125	14.11494833	122.9606617	3.9	1.299999952	
126	14.11433333	122.9605467	0.4	2.70000048	
127	14.11358167	122.9592517	0	1.299999952	

BASUD					
ID	Latitude	Longitude	Depth	Accuracy (m)	
128	14.11386	122.9576867	0	2.5	
129	14.11470167	122.9579167	0	2.099999905	
130	14.11537833	122.958295	0	1.20000048	
131	14.11546167	122.9566533	0	1.799999952	
132	14.11482333	122.956555	0	2.700000048	
133	14.11402	122.9567367	0	1.799999952	
134	14.11280667	122.95613	0.9	1.700000048	
135	14.11280667	122.9558417	0	1.10000024	
136	14.11248167	122.95843	0	1.10000024	
137	14.11204833	122.9602383	0	1.200000048	
138	14.11192333	122.96184	0	2.200000048	
139	14.11452167	122.954815	0	1.399999976	
140	14.11430833	122.9556683	0	1.899999976	
141	14.11511	122.9547717	0	2.900000095	
142	14.11572167	122.9548633	0	3.299999952	
143	14.11636167	122.9545967	0	2.200000048	
144	14.11693833	122.9538583	0	1.60000024	
145	14.11798833	122.952205	0	2.400000095	
146	14.11793333	122.9524167	0	1	
147	14.11888167	122.9507467	0	1.10000024	
148	14.10586333	122.9561483	0	1	
149	14.10857431	123.0092533	0.4	9979.568359	
150	14.10857431	123.0092533	0.4	9979.568359	
151	14.10826179	123.0028749	0.3	3	
152	14.10723168	123.0015989	1	3	
153	14.11020798	123.0008742	0.4	3	
154	14.10888076	123.000285	0.8	4	
155	14.11153615	123.0011165	0	3	
156	14.1118902	123.0002099	0.4	3	
157	14.11298675	123.000291	0.2	3	
158	14.11270559	122.9979086	0.2	3	
159	14.11265194	122.9975009	0	3	
160	14.11287725	122.9967552	0	3	
161	14.11374503	122.9958255	0.4	3	
162	14.113065	122.9951674	0	3	
163	14.11511421	122.9956502	0	3	
164	14.11504447	122.9956341	0	3	
165	14.11761279	122.9974402	0	3	
166	14.11669941	122.9937733	2.8	3	
167	14.11316886	122.9949326	2	3.790225744	
168	14.11377311	122.9939979	2.7	3	
169	14.11423981	122.9940999	3	3	
170	14.11456704	122.9936063	3	3	

BASUD					
ID	Latitude	Longitude	Depth	Accuracy (m)	
171	14.11535561	122.9941535	2.2	3	
172	14.11492442	122.9947912	2.2	9	
173	14.11392868	122.9949421	2	3	
174	14.0626649	122.9800372	2.2	3	
175	14.06279829	122.9797978	2.8	4	
176	14.06308956	122.9789597	2.8	3	
177	14.06412853	122.9761182	2	3	
178	14.06510379	122.9734532	1.77	3	
179	14.06598346	122.9710944	1.4	3	
180	14.06725169	122.9675495	0.4	5	
181	14.06819337	122.9653808	0	4	
182	14.06671583	122.9614497	0	3	
183	14.06737498	122.9625075	0	3	
184	14.06862317	122.9628804	0	3	
185	14.06861504	122.9628828	0	3	
186	14.07019022	122.9623596	0	3	
187	14.07241177	122.9613586	0	3	
188	14.07515039	122.9601787	0	3	
189	14.07629496	122.95968	0	3	
190	14.07935129	122.9537013	0	4	
191	14.07902718	122.9584162	0	3	
192	14.07929594	122.9572752	0	3	
193	14.07935946	122.9564661	0	3	
194	14.08076206	122.9559985	0	3	
195	14.08767797	122.965581	0	3	
196	14.08851156	122.9606345	0	3	
197	14.09080223	122.9579631	0	3	
198	14.08989358	122.9581737	0	3	
199	14.09031624	122.9583058	0	3	
200	14.09317003	122.9593255	0	3	
201	14.09414723	122.9616922	0	3	

ANNEX 12. Educational Institutions affected by flooding in Basud Floodplain

Camarines Norte					
Basud					
	Barangay	Rainfall Scenario			
Building Name		5-year	25-year	100-year	
Don Juan Pimentel Elem. School	Bactas			Low	
Hinampacan Elem. School	Hinampacan				
Langga Elem. School	Langa				
PR Samonte Elementary School	Laniton		Medium	Medium	
Goito Pimentel Elem. School	Mampili		Medium	High	
Kalahi Prince Arnold Child Development Center	Mampili	Low	Medium	High	
Mampili Elem. School	Mampili	Low	Medium	High	
Porforio R. Ponayo HighSchool	Mampili		Medium	High	
Porforio R. Ponayo HighSchool;	Mampili		Medium	High	
Manmuntay Elem. Chapel	Manmuntay				
San Jose Elem. School	Manmuntay		Low	Medium	
Brgy. Mantugawe Day Care	Mantugawe				
Pinagsangahan Elem. School	Mantugawe				
Matnog Elem. School	Matnog				
Mampili Elem. School	Mocong	Medium	Medium	High	
Mocong Elem. School	Mocong	Medium	High	High	
Daycare	Oliva				
Langga Daycare	Pagsangahan			Low	
Dominador Narido HS	Pinagwarasan				
Pinagwarasan Elem. School	Pinagwarasan				
Tacad Elem. School	Pinagwarasan				
Basud Natioal HighSchool	Poblacion 1	Low	Medium	Medium	
Basud National HS annex1	Poblacion 1			Low	
Christian Foundation Learning Center	Poblacion 1				
Basud Elementary School	Poblacion 2	Low	Medium	Medium	
Poblacion 2 Daycare	Poblacion 2	Medium	High	Medium	
Tacad Elem. School	Tacad				
Briñas Elem. School	Taisan				

Table A-12.1. Educational Institutions affected by flooding in Basud Floodplain

Daet					
Duilding Name	Barangay	Rainfall Scenario			
Building Name		5-year	25-year	100-year	
Gregorio Pimentel Memorial School	Mancruz				
Mercedes National Highschool	San Isidro		Medium	High	
San Roque National Highschool	San Isidro	Medium	High	High	
Mercedes					
Duilding Nome	Devenseu	Rainfall Scenario			
Building Name Baran	Darangay	5-year	25-year	100-year	
Our Lady of the Holy Bible Learning Center	Barangay I	Low	Low	Medium	
Daycare	Barangay II			Medium	
Brgy. 3 Daycare center	Barangay IV				
Brgy. 5 Daycare	Barangay VI			Medium	
Mercedes Elementary School	Barangay VI	Low	Low	Low	
Mercedes National Highschool	Del Rosario		Medium	High	
Manguisoc Daycare	Manguisoc	Low	Low	Low	
Manguisoc Elementary School	Manguisoc				
Manguisoc Highschool	Manguisoc				
Manguisoc Kindergarten	Manguisoc				
Camarines Sur State College	San Roque	Low	High	High	
San Roque Daycare	San Roque		Medium	High	
San Roque Daycare Center	San Roque	Low	High	High	
San Roque Elementary School	San Roque	Low	Medium	High	
San Lorenzo Ruiz					
Duilding Nama	Barangay	Rainfall Scenario			
Building Name		5-year	25-year	100-year	
Matnog Elem. School	Laniton				
Annex 13. Health Institutions affected by flooding in Basud Floodplain

	-			
Camarines Norte				
Basud				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Health and Nutrition Post	Bactas			Medium
Health Center/ Day Care	Bactas	Medium	Medium	Medium
Brgy. Mantugawe Health Center	Mantugawe			
Health Center/ Daycare	Matnog			
Health Center/ Covered Court	Pinagwarasan			
Taisan Health Center	Pinagwarasan			
Basud Municipal Health Office and Maternity Clinic	Poblacion 2	Medium	High	Medium
Daet				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Health Nutrition Post	Pamorangon			Low
Philhealth	Pamorangon			
Mercedes				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Manguisoc Health Center	Manguisoc			
San Roque Health	San Roque		Medium	High

Table A-13.1. Health Institutions affected by flooding in Basud Floodplain